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1. (a) The local truncation error is given by

τn+1(∆t) =
yn+1 − zn+1

∆t
, (1)

in which we determine yn+1 by the use of Taylor expansions around tn:

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(tn) +O(∆t3). (2)

We bear in mind that

y′(tn) = f(tn, yn)

y′′(tn) =
df(tn, yn)

dt
=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
y′(tn)

=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn).

Hence

yn+1 = yn + ∆ty′(tn) +
∆t2

2

(
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn)

)
+O(∆t3). (3)

After substitution of the predictor z∗n+1 = yn + ∆tf(tn, yn) into the corrector, and
after using a Taylor expansion around (tn, yn), we obtain for zn+1:

zn+1 = yn +
∆t

2
(f(tn, yn) + f(tn + ∆t, yn + ∆tf(tn, yn)))

= yn +
∆t

2

(
2f(tn, yn) + ∆t

(
∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y

)
+O(∆t2)

)
.

Herewith, one obtains

yn+1 − zn+1 = O(∆t3), and hence τn+1(∆t) =
O(∆t3)

∆t
= O(∆t2). (4)

(b) Let x1 = y and x2 = y′, then y′′ = x′2, and hence

x′2 + 4x1 + 4x2 = cos(πt),
x′1 = x2.

(5)

We write this as {
x′1 = x2,
x′2 = −4x1 − 4x2 + cos(πt).

(6)
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Finally, this is represented in the following matrix-vector form:(
x1

x2

)′
=

(
0 1
−4 −4

)(
x1

x2

)
+

(
0

cos(πt)

)
. (7)

In which, we have the following matrix A =

(
0 1
−4 −4

)
and f =

(
0

cos(πt)

)
. The

initial conditions are defined by

(
x1(0)
x2(0)

)
=

(
1
0

)
.

(c) Note: Every miscalculation in the calculation of w∗1 gives a subtraction of 1/4 point,
with at most 1/2 point being subtracted.

Note: The calculation of w1 must be consistent with the value for w∗1. If not, 1 point
is subtracted.

Note: Every miscalculation in the calculation of w1 gives a subtraction of 1/4 point,
with at most 1 point being subtracted.

Application of the integration method to the system x′ = Ax+ f , gives

w∗1 = w0 + ∆t
(
Aw0 + f

0

)
,

w1 = w0 + ∆t
2

(
Aw0 + f0 + Aw∗1 + f

1

)
.

(8)

With the initial condition w0 =

(
1
0

)
and ∆t = 0.5, this gives the following result for

the predictor

w∗1 =

(
1
0

)
+ 0.5

((
0 1
−4 −4

)(
1
0

)
+

(
0
1

))
=

(
1
−1.5

)
. (9)

The corrector is calculated as follows

w1 =

(
1
0

)
+ 0.25

((
0 1
−4 −4

)(
1
0

)
+

(
0
1

)
+

(
0 1
−4 −4

)(
1
−1.5

)
+

(
0
0

))
=

(
0.625
−0.25

)
(d) Consider the test equation y′ = λy, then one gets

w∗n+1 = wn + ∆tλwn = (1 + ∆tλ)wn,

wn+1 = wn +
∆t

2
(λwn + λw∗n+1)

= wn +
∆t

2
(λwn + λ(wn + ∆tλwn))

=

(
1 + ∆tλ+

(∆tλ)2

2

)
wn.

Hence the amplification factor is given by

Q(λ∆t) = 1 + λ∆t+
(λ∆t)2

2
. (10)

(e) Note: Every miscalculation in the calculation of |Q(λ1∆t)|2 gives a subtraction of
1/4 point, with at most 1/2 point being subtracted.
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Note: The calculation of |Q(λ1∆t)|2 must be consistent with the eigenvalues found.
If not, 1/2 point is subtracted.

First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues
are substituted into the amplification factor.

The eigenvalues of the matrix A are given by λ1 = −2 and λ2 = −2.

Since both eigenvalues are the same it is sufficient to check if |Q(λ1∆t)| ≤ 1. Since
Q(λ1∆t) = 1 + λ1∆t+ 1

2
(λ1∆t)2 we have to check that |1− 2∆t+ 2(∆t)2| ≤ 1. This

leads to
−1 ≤ 1− 2∆t+ 2(∆t)2 ≤ 1.

We start with the left inequality:

−1 ≤ 1− 2∆t+ 2(∆t)2

This can be written as
0 ≤ 2− 2∆t+ 2(∆t)2

This is a second order polynomial. Since the discriminant (−2)2−4×2×2 is negative
there are no real roots. The inequality holds for ∆t = 0 so it holds for all ∆t-values.
For the right inequality we have:

1− 2∆t+ 2(∆t)2 ≤ 1.

This is equivalent to
−2∆t+ 2(∆t)2 ≤ 0.

Dividing
2(∆t)2 ≤ −2∆t

by 2∆t leads to
∆t ≤ 1.

So the method is stable for all ∆t ≤ 1.
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2. (a) The first order backward difference formula for the first derivative is given by

d′(t) ≈ d(t)− d(t− h)

h
.

Using t = 20, and h = 10 the approximation of the velocity is

d(20)− d(10)

10
=

100− 40

10
= 6 (m/s).

(b) Taylor polynomials are:

d(0) = d(2h)− 2hd
′
(2h) + 2h2d

′′
(2h)− (2h)3

6
d

′′′
(ξ0) ,

d(h) = d(2h)− hd′
(2h) +

h2

2
d

′′
(2h)− h3

6
d

′′′
(ξ1) ,

d(2h) = d(2h).

We know that Q(h) = α0

h
d(0) + α1

h
d(h) + α2

h
d(2h), which should be equal to d′(2h) +

O(h2). This leads to the following conditions:

α0

h
+ α1

h
+ α2

h
= 0 ,

−2α0 − α1 = 1 ,
2α0h + 1

2
α1h = 0 .

(c) The truncation error follows from the Taylor polynomials:

d′(2h)−Q(h) = d′(2h)− d(0)− 4d(h) + 3d(2h)

2h
=

8h3

6
d

′′′
(ξ0)− 4(h

3

6
d

′′′
(ξ1))

2h
= O(h2).

(d) Using the new formula with h = 10 we obtain the estimate:

d(0)− 4d(10) + 3d(20)

20
=

0− 4× 40 + 3× 100

20
= 7 (m/s).
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3. (a) Newton-Raphson’s method is an iterative method to find p ∈ R such that f(p) =
0. Suppose f ∈ C2[a, b]. Let x̄ ∈ [a, b] be an approximation of the root p such
that f ′(x̄) 6= 0, and suppose that |p − x̄| is small. Consider the first-degree Taylor
polynomial about x̄:

f(x) = f(x̄) + (x− x̄)f ′(x̄) +
(x− x̄)2

2
f ′′(ξ(x)), (11)

in which ξ(x) between x and x̄. Using that f(p) = 0, equation (11) yields

0 = f(x̄) + (p− x̄)f ′(x̄) +
(p− x̄)2

2
f ′′(ξ(x)).

Because |p− x̄| is small, (p− x̄)2 can be neglected, such that

0 ≈ f(x̄) + (p− x̄)f ′(x̄).

Note that the right-hand side is the formula for the tangent in (x̄, f(x̄)). Solving for
p yields

p ≈ x̄− f(x̄)

f ′(x̄)
.

This motivates the Newton-Raphson method, that starts with an approximation p0

and generates a sequence {pn} by

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, for n ≥ 1.

Remark 1 One can also give a graphical derivation following Figure 4.2 from the
book.

(b) It follows from the linearization of the function f about the iterate xn−1 that

f1(p) ≈ f1(p(n−1)) +
∂f1

∂p1

(p(n−1))(p1 − p(n−1)
1 ) + . . .+

∂f1

∂pm
(p(n−1))(pm − p(n−1)

m ),

...

fm(p) ≈ fm(p(n−1)) +
∂fm
∂p1

(p(n−1))(p1 − p(n−1)
1 ) + . . .+

∂fm
∂pm

(p(n−1))(pm − p(n−1)
m ).

Defining the Jacobian matrix of f(x) by

J(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xm

(x)
...

. . .
...

∂fm
∂x1

(x) . . . ∂fm
∂xm

(x)

 ,

the linearization can be written in the more compact form

f(p) ≈ f(p(n−1)) + J(p(n−1))(p− p(n−1)).

The next iterate, p(n), is obtained by setting the linearization equal to zero:

f(p(n−1)) + J(p(n−1))(p(n) − p(n−1)) = 0, (12)

which can be rewritten as

J(p(n−1))s(n) = −f(p(n−1)), (13)

where s(n) = p(n) − p(n−1). The new approximation equals p(n) = p(n−1) + s(n).

Finally, Newton-Raphson’s formula for general nonlinear problems reads:

p(n) = p(n−1) − J−1(p(n−1))f(p(n−1)). (14)
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(c) First, we rewrite the system into the form

f1(w1, w2) = 0,
f2(w1, w2) = 0,

(15)

by setting
f1(w1, w2) := 18w1 − 9w2 + (w1)2,
f2(w1, w2) := −9w1 + 18w2 + (w2)2 − 9.

(16)

We denote the Jacobi-matrix by J(w1, w2). At the first step we compute

w(1) = w(0) − J(w(0))−1F (w(0)), (17)

where w = [w1 w2]T . Note that

J(w(0)) =

(
18 + 2w

(0)
1 −9

−9 18 + 2w
(0)
2

)
. (18)

Using w
(0)
1 = w

(0)
2 = 0 we obtain:

J(w(0)) =

(
18 −9
−9 18

)
. (19)

This implies that

J(w(0))−1 =
1

182 − 81

(
18 9
9 18

)
. (20)

Furthermore

F (w(0)) =

(
0
−9

)
, (21)

so

w(1) =

(
0
0

)
− 1

182 − 81

(
18 9
9 18

)(
0
−9

)
=

(
1
3
2
3

)
. (22)
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