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Vide hominem caecum dirigentes ad orbem,

te melius claudet oculos vestros,

incurvasti caputem tuum, expectare ricochetem,

... hinc aliquo modo esse, dixit scurra ad latronem,

illic est adeo confusionem, possum nihil levari,

percuties ipsum homo ibi, qui formidat uxor mea,

venire, et occupare meam quoque terram ...

... Ego sum agens chaos ... Non ego sum canebant artificis,

... quidam non possit emi, subiectae, cogitabant aut agebant,

... quidam iustus volo ad vigilate mundi exuret ...
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List of Abbreviations

The following abbreviations are conventionally used throughout the text. Abbreviations are intro-

duced for individual words recurring frequently and lengthy model names:

EQ equity

IR interest rate

DD displaced-diffusion

SV stochastic volatility

Model abbreviations:

H Heston (model)

CH Cheyette (model)

HW Hull-White (model)

LMM Libor Market Model

HHW Heston Hull-White (model)

HCH Heston Cheyette (model)

HCV Heston displaced-diffusion stochastic volatility Cheyette (model)

HLMM Heston displaced-diffusion stochastic volatility Libor Market Model

Abbreviations of affine hybrid model approximations:

H1HW Heston Hull-White (model) in the affine limit 1

H1CH Heston Cheyette (model) in the affine limit 1

H1CV Heston displaced-diffusion stochastic volatility Cheyette (model) in the affine limit 1

H2CV Heston displaced-diffusion stochastic volatility Cheyette (model) in the affine limit 2

H1LMM Heston displaced-diffusion stochastic volatility LMM in the affine limit 1

Abbreviations are occasionally combined, i.e HDDCH corresponds to Heston displaced-diffusion

Cheyette (model) - this is the HCV (model) without SV process.
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Chapter 1

Introduction

Whenever inverse transform techniques are applicable to the evaluation of derivative products, the

classical pricing methods based on solving Partial Differential Equations (PDE) or Monte-Carlo

(MC) schemes are outclassed in computational performance (at least for non-Bermudan products).

Consequently inverse transforms qualify as the methods of choice for model calibration purposes

where striving for an optimum calibration set requires roaming potentially vast parameter spaces.

Accessibility of the characteristic function (CHF) is the prerequisite to employ inverse transform

methods. A general formalism to obtain the CHF corresponding to a particular valuation model is

known, whenever the underlying system of stochastic differential equations (SDEs) is representable

in affine form.

The purpose of the thesis at hand is to derive an affine hybrid model which is capable to reproduce

smile effects both in equity (EQ) and interest rate (IR) components. Such a model has the potential

to evaluate derivative products sensitive to hybrid smiles. In this thesis the focus rests on a specific

class of hybrid valuation models where the Heston stochastic volatility approach on the EQ side is

combined with the Cheyette (CH) model on the IR side. Then, the complexity of the hybrid model

is controlled by the concrete choice of the Cheyette model volatility specification. For constant IR

volatility the plain Hull-White (HW) model is retained as limiting case of the Cheyette approach, and

in combination with the Heston EQ process the Heston Hull-White (HHW) hybrid system ensues.

The Cheyette model is amendable with the provision to include displaced-diffusion (DD) stochastic

volatility (SV) specifications. By DD model extensions normal and log-normal characteristics in

the IR component become entangled. Including an IR-SV process introduces smile effects on the

IR side. In combination with the Heston EQ process the resulting hybrid model is named Heston

DDSV Cheyette (HCV) model.

Depending on the number of correlated stochastic processes involved, hybrid models can be ordered

according to dimensionality and complexity. At the lower end of complexity, the HHW combines

the Heston process with a 1D short rate process. The HHW is capable to reproduce smile and

skew effects solely in EQ. At the high end of complexity, the Heston DDSV Libor Market Model

(HLMM) is constructed by coupling a Heston process in EQ with a multi-dimensional market model,

further supplemented by DDSV extensions on the IR side. In the HLMM smile and skew features are

representable both in EQ and IR components, however the high number of correlated processes makes
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the model less tractible in practice. Affine versions of the HLMM require approximations making the

model Markovian. This implies simplifications to the drift components of IR stochastic processes,

usually associated with decisive reduction of the model dimensionality (for instance by freezing the

initial Libor rates). In this context the HCV model resembles a trade-off between complexity and

sophistication. The HCV incorporates hybrid smile features, and the approximations required to

obtain an affine model version are less severe. Dimensionality of the model is determined by the

specific choice of the stochastic volatility specification. In the simplest form the HCV is a 5D model,

and hence, model complexity is between the extremes of HHW and HLMM.

Hybrid models like the HCV are in general non-affine, in particular when EQ-IR correlations are

present. Central issue of the thesis at hand is to define and discuss approximations placing the HCV

within the class of Affine Jump-Diffusion (AJD) processes with the constraint to retain the full set

of correlations. The resulting affine model version is an approximation, but accessible to evaluation

by inverse transform methods. Checking the validity and the limits of the approximations involved

is also within the scope of the presented discussion. In this spirit the thesis is structured in the

following fashion:

Chapter 2 sketches in brevity the theoretical basics of affine stochastic processes and selected inverse

transform methods. Whenever SDEs adhere to the AJD process class, a general formalism exists to

derive the CHF. Knowledge of the CHF is essential to apply inverse transforms. There is a broad

variety of valuation techniques based on inverse transforms. However, the discussion refrains to two

selected methods which are popular in practice as illustrative paradigms, since the main focus of the

thesis rests on the study of affine approximations of the HCV model: The Carr-Madan Fast Fourier

Transform (FFT) and the COS expansion techniques. Whenever affine models within the thesis are

evaluated by inverse transforms, either of these two methods is applied.

Chapter 3 contains the essential points of the discussion: (i) At first, the affine approximations

derived in previous studies for HHW and HLMM are introduced.

(ii) Then, the characteristics of the HCV hybrid model are detailed. The key to prescribe HCV model

features is the volatility specification. The HCV features DD characteristics, and is in complexity

between HHW and HLMM. Accordingly, the HCV can be viewed as linking element between HHW

and HLMM: The HHW is the representative of low-dimensional hybrid models with IR component

based on Gaussian short rates. The HLMM qualifies as the paradigm of high-dimensional hybrid

models descending from log-normal market models.

(iii) Two affine limits are devised to place the HCV within the AJD process class. In the first affine

limit the intial interest rates are frozen in the DDSV volatility specification - this affine limit is

named H1CV model. The second affine limit is more subtle and retains DD features by freezing

solely the initial volatility in the affine proxy of the IR component within the DDSV constraints

- this approximation is named H2CV. The HCV and the corresponding affine approximations are

central issues of the thesis at hand, in particular by virtue of the following points:

• The HCV model features true hybrid smile and skew, meaning that smile and skew traits

are resembled in the EQ as well as in the IR component of the hybrid model. The Heston
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model shapes the EQ-SV component, and DDSV extensions introduce smile and skew in the

IR component.

• H1CV reproduces hybrid smiles excellently. H2CV is capable to represent both hybrid smile

and skew.

• The HHW results from the HCV model presuming a constant volatility specification. DD

extensions mix Gaussian model characteristics with log-normal contributions typical for the

HLMM. Hence, simply by the problem-orientated choice of model parameters, the HCV is

capable to assume characteristics either more closely related to the HHW, or to the HLMM,

respectively.

(iv) Finally, the affine H1CV and H2CV models are validated with respect to model fidelity - this

means in effect, how well the full HCV hybrid model features are retained in the approximations.

Model validation is based on derivatives pricing results comparing the full model to the affine versions

in the spot measure QB as well as in the terminal measure QT .

In chapter 4 the qualities of the HCV model are compared with HHW and HLMM. Here, full

models and corresponding affine approximations are actually employed in calibration settings and

subsequent hybrid product pricing.

The discussion is concluded in chapter 5 where the basic findings are summarized, and weak points

and critical issues are exposed as the inevitable loose ends to be tied up in future studies.
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Chapter 2

Affine System and Inverse Transforms

The subsequent sections provide a brief introduction of theoretical prerequisites: The basic concept

of an affine SDE system and the general formalism to obtain the corresponding CHF are exposed

in section 2.1. Central issue of the thesis at hand is to derive the CHF of particular EQ-IR hybrid

models, which are described by a system of correlated SDEs. By means of suitable approximations,

the hybrid models under discussion are then placed within the AJD process class. As soon as the

CHF is known, the valuation of derivative products by inverse transforms becomes feasible.

In order to illustrate the pricing by inverse transform techniques, the Carr-Madan Fourier Transform

is introduced in section 2.3, and the basics of the COS expansion method are subsequently explained

in section 2.4. The two methods are selected out of the broader spectrum of inverse transform pricing

approaches, mostly because the methods are popular in practice and suitably well understood. The

exposition of inverse transform techniques is necessarily brief without the claim for completeness

- the details are found in the cited references. The focus of the thesis is on the derivation and

discussion of the HCV model and affine approximations (cf. chapter 3); employing Carr-Madan or

COS methods to evaluate affine models by inverse transforms is a deliberate as well as convenient

choice.

2.1 Characteristic functions of affine processes

The hybrid models under discussion are represented by a system of correlated stochastic processes.

Whenever the model system is within the class of affine jump-diffusion (AJD) processes, there exists

a general formalism to derive the corresponding CHF [21]. The CHF derivation basically adheres to

the following line of argumentation:

Consider an n-dimensional Markovian stochastic process with vector of state variables Xt on a fixed

filtered probability space (Ω,F ,Q). In differential form

dXt = µ(Xt)dt+ σ(Xt)dWx(t) (2.1)

the model (without jumps) represents the mapping out of some pre-defined subspace S ∈ R → Rn

by a system of stochastic differential equations (SDE) with drift µ(Xt) : S → Rn, instantaneous

covariance ΣX = σ(Xt)σ
†(Xt) : S → Rn×n, and Ft-measurable independent Brownian drivers
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Wx(t) : S × Ω → Rn, respectively. The model is within the class of AJD processes when drift,

instantaneous covariance and associated interest rate component r(Xt) are representable in the affine

form:

µ(Xt) = a0 + a1Xt ∀ (a0, a1) ∈ Rn × Rn×n, (2.2)

σ(Xt)σ
†(Xt) = (c0)ij + (c1)

†
ijXt ∀ (c0, c1) ∈ Rn×n × Rn×n×n, (2.3)

r(Xt) = r0 + r†1Xt ∀ (r0, r1) ∈ R× Rn. (2.4)

For an affine model the corresponding discounted CHF under the risk-neutral measure Q ensues to

(cf. [21])

φ̂(u,Xt, t, T ) = EQ[e−
∫

T

t
rsds+iu

†
XT |Ft] = eA(u,τ)+B

†(u,τ)Xt (2.5)

discounted by the time-lag to maturity τ = T − t. The CHF is by definition the Fourier transform

of the probability density. For a random process represented by the state variables Xt = [x, ...]† and

XT = [y, ...]† , and with the deliberate choice u = [u, 0, ..., 0]† , the connection between discounted

CHF and density gives us

φ̂(u,Xt, t, T ) =

∫ ∞

−∞

eiuy
∫ T

t

eζfY,ζ(y, ζ|x)dζ dy =

∫ ∞

−∞

φY (y|x)dy (2.6)

with ζ = −
∫ T

t rsds, and φ(·|x) the discounted risk-neutral probability density for given x, respec-

tively. Here and throughout the thesis Fourier transforms are denoted by ’hatted’ (ˆ) variables.

