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1. (a) The test equation is given by
Yy = \y.
Application of the method to the test equation gives

1 1
Wp41 = Wy + 5)\Atwn + iAAtwn+1

This is equivalent to

(1 — %/\Ai) Wpy1 = (1 + %)\At) W,

Hence the amplification factor is given by

1+ 2AAt
ML) = — 2
QA =1~ SAAL

(b) The local truncation error for the test equation is given as

M — Q(NAL)

A Taylor expansion of e** around AAt = 0 yields
1 1
M =1+ \At + §(AAt)2 + E(AAt)?’ + O(Ath). (2)

A Taylor expansion of Q(AAt) around $AA¢ = 0 yields

1+ 2AAt
QAL = —1—,
— SAAL

= (1 + %)\At) <1 + %AAt + (%ANY + (%AAt)S + O(At4))
= LE A SO + (M) + O(AR) (3)
Equations (2) and (3) are substituted into relation (1) to obtain
To4l = —iynA?’At? + O(At?),

12

hence 1
T=——y,\.
127



(c) The characteristic equation of A is given by

det(A — ) =0
~1-X 2 ~2
= 0 -2-X -2 |=0
0 2 —2-2A
—2-X =2
= (—1-X) 5 9| =0
= (=1=X)((=2=X)>+4) =0.

The eigenvalues of A are calculated from this as A\; = —1 and Ay = A3 = —2 + 2i.

Because Ay and A3 are each other complex conjugates, stability is governed by A,
and As.

For A\ = —1 and At = 1 we obtain

Q(MAL) = Q(-1)
14 5(-1)
e

1
2
3
2
1
=3
and therefore ]
|Q(MAL)] = 3 <L (4)

For \g = —2 + 2¢ and At = 1 we obtain

Q(AAL) = Q(—2+ 2i)
15 (-2+20)
11— 1(—2+2i)
i

and therefore

IQ(AzAt)|=\/2—15+%:\/I§1. (5)

From (4) and (5) it follows that the method applied to the given IVP is stable for
At =1.

(d) First note that holds

Wy =

We can show that
AWO +b=0.



The given value for w; is exactly equal to wg, so we also have as a direct consequence:

(6), (7) and the values for wy and w; can be substituted in the method, which leads

which is mathematically correct. Therefor w; as given is indeed the approximation
of the exact solution at time ¢t = 1.

Alternative solution: w; can also be calculated explicitly be direct application of
the method, which has the following calculations:

1
Wo = -1 )
3
1
Method: W, =Wy + 3 (Awo +b + Aw; +b),
1 1
3/r, —1 1 [11/2
= 0 2 1 Wi = 1 R
0 —1 2 7
1
= Wi = -1
|3

No points will be given if a different method is used or a different system of differential
equations is solved.



2. (a) The linear Lagrangian interpolation polynomial, with nodes a and b, is given by

z—b T —a
_a—bf<a)+b—a

f(b).

We approximate f(x) by pi(x) in the integral f: f(z)dx, from which follows:

/abf(x)dx ~ /ab]h(x)dx

/f{iiﬁif@o + ‘z:Zﬂb)} da
b=l ]b+ B(‘Z%Z)Qf(b)r
Lo

—a)(f(a) + f(0)).

This is the Trapezoidal rule.

(b) The magnitude of the error of the numerical integration over interval [a, b] is given

by
b
x)da:—/ p1(z) de

- / (F(2) = pr(a) da

a

[ 5= ale = brE@) o

< - // _ _
_2%[a}§|f |/|:r a)(x —b)|dx

1
(c) The composite Trapezoidal rule for / 2* dz with h = 1/4 is given by
0

1(1, 1 , 1212 32
g o e
h<2x0+< >—|—2x4> 1 t5 t1 3

= = 0.34375.
32
! 1
(d) Since / 2?dr = 3 the absolute value of the truncation error is:
0
L2 L 0.010416
3 64| 96 '



(a) Using central differences for the second order derivative at a node z; = jAx gives

weoN LY — 2yt Yy
Y () e BT, (), )
Here, y; := y(z;). Next, we will prove that this approximation is second order

accurate, that is |y”(z;) — Q(Az)| = O(Az?).
Using Taylor’s Theorem around x = x; gives

Yir1 = y(z; + Az) = y(a;) + Avy'(x) + AL y" (2)) + A2y" (z) + O(Ax?)
(9)
yio1 = ylz; — Ax) = y(z;) — Awy/ () + 224" (z;) — 229" () + O(Ax?)

Substitution of these expressions into Q(Ax) gives
ly"(z;) — Q(Az)| = O(Az?).
This leads to the following discretisation formula for internal grid nodes:

—w]'_l + 21Uj — Wj+1
Ax?

+ (2 + Dw; = 25 + 27 — 2. (10)

Here, w; represents the numerical approximation of the solution y;. To deal with the
boundary x = 0, we use a virtual node at x = —Axz, and we define y_; := y(—Ax).
Then, using central differences at z = 0 gives

0=1y(0)~ %«Zjl = Qy(Ax). (11)

Using Taylor’s Theorem, gives

Qo(Az) =
_ y(0) + Azy/(0) + A5%y"(0) + O(A?)
2Ax
_ y(0) — Azy'(0) + 257y"(0) + O(Ax?)
2Azx

= ¢/(0) + O(Az?).
Again, we get an error of O(Ax?).
(b) With respect to the numerical approximation at the virtual node, we get

wp — W1

2A37 -t b ( )
The discrelisalion at r = O iS given by

—w_1 + 2wy — wy
Ax?

Substitution of equation (12) into the above equation, yields

2w0 - 2’LU1

N + wg = —2. (14)



Subsequently, we consider the boundary x = 1. To this extent, we consider its
neighbouring point z,,_; and substitute the boundary condition w,, = y(1) =y, =1

into equation (10) to obtain

—Wp—2 + 2wn—1

AJ]Q + (l‘n_l + 1)wn_1 (15)
1
= x731—1 + 37%—1 -2+ Ar? (16)
1
— (1—Ax)3+(1—Ax)2—2—|—R. (17)

This concludes our discretisation of the boundary conditions. In order to get a

symmetric discretisation matrix, one divides equation (14) by 2.

Next, we use Az = 1/3. From equations (10, 14, 17) we obtain the following system

9—21)0 — 9’LU1 = -1
1 50
—wg 4+ 19wy —Ywy = ——
wWo + 3101 Wo o7
2 209
—9wy + 192wy, = —.
Wi 27

(¢) The Gershgorin circle theorem states that the eigenvalues of a square matrix A are

located in the complex plane in the union of circles

|z — ay| < Z la;;| where z€C (18)

i
j=1

For the n x n matrix given in part (c) we have

e Fori:=1:
2 1 1
— 1 < = MNpyn =14+ —= 19
S A I e v S
e Fori=2..n—1:
(2 D<= = P21 (20)
Z — min
(Az)? ~ (Az)?
e Fori=n:
(2 i< = Pzl
Zz— A _\o min — A _\o
(Az)? ~ (Ax)? (Az)?
Hence, a lower bound for the smallest eigenvalue is 1. For a symmetric matrix A we
have 1
|ATY] = <1 (22)
‘)"min

This proves that the finite-difference scheme is stable, e.g., with constant C' = 1.

(21)



