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Number of questions: This is an exam with 12 open questions, subdivided in 3 main ques-
tions.

Answers All answers require arguments and/or shown calculation steps. Answers without
arguments or calculation steps will not give points.

Tools Only a non-graphical, non-programmable calculator is permitted. All other electronic
tools are not permitted.

Assessment In total 20 points can be earned. The final not-rounded grade is given by P/2,
where P is the number of points earned.

1. For the initial value problem y′ = f(t, y), y(t0) = y0, we use the following integration
method: 

w∗n+1 = wn + ∆tf(tn, wn)

wn+1 = wn +
∆t

2

(
f(tn, wn) + f(tn+1, w

∗
n+1)

)
.

(1)

Here ∆t denotes the timestep and wn represents the numerical approximation at time tn.

(a) Show that the local truncation error of the integration method is of the orderO(∆t2).
(You are not allowed to use the test equation here.) (3pt.)

Consider the following initial value problem
d2y

dt2
+ 4y = cos t,

y(0) = 1,
dy

dt
(0) = 0.

(2)

(b) Show that the above initial value problem can be written as(
x1
x2

)′
=

(
0 1
−4 0

)(
x1
x2

)
+

(
0

cos t

)
. (3)

Give the initial conditions for x1(0) and x2(0) as well. (1pt.)

(c) Calculate one step with integration method (1), in which ∆t = 0.1 and t0 = 0,
applied to (3) and use the given initial conditions. (2pt.)

(d) Derive the amplification factor for the integration method. (2pt.)

(e) Examine for which stepsizes ∆t, the integration method (1), applied to the initial
value problem (3), is stable. (2pt.)
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2. We want to find an approximation of the zero p of a func- x f(x)

1 −1
4/3 −2/9
7/5 −1/25
10/7 2/49
2 2

tion f , i.e. we want to find p such that f(p) = 0. However,
we do not known the function f , but only some values of
f in some points x are known, which are given in the table
to the right.

Therefore we consider using the Secant method:

pn = pn−1 −
f(pn−1)

Kn−1
, (4)

with Kn−1 an approximation to f ′(pn−1), and in which pn−2, pn−1 and pn are three con-
secutive approximations of the zero p.
Equation (4) is based on formulating the linear interpolating polynomial L of f based on
p0 and p1:

L(x) = f(p0) +
f(p1)− f(p0)

p1 − p0
(x− p0) ,

after which p2 is found by solving L(p2) = 0 for p2.

(a) Show that, for n = 2, K1 is given by

K1 =
f(p1)− f(p0)

p1 − p0
,

by solving L(p2) = 0 for p2. (2 pt.)
(b) Take p0 = 1 and p1 = 2. Approximate the zero p of f by calculating p2. You may

round p2 to a value of x as given in the table. (1 pt.)
(c) Repeat the above steps with n = 3 by stating the formula for K2 and calculating p3.

You may round p3 to a value of x as given in the table. (2 pt.)

3. We are interested in the numerical integration of the integral∫ 2π

0

y(x)dx,

with y(x) = 1 + sin(x).

(a) Approximate the above integral with the right composite Rectangle rule using h = π/2. (11/2 pt.)
(b) Approximate the above integral with the composite Trapezoidal rule using h = π/2. (1 pt.)
(c) The magnitude of the errors εR and εT of the approximations are bounded by

εR ≤ πh max
x∈[0,2π]

|y′(x)|,

for the right composite Rectangle rule and by

εT ≤
π

6
h2 max

x∈[0,2π]
|y′′(x)|,

for the composite Trapezoidal rule. Give explicit upper bounds for both rules for
general values of h. (11/2 pt.)

(d) Select and motivate which method you prefer if h becomes small. (1 pt.)

For the answers of this test we refer to:
http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html