As shown in [21] the coefficients obey complex-valued ordinary differential equations (ODE) of the

following form

d

dτ
A(u, τ) = −r0 +B

†a0 +
1

2
B

†c0B, (2.7)

d

dτ
B(u, τ) = −r1 + a†1B+

1

2
B

†c1B, (2.8)

where B(u, τ) is the vector of state variables in Fourier space with a spectrum of wave numbers

u ∈ Cn, and A(u, τ) is the time-lag component, respectively.

With the choice u = [u, 0, ..., 0]† (with u ∈ R) at time t = T the apparent boundary condition is

obtained

φ̂(u,XT , t = T, T ) = EQ[eiu
†
XT |FT ] = eiuxT . (2.9)

This boundary condition fixes the set of initial conditions A(u, 0) and B(u, 0) at τ = 0 of the

corresponding first order ODE system, thereby determining the CHF coefficients in equations (2.7),

(2.8) above.

The discussion of interest rate processes is often simplified by the choice of an appropriate probability

measure. Transformations of probability measure from the risk-neutral spot measure QB to the time

T-forward measure QT ≡ T rely on the dynamics of the zero-coupon bond. Prices of zero-coupon

bonds P (t, T ) maturing at T are obtained at time t from the affine exponential representation of

the CHF shown above by simply setting u = 0:

P (t, T ) = φ̂(u = 0,Xt, t, T ) = eA(0,τ)+B
†(0,τ)Xt (2.10)
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This way the zero-bond prices for the various hybrid models discussed in the main thesis chapters

are retained.

2.2 Pricing equation and inverse transforms

For a contingency claim on the underlying with value St (at time t), the pricing equation is straight-

forwardly formulated as the risk-neutral expectation

V (t, St;K) = EQ
[

e−
∫

T

t
rsdsV (T, ST ;K)|Ft

]

, (2.11)

Ṽ (t, x; k) =

∫ ∞

−∞

V̄ (y; k)φY (y|x)dy, (2.12)

of the derivative payoff V (T, ST ;K) at maturity T . An equivalent alternative is the formulation as

integral over probability density with the logarithms k ≡ lnK of the strike, y ≡ lnST of the asset

value at expiry T , and x ≡ lnSt of the spot asset value, respectively. For a simple call option the

payoff then assumes V (T, ST ) = (ST −K)+ , or in alternative formulation V̄ (y; k) = (ey − ek)+.

Whereas the probability density is rarely known in practice, the CHF as the corresponding Fourier

transform is often available. So the intriguing point is to formulate the pricing equation in a form

where the CHF is used instead of the integral over probability density, and then to obtain the deriva-

tive price by applying the corresponding inverse transform.

This is done in the Carr-Madan method by a Fourier-Laplace transformation of the pricing equation

(as shown in section 2.3 below), and by a cosine series expansion in the COS method (as outlined

in section 2.4), respectively.

There are many other approaches to engage pricing problems by inverse transforms, promoted for

instance in the work of Lewis [9b], Lee [9c], Lipton [22], Attari [23], and Bates [24], respectively.

Within the present context the discussion is limited to the Carr-Madan and COS methods. All

concrete numerical evaluations of affine models by inverse transforms within the thesis are done

using either Carr-Madan or COS techniques.

The selective choice of these two methods is easily motivated: Carr-Madan is one of the first and

most popular publications [9a] employing the basic Fourier-Laplace transform for derivative pric-

ing. COS is one of the recent works within the field [5, 6], and exhibits extremely high evaluation

performance. Both methods work in log-strike-space and, as a consequence thereof, are capable to

price an entire vector of strikes simultaneously [11b]. This is beneficial for the discussion of smile

effects, and when used in real-world calibration problems, well suited for the use in an optimization

routine. Both methods are efficient, well-behaved in practical problems, and generally accepted in

the financial community.
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2.3 Fourier-Laplace transform: Carr-Madan pricing

The basic idea of the Carr-Madan method [9a] is to use the Fourier transform

Ĉ(u) =

∫ ∞

−∞

eiukC̃(t, x; k)dk (2.13)

of the pricing equation of a European call option

C̃(t, x; k) = eαk
∫ ∞

−∞

(ey − ek)+φY (y|x)dy (2.14)

≡ eαkṼ (t, x; k). (2.15)

This is actually the pricing equation exposed in equation (2.12) above, supplemented by an expo-

nential damping factor with parameter α. The damping factor ensures integral convergence.

The original derivations of the Carr-Madan method assume deterministic interest rates. As EQ-IR

hybrid models are central to the discussion at hand, we present here an extension towards stochastic

interest rate scenarios.

With the Fourier transform of the call option price Ĉ(u), the actual call price is obtained in the

Carr-Madan approach as result of the inverse transformation:

Ṽ (t, x; k) =
e−αk

π
R
[∫ ∞

0

e−iukĈ(u)du

]

, (2.16)

where R[·] corresponds to the real part of any complex-valued argument. For the Carr-Madan results

shown in this thesis, the inverse transform integral is numerically evaluated by the Fast Fourier

Transform (FFT) after discretization with the Simpson rule. Numerical accuracy is determined

by the number of discretization points N (should be a power of two for FFT performance), the

extension of the integration domain (the upper cut-off of the semi-infinite integral), and a judicious

choice for the damping parameter α. The typical number of discretization points in the Carr-Madan

calculations performed in this thesis range from N = 212 to 216. The choice of the upper boundary

umax is problem-orientated (typical values are umax > 1000) and determined in combination with

the parameter α; the general constraint is that for given N the Carr-Madan result remains stable up

to a pre-set accuracy even when the upper boundary is increased and the corresponding α is slightly

varied.

In [9a] the Fourier transform of the call option price Ĉ(u) is derived explicity as function of the

discounted CHF:

Ĉ(u) =

∫ ∞

−∞

dk eiuk
∫ ∞

k

dy eαk(ey − ek)φY (y|x) (2.17)

=

∫ ∞

−∞

φY (y|x)
(

e(α+1+iu)y

α+ iu
− eα+1+iu

α+ 1 + iu

)

dy (2.18)

=
φ̂(u− i(1 + α), St, t, T )

α2 + α− u2 + iu(2α+ 1)
. (2.19)

To overcome difficulties in performing the contour path integration in the complex plane, Carr &

Madan introduced a parallel shift along the real axis to avoid the discontinuity at the origin (please
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refer to the original publication [9a] for details). In order to avoid numerical instability for high

option values, in [9a] a modification to the pricing formula is derived in the form

ĉ(u) = (γ̂(u − iα)− γ̂(u+ iα))/2, (2.20)

with γ̂(u) =
1

1 + iu
− 1

iu
− φ̂(u− i, St, t, T )

u2 − iu
, (2.21)

in combination with the pricing equation

Ṽ (t, x; k) =
1

2π sinh(αk)

∫ ∞

−∞

exp(−iuk)ĉ(u)du. (2.22)

For the derivative payoffs calculated in this thesis, both pricing formulas give equivalent results.

The derivations are shown for the particular case of a call option. The corresponding formulations

for the put option payoff are obtained by the substitution α → −α. These vanilla payoff types are

sufficient for the present discussion, since calibration scenarios are limited to vanilla options on the

EQ side, and caplets/floorlets/swaptions on the IR side. Derivative pricing by affine hybrid models

is here deliberately restricted to combinations of vanilla instruments with these payoff types.

In the case of a call option the damping parameter α is necessarily positive with an upper limit αmax

depending on the particular CHF employed. For the practical problems in the present discussion

the typical value range of 0.1 ≤ α ≤ 1.3 is observed for call payoffs. There is no simple theory for

the optimal choice of α. Therefore a ’pseudo-optimal’ αo is determined for each individual hybrid

model evaluation problem by the general presumption, that the Carr-Madan result is expected to

remain stable for slight variations around this αo value.

2.4 Fourier series expansion: COS method

The COS method is based on the idea to expand the probability density in the pricing equation into

its Fourier-cosine series. The COS method is a viable alternative to the Carr-Madan approach. For

the affine hybrid models within this thesis, both COS and Carr-Madan methods are applied to pricing

problems; mostly to cross-check results by using two alternative approaches and implementations,

but in some instances also to study, whether one method shows superior performance in a particular

pricing scenario.

The foundations of the COS method are elaborated in [5, 6], along with the key derivations regarding

the application of the COS method to calculate the contingent claim prices with the COS technique

for European, American and Bermudan type exercise conditions. Selected results originally derived

in [5] are reproduced in the following.

The Fourier-cosine series is capable to represent a function φ1(x) supported on a finite interval

Ω ∈ [a, b] with a, b ∈ R/{−∞,+∞}:

φ1(x) = lim
N→∞

N−1
∑

k=0

′Ak cos

(

x− a

b− a
kπ

)

(2.23)

with Ak = 2
b−aR

[

φ̂1

(

kπ

b− a

)

e−i
a

b−a
kπ

]

(2.24)

and φ̂1(x) = 1
2π

∫ b

a

eixuφ(u)du. (2.25)
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The modified symbol
∑′ indicates, that the initial term in the sum is weighed by 1

2 . The inverse

Fourier integral can be well approximated by φ1(x) on the truncated domain Ω ∈ [a, b] as

φ̂(x) = 1
2π

∫

R

eixuφ(u)du ≃ φ̂1(x) =
1
2π

∫

Ω

eixuφ(u)du. (2.26)

Such approximative presumptions generally work well with probability densities φ(x) as underlying

functions, as these functions are well-behaved entire functions (for clean definitions regarding this

terminology pls. cf. [38]) decaying sufficiently rapidly with x moving towards infinity.

As additional approximations of the COS method, the cosine series coefficients are calculated from

the CHF based on the untruncated Fourier integral

Fk = 2
b−aR

[

φ̂

(

kπ

b− a

)

e−i
kπ
b−a

a

]

≃ Ak, (2.27)

and the cosine series are cut-off at a finite (usually small) N = Nmax. For typical pricing problems

within this thesis Nmax = 28 is used.

These are specifics of the COS method required as prerequisite to evaluate derivative payoffs within

the affine hybrid models studied in the next chapters.

