DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

Examiner responsible: C. Vuik

Examination reviewer: D. den Ouden-van der Horst

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097TU WI3097Minor WI3197Minor AESB2210 AESB2210-18 CTB2400) Tuesday August 13th 2019, 13:30-16:30

Number of questions: This is an exam with 11 open questions, subdivided in 3 main questions.

Answers All answers require arguments and/or shown calculation steps. Answers without arguments or calculation steps will not give points.

Tools Only a non-graphical, non-programmable calculator is permitted. All other tools are not permitted.

Assessment In total 20 points can be earned. The final not-rounded grade is given by P/2, where P is the number of points earned.

1. We consider the following method

$$\begin{cases} w_{n+1}^* = w_n + \Delta t f(t_n, w_n) \\ w_{n+1} = w_n + \Delta t \left(a_1 f(t_n, w_n) + a_2 f(t_{n+1}, w_{n+1}^*) \right) \end{cases}$$

for the integration of the **initial value problem** y' = f(t, y), $y(t_0) = y_0$. The constants a_1 and a_2 satisfy $a_1 + a_2 = 1$.

- (a) Show that the local truncation error of the above method has order $\mathcal{O}(\Delta t)$ in general. For which value(s) of a_1 and a_2 will the above method have a local truncation error of order $\mathcal{O}(\Delta t^2)$?
- (b) Demonstrate that for general values of a_1 and a_2 the amplification factor is given by

$$Q(\lambda \Delta t) = 1 + \lambda \Delta t + a_2(\lambda \Delta t)^2.$$
 (1\frac{1}{2} pt.)

(c) Consider $\lambda < 0$ and $1 - 8a_2 < 0$. Show that the above method is *stable* for all $\Delta t > 0$ satisfying

$$\Delta t \le \frac{-1}{a_2 \lambda}.\tag{2 pt.}$$

 $(3\frac{1}{2} \text{ pt.})$

 $(1\frac{1}{2} \text{ pt.})$

(d) We consider the following system of non-linear differential equations:

$$\begin{cases} x'_1 &= \cos x_1 - 2x_2 + t, \\ x'_2 &= \frac{1}{2}x_1 - x_2^2, \\ x_1(0) &= \pi, \\ x_2(0) &= 1. \end{cases}$$
 (1)

We choose $a_1 = a_2 = \frac{1}{2}$. For which values of Δt is the method applied to (1) stable at t = 0?

(e) We again choose $a_1 = a_2 = \frac{1}{2}$. Perform one time step with the given method and $\Delta t = 1$ to obtain an approximation of the solution of the system (1) at time t = 1. $(1\frac{1}{2} \text{ pt.})$

2. We consider the following boundary-value problem:

$$\begin{cases}
-y''(x) + y(x) &= 2e^x, & x \in (0,1), \\
y(0) &= 2, \\
y'(1) &= 0.
\end{cases}$$
(2)

The exact solution is given by

$$y(x) = e^x(2-x). (3)$$

In this exercise we try to approximate this exact solution with a numerical method.

- (a) Show that Equation (3) indeed constitutes the exact solution of Problem (2). (1 pt.)
- (b) We solve the boundary value problem (3) using finite differences with a local truncation error of $\mathcal{O}(\Delta x^2)$, upon setting $x_j = j\Delta x$, $n\Delta x = 1$, where Δx denotes the uniform stepsize. After discretization we obtain the following formulas:

$$-\frac{w_2 - 2w_1}{(\Delta x)^2} + w_1 = 2e^{\Delta x} + \frac{2}{\Delta x^2},$$

$$-\frac{w_{j+1} - 2w_j + w_{j-1}}{(\Delta x)^2} + w_j = 2e^{j\Delta x}, \quad \text{for } j \in \{2, \dots, n-1\},$$

$$-\frac{-2w_n + 2w_{n-1}}{(\Delta x)^2} + w_n = 2e.$$

Give (with arguments) the derivation of this scheme.

- (3 pt.)
- (c) Choose $\Delta x = 1/3$ and derive the system of equations $A\mathbf{w} = \mathbf{b}$ with $\mathbf{w} = [w_1, \dots, w_n]^T$. Explicitly state A and \mathbf{b} in your answer. (1 pt.)
- 3. To approximate $\int_a^b f(x) dx$ Simpson's rule

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

can be used. Simpson's rule is based on the assumption $f(x) \approx L_2(x)$, with $L_2(x)$ the quadratic interpolatory polynomial with nodes $x_0 = a$, $x_1 = \frac{a+b}{2}$ and $x_2 = b$.

We know furthermore the following integrals:

$$\int_{x_0}^{x_2} L_{k2}(x) dx = \begin{cases} \frac{1}{6} (x_2 - x_0) & \text{if } k \in \{0, 2\}, \\ \frac{2}{3} (x_2 - x_0) & \text{if } k = 1, \end{cases}$$

where $L_{k2}(x)$ is the quadratic Lagrange basis polynomial of node x_k .

(a) Give a derivation of Simpson's rule.

(2 pt.)

 $(1\frac{1}{2} \text{ pt.})$

(b) Given is that an upperbound for the truncation error of Simpson's rule I is

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - I \right| \le \frac{1}{2880} m_4 (b - a)^5,$$

where $m_4 = \max_{a \le x \le b} |f^{(4)}(x)|$.

Show that Simpson's rule is exact for polynomials of degree 3 and lower.

(c) Approximate $\int_0^1 x^4 dx$ with Simpson's rule and give the absolute value of the truncation error in this approximation. (1\frac{1}{2} pt.)

For the answers of this test we refer to: