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Number of questions: This is an exam with 12 open questions, subdivided in 3 main ques-
tions.

Answers All answers require arguments and/or shown calculation steps. Answers without
arguments or calculation steps will not give points.

Tools Only a non-graphical, non-programmable calculator is permitted. All other electronic
tools are not permitted.

Assessment In total 20 points can be earned. The final not-rounded grade is given by /2,
where P is the number of points earned.

1. For the initial value problem y' = f(t,v), y(to) = yo, we use the following integration

method:
w;-i-l = Wp + Atf(tna wn)
At . (1)
Wpy1 = Wy + 7 (f(tna wn) + f(tn-i-l? wn+1)) .

Here At denotes the timestep and w,, represents the numerical approximation at time ¢,

(a) Show that the local truncation error of the integration method is of the order O(A#?).
(You are not allowed to use the test equation here.) (3pt.)
Consider the following initial value problem

d*y | dy
s + 4% + 4y = cos7t,
dy

y(0) =1, Z(0)=0.

(b) Show that the above initial value problem can be written as

()= (% () (o) .

Give the initial conditions for x;(0) and x2(0) as well. (1pt.)
(c) Calculate one step with integration method (1), in which At = 0.5 and t; = 0,
applied to (3) and use the given initial conditions. (2pt.)
(d) Show that the amplification factor for this integration method is given by: Q(AAt) =
14 AAE+ DA% (2pt.)
(e) Examine for which stepsizes At, the integration method (1), applied to the initial
value problem (3), is stable. (2pt.)
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2. In this exercise an estimate is determined for the velocity of a bike. The measured
distances of the bike from the starting line are given in the table below.

t(s) [0[10] 20
d(®) (m) | 0| 40 | 100

(a) Give the first order backward difference formula for d’(2h) and use this to determine
an estimate of the velocity for ¢t = 20. (1 pt.)

(b) We are looking for a difference formula of the first derivative of d in 2h of the form:

Q(h) = %d(@) + %d(h) + %d(%), such that Q(h) — d'(2h) = O(h).

In the remainder of this exercise we use this formula. Show that the coefficients
o, a1 and as should satisfy the next system:

@+ g+ F =0,
—20éo — Qaq = 1,
200h 4+ iovh = 0.

(2 pt.)
(c) The solution of this system is given by ay = %, a; = —2 and oy = % Show that the
truncation error can be written as: Q(h) — d'(2h) = O(h?). (1 pt.)

to

(d) Use ag = %, ap = —2 and ay = % in Q(h) to give an estimate of the velocity at

t = 20. (1 pt.)

3. We derive and use Newton-Raphson’s method to solve a nonlinear problem.

(a) Given is the scalar nonlinear problem:
Find p € R such that f(p) = 0. (4)

Derive Newton—Raphson’s formula (a graphical explanation is also allowed), given

by
f (pn—l )

DPn = Pn_1 — , forn>1 )
' ) ®)

(b) Derive Newton-Raphson’s method for the general nonlinear problem:

Find p € R™ such that f(p) = 0. (6)

(c) Perform one step of Newton-Raphson’s method applied to the following nonlinear
problem for w; and w»:
18w, — 9wy + w? =0,
{ —9wy + 18wy + wj = 9. (M)

Use w; = we = 0 as the initial estimate.

For the answers of this test we refer to:
http://homepage.tudelft.nl/d2bde /wi3097 /tentamen.html

(2 pt.)

(1 pt.)