In general, the time-t value V (t, St) of a contingent claim with strike K on the underlying asset

St with European exercise condition at expiry T is obtained as conditional expectation in the risk-

neutral measure

V (t, St) = EQ
[

e−
∫

T

t
rsdsV (T, ST )|Ft

]

=

∫

Ω

V (T, y)eζφY,ζ(y, ζ|x)dy, (2.28)

with ζ = −
∫ T

t

rsds,

and x ≡ ln(S0/K), y ≡ ln(ST /K),

where ST corresponds to the asset price at maturity. This is actually a slightly adapted version of

the pricing equation introduced in equation (2.12) above. The particular choices u = [u, 0, ..., 0]†

and XT = [y, ...]† lead to

φ̂(u,Xt, t, T ) = EQ[eζ+iu
†
XT ]

=

∫ T

t

dζ

∫

Ω

eζ+iuyφY,ζ(y, ζ|x)dy ≡
∫

Ω

eiuyψY (y|x)dy, (2.29)

for the discounted CHF. According to [5] the conditional expectation is represented via cosine ex-

pansions as follows,

ψY (y|x) =

N−1
∑

k=0

′Ak(x) cos

(

y − a

b− a
kπ

)

, (2.30)

with Ak(x) = 2
b−a

b
∫

a

ψY (y|x) cos
(

y − a

b− a
kπ

)

dy = 2
b−aR

[

ψ̂

(

kπ

b− a

)

e
−i

a
b−akπ

]

,
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and the derivative value is given by

V (x, t) = b−a
2

N−1
∑

k=0

′Ak(x)Vk , (2.31)

with Vk = 2
b−a

b
∫

a

V (T, y) cos

(

y − a

b− a
kπ

)

dy.

For the specific case of a European call payoff the COS pricing equation finally results in the following

explicit form [5]:

V callk = 2
b−a

b
∫

0

(ey − 1)K cos

(

y − a

b− a
kπ

)

dy = 2
b−aK(χk(0, b)− ψk(0, b)),(2.32)

with

χk(c, d) =
1

1 + ( kπb−a )
2

[

cos
(

d−a
b−akπ

)

ed − cos
(

c−a
b−akπ

)

ec
]

+ kπ
b−a sin

(

d−a
b−akπ

)

ed − kπ
b−a sin

(

c−a
b−akπ

)

(2.33)

and

k 6= 0 : ψk(c, d) = b−a
kπ

[

sin
(

d−a
b−akπ

)

− sin
(

c−a
b−akπ

)]

, (2.34)

k = 0 : ψk(c, d) = d− c.

An analogous derivation leads to the explicit expressions for put options (cf. [5] for details).
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Chapter 3

Full-Scale Hybrid Models

3.1 The Problem: Hybrid Evaluation by Inverse Transforms

The discussion at hand focuses on hybrid models comprised by EQ and IR asset class components.

Such kind of hybrid models exist in various degrees of sophistication. Financial models strive to

reproduce characteristic features observable in real world markets. A feature is observable in case

it is relevant to the pricing of financial instruments. When equating sophistication with the num-

ber of individual features the model incorporates quantitatively in high fidelity, more sophisticated

models are comprised by a higher number of underlying stochastic processes. Higher dimensionality

corresponds to higher complexity, especially when the model components are likewisely correlated.

Within the present context hybrid models containing EQ-IR correlation are denoted as full-scale

models.

For the hybrid models under discussion, the highest level of complexity is defined by models where

implied smile and skew of market quotes are represented individually in the equity (EQ) as well as

the interest rate (IR) parts, and both model components are correlated. On the EQ side, the focus

rests on the Heston stochastic volatility (SV) model where the corresponding characteristic function

(CHF) is well known. On the IR side, various models are linked: A straightforward approach is to

use 1D short-rate models, though Hull-White based short rate models show deficits to incorporate

smiles and skews in the IR component. On the highest complexity level the IR side is represented

by Libor market models (LMM). The concepts of local and displaced-diffusion stochastic volatility

(DDSV) as extension of the standard LMM [32, 33] are capable to capture an IR skew and smile

observed in the market. LMMs are by design of the drift term high-dimensional, non-Markovian

and non-affine, rendering the application of inverse transform methods impossible without restrictive

approximation assumptions.

Application of Fourier methods relies on the CHF to be representable at least in semi-closed form.

With increasing sophistication of the hybrid model at hand, the approximations necessary to obtain

the CHF become progressively more involved.

The following three sections contain the foundations and central derivations of the thesis. In section

3.2 the Heston Hull-White (HHW) model as the most simple hybrid model under consideration is
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introduced. The HHW model interlinks implied volatility smile features in the Heston EQ compo-

nent (’equity smiles’) with a 1D short rate process on the IR side. The essentials of the Heston,

HW and HHW models are exposed together with the derivation of the corresponding CHFs. Details

of the CHF calculation are explicitly shown in the referenced appendices. The approximations of

non-affine terms in the HHW are described following the work in [1, 2, 3]. The CHF derivations

of the basic processes contain the techniques and pertinent details applied in the subsequent CHF

calculation of the more complex hybrid models.

Section 3.3 describes an implementation of the Heston DDSV LMM (HLMM) model and the corre-

sponding affine approximation as originally derived in [4]. The HLMM is capable to represent smile

and skew in the IR component. In combination with the Heston model, the smile effects in EQ and

IR are linked, and hence, the HLMM can reproduce hybrid smiles. The HLMM is the most complex

model under consideration and severe approximations are required to obtain an affine version of the

HLMM.

In section 3.4 the concept of the Heston DDSV Cheyette (HCV) model is introduced. The HCV

model is an attempt to bridge between the practical feasibility of SV short rate approaches and

the complexity of DDSV LMMs. We intend to substantiate the idea of coupling the Heston SV

model for EQ and a low-dimensional Markovian IR process (with displaced-diffusion SV extensions)

in the HCV model. The HCV model can represent IR skew and smile effects in hybrid derivatives.

Hence, the HCV can represent hybrid smiles, while being less complex than the HLMM. By virtue

of approximations the HCV is placed within the AJD process class. Affine HCV approximations are

evaluable by inverse transform methods.

3.2 Heston Hull-White Model (HHW)

The Heston Hull-White (HHW) model combines the Heston model in equity (EQ)

dSt = rtStdt+
√
vtStdWx(t), (3.1)

dvt = κ(v̄ − vt)dt+ γ
√
vtdWv(t), (3.2)

with a classical Hull-White (HW) mean reversion process on the interest rate (IR) side

drt = λ(θ(t) − rt)dt+ ηdWr(t). (3.3)

In this section the basic facts about the HHW hybrid model are summarized; this also encompasses

both constituent processes, the Heston model for the EQ, and the HW model to represent the IR

component, respectively. Heston and HW models are both well-studied and discussed in a variety

of original publications. Therefore, the summary here is very selective with one pervasive motiva-

tion: To show how the CHFs corresponding to these models are derived, and whenever applicable,

to explain, which approximations are devised to make the models affine. All CHF derivations are

included; however, the complete derivations are deferred to appendices to keep the recapitulation

of previous work and basic findings concise within this section. In the following only particular
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aspects of the derivations in the appendices are highlighted, as these results are important for the

later discussion. We start with the summary of basic facts and model acronyms conventionally used

throughout the thesis:

(i) Heston EQ-SV model:

The Heston model [8] assumes a SV process for EQ prices St (xt = logSt) and mean-reverting

dynamics for the stochastic variance process vt. The corresponding Brownian drivers are

related by the EQ-SV correlation coefficient ρxvdt = dWxdWv. All Heston process variables

are described in detail in Appendix A.1. The CHF of the Heston process is also derived

in Appendix A.1 following the method of [21]. The Heston process in log-space is already

affine, and therefore the CHF is obtainable without any approximations. When calculating the

CHF according to [21], each equation of the underlying SDE system transfers to one Fourier

coefficient (as solution of one first order ordinary differential equation as elaborated in section

2.1 above). According to the derivations in Appendix A.1 the EQ-SV process (represented by

vt) relates to the Fourier coefficient D(u, τ) in the Heston CHF as

Φ̂H(u,Xt, t, T ) = eA(u,τ)+B(u,τ)xt+D(u,τ)vt . (3.4)

D(u, τ) is obtained in closed form as solution to an analytically solvable Riccati differential

equation (for the explicit form of D(u, τ) please see Appendix A.1, equation A.12). The Ric-

cati equation has an analytic solution whenever the coefficients are at least piece-wise constant.

The Fourier coefficient D(u, τ) persists in the CHF solution of all hybrid models in this thesis

where an Heston EQ-SV model is involved. The mathematical form of D(u, τ) remains the

same, irrespective of whether the models are derived in the spot measure QB or the terminal

measure QT (this fact will be elaborated for the hybrid models in several sections below, and

becames evident by comparison of the explicit derivations shown in Appendices B and C, where

hybrid models are derived unter QB as well as QT , respectively). Please note that the state-

ment is entirely true only when the EQ-SV and IR process are not correlated (corresponding

to ρvr = 0, which is presumed for all the discussions within this thesis). This quality of the

SV process on the EQ side is distinct from the SV process on the IR side of hybrid models. As

shown in section 3.5.1 (the HCV model under QB) and section 3.5.2 (the HCV model under

QT ) the mathematical representation of the IR-SV process is susceptive to changes of measure.

The pure Heston model results as limiting case whenever the hybrid models under discussion

are considered in a parameter limit where stochastic IRs become deterministic. All numerical

implementations of hybrid models employed in the present context are validated in the Heston

limit against the Heston parameter sets listed in Appendix D.1). The model test sets encom-

pass cases where the Feller condition γ2 < 2κv̄ is violated (i.e. the stochastic variance process

can become zero a.s.), as is observed in realistic calibration scenarios.

(ii) HW IR model:

The HW process serves as paradigm for Gaussian short rate models and is well-studied in the
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literature. Details of the HW process are introduced in Appendix A.2. The HW IR model

is already affine, and hence, the corresponding CHF is derivable without approximations as

shown in Appendices A.2.1 and A.2.2. For the HW model the prices of zero bonds and cer-

tain European contingent claims (i.e. IR caplets) exist in analytic form (cf. Appendix A.3.2).

The analytic values of HW zero bond and caplet prices serve as cross-check for all numerical

implementations of hybrid models in this thesis. Furthermore, the numerical HW model imple-

mentations are cross-checked with literature results for a selected model test set (cf. Appendix

D.2). The HW model is the limiting case of the Cheyette model for constant volatility specifi-

cation ηt → η. The connection between the HW and Cheyette model is detailed in Appendix

A.3.1.1. This connection is also used in consistency checks throughout the thesis.

(iii) 3F-HHW (’Three-Factor-HHW’) model:

In the HHW SDE system with Brownian drivers for EQ (Wx), SV (Wv), and IR (Wr), three

different likewise correlations are possible: EQ-SV ρxv, EQ-IR ρxr, and IR-SV ρrv correla-

tion (here IR-SV denotes the relation between the IR process and the SV process of the EQ

component), respectively. When the full set of all three correlation factors is non-zero, the

system is called the 3F-HHW model. The 3F-HHW model is not within the class of Affine-

Jump-Diffusion (AJD) processes. Therefore the CHF corresponding to the 3F-HHW model is

unknown.

(iv) Full-scale hybrid model and the full-scale HHW model:

The crucial point for the hybrid models under discussion is the non-vanishing EQ-IR correla-

tion (ρxr 6= 0). This correlation determines the coupling between the EQ and IR asset classes.

All hybrid models in this thesis have the Heston ansatz with non-vanishing EQ-SV correlation

(ρxv 6= 0) as the EQ component. In combination with non-vanishing EQ-IR correlation ρxr 6= 0

we call this a full-scale hybrid model, since the stochastic processes on the EQ side and the IR

side of the hybrid model are coupled.

It should be noted that the full-scale hybrid model is not necessarily capable to represent hy-

brid smiles. Hybrid smiles imply that the model features smile/skew effects in the EQ as well

as the IR component. Whereas the Heston model introduces smile/skew effects on the EQ side,

the HW model cannot reproduce smile effects and shows only the skew inherent to Gaussian

models on the IR side. In the later sections we introduce hybrid models with a SV process

on the IR side in order to capture IR smiles and skew. In combination with the Heston EQ

component, such models then feature hybrid smiles.

Throughout the thesis we deliberately neglect the correlation between the IR side and the

SV process on the EQ side (ρrv ≡ 0), and hence, strictly speaking we consider a 2F-HHW

model. Both 2F-HHW and 3F-HHW models are non-affine, and within the present context

both are denoted as full-scale hybrid models. This denotation is adopted for all models derived

in this thesis. Whenever the EQ-IR correlation is non-zero, we speak of a full-scale hybrid

model. Presuming ρrv ≡ 0 in the HHW model is simply out of convenience; as shown in [1] the

methods devised to make the 2F-HHW model affine are straightforwardly extended towards

14



the 3F-HHW model. The construction of approximations to place full-scale hybrid models

within the AJD process class and derive the corresponding CHF is the central motivation of

this thesis. In section 3.2.1 below, we introduce the affine approximations devised in [1] to

make the 2F-HHW and 3F-HHW models affine. The 2F-/3F-HHW concepts are capable to

capture implied volatility smile and skew effects in the EQ component, and to incorporate

certain peculiarities of a realistic interest rate term structure for EQ derivative contracts with

long time to maturity [10a].

(v) 1F-HHW (’One-Factor-HHW’) model - the ’uncorrelated’ HHW model:

When Heston EQ-SV and HW IR components are combined into a hybrid model, but remain

uncorrelated (ρxr → 0), the 1F-HHW model results. Negligible EQ-IR correlation is the

decisive difference with respect to a full-scale hybrid model. The 1F-HHW still retains the

affine characteristics of the constituent processes and the CHF is analytically derivable in

closed form, as detailed in Appendix B.1:

Φ̂1F−HHW (u, xt, vt, rt, T, t) = eA1F (u,τ)+B(u,τ)xt+D(u,τ)vt+C(u,τ)rt (3.5)

Explicit solutions and interpretation of the Fourier coefficients A1F (u, τ), B(u, τ), C(u, τ) and

D(u, τ) are deferred towards Appendix B.1 (and relevent cross references therein). The CHF is

reiterated here to emphasize the point that the CHF corresponding to the affine approximations

of the 1F-/2F-/3F-HHW model differ solely in the functions A1F (u, τ)/A2F (u, τ)/A3F (u, τ),

respectively; the effect of non-vanishing EQ-IR correlation ρxr is included in this Fourier coef-

ficient.

The 1F-HHW serves as paradigm for the derivation of the CHF of EQ-SV IR hybrid mod-

els. The CHF is the analytic reference case for all hybrid model implementations in the limit

ρxr → 0. For the 1F-HHW model analytic pricing formulas exist for European contingent

claims in equity. Call option prices within the 1F-HHW framework are derived in Appendix

B.1.2 and are applied to model validation throughout the discussion.

3.2.1 Affine Heston Hull-White (H1HW)

Affine model approximations are based on the idea to project non-affine model components on

deterministic functions. In [1] the problem of the CHF for the full-scale Heston Hull White (=

HHW with full set of correlations, in particular including the essential ’hybrid’ connection between

EQ und IR components by assuming non-vanishing ρrx) is addressed. The instantaneous covariance
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matrix of the HHW model (associated with the SDE system shown in equations (3.1) to (3.3))

ΣXt
=





vt ρxvγvt ρxrη
√
vt

ρvxγvt γ2vt ρvrγη
√
vt

ρrxη
√
vt ρrvγη

√
vt η2



 (3.6)

= LXt
L†
Xt
,

with LXt
=





√
vt 0 0

ρvxγ
√
vt Lxvγ

√
vt 0

ρrxη Lrvη Lrxη



 ,

and Lxv =
√

1− ρ2xv, Lrv = (ρrv − ρrxρxv)/Lxv, Lrx =
√

1− ρ2rx − L2
rv,

contains non-linear terms Σ1,3 = Σ3,1 and Σ2,3 = Σ3,2 in the state variable
√
vt. LXt

is the

Cholesky decomposition of the covariance matrix to express the HHW process in differential form

by uncorrelated Brownian drivers,




dxt
dvt
drt



 = µ(Xt)dt+ LXt





dW̃x(t)

dW̃v(t)

dW̃r(t)



 . (3.7)

The HHW model is placed within the class of AJD models by approximating the non-affine terms
√
vt in the covariance matrix with its corresponding expectation value:

√
vt ≃ E[

√
vt]. (3.8)

Though E[
√
vt] is known analytically in closed form for CIR-type processes [30a], the expressions

involve infinite sums of Γ functions and are therefore somewhat tedious to handle in computational

approaches. In order to improve the computational tractability and efficiency, [1] introduces a

projection of the expection onto a deterministic function

E[
√
vt] ≃ a+ be−ct ≡ δv(t), (3.9)

with constant model specific parameters a, b and c. For the original definition of these parameters

pls. cf. [1] (in particular section 3.1 therein); details of the projection technique are given in section

3.5.1 below, where the applicability is extended towards the Heston Cheyette and Heston DDSV

Cheyette models.

The full-scale HHW model with deterministic approximation of non-affine terms is referenced as

H1HW (the acronym is from [1]) and is within the AJD model class since the covariance matrix

takes the form:

ΣXt
=





vt ρxvγvt ρxrηδv(t)
ρvxγvt γ2vt ρvrγηδv(t)
ρrxηδv(t) ρrvγηδv(t) η2



 . (3.10)

For simplicity we presume ρrv = 0 for the moment, but as shown in [1] the entire argumentation

holds for non-vanishing ρrv equally well. Derivation and solution of the defining ODEs for CHF

Fourier coefficients are completely analogous to the 1F-HHW case elaborated in Appendix B.1. The

Fourier coefficients B(u, τ), D(u, τ), C(u, τ) are equivalent to the 1F-HHW case, the sole deviation

is an additional term in

AH1HW (u, τ) = A1F−HHW (u, τ) + ρrxη

∫ τ

0

δv(T − τ)B(u, τ)C(u, τ) dτ, (3.11)
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with solution

ρrxη

∫ T

0

δv(T − τ)B(u, τ)C(u, τ) dτ = iu(iu− 1)ρxrη
λ

[

− b
ce

−cT (1− ecτ ) + aτ − a
λ (1− e−λτ ) + b

c−λ(1− e−τ(λ−c))
]

= ρrxηI4(u, τ). (3.12)

Apparently the additional term is a pure function of u, and hence, the zero coupon bond value

remains unaffected by ρxr. Consequently, the zero bond values for the single correlation 1F-HHW

model and full-scale HHW model are equivalent (!).

Finally, with AH1HW (u, τ) of equation (3.8) the CHF of the H1HW results in canonical fashion, i.e.

Φ̂H1HW (u, xt, vt, rt, t, T ) = eAH1HW (u,τ)+B(u,τ)xt+D(u,τ)vt+C(u,τ)rt, (3.13)

where the Fourier coefficients B(u, τ), C(u, τ) and D(u, τ) are described in detail in Appendix B.1.

With affine hybrid model versions H1HW and the corresponding CHFs available, derivatives pricing

with these models is accessible to inverse transform and direct integration techniques (at least for

those kinds of derivatives which are in general evaluable by inverse transform methods). In general

the results obtained in the spot and terminal measures are equivalent, albeit numerical errors are

susceptive to the particular choice of measure. The relation between numerical error characteristics

and choice of measure is detailed later in the discussion of the affine versions of the Heston DDSV

Cheyette model.

3.3 Smiles in Equity and Interest Rate

3.3.1 Displaced-Diffusion Stochastic Volatility Libor Market Model

Hybrid models can be constructed with various different IR components. In the previous sections the

IR component was defined by the HW model. The HW model is based on a 1D short-rate process

with inherent limitations: For instance, the HW model is a Gaussian model showing inherently

large skew features in IR implied volatilities. Furthermore, as 1D model the HW approach is

incapable to represent IR derivatives depending on the evolution of more than a single forward rate,

like i.e. CMS spread products which are based on the difference of forward rates with different

tenor structure. In order to resolve such insufficiencies, market models were devised within the

HJM framework. When the market model is based on Libor forward rates, the Libor Market

Model (LMM) results as fundamentally different ansatz compared to the HW short-rate process

previously discussed. The LMM is inherently high-dimensional, since for a given set of maturities

T = {T }k = {T0, T1, T2, ..., TN} each maturity is represented by one individual stochastic process

for the corresponding Libor rate L(t, Tk−1, Tk) = Lk(t) (with each Libor forward rate based on the

tenor structure τk = Tk − Tk−1). When presuming the Libor rates to be log-normally distributed,

the implied volatilities associated with IR products modeled with the LMM are flat. In the original

LMM model IR smile and skew features are absent.

In the following we discuss an extension of the LMM as IR component of hybrid models. The
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extended LMM model is denoted as the Displaced-Diffusion (DD) Stochastic Volatility (SV) Libor

Market Model (LMM). The DDSV LMM is capable to reproduce smile and skew features observed in

the implied volatility surface derived from the interest rate market. IR skew features are introduced

by the DD concept. IR smile is controlled by a correlated IR stochastic volatility (IR-SV) process,

analogous to the EQ-SV process in the Heston model on the EQ side of the hybrid model.

In [31] the stochastic process driving each of the Libor forward rates,

dLk(t) = σk(t)(µk(t)dt+ dWk(t)), (3.14)

was generalized towards a DD volatility specification of functional form

σk(t) = sk(t)Φk(t, Lk(t)). (3.15)

This is the DD LMM where the overall stochastic volatility level in model characteristics is deter-

mined by the value of sk(t). The DD ansatz [32, 33] is based on the idea to mix normal and log-normal

behaviour in the stochastic processes underlying the Libor rate evolution, thereby controlling the

skew of implied IR volatilities with

Φk(t, Lk(t)) = bk(t)Lk(t) + (1− bk(t))Lk(0). (3.16)

Therein 0 ≤ bk(t) ≤ 1 controls the mixture between log-normal and normal model contributions. IR

skew and smile were successively introduced as amendments to the standard Libor Market Model

(LMM). Then [32, 33] further augmented the DD LMM by a stochastic variance process zt to

establish the full DDSV LMM concept:

dLk(t) = sk(t)Φk(Lk(t), t)
√
zt(

√
ztµk(t)dt+ dWk(t)), (3.17)

with IR− SV process

dzt = β(z̄ − zt)dt+ ǫ
√
ztdWz(t), (3.18)

and correlations

dWkdWz = ρkzdt and dWidWk = ρikdt. (3.19)

The IR-SV process is of Cox-Ingersoll-Ross (CIR) type like the EQ-SV equivalent in the Heston

process, with mean-reversion rate β, mean-reversion level z̄ (conventionally to be set to z̄ = z0 = 1,

since the overall IR-SV level is already adjustable via the choice of sk), and volatility ǫ of the IR

variance process, respectively.

