DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

Examiner responsible: C. Vuik

Examination reviewer: D. den Ouden-van der Horst

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097TU WI3097Minor WI3197Minor AESB2210 AESB2210-18 CTB2400) Thursday July 4th 2019, 13:30-16:30

Number of questions: This is an exam with 12 open questions, subdivided in 3 main questions.

Answers All answers require arguments and/or shown calculation steps. Answers without arguments or calculation steps will not give points.

Tools Only a non-graphical, non-programmable calculator is permitted. All other electronic tools are not permitted.

Assessment In total 20 points can be earned. The final not-rounded grade is given by P/2, where P is the number of points earned.

1. For the initial value problem y' = f(t, y), $y(t_0) = y_0$, we use the following integration method:

$$\begin{cases} w_{n+1}^* = w_n + \Delta t f(t_n, w_n) \\ w_{n+1} = w_n + \frac{\Delta t}{2} \left(f(t_n, w_n) + f(t_{n+1}, w_{n+1}^*) \right). \end{cases}$$
 (1)

Here Δt denotes the timestep and w_n represents the numerical approximation at time t_n .

(a) Show that the local truncation error of the integration method is of the order $\mathcal{O}(\Delta t^2)$. (You are not allowed to use the test equation here.) (3pt.)

Consider the following initial value problem

$$\begin{cases} \frac{d^2y}{dt^2} + 4y = \cos t, \\ y(0) = 1, \quad \frac{dy}{dt}(0) = 0. \end{cases}$$
 (2)

(b) Show that the above initial value problem can be written as

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \cos t \end{pmatrix}.$$
 (3)

Give the initial conditions for $x_1(0)$ and $x_2(0)$ as well. (1pt.)

- (c) Calculate one step with integration method (1), in which $\Delta t = 0.1$ and $t_0 = 0$, applied to (3) and use the given initial conditions. (2pt.)
- (d) Derive the amplification factor for the integration method. (2pt.)
- (e) Examine for which stepsizes Δt , the integration method (1), applied to the initial value problem (3), is stable. (2pt.)

2. We want to find an approximation of the zero p of a function f, i.e. we want to find p such that f(p) = 0. However, we do not known the function f, but only some values of f in some points x are known, which are given in the table to the right.

x	f(x)
1	-1
4/3	-2/9
7/5	-1/25
10/7	2/49
2	2

Therefore we consider using the Secant method:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{K_{n-1}},\tag{4}$$

with K_{n-1} an approximation to $f'(p_{n-1})$, and in which p_{n-2} , p_{n-1} and p_n are three consecutive approximations of the zero p.

Equation (4) is based on formulating the linear interpolating polynomial L of f based on p_0 and p_1 :

$$L(x) = f(p_0) + \frac{f(p_1) - f(p_0)}{p_1 - p_0} (x - p_0),$$

after which p_2 is found by solving $L(p_2) = 0$ for p_2 .

(a) Show that, for n = 2, K_1 is given by

$$K_1 = \frac{f(p_1) - f(p_0)}{p_1 - p_0},$$

by solving $L(p_2) = 0$ for p_2 .

(2 pt.)

(11/2 pt.)

(1 pt.)

- (b) Take $p_0 = 1$ and $p_1 = 2$. Approximate the zero p of f by calculating p_2 . You may round p_2 to a value of x as given in the table. (1 pt.)
- (c) Repeat the above steps with n = 3 by stating the formula for K_2 and calculating p_3 . You may round p_3 to a value of x as given in the table. (2 pt.)
- 3. We are interested in the numerical integration of the integral

$$\int_0^{2\pi} y(x)dx,$$

with $y(x) = 1 + \sin(x)$.

- (a) Approximate the above integral with the right composite Rectangle rule using $h = \pi/2$. (1½ pt.)
- (b) Approximate the above integral with the composite Trapezoidal rule using $h = \pi/2$. (1 pt
- (c) The magnitude of the errors ε_R and ε_T of the approximations are bounded by

$$\varepsilon_R \le \pi h \max_{x \in [0, 2\pi]} |y'(x)|,$$

for the right composite Rectangle rule and by

$$\varepsilon_T \le \frac{\pi}{6} h^2 \max_{x \in [0, 2\pi]} |y''(x)|,$$

for the composite Trapezoidal rule. Give explicit upper bounds for both rules for general values of h.

(d) Select and motivate which method you prefer if h becomes small.

For the answers of this test we refer to: