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(a) The local truncation error is given by

n — Zn
T (A) = S M

with y,.1 = y(t,4+1) the exact solution at time ¢, and
Zn+1 the numerical approximation obtained with w, = y,.

Yn+1 can be expanded by the use of Taylor expansions around t,:

! AtQ !
Ynt1 = Yn + Aty (t,) + T?J (tn) + O(At3)' (2)

After substitution of the predictor 2, = y, + Atf(t,,yn) into the corrector, and
after using a Taylor expansion around (t,,y,), we obtain for z,,1:

A
b Fltm) t f (4 Ay + ALF(E ).

2
_ At Of (tn, Yn) / Of (tn,yn)

Zn+1 = Yn +

2

At

So we obtain

O(At?)

Yni1 — Zns1 = O(At?), and hence 7,41(At) = N

—O0(AR).  (3)



(b) Application of the integration method to the system 2’ = Az + f, gives

wi‘zwo+At<Awo+io),
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With the initial condition w, = <(1)> and At = 1, this gives the following result for

wi= (1) 1 (G 1) () ()

the predictor
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(¢) The amplification factor Q(AAt) is defined as

QAL = ZnEL

Wnp,

with w, 1 de result of applying the given method to the test equation 3’ = Ay.
Applying the method results in:

wr = wy, + At (Awy,)
= (1 + A\At) wy,

and

At
Wn1 = Wn + - (Awy, + A ((1 4+ AAt) wy,))

=t S0 O+ (A VAT w,)

At
=w, + o> (2)\wn + )\QAtwn)
1
= w,, + A\Atw,, + §A2At2wn

1
— (1 + \AL + 5)\2&2) W,

This finally leads to
1
QAAL) = 1+ MAL + §A2At2.



(d) For stability,
QAL <1,

must hold for all eigenvalues of the linear initial value problem, with () the amplifi-
cation factor of the given method.

First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues
are substituted into the amplification factor.

The eigenvalues of the matrix A are given by Ay =0 and \y = —1.
We first consider Ay = 0:

QM AL) = 1+ 0At + %(0&)2
=1.
From this it easily follows that
[QMAL| < T,

and therefore A; = 0 sets no restrictions on the value of At.
Now we consider \y = —1:

Q(NAL) =1+ (-1)At + %(—1&)2
=1-At+ %At?
From this it follows that At should satisfy
-1< 1—At+%At2§ 1.
Consider the left inequality, which can be rewritten to:
%AtQ—At+2 > 0.

This inequality is satisfied if the quadratic function on the left has no real roots and
there is one value of At such that the inequality is satisfied.

Substituting At = 1 (At = 0 cannot be taken, as At > 0 is given in the exercise)

gives
3/2>0,
which is true. The discriminant of the function is given by
1
D:(—1)2—4~§~2:—3<0

so the quadratic function has no real roots. Therefore the left inequality sets no
restrictions on the value of At.

Consider the right inequality, which can be rewritten as:
1
1— At + §At2 <1
1
—At + §At2 <0

1
-1+ §At <0 because At > 0 is given.

1
-At <1
2

At < 2.



From the above it follows that the method applied to the initial value problem is
stable if
At < 2.



2.

(a) Evaluation of the ode in z = x; and replacing y”(z;) with a finite difference of

O (Ax?) gives

y(@ye1) — 2y(zy) + y(x—1)
Ax?

+ O (A2?) + dy(z;) = 4€¥2".
Next, we neglect the truncation error,
and set w; ~ y(z;) to obtain

_ Wi — 2w5 + Wiy
Ax?

+ dw; = 4e¥A", (5)

which is the second of the given equations.

At the left boundary, x = 0, we have wg = %, which after substitution in (5) for

j =1 gives
3

2Az2’

Wy — 2wy L ons
_A—l‘2+4w1 = 4e —+

which is the first of the given equations.

At the right boundary, x = 1, we approximate y'(1) with a second-order central
finite-difference, which transforms the boundary condition in:

Y(Tni2) — y(Tn) 2\
5 AL + O(Az") =0,

which after neglecting the errors results in
Wn+2 = Wy
Substitution of the above in (5) with 7 = n + 1 and division by two gives

—Wn+1 + Wn, 2
T AR TR =2

which is the third of the given equations.



(b) Each mistake in an equation (directly stated A and b) results in a subtraction of /4
point, with at most the allocated points being subtracted.

We use Az = 1/4, so n = 4 and then, from the given equations, one obtains the

following system:

36w, — 16wy =

—16w; + 36wy — 16ws =
—16wqy + 36ws — 16w, =
—16ws + 18w, =

This means with w = [wy, w, w3, wy]T that

36 —-16 O
—-16 36 —16

A= 0 -—-16 36
0 0 -16

and

4e'? 4 24

4e

b= 4¢°/?

2¢?

4e? + 24
4e
4¢°?
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3. (a) Approximating f(z) by Ly(z) and integration over x from a to b gives:

/ ) de / L) dr
-/ @) Loa() + f ( . b) Lia(@) + F(0)Lan() d

a+b

:f(a)/abL02($>d$+f( 5 )/abng(x)derf(b)/abLQZ(x)dx

:f(a)b_a—kf(a;—b) 2(b3—a) —i—f(b)bga

6
=25 (rw e (U57) 1 1w)).




(b) Let f be an arbitrary polynomial of degree 3 or lower. So f must be of the form
f(z) = c12® + 2 + 32 + c4,

with ¢;,7 = 1,2, 3,4 constants. But this means:

f'(x) = 3c12% + 2c9m + cs,
= 1" (x) = 6c1x + 209,
= f3(x) = 6¢y,
= fW(@) =0,
= |f @ ()] =0,
4) —
= max |fP(z)] =0,
= my =0

The given inequality for the truncation error therefore becomes

<0

Y

[ s

which shows that the Simpon’s rule is exact for polynomials of degree 3 and lower.



(c¢) Applying Simpson’s rule with a = 0, b = 7 and f(x) = sin(x) results in

/ sin(x)dx%%(0+4~1—i—0)
0

2w

=3
We have f®(z) = sin(z), so my = 1, which gives

™ 71'5
/ sin(z)dx — I| < :
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