In general, all aforementioned DDSV model parameters are time-dependent. However, the focus

of the discussion at hand relies on affine model approximations accessible to evaluation by inverse

transforms. Therefore the DDSV parameters sk and bk are presumed to remain constant as one of

the approximations necessary to derive an affine version of the DDSV LMM.

Assuming simple compounding the tenor structure τk = Tk − Tk−1 defines the connection between

the Libor rates Lk(t) = L(t, Tk−1, Tk), and the zero (coupon) bond P (t, Tk) = Pm(t)(t) value, as

P (t, Tk)

P (t, Tk−1)
=

1

1 + τkLk(t)
, (3.20)
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with m(t) = min(k : t ≤ Tk). The choice of measure determines the drift term and numeraire

corresponding to each Libor rate process. Conventional choices are the spot Libor (SM) measure QB

(where the Libor process corresponding to the instantaneous forward rate at the respective moment

is a martingale, and the numeraire is the rolling over bank account described by dBt = Lm(t)(t)Btdt

and B0 = 1), or, alternatively, the TN ≡ QT forward or terminal (TM) measure (where the terminal

Libor rate at maturity TN+1 is a martingale, and all other Libor processes are transformed into this

particular measure QT ). Then, drift and numeraire assume the following explicit form:

Measure Drift Numeraire

TN -Fwd (TM) QT µk(t) = −
N
∑

i=k+1

τisiΦi(t,Li(t))
1+τiLi(t)

ρik P (t, TN) =
Pm(t)(t)

N∏

i=m(t)+1

1+τiL(t,Ti−1,Ti)

Spot Libor (SM) QB µk(t) =
k
∑

i=m(t)

τisiΦi(t,Li(t))
1+τiLi(t)

ρik B(t) = Pm(t)(t)
m(t)
∏

i=1

1 + τiL(t, Ti−1, Ti)
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Figure 3.1: Comparison of Interest Rate (IR) smiles and IR skews observed in Monte-Carlo simu-
lations of the DDSV LMM model. The overall implied volatility level is determined by the choice
of sk. Left: IR-SV scenario where normal and log-normal DD IR contributions have equal weight
(bk = 0.5). Data show in blue corresponds to maturity T = 5 and sk = 25%; data plotted in red
is obtained at T = 10 and with sk = 30%. With Gaussian model contributions present, implied
caplet volatilites show a significant skew. The solid lines correspond to the DD LMM case where
the IR-SV process is absent. Overlayed in broken lines are the implied volatilities in the case IR-SV
contributions are introduced (β = 0.1, ǫ = 70%). Right: The influence of short rate skew features
diminuishes in the limit bk → 1 corresponding to the log-normal case, DD LMM model results shown
as broken lines). Distinct IR-SV features are observed for IR-SV volatility assuming huge values
of ǫ = 120% (solid lines). For demonstration purposes the overall volatility level determined by sk
is permuted compared to the left part of the figure. T = 5 is the blue data with sk = 30%; data
plotted in red is obtained for T = 10 with sk = 25%.
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In Fig. 3.1 the impacts of DD and SV contributions on caplet implied volatilities are illustrated both

as individual effects and in combination. Solid lines show implied volatility effects solely as result

of DD contributions. The DD contributions plotted as solid lines are isolated in the limit zt → z̄=1

(resulting from the choices β → 0 or β ≫ 1, and ǫ → 0), where modifications by the IR-SV process

become negligible. This corresponds to the DD LMM model case. Here the base skew is disclosed by

simulations without stochastic variance contributions. By tuning the DD parameter bk, the relative

weight of normal and log-normal components in the DDSV LMM is adjusted. The pure LMM case

corresponds to bk=1 with flat implied volatilities; the Gaussian model case is obtained in the limit

bk → 0. In general the increase of Gaussian normal contributions is associated with pronounced skew

features. Results are shown for T = 5 (blue) and T = 10 (red) years to maturity, initially presuming

a flat forward curve at Lk(0) = 5%p.a. level for all initial Libor rates. The overall volatility level is

determined by the choice of sk in the DDSV LMM model. Implied caplet volatilities are obtained for

sk = 25% and sk = 30% in both plots of Fig. 3.1 (in the left part sk = 25% corresponds to maturity

T = 5, in the right part results at maturity T = 10 are demonstratively shown for sk = 25%).

In the left part of Fig. 3.1 a comparatively large base skew is generated by the skew parameter

bk = 0.5 (as bk controls the mixture of log-normal and normal components of the LMM). Whether

the IR smile is significant is controlled by mean-reversion rate β and volatiliy ǫ of the IR stochastic

variance process; in the left panel β = 0.1 and ǫ = 70% give rise to base skew with smile features.

When calibrating to market data, ǫ values are usually below 50% - this already indicates the fact

that IR smile contributions in realistic data of hybrid products are generally of course much smaller

than EQ smile effects. In order to emphasize IR smile effects, the smile features are prominent for

demonstration purposes in the right part of Fig. 3.1 by choosing small mean-reversion β = 0.3 and

large volatility ǫ = 120% in the IR-SV process. Here the base skew becomes much less prominent

by the choice bk = 0.9; then Libor rates are assumed to evolve ’quasi’-lognormal.

3.3.2 Heston DDSV Libor Market Model (HLMM)

By combining the DDSV LMM concept as IR component with the standard Heston process as EQ

component, the Heston DDSV LMM (referenced by the acronym HLMM) hybrid model is con-

structed. The HLMM is a hybrid model by our conventional denotations used throughout the

thesis: The entire discussion of HLMM results is based on the full-scale HLMM hybrid model with

non-vanishing EQ-IR correlations (this means in effect, that the correlations between Heston EQ

component and Libor rates are in general non-zero ρxk 6= 0 ∀ k). Furthermore the HLMM features

hybrid smiles: The Heston EQ component can represent EQ smile and skew effects, the DDSV LMM

is capable to generate IR smile and skew observed in the IR markets, and EQ and IR smiles are

likewisely correlated in the full-scale model.

In the numerical implementation as basis of the present discussion, the spot rate rt in the Heston

component is obtained as instantaneous Libor rate rt = Lm(t)(t) without any further interpolation.
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The H1LMM as the affine approximation of the HLMM

In general, LMM models are due to the drift term strongly path-dependent, and consequently the

DDSV LMM model is non-Markovian and non-affine. In [4] several approximations are imposed

in order to render the HLMM SDE system in affine form. Particularly the Libor rates Lk(t) are

frozen to the initial value Lk(0). This removes the path-dependency in the drift term arising from

the sum over the Libor rates. The non-affine terms from the IR-SV process (see equation (3.15))

are approximated by assuming zt ≃ E[zt] = δz(t) in analogy to the approximations discussed in [1]

(cf. section 3.2.1 above for H1CH/H1HW model approximations originally devised in [1]). In [4] all

non-affine terms are rigorously linearized by adopting and extending the ideas published in [1]; for

instance, EQ-SV and IR-SV processes are assumed to evolve independently and can be projected

onto the corresponding expectations like
√
vt
√
zt ≃ E[

√
vt
√
zt] ≃ E[

√
vt]E[

√
zt]. Thereby the affine

version of the HLMM SDE system in the terminal measure QT (referenced by the acronym H1LMM

in the following) is placed within the AJD process class.

Details of the H1LMM derivation are found in the original publication [4]. In the following sections

the full-scale HLMM model is implemented employing Monte-Carlo schemes, and the Carr-Madan

and COS methods are prepared to price within the affine version H1LMM. These implementations

are benchmarked for selected simulation parameters and derivative products. Particular traits of

the Monte-Carlo implementation are exposed briefly below.

Benchmarking HLMM/H1LMM implementations

In order to validate the Heston DDSV LMM model implementations, the results obtained by Monte-

Carlo (MC) simulation and inverse transform techniques (COS and Carr-Madan method) are com-

pared with the reference results in [4], section 5.1 (with a particular focus on table 5.1 therein). The

simulation setup and the choice of parameters are as described in [4], section 5.1:

The Heston model is set up with κ = 1.2, v̄ = v0 = 0.1, γ = 0.5, and ρxv = −0.3, respectively. The

Heston model model is coupled with ρxk = 0.5 to a DDSV LMM with sk = 0.25, bk = 0.5, β = 1,

z̄ = 1, and ǫ = 0.1, respectively. The IR-SV process is neither correlated to the EQ nor the IR

model components (ρxk = 0 and ρkz = 0 for all Libor rates Lk, ρxz = 0); the correlation matrix of

the Libor rates is ρik = 0.98 for i 6= k, and unity otherwise.

The results obtained by inverse transform evaluation of an equity call option with the affine deter-

ministic approximation of the Heston Libor Market Model (H1LMM) show excellent agreement (cf.

Fig. 3.2, left part), Monte-Carlo results obtained for the full-scale HLMM model are in reasonable

agreement (cf. Fig. 3.2, right part) with the reference results published in [4].

Another benchmark of the MC implementation of the HLMM follows from pricing a hybrid product

as suggested in [4] (section 5.3 therein), where the hybrid named Minimum of Several Assets is

priced. Hybrid products are considered in some detail in chapter 4 below, and the description of

the specifics of the Minimum of Several Assets payoff construction is found in section 4.2. For the

parameter set employed in [4], this hybrid derivative contains EQ and IR asset class components

and is evaluated as function of the relative EQ contribution k in Fig. E.6. The calculated hybrid
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Figure 3.2: Comparison of equity call option values obtained within the Heston DDSV LMM
(HLMM) and the corresponding affine model version H1LMM. Model parameters follow the de-
scription in [4] (section 5.1 and Appendix E therein). Left: Comparison of COS method results for
the affine H1LMM model with [4], Table 5.1 therein. Right: Comparison of Monte-Carlo implemen-
tation results of the full-scale HLMM model with [4], Table 5.1 therein. MC resullts are obtained
with 2 · 106 simulations and ks = 20. The typical MC standard error level is 45 bp.

prices are in very good agreement with the results presented in [4], giving credit to the validity of

the HLMM implementation.

Certain supplementary consistency checks were applied prior to the aforementioned pricing results:

• For bk = 0, sk = 1 the displaced-diffusion contribution cancels out. When the stochastic

variance process is fixed at zt = z0 = const; this corresponds to the limit β → ∞ and η → 0.

Then, the IR-SV process becomes quasi-deterministic and the LMM model remains.

• The Andersen QE scheme has been validated separately for the Heston case with the parameter

sets of the original publication [7], and via cross-check with the analytical solution for the test

parameter sets listed in Appendix D.1.

