
DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and
Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL
EQUATIONS
( CTB2400 )

Tuesday July 12 2022, 13:30-16:30

1. (a) The test equation is given by
y′ = λy.

Application of the method to the test equation gives

wn+1 = wn +
1

2
λ∆twn +

1

2
λ∆twn+1.

This is equivalent to (
1− 1

2
λ∆t

)
wn+1 =

(
1 +

1

2
λ∆t

)
wn.

Hence the amplification factor is given by

Q(λ∆t) =
1 + 1

2
λ∆t

1− 1
2
λ∆t

.

(b) The local truncation error for the test equation is given as

τn+1(∆t) =
eλ∆t −Q(λ∆t)

∆t
yn. (1)

A Taylor expansion of eλ∆t around λ∆t = 0 yields

eλ∆t = 1 + λ∆t+
1

2
(λ∆t)2 +

1

6
(λ∆t)3 +O(∆t4). (2)

A Taylor expansion of Q(λ∆t) around 1
2
λ∆t = 0 yields

Q(λ∆t) =
1 + 1

2
λ∆t

1− 1
2
λ∆t

=

(
1 +

1

2
λ∆t

)(
1 +

1

2
λ∆t+

(
1

2
λ∆t

)2

+

(
1

2
λ∆t

)3

+O(∆t4)

)
= 1 + λ∆t+

1

2
(λ∆t)2 +

1

4
(λ∆t)3 +O(∆t4). (3)

Equations (2) and (3) are substituted into relation (1) to obtain

τn+1 = − 1

12
ynλ

3∆t2 +O(∆t3),

hence

T = − 1

12
ynλ

3.

1



(c) The characteristic equation of A is given by

det(A− λI) = 0

⇒

∣∣∣∣∣∣
−1− λ 2 −2

0 −2− λ −2
0 2 −2− λ

∣∣∣∣∣∣ = 0

⇒ (−1− λ)

∣∣∣∣−2− λ −2
2 −2− λ

∣∣∣∣ = 0

⇒ (−1− λ)
(
(−2− λ)2 + 4

)
= 0.

The eigenvalues of A are calculated from this as λ1 = −1 and λ2 = λ3 = −2 + 2i.

Because λ2 and λ3 are each other complex conjugates, stability is governed by λ1

and λ2.

For λ1 = −1 and ∆t = 1 we obtain

Q(λ1∆t) = Q(−1)

=
1 + 1

2
(−1)

1− 1
2
(−1)

=
1
2
3
2

=
1

3
,

and therefore

|Q(λ1∆t)| = 1

3
≤ 1. (4)

For λ2 = −2 + 2i and ∆t = 1 we obtain

Q(λ2∆t) = Q(−2 + 2i)

=
1 + 1

2
(−2 + 2i)

1− 1
2
(−2 + 2i)

=
i

2− i)

= −1

5
+

2

5
i,

and therefore

|Q(λ2∆t)| =
√

1

25
+

4

25
=

√
1

5
≤ 1. (5)

From (4) and (5) it follows that the method applied to the given IVP is stable for
∆t = 1.

(d) First note that holds

w0 =

 1
−1
3

 .
We can show that

Aw0 + b = 0. (6)
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The given value for w1 is exactly equal to w0, so we also have as a direct consequence:

Aw1 + b = 0. (7)

(6), (7) and the values for w0 and w1 can be substituted in the method, which leads
to  1

−1
3

 =

 1
−1
3

 ,
which is mathematically correct. Therefor w1 as given is indeed the approximation
of the exact solution at time t = 1.

Alternative solution: w1 can also be calculated explicitly be direct application of
the method, which has the following calculations:

w0 =

 1
−1
3

 ,
Method: w1 = w0 +

1

2
(Aw0 + b + Aw1 + b) ,

⇒
(
I − 1

2
A

)
w1 =

(
I +

1

2
A

)
w0 + b,

⇒

3/2 −1 1
0 2 1
0 −1 2

w1 =

11/2

1
7

 ,
⇒ w1 =

 1
−1
3

 .
No points will be given if a different method is used or a different system of differential
equations is solved.
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2. (a) The linear Lagrangian interpolation polynomial, with nodes a and b, is given by

p1(x) =
x− b
a− b

f(a) +
x− a
b− a

f(b).

We approximate f(x) by p1(x) in the integral
∫ b
a
f(x)dx, from which follows:∫ b

a

f(x) dx ≈
∫ b

a

p1(x) dx

=

∫ b

a

{
x− b
a− b

f(a) +
x− a
b− a

f(b)

}
dx

=

[
1

2

(x− b)2

a− b
f(a)

]b
a

+

[
1

2

(x− a)2

b− a
f(b)

]b
a

=
1

2
(b− a)(f(a) + f(b)).

This is the Trapezoidal rule.

