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1. (a) The local truncation error is given by

τn+1(∆t) =
yn+1 − zn+1

∆t
, (1)

with yn+1 = y(tn+1) the exact solution at time tn+1 and
zn+1 the numerical approximation obtained with wn = yn.

yn+1 can be expanded by the use of Taylor expansions around tn:

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(tn) +O(∆t3). (2)

After substitution of the predictor z∗n+1 = yn + ∆tf(tn, yn) into the corrector, and
after using a Taylor expansion around (tn, yn), we obtain for zn+1:

zn+1 = yn +
∆t

2
(f(tn, yn) + f(tn + ∆t, yn + ∆tf(tn, yn))) ,

= yn +
∆t

2

(
2f(tn, yn) + ∆t

(
∂f(tn, yn)

∂t
+ y′(tn)

∂f(tn, yn)

∂y

)
+O(∆t2)

)
,

= yn + ∆ty′(tn) +
∆t2

2
y′′(tn) +O(∆t3).

So we obtain

yn+1 − zn+1 = O(∆t3), and hence τn+1(∆t) =
O(∆t3)

∆t
= O(∆t2). (3)
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(b) Application of the integration method to the system x′ = Ax+ f , gives

w∗1 = w0 + ∆t
(
Aw0 + f

0

)
,

w1 = w0 + ∆t
2

(
Aw0 + f0 + Aw∗1 + f

1

)
.

(4)

With the initial condition w0 =

(
0
1

)
and ∆t = 1, this gives the following result for

the predictor

w∗1 =

(
0
1

)
+ 1

((
0 1
0 −1

)(
0
1

)
+

(
0
0

))
=

(
0
1

)
+

(
1
−1

)
+

(
0
0

)
=

(
1
0

)
.

The corrector is calculated as follows

w1 =

(
0
1

)
+

1

2

((
0 1
0 −1

)(
0
1

)
+

(
0
0

)
+

(
0 1
0 −1

)(
1
0

)
+

(
0

sin(1)

))
=

(
0
1

)
+

1

2

((
1
−1

)
+

(
0
0

)
+

(
0
0

)
+

(
0

sin(1)

))
=

(
0
1

)
+

1

2

(
1

−1 + sin(1)

)
=

(
1/2

1/2 + 1/2 sin(1)

)
.
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(c) The amplification factor Q(λ∆t) is defined as

Q(λ∆t) =
wn+1

wn
,

with wn+1 de result of applying the given method to the test equation y′ = λy.

Applying the method results in:

w∗n+1 = wn + ∆t (λwn)

= (1 + λ∆t)wn,

and

wn+1 = wn +
∆t

2
(λwn + λ ((1 + λ∆t)wn))

= wn +
∆t

2

(
λwn +

(
λ+ λ2∆t

)
wn
)

= wn +
∆t

2

(
2λwn + λ2∆twn

)
= wn + λ∆twn +

1

2
λ2∆t2wn

=

(
1 + λ∆t+

1

2
λ2∆t2

)
wn.

This finally leads to

Q(λ∆t) = 1 + λ∆t+
1

2
λ2∆t2.
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(d) For stability,
|Q(λ∆t)| ≤ 1,

must hold for all eigenvalues of the linear initial value problem, with Q the amplifi-
cation factor of the given method.

First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues
are substituted into the amplification factor.

The eigenvalues of the matrix A are given by λ1 = 0 and λ2 = −1.

We first consider λ1 = 0:

Q(λ1∆t) = 1 + 0∆t+
1

2
(0∆t)2

= 1.

From this it easily follows that

|Q(λ1∆t)| ≤ 1,

and therefore λ1 = 0 sets no restrictions on the value of ∆t.

Now we consider λ2 = −1:

Q(λ2∆t) = 1 + (−1)∆t+
1

2
(−1∆t)2

= 1−∆t+
1

2
∆t2.

From this it follows that ∆t should satisfy

−1 ≤ 1−∆t+
1

2
∆t2 ≤ 1.

Consider the left inequality, which can be rewritten to:

1

2
∆t2 −∆t+ 2 ≥ 0.

This inequality is satisfied if the quadratic function on the left has no real roots and
there is one value of ∆t such that the inequality is satisfied.