Monte-Carlo implementation of the full-scale HLMM model

The HLMM is implemented in one version where the DDSV LMM component is based on the spot

Libor (SM) measure QB, and an alternative version where the DDSV LMM component is evaluated

in the terminal measure (TM) QT . Crucial point in LMM implementations is the efficient evaluation

of the drift term. Under QT the drift term is calculated by an iterative predictor-corrector (IPC)

scheme (cf. [17] for details), which is adapted to account for the DDSV amendments to the model.

The IPC scheme allows to use tenor-based time stepping (in [17] this is called long stepping) . Quite

contrarily, the QB implementation employs a straightforward Euler scheme for the drift calculation,

and the discretization errors introduced compared to the IPC scheme are compensated by introducing

22



substeps within each maturity tenor interval Ti ≤ tk < Ti+1 with 1 ≤ k ≤ ks and ks = 20 a typical

number for the simulations presented in the discussion at hand.

For each Monte-Carlo path the following routine is completed for each time step t → t + ∆t along

the entire time frame 0 ≤ t ≤ TN of the discretization:

1. Advance the IR-SV process variable zt → zt+1 by an adaption of Andersen’s QE scheme [7].

2. Proceed an individual time step in the DDSV LMM implementation, either in the spot measure

QB or the terminal measure QT .

3. Advance the Heston stochastic volatility process, based on Andersen’s Quadratic Exponential

(QE) scheme with martingale correction. Depending on the realization of the DDSV LMM

component, either the EQ spot or forward stock prices are employed. The Libor spot rate is

obtained from DDSV LMM results by setting rt = Lm(t)(t) without further interpolations.

3.4 Bridging between Short Rate and Market Model: The

Cheyette Approach

3.4.1 Markovian Dynamics by Separable Volatility Specification

Hybrid models with a Hull-White IR component are well understood and, due to the low-dimensionality

of the underlying system of SDEs, are widely used in practical applications. However HW short rate

based models fail to capture market features like IR smiles. Striving to represent as much market

observables as possible, market models are designed to model the entire forward curve by an HJM

based volatility specification when computationally feasible, and are combined with concepts like

displaced diffusion and an additional stochastic volatility process in order to account for IR smile

and skew. DDSV LMMs are inherently non-Markovian and high-dimensional, and hence, by design

not well suited for the application in calibration problems or dynamic hedging algorithms.

A viable approach to bridge between the simplicity of HW and sophistication of market models

is to control the volatility structure of the Heath-Jarrow-Morton (HJM) framework by ’a priori’

assumptions on the functional constraints by the Cheyette model [17c]. The result is a Markovian

system with adaptable degree of dimensionality which allows for displaced-diffusion and stochastic

volatility extensions. In the following, the Cheyette model is introduced within the context of the

DDSV concept. Then, the DDSV Cheyette system as IR component is combined with a Heston EQ

component to constitute a new hybrid model framework. Finally, affine approximations are studied

which place the Heston DDSV Cheyette model within the AJD process class and open the path to

efficient evaluation by inverse transform techniques. Benchmarking the quality of the affine versions

(referenced by the acronyms H1CV and H2CV) with the full Heston DDSV Cheyette model, gives an

indication of the validity of affine approximations and prepares to understand the comparison with

the other short rate and LMM based hybrid models in the calibration and hybrid product valuation

scenarios of the next chapter.
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Cheyette Model Characteristics and Affine Model Features

The HJM framework [17b] is based on the idea to model the risk-neutral time evolution of the entire

yield curve by the dynamics of the forward rate ft(T ):

dft(T ) = δ(t, T )dt+ σf (t, T )dW (t) for T ≥ t, (3.21)

where δ(t, T ) is the corresponding drift and σf (t, T ) the volatility of each forward rate, respectively.

According to [17b] the risk-neutral forward rate dynamics are completely determined by the initial

market yield curve fM0 (T ) as exogenous model input in combination with a given volatility structure

σf (t, T ). In this form the HJM framework has practical drawbacks: The yield curve consists of

an infinite number of individual stochastic processes (in the LMM this is overcome by defining a

discretization on the basis of Libor rates with given tenor structure), and the drift is highly path

dependent and non-Markovian. Essential point of the Cheyette model [17c] is to separate the forward

rate stochastic volatility structure of the HJM framework

σfi (t, T ) =

n
∑

k=1

gk(T )H
k
t , i = 1, ..., n , (3.22)

into a product of a deterministic function gk(T ) depending on maturity T and a Markovian process

Hk
t . The Cheyette separable volatility model removes path dependency, and hence, the model is

within the applicability of the Feynman-Kac theorem. In the case of single factor volatility n = 1

the Cheyette model with state vector Xt = [xc,t, yt]
† in differential form reads:

dxc,t = (yt − λxc,t)dt+ ηtdWc(t), (3.23)

dyt = (η2t − 2λyt)dt, (3.24)

where

• xc,t represents the Markovian Cheyette process (this is basically the short rate) with Brownian

driver Wc(t);

• yt is the second state variable, coupling the mean-reversion level and the volatility. In the

special und restrictive case of deterministic volatility ηt = η(t) the second dimension becomes

deterministic, yt = y(t). The essential advantage of the Cheyette model compared to the

classical short rate models is the option to incorporate a stochastic volatility specification

ηt = η(t, xc,t, yt, zt), the integral part of the discussion at hand. The particular choice of the

stochastic volatility process zt for the interest rate (IR) component controls the model features

encompassing an IR smile.

• λ is the reversion rate of dx̃c,t = −λx̃c,tdt+ ηdWc(t) of the first state variable.

The dimensionality of the Markovian Cheyette system is basically controlled by the specific form of

the single-factor volatility:
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• 3D Markovian Cheyette systems are obtained in case of full stochastic volatility specification

ηt = η(t, xc,t, yt, zt), where the volatility connects to the state variable xc,t of the basic interest

rate process and is combined by a separate SV process zt. The DDSV Cheyette concept

discussed below is inherently 3D. In general, the situation that ηt depends on other state

variables gives rise to non-affine characteristics. Then, suitable approximations bring the

system within the AJD process class and make inverse transform techniques applicable.

• 2D Markovian Cheyette systems result in configurations where ηt = η(t, xc,t) connects at least

to the Brownian driver Wc(t) of the basic IR process.

• 1D Markovian Cheyette systems are generated by presuming deterministic ηt = η(t); narrowing

the constraints towards ηt=const to be constant results in system features with straightforward

correspondence to the HW short rate model.

3.4.2 Displaced-Diffusion Stochastic Volatility (DDSV) Concept in the
Cheyette Model

In principle the Displaced Diffusion (DD) concept as originally introduced into the LMM framework

[31] is directly transferable into the Cheyette setting by adapting the volatility specification:

η(t, xc,t, zt) = sk(t)(bk(t)πt + (1 − bk(t))π0)
√
zt ≡ sk(t)Φk(t), (3.25)

with πt = f(0, t) + xc,t

The volatility is constructed by defining a certain basis level sk(t) and a IR skew parameter bk(t).

The Cheyette system assumes the basis level in the limit bk → 0 and zt → z̄=1 where implied

volatility flattens out. In the limiting case bk → 1 the DD conformalization assumes log-normal

behaviour corresponding to flat implied volatility structure without skew modifications. With bk

decreasing towards 0 as lower boundary, by ηt the skew features in the implied volatility structure

are pronounced. Though sk(t) and bk(t) are in general time-dependent, in the present discussion the

DDSV Cheyette system is based on constant DD parameters. IR smiles are introduced by a separate

stochastic variance (IR-SV) process analogous to the Heston SV component on the EQ side, i.e.

zt = β(z̄ − zt)dt+ ǫ
√
ztdWz(t), (3.26)

where β(t) = β=const and ǫ(t) = ǫ=const correspond to the IR-SV mean reversion and volatiliy of

variance, respectively, assumed to be constant here.

Consistency with the DDSV LMM approach is enforced by denoting the following connection to the

forward rate volatility structure (cf. [33] for details on the derivation):

η(t, xc,t, zt) = −[ ∂∂TBc(t, T )]
−1sk(t)(bkπt + (1− bk)π0)

√
zt (3.27)

= eλ(T−t)(bkπt + (1 − bk)π0)
√
zt. (3.28)

The quantity Bc(t, T ) is the drift component in the Cheyette zero bond formulation (cf. section

A.3.2).
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3.4.3 HHW as limiting case of the Heston Cheyette model (HCH)

The HHW model is equivalent to the Heston Cheyette model (HCH) when certain constraints are

imposed on the Cheyette model as the IR component. As the HHW and the associated affine

approximations are well-studied in previous publications [1, 2], we use the HHW as limiting case to

cross-check the derivations and implementations of the introduced HCH and HCV models. In section

3.4.1 the Cheyette (CH) model was introduced as a Markovian IR model with variable degrees of

freedom. The dimensionality and complexity of the Cheyette model is controlled by the underlying

volatility specification ηt = η(t, xit), where xit i ∈ {1, ..., n} are the Markovian state variables of the

n-dimensional system. The Cheyette concept is based on introducing constraints on the volatility

specification of market models; Cheyette models are Markovian by design and rendered as specific

group within the IR models created by the Heath-Jarrow-Morton (HJM) framework.

In the limiting case of a Cheyette system under the constraint of constant volatility ηt → η=const,

the state variable yt decouples from xc,t and becomes deterministic (cf. section 3.4.1 for a description

of the Cheyette state variables and Appendix A.3 for calculation details):

y(t) = η2

2λ (1− e−2λτ ) (3.29)

For constant volatility η the connection between the CH and HW models is then contained in the

relation between CH and HW mean reversion levels, i.e.

θ(t) = f(0, t) + 1
λ
∂
∂T f(0, t) +

1
λy(t). (3.30)

The CH/HW connection is equally valid for the corresponding CHFs - the connection between CH

CHF and HW CHF Fourier coefficients is shown in Appendix A.3.1.1 and based on the relation

YB(u, τ) = − 1
2(1−iu)C

2
B(u, τ), (3.31)

where YB(u, τ) is the Fourier transform coefficient of the y(t) process, and CB(u, τ) the corresponding

Fourier coefficent of the IR process rt, respectively. The subscript B indicates that the relation is

derived under the spot measure QB. Following the same line of thoughts, the connection of CH/HW

IR components is carried into the corresponding hybrid models. The HHW/HCH correspondence is

based on the integral relations of Fourier coefficients
∫ τ

0

YB(u, τ) dτ = − 1
2(1−iu)

∫ τ

0

C2
B(u, τ) dτ

= − 1
2(1−iu) I3(u, τ) =

∫ τ

0

CB(u, τ)y(t)dτ (3.32)

These integral relations are detailed in Appendix B.2 and actually represent substantial parts of

the affine H1CH/H1HW model Fourier coefficients AH1CH(u, τ) and AH1HW (u, τ) as discussed in

section 3.2.1.