(b) The magnitude of the error of the numerical integration over interval [a, b] is given
by ∣∣∣∣∫ b

a

f(x) dx−
∫ b

a

p1(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(f(x)− p1(x)) dx

∣∣∣∣
=

∣∣∣∣∫ b

a

1

2
(x− a)(x− b)f ′′(ξ(x)) dx

∣∣∣∣
≤ 1

2
max
x∈[a,b]

|f ′′(x)|
∫ b

a

|(x− a)(x− b)| dx

=
1

12
(b− a)3 max

x∈[a,b]
|f ′′(x)| .

(c) The composite Trapezoidal rule for

∫ 1

0

x2 dx with h = 1/4 is given by

1

h

(
1

2
x2

0 +

(
3∑
j=2

x2
j

)
+

1

2
x2

4

)
=

1

4

(
1

2
02 +

1

4

2

+
1

2

2

+
3

4

2

+
1

2
12

)
=

11

32
= 0.34375.

(d) Since

∫ 1

0

x2 dx =
1

3
, the absolute value of the truncation error is:

∣∣∣∣13 − 22

64

∣∣∣∣ =
1

96
= 0.010416.
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3. (a) Using central differences for the second order derivative at a node xj = j∆x gives

y′′(xj) ≈
yj+1 − 2yj + yj−1

∆x2
=: Q(∆x). (8)

Here, yj := y(xj). Next, we will prove that this approximation is second order
accurate, that is |y′′(xj)−Q(∆x)| = O(∆x2).

Using Taylor’s Theorem around x = xj gives

yj+1 = y(xj + ∆x) = y(xj) + ∆xy′(xj) + ∆x2

2
y′′(xj) + ∆x3

3!
y′′′(xj) +O(∆x4)

yj−1 = y(xj −∆x) = y(xj)−∆xy′(xj) + ∆x2

2
y′′(xj)− ∆x3

3!
y′′′(xj) +O(∆x4)

(9)

Substitution of these expressions into Q(∆x) gives

|y′′(xj)−Q(∆x)| = O(∆x2).

This leads to the following discretisation formula for internal grid nodes:

−wj−1 + 2wj − wj+1

∆x2
+ (xj + 1)wj = x3

j + x2
j − 2. (10)

Here, wj represents the numerical approximation of the solution yj. To deal with the
boundary x = 0, we use a virtual node at x = −∆x, and we define y−1 := y(−∆x).
Then, using central differences at x = 0 gives

0 = y′(0) ≈ y1 − y−1

2∆x
=: Qb(∆x). (11)

Using Taylor’s Theorem, gives

Qb(∆x) =

=
y(0) + ∆xy′(0) + ∆x2

2
y′′(0) +O(∆x3)

2∆x

−
y(0)−∆xy′(0) + ∆x2

2
y′′(0) +O(∆x3)

2∆x
= y′(0) +O(∆x2).

Again, we get an error of O(∆x2).

(b) With respect to the numerical approximation at the virtual node, we get

w1 − w−1

2∆x
= 0 ⇔ w−1 = w1. (12)

The discretisation at x = 0 is given by

−w−1 + 2w0 − w1

∆x2
+ w0 = −2. (13)

Substitution of equation (12) into the above equation, yields

2w0 − 2w1

∆x2
+ w0 = −2. (14)
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Subsequently, we consider the boundary x = 1. To this extent, we consider its
neighbouring point xn−1 and substitute the boundary condition wn = y(1) = yn = 1
into equation (10) to obtain

−wn−2 + 2wn−1

∆x2
+ (xn−1 + 1)wn−1 (15)

= x3
n−1 + x2

n−1 − 2 +
1

∆x2
(16)

= (1−∆x)3 + (1−∆x)2 − 2 +
1

∆x2
. (17)

This concludes our discretisation of the boundary conditions. In order to get a
symmetric discretisation matrix, one divides equation (14) by 2.

Next, we use ∆x = 1/3. From equations (10, 14, 17) we obtain the following system

9
1

2
w0 − 9w1 = −1

−9w0 + 19
1

3
w1 − 9w2 = −50

27

−9w1 + 19
2

3
w2 =

209

27
.

(c) The Gershgorin circle theorem states that the eigenvalues of a square matrix A are
located in the complex plane in the union of circles

|z − aii| ≤
n∑

j 6=i
j=1

|aij| where z ∈ C (18)

For the n× n matrix given in part (c) we have

• For i = 1: ∣∣∣∣z − (
2

(∆x)2
+ 1)

∣∣∣∣ ≤ 1

(∆x)2
⇒ |λ|min ≥ 1 +

1

(∆x)2
(19)

• For i = 2 . . . n− 1:∣∣∣∣z − (
2

(∆x)2
+ 1)

∣∣∣∣ ≤ 2

(∆x)2
⇒ |λ|min ≥ 1 (20)

• For i = n: ∣∣∣∣z − (
2

(∆x)2
+ 1)

∣∣∣∣ ≤ 1

(∆x)2
⇒ |λ|min ≥ 1 +

1

(∆x)2
(21)

Hence, a lower bound for the smallest eigenvalue is 1. For a symmetric matrix A we
have

‖A−1‖ =
1

|λ|min

≤ 1 (22)

This proves that the finite-difference scheme is stable, e.g., with constant C = 1.
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