Substituting ∆t = 1 (∆t = 0 cannot be taken, as ∆t > 0 is given in the exercise)
gives

3/2 ≥ 0,

which is true. The discriminant of the function is given by

D = (−1)2 − 4 · 1

2
· 2 = −3 < 0

so the quadratic function has no real roots. Therefore the left inequality sets no
restrictions on the value of ∆t.

Consider the right inequality, which can be rewritten as:

1−∆t+
1

2
∆t2 ≤ 1

−∆t+
1

2
∆t2 ≤ 0

−1 +
1

2
∆t ≤ 0 because ∆t > 0 is given.

1

2
∆t ≤ 1

∆t ≤ 2.
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From the above it follows that the method applied to the initial value problem is
stable if

∆t ≤ 2.
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2. (a) Evaluation of the ode in x = xj and replacing y′′(xj) with a finite difference of
O (∆x2) gives

−y(xj+1)− 2y(xj) + y(xj−1)

∆x2
+O

(
∆x2

)
+ 4y(xj) = 4e2j∆x.

Next, we neglect the truncation error,
and set wj ≈ y(xj) to obtain

−wj+1 − 2wj + wj−1

∆x2
+ 4wj = 4e2j∆x, (5)

which is the second of the given equations.

At the left boundary, x = 0, we have w0 = 3
2
, which after substitution in (5) for

j = 1 gives

−w2 − 2w1

∆x2
+ 4w1 = 4e2∆x +

3

2∆x2
,

which is the first of the given equations.

At the right boundary, x = 1, we approximate y′(1) with a second-order central
finite-difference, which transforms the boundary condition in:

y(xn+2)− y(xn)

2∆x
+O(∆x2) = 0,

which after neglecting the errors results in

wn+2 = wn.

Substitution of the above in (5) with j = n+ 1 and division by two gives

−−wn+1 + wn
∆x2

+ 2wn+1 = 2e2,

which is the third of the given equations.
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(b) Each mistake in an equation (directly stated A and b) results in a subtraction of 1/4

point, with at most the allocated points being subtracted.

We use ∆x = 1/4, so n = 4 and then, from the given equations, one obtains the
following system:

36w1 − 16w2 = 4e
1/2 + 24

−16w1 + 36w2 − 16w3 = 4e

−16w2 + 36w3 − 16w4 = 4e
3/2

−16w3 + 18w4 = 2e2

This means with w = [w1, w2, w3, w4]T that

A =


36 −16 0 0
−16 36 −16 0

0 −16 36 −16
0 0 −16 18

 ,
and

b =


4e1/2 + 24

4e
4e3/2

2e2

 .
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3. (a) Approximating f(x) by L2(x) and integration over x from a to b gives:∫ b

a

f(x) dx ≈
∫ b

a

L2(x) dx

=

∫ b

a

f(a)L02(x) + f

(
a+ b

2

)
L12(x) + f(b)L22(x) dx

= f(a)

∫ b

a

L02(x) dx+ f

(
a+ b

2

)∫ b

a

L12(x) dx+ f(b)

∫ b

a

L22(x) dx

= f(a)
b− a

6
+ f

(
a+ b

2

)
2(b− a)

3
+ f(b)

b− a
6

=
b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
.
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(b) Let f be an arbitrary polynomial of degree 3 or lower. So f must be of the form

f(x) = c1x
3 + c2x

2 + c3x+ c4,

with ci, i = 1, 2, 3, 4 constants. But this means:

f ′(x) = 3c1x
2 + 2c2x+ c3,

⇒ f ′′(x) = 6c1x+ 2c2,

⇒ f (3)(x) = 6c1,

⇒ f (4)(x) = 0,

⇒ |f (4)(x)| = 0,

⇒ max
a≤x≤b

|f (4)(x)| = 0,

⇒ m4 = 0.

The given inequality for the truncation error therefore becomes∣∣∣∣∫ b

a

f(x) dx− IS
∣∣∣∣ ≤ 0,

which shows that the Simpon’s rule is exact for polynomials of degree 3 and lower.
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(c) Applying Simpson’s rule with a = 0, b = π and f(x) = sin(x) results in∫ π

0

sin(x)dx ≈ π

6
(0 + 4 · 1 + 0)

=
2π

3
.

We have f (4)(x) = sin(x), so m4 = 1, which gives∣∣∣∣∫ π

0

sin(x)dx− I
∣∣∣∣ ≤ π5

2880
.
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