These model characteristics are previewed here to emphasize the following line of argumentation: The

connection between HW and CH IR components and corresponding affine hybrid H1HW and H1CH

models in the limiting case η=const is well-defined. All numerical implementations presented are

validated in the sense that when parameters are tuned to assume this limit, the theoretically expected
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connection between these models is observed numerically when employing inverse transforms or

direct evaluation methods.

For the HHW/HCH IR components analytic prices of contingent claims are available as derived

in Appendix F. Such analytic prices are used to cross-check the numerical implementations as is

further detailed in Appendix F.

Affine model derivation in the spot QB and the terminal measure QT

The derivation of the affine version of the full-scale Heston Cheyette (HCH) hybrid model (through-

out the present discussion referenced by the acronym H1CH) proceeds in analogy to the H1HW

derivations outlined above. The details of the H1CH derivation in the spot measure QB are given

in Appendix B.2.

There are two intriguing features of the affine H1HW and H1CH models: (i) When the EQ-SV

process and IR process are uncorrelated (ρvr = 0, which is the case for all instantaneous covariance

structures within this thesis), the explicit form of the stochastic variance process on the EQ side

is independent of the choice of measure; however, the IR component transforms according to the

specific measure applied. (ii) The discounting decouples from the EQ-SV component upon transfor-

mation from QB to the terminal measure QT .

The H1HW model derivation in the terminal measure QT is detailed in Appendix C.1, and in the

same line of argumentation the transformation to the terminal measure is transferred to the H1CH

model in Appendix C.2.

The Fourier cofficient C(u, τ) corresponding to the IR component is equivalent for both hybrid

models assuming the form

CB(u, τ) = 1
λ

(

(1 + iuλ)e−λτ − 1
)

= − 1
λ (1− e−λτ ) + iue−λτ , (3.33)

under the spot measure QB, and

CT (u, τ) = − 1
λ(1 − e−λτ ), (3.34)

under the terminal measure QT , respectively.

It is important to note that the decoupling of the EQ-SV and IR processes under the measure

QT means that both processes evolve and can be modeled separately. However, the EQ-SV and

IR processes remain correlated, so the hybrid correlation in the full-scale models remains. The

corresponding EQ-SV/IR coupling parameters ρxr and ρxc are included in the Fourier coefficients

AH1HW (u, τ) and AH1CH(u, τ), respectively.

The decoupling is indicated by subdividing the covariance matrices of the hybrid models as indi-

cated by the broken lines in the relevant Appendix C.1 for the H1HW and C.2 for the H1CH. The

separation of the hybrid components has favorable consequences for the numerical implementations

(in particular of Monte-Carlo and PDE schemes), since the EQ-SV part can be modelled as a 2D

process in the forward measure, where discounting is accomplished straightforwardly by an analyt-

ically determined zero bond value. The advantages in computational performance are obvious in

contrast to the full 3D SDE system present under the spot measure QB.

27



As already pointed out, the crucial point is that the change of measure solely affects the Fourier

coefficients associated to the IR process component. The EQ-SV component of the hybrid model

remains unaffected. When discussing the Heston DDSV-Cheyette model below, the essential differ-

ence is the introduction of an IR-SV process; then the SV component on the IR side will also be

responsive to changes of measure. This is the difference in SV contributions between the EQ and

IR side.

The implications are multiple, as for Heston DDSV Cheyette models the EQ-SV and IR-SV compo-

nents remain entangled upon transformation from QB to QT , and hence, the dimensional reduction

observed by the separation of hybrid components is not applicable, putting constraints on the nu-

merical implementations!

3.5 Hybrid Smiles in Markovian Systems

3.5.1 The Heston DDSV Cheyette Model in the Spot Measure

Combining the Heston process as equity component with the DDSV Cheyette model on the interest

rate side creates a correlated SDE system governing the Heston DDSV Cheyette model, thereafter

referenced by the acronym HCV:

dxs,t = (πt − vt
2 )dt+

√
vtdWx(t), (3.35)

dvt = κ(v̄ − vt)dt+ γ
√
vtdWv(t),

dxc,t = (yt − λxc,t)dt+ ηtdWc(t),

dzt = β(z̄ − zt)dt+ ǫ
√
ztdWz(t),

dyt = (η2t − 2λyt)dt,

with

πt = f(0, t) + xc,t,

ηt =
√
ztsk(t)(bk(t)πt + (1− bk(t))π0) ≡

√
ztsk(t)Φk(t),

and correlations ρxvdt = dWxdWv, ρcxdt = dWcdWx, ρczdt = dWcdWz, ρcvdt = dWcdWv, ρvzdt =

dWvdWz . The SV processes of the EQ and IR components are ’a priori’ presumed to be uncor-

related (ρzv = 0). Furthermore, to simplify the analysis the correlation between EQ-SV and IR

processes are also assumed to be negligible ρcv = 0; this is for the sake of clarity, since an extension

to include this correlation type is straightforward. For the discussion at hand an interest rate with

a single-factor Cheyette volatility, k ≡ 1, and constant parameters for the volatility sk(t) ≡ sk of

the IR variance process and displaced-diffusion conformalization bk(t) ≡ bk are considered. In the

later discussion an extension towards the multi-factor volatility framework becomes feasible.
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3.5.2 The Heston DDSV Cheyette Model in the Terminal Measure

The forward stock price,

Ft =
St

P (t, T )
≡ St
Pt

(3.36)

is a martingale under the T-forward measure. For specific EQ-IR hybrid systems like the HHW/HCH

systems the transformation from the risk-neutral measure (Q0) to the T-forward (terminal) measure

(QT ) gives rise to advantages: In the SDE hybrid system the equations governing the IR process

are decoupled from the equations determining the forward price process. Consequently, the Heston

EQ-SV component can be modeled separately from the IR process. The transformation Q0 → QT

is elaborated in detail in Appendices C.1 and C.2 for the HHW and HCH models, respectively. The

influence of EQ-IR correlations is still represented by the correlation parameters ρxr, ρxc contained

within the EQ-SV model components under the forward measure. The dimensional reduction from

3D in the spot to 2D in the forward measure has favourable effects on the computational implemen-

tations.

However, the situation gets more involved, as soon as an IR-SV component is included in the hybrid

model. The essential point of the Heston DDSV Cheyette (HCV) system is that the volatility of the

IR component ηt = η(t, zt) is driven by a stochastic variance process; then, yt becomes a stochastic

variable, and consequently the IR-SV Cheyette component is a 3D Markovian system. The DDSV

IR component is introduced into the HCV system by

ηt =
√
ztskΦk(t, xc,t) =

√
ztsk(bkπt + (1− bk)π0) with πt = f(0, t) + xc,t ≡ rt. (3.37)

Though the zero bond value in the DDSV Cheyette model is solely a function of xc,t and yt, the

influence of the IR-SV process is contained implicitly in yt and shows in the zero bond dynamics as

is detailed in the derivations below.

By transformation to the forward measure, IR-SV contributions are contained in the forward EQ

price dynamics, and hence, the Heston EQ-SV system contains the IR-SV variable zt as additional

third dimension. However, the situation becomes more involved in the presence of DD contributions,

since then the IR volatility specification

ηt = η(t, zt, xc,t) =
√
ztskΦ(t, xc,t), (3.38)

becomes a function of both zt and xc,t. This volatility specification is present in the zero bond

dynamics dPt/Pt and thereby carried into the forward dynamics dFt/Ft.

The connection between the specific choice of measure and the dimensionality of the SDE system is

for the HCV model summarized as follows:

• The full-scale HCV model is an inherently 5D system both in the spot measure QB as well as

in the terminal measure QT . The underlying SDE system as well as the CHF depend on all

five Markovian state variables St, vt, xc,t, yt, zt, irrespective of the specific choice of measure.
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• When DD contributions are not taken into account and only the pure IR-SV process is present,

the volatility specification simplifies to

ηt = η(t, zt) =
√
ztskΦk(t). (3.39)

This is achieved for instance by freezing the interest rates in the initial state in the volatility

specification, as is elaborated below within the constraints of the affine deterministic limit

H1CV of the HCV model. The H1CV model, which represents a 5D Markovian system under

the spot measure QB , then separates into EQ-SV × IR-SV ≡ 3D × 3D SDE systems upon

transformation to the forward measure QT . The IR-SV process variable zt is the linking

element between hybrid components.

• As soon as DD contributions are fully taken into account with Φk from equation (3.24) this

implies a functional dependence of the form Φk = Φk(t, xc,t), and hence, the HCV model

system remains 5D. In this case there is no obvious computational advantage gained upon

switching towards QT .

In the following the transformation of the HCV model from spot measure QB towards the terminal

measure QT is discussed in detail.

We consider the general SDE system,

dXt = µ0(Xt)dt+ LXt
dW̃0(t), (3.40)

with state variable vector [yt, zt, xc,t, vt, St]
†, drift term

µ0(Xt) =













zts
2
kΦ

2
k − 2λyt

β(z̄ − zt)
yt − λxc,t
κ(v̄ − vt)

rt













, (3.41)

and instantaneous covariance matrix ΣXt
= LXt

L†
Xt

in Cholesky decomposition

LXt
=













0 0 0 0 0
0 ǫ

√
zt 0 0 0

0 ρczskΦk
√
zt LccskΦk

√
zt 0 0

0 ρvzγ
√
vt Lvcγ

√
vt Lvvγ

√
vt 0

0 ρxz
√
vt Lxc

√
vt Lxv

√
vt Lxx

√
vt













, (3.42)

with components

Lcc =
√

1− ρ2cz, Lvc =
1
Lcc

√
ρvc − ρvzρcz, Lvv =

√

1− ρ2vz − L2
vc,

Lxc = 1
Lcc

(ρxc − ρxzρcz), Lxv =
1
Lvv

(ρxv − ρxzρvz − LxcLvc), Lxx =
√

1− ρ2xz − L2
xc − L2

xv,

and the corresponding vector of uncorrelated Brownian drivers W̃
0(t) = [W̃ 0

y (t), W̃
0
z (t), W̃

0
c (t),

W̃ 0
v (t), W̃

0
x (t)]

†. The superscript ′0′ indicates that at this point the drift and Brownian drivers

are still considered in the spot measure QB.

