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1. (a) The local truncation error is defined as

n — Zn
T (A) = S M

where 2,1 is given by
Zn+1 = Yn + At (alf(tna yn) + a2f(tn + At, Un + Atf(tm yn)) . (2)
A Taylor expansion of f around (t,,¥,) of the last term yields

0
b 28+ A b)) = b ) + A6 (b, 00)

0
8 b)) + OB
=y (tn) + Aty (t,) + O(AL).
This is substituted into Equation (2) to obtain

Zn1 = Y + At (a1 f(tn, yn) + a2 [y () + Aty (t,) + O(AL)?])
= Yo + Aty (t,) + a2 A2y (t,) + O(AF). (3)

A Taylor series for y(t) around t,, gives for y,11
1
Ynt1 = Yn + Aty (tn) + E(At)2y//(tn) + O(Atg)' (4)

Equations (4) and (3) are substituted into relation (1) to obtain

1
Totl = (5 — ag) Aty (t,) + O(At2).

Hence 7,11 = O(At) in general.
If ay = 3, we have 7,11 = O(A#?).
(b) The test equation is given by
Yy = A\y.

Application of the predictor step to the test equation gives

Wy = Wy + AAtw, = (1 4+ AA)w,.
The corrector step yields

W1 = Wy + At (@i wy, + ao (1 + AAHw,) = (1 + AAL + az(AAL)?)w,.

Hence the amplification factor is given by

QAAL) = 1+ AAt + az(AAL)?.



(c) Let A <0 (so A is real), then, for stability, the amplification factor must satisfy

-1 < QAL < 1.
From the previous assignment, we have
—1 <14 MAt+ aa(MNAE)? < 1,

which is equivalent to
—2 < AAt + ax(AAL)? < 0.

First, we consider the left inequality:
ag(ANAL)? + AAt+2 >0

For At = 0, the above inequality is satisfied (2 > 0).

The discriminant of the quadratic inequality in At is given by D = A\*(1 — 8ay).
From the given assumption it follows that D < 0 so the quadratic equation does not
have real roots. Hence the left inequality in relation (1) is always satisfied.

Next we consider the right hand inequality of relation (1)
az(AAL)? + AAt < 0.
This relation is rearranged into
ag(AAL)? < —\At,

hence

-1
At < —.
- CLQ)\

is the only stability condition.
In order to compute the bound for At we need the eigenvalues of the Jacobian matrix
in the initial point and we note that the right-hand side of the non linear system is
given by:

fl(t, xy, .TQ) = COST1 — 2I2 +1

1
fo(t, @1, 20) = 5331 — x%
From the definition of the Jacobian it follows that:

afi  Of :

2= - —sinx;  —2
J(t,xy,20) = |95 92| = { 1 } .

v O 3 21

Substitution of 71(0) |7 and t = 0 shows that

-2
J(0,7,1) = [9 } .
3 —2
The eigenvalues of J(0,m, 1) are calculated as A\; = Ay = —1.
Because \; and Ay are real and negative, the stability bound from question (c) can
be applied. Therefore the given method applied to the given system is stable for
At > 0 satisfying

at t = 0.



(e) With f(t,x) = [fi(t, 71, 72), fo(t, 1, 22)]" and x = [z, 25]7, applying the method as
stated gives

[
Wo = 1]7
[ 3
f(O,W()) == _%’/T—1:|7
Wt — (r—3 ~10.1415
T I %’/T | 1.5707
. [cos(m —3) — 7+ 1
1wy = [P
L 2 2 1
A7 4+ Leos(m—3) —1 1.0658
wi= |2 ;27 4 = :
[T 0.0871



2.

(a)

The solution and its first and second derivative are given by
y(r) = " (2-x),
y'(x) = e"(1-ua),
y'(x) = —xe”.
Substitution of the above in the left hand side of the ordinary differential equation

gives

—y"(z) + y(z) = —ze” + (2 — x)
= —ze” + 2¢* — ze”
= 2e”,

which shows that it is indeed a solution to the given ode.
The left boundary condition is also satisfied:

y(0) =€"(2-0) =2,
and so is the right boundary condition:
y(1)=e'(1-1)=0.

The given formulas show that central difference approximations are used so we need
formulae with a local truncation error of O (Ax?).
Evaulation of the ode in z = x; and replacing y”(x;) with a finite difference of

O (Ax?) gives

Cy(@ia) — 2y(x;) + y(@-1)
Ax?

+ O (A2?) + y(z;) = 2677

Next, we neglect the truncation error, and set w; ~ y(z;) to obtain

W1 — 2W; + Wiy
Az?

which is the second of the given equations.

+w; = 26387, (5)

At the left boundary, x = 0, we have wy = 2, which after substitution in (5) for
J =1 gives
Wo — 2’LU1 Az 2
A TwEET R
which is the first of the given equations.
At the right boundary, x = 1, we approximate y'(1) with a second-order central

finite-difference:

y(xn-&-l) - y(xn—l) 2
A p—
SAL + O(Az®) =0,

which after neglecting the errors results in
Wp41 = Wp—-1-
Substitution of the above in (5) with j = n gives

—2wn + 2wn_1
Az?

which is the third of the given equations.

+ w, = 2e,

4



(c) Next, we use Az = 1/3, so n = 3 and then, from the given equations, one obtains
the following system:

19w; — 9wy = 27° +18
—9w; + 19w, — Yws 2¢°°
—18wy + 19w3 = 2e

This means with w = [wy, wo, w3]? that

19 -9 0
A=1-9 19 -9,
0 —18 19
and
2¢'/3 4+ 18
b= 2¢%/3
2e



3.

(a) The quadratic Lagrangian interpolation polynomial, with nodes x¢,z; and x5 is given
by

Loy(z) = f(z0) Loz2(x) + f(w1) Laa(z) + f(22) Laz(7).

Approximating f(x) by La(z) and integration over x from zy = a to xo = b gives:

/abf(:c) dz ~ /abLg(x) dz

:[fﬂ@%x@+f(“;b)mxm+fwwmwnm

— f(a) /abLoz(x)dx+f(a;b) /abng(x)d:chf(b) /abLQQ(x)dx
:f(a)b_a—i—f<a+b) 2(b—a)+f<b)b—a
b

6 2 3 6
(1@ +ar () +50).

(b) A polynomial p(z) of degree 3 or lower has the general form and derivatives

From the last line follows m4 = 0, which after substitution in the upperbound gives

/abf(x)dx - 1‘ —0,

i.e. the approximation is exact.

(c) Applying Simpson’s rule with a = 0, b =1 and f(x) = 2 results in
fdr~ - (0" +4( = 1
/0 rdxr 6 + 5 +
LY
B 4

15
64
_ 5
247

1
1
/ zidr = =,
0 5

so the absolute value of the truncation error equals

(@)

Also

1
1 5 1 1
4
de— 1| =z = 2| = |- —| = —.
/Ox:': ’ ‘5 24 ’120 120