In detail, we deal with the stock dynamics

dSt
St

= πtdt+
√
vtdW

0
x

= rtdt+ ρxz
√
vtdW̃

0
z + Lxc

√
vtdW̃

0
c + Lxv

√
vtdW̃

0
v + Lxx

√
vtdW̃

0
x , (3.43)
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and the zero coupon bond dynamics, as follows,

dPt
Pt

= πtdt+
√
ztskΦkBcdW

0
c = πtdt+Bc(ρcz

√
ztskΦkdW̃

0
z + Lcc

√
ztskΦkdW̃

0
c )

= πtdt+
√
ztskΦkBc(ρczdW̃

0
z + LccdW̃

0
c ) with Bc(t, T ) = − 1

λ(1 − e−λτ ),

so that

(

dPt
Pt

)2

= zts
2
kΦ

2
kB

2
cdt and

−
(

dPt
Pt

)(

dSt
St

)

= −√
zt
√
vtskΦkBc(ρxzρcz + LccLxc)dt. (3.44)

The zero bond dynamics contain the IR stochastic variance process explicitly, even though the

stochastic variance appears only implicitly in the corresponding zero bond formula. Then, the

forward dynamics are given in the following form:

dFt
Ft

= (zts
2
kΦ

2
kB

2
c − ρxcskΦkBc

√
zt
√
vt)dt+ (ρxz

√
vt − ρczskΦk

√
ztBc)dW̃

0
z

+ (Lxc
√
vt − Lcc

√
ztskΦkBc)dW̃

0
c + Lxv

√
vtdW̃

0
v + Lxx

√
vtdW̃

0
x . (3.45)

The Girsanov kernel obtained from the zero bond dynamics, to perform the transformation from the

risk-neutral towards the T-forward measure QB → QT , reads













dW̃ 0
y

dW̃ 0
z

dW̃ 0
c

dW̃ 0
v

dW̃ 0
x













=













0
ρcz

√
ztskΦkBc

Lcc
√
ztskΦkBc
0
0













dt+













dW̃T
y

dW̃T
z

dW̃T
c

dW̃T
v

dW̃T
x













. (3.46)

Since the forward price is a martingale under the T-forward measure Ft = ET [FT |Ft], the forward

dynamics need to be driftless, i.e.

dFt = (ρxz
√
vt − ρczskΦk

√
ztBc)dW̃

T
z + (Lxc

√
vt − LccskΦk

√
ztBc)dW̃

T
c

+ Lxv
√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x .

However, drift components arise in the log-transform, i.e.

dx̂t = d logFt = − 1
2 [(ρ

2
xz + L2

xc + L2
xv + L2

xx)vt − 2ρxzρxcskΦkBc
√
zt
√
vt + ρ2czs

2
kΦ

2
kztB

2
c

− 2(ρxc − ρxzρcz)skΦkBc
√
zt
√
vt + (1− ρ2cz)s

2
kΦ

2
kB

2
c zt]dt+

(ρxz
√
vt − ρczskΦkztBc)dW̃

T
z

+ (Lxc
√
vt − LccskΦk

√
ztBc)dW̃

T
c + Lxv

√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x

= (− vt
2 + ρxcskΦk

√
ztBc

√
vt − 1

2zts
2
kΦ

2
kB

2
c )dt+ (ρxz

√
vt − ρczskΦkztBc)dW̃

T
z

(Lxc
√
vt − LccskΦk

√
ztBc)dW̃

T
c + Lxv

√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x . (3.47)

3.5.3 Heston DDSV Cheyette Model: Monte-Carlo Implementations

The Monte-Carlo (MC) evaluations of contingent claims within the HCV model are implemented

under the spot measure QB as well as under the T-forward measure QT . For both measures un-

biased schemes exist for the IR components detailed below. On the EQ side, there is the unbiased
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Andersen QE scheme with martingale correction available for the Heston process; on the IR side,

the QE scheme is adapted to be applicable to the IR-SV process.

In general, the results obtained under QB and QT are consistent. Whenever spurious deviations

are observed, these are the consequence of different dimensionality in model formulations under the

respective measures. The influence of a particular choice of measure on the quality and performance

of numerical evaluations is part of the discussion below along with the model validation. The im-

plementations are based on a forward MC scheme, so for every MC path the simulation proceeds

forward in time by stepping along a predefined time grid from t = 0 towards maturity t = T .

Under the spot measure the HCV model resembles a full 5D system. At each step from tk to tk+1

within the time discretization we perform the following steps:

• (i) Advance the IR-SV process via an adapted version of the Quadratic Exponential (QE)

scheme [7] ztk → ztk+1
.

• (ii) Iterate the first IR component ytk → ytk+1
by means of a straightforward Euler step.

• (iii) Perform another Euler step for xc,t employing the unbiased scheme in the spot measure

QB:

dxc,tk+1
= (ytk − λxc,tk)dt+ ηtkdW̃

0(tk)

= (ytk − η2tkB
2
c (tk, tk+1)− λxc,tk)dt+ ηtkdW̃

B(tk) (3.48)

• (iv) Simulate the EQ-SV component vtk → vtk+1
as first part of the Andersen QE scheme for

the Heston process.

• (v) Simulate the log-transformed EQ state variable x̂tk = logStk → x̂tk+1
as second part of

the Andersen QE scheme.

With the EQ state variable at maturity x̂T the derivative payoff

Π(t) = B(t)EB
[

1

B(T )
Π(T )

]

= EB





k(T )−1
∏

k=k(t)

P (tk, tk+1)Π(T )



 , (3.49)

is calculated under QB and discounted to the present value, where the directly re-balanced money

market account (discretely compounded on the pre-defined time grid)

B(t) = P (t, T )

k(T )−1
∏

k=k(t)

1

P (tk, tk+1)
, (3.50)

is chosen as numéraire.

In the terminal measure QT the HCV model is under certain conditions reduceable to a 3D system

as argued in the preceding section. Whenever DD contributions are taken into account, the HCV

model remains 5D and the IR component is based on the following unbiased scheme:

dxc,tk+1
= (ytk − λxc,tk)dt+ ηtkdW̃

0(tk)

= (ytk − η2tkB
2
c (tk, T )− λxc,tk)dt+ ηtkdW̃

T (tk). (3.51)
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Under the QT measure the discounted derivative payoff assumes the form,

Π(t) = P (t, T )ET [Π(T )]. (3.52)

3.6 Evaluation of the Heston DDSV Cheyette Model by In-
verse Transform Techniques

The Heston DDSV Cheyette model (HCV) is in itself non-affine. With the state variable vector

Xt = [xs,t, vt, xc,t, zt, yt]
† the covariance matrix is given by

ΣXt
=









vt ρxvγvt ρxcskΦk
√
vt
√
zt 0 0

ρvxγvt γ2vt 0 0 0
ρcxskΦk

√
vt
√
zt 0 s2kΦ

2
kzt ρzcskΦkǫzt 0

0 0 ρzcskΦkǫzt ǫ2zt 0









. (3.53)

Acknowledging the fact that skΦk = skΦk(xc,t) is a function of the state variable xc,t, the following

non-linear terms need to be considered when affine model constraints are to be prescribed:

ΣXt
(1, 3) = ΣXt

(3, 1) = ρxcskΦk
√
vt
√
zt, (3.54)

ΣXt
(3, 4) = ΣXt

(4, 3) = ρxcskΦkǫzt, (3.55)

ΣXt
(3, 3) = s2kΦ

2
kzt. (3.56)

Basically, there are two possible strategies to place this model within the AJD process class:

• Limit 1: Remove the dependency of skΦk on the state variable xc,t and introduce affine

approximations for the state variables vt and zt, for instance by employing the projection

on proxies for the corresponding expectation values E
[√
vt
]

≡ δv(t) and E
[√
zt
]

≡ δz(t), as

suggested in [1]. skΦk=constant is straightforwardly achieved in the limit bk = 0,

skΦk = sk (bk(f(0, t) + xc,t) + (1 − bk)(f(0, 0) + xc,0))
bk→0−−−→ sk(f(0, 0) + xc,0) = skΦk(0).

(3.57)

The stochastic variables vt and zt describe classical CIR-type square root processes. The

corresponding expectations E[
√
vt] (as well as E[

√
zt]) exist in analytic form as derived in

[30a]:

E [
√
vt] =

√

2cv(t)e
−ωv(t)/2

∞
∑

k=0

1
k!

(

ωv(t)
2

)k Γ(1+dv2 + k)
dv
2 + k

, (3.58)

E [
√
zt] =

√

2cz(t)e
−ωz(t)/2

∞
∑

k=0

1
k!

(

ωz(t)
2

)k Γ(1+dz2 + k)
dz
2 + k

, (3.59)

with

cv(t) = 1
4κγ

2(1− e−κt), dv = 4κv̄
γ2 , ωv(t) =

4κv0e
−κt

γ2(1−e−κt) ,

cz(t) = 1
4β ǫ

2(1− e−βt), dz =
4βz̄
ǫ2 , ωz(t) =

4βv0e
−βt

ǫ2(1−e−βt)
,

and Γ(x) =

∞
∫

0

tx−1e−tdt the Γ−function,
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where simplifications to the hypergeometric series are employed, as originally introduced in

[37]. Though an explicit form exists, the evaluation is time consuming in computational

implementations. Therefore, it is advantageous to use a projection on time dependent functions

of the following form

E [
√
vt] ≃ a1 + b1e

c1t ≡ δv(t), (3.60)

E [
√
zt] ≃ a2 + b2e

c2t ≡ δz(t), (3.61)

as proxies. As suggested in [1], the coefficients ai, bi, ci (i ∈ {1, 2}) result as minimization of

the norm

min{a1,b1,c1}||δv(t)− Λv(t)||n, (3.62)

min{a2,b2,c2}||δz(t)− Λz(t)||n, (3.63)

where ||...||n is any nth norm with respect to the respectively corresponding objective functions

Λv(t) =

√

cv(t)(ωv(t)− 1) + cv(t)dv +
cv(t)dv

2(dv + ωv(t))
≥ 0 (3.64)

Λz(t) =

√

cz(t)(ωz(t)− 1) + cz(t)dz +
cz(t)dz

2(dz + ωz(t))
≥ 0. (3.65)

Conducting the optimization is again tedious in practice with respect to computational perfor-

mance. Therefore, following [1], approximative solutions are obtained by matching the Λv(t),

Λz(t) in the limiting cases t→ 0, t = 1, and t→ ∞:

lim
t→∞

Λv(t) =

√

v̄ − γ2

8κ
= a1 = lim

t→∞
δv(t), (3.66)

lim
t→∞

Λz(t) =

√

z̄ − ǫ2

8β
= a2 = lim

t→∞
δz(t),

lim
t→0

Λv(t) =
√
v0 = a1 + b1 = lim

t→0
δv(t),

lim
t→0

Λz(t) =
√
z0 = a2 + b2 = lim

t→0
δz(t),

lim
t=1

Λv(t) = = a1 + b1e
−c1 = lim

t=1
δv(t),

lim
t=1

Λz(t) = = a2 + b2e
−c2 = lim

t=1
δz(t),

Finally, the coefficients of the affine proxies δv(t) and δz(t) are obtained as follows:

a1 =

√

v̄ − γ2

8κ
, b1 =

√
v0 − a1, c1 = − log[(Λv(1)− a1)/b1], (3.67)

a2 =

√

z̄ − ǫ2

8β
, b2 =

√
z0 − a2, c2 = − log[(Λz(1)− a2)/b2]. (3.68)

The approximations employed in the affine limit 1 of the HCV model correspond to freezing the

initial interest rates - a technique commonly used to reduce complexity in the drift calculation
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of Libor Market Models. The original idea of the displaced-diffusion (DD) concept is to mix

normal and log-normal behavior of interest rates; by the choice bk = 0 the concept of mixing

is abandoned and only normal model features are retained.

In any event the approach appears viable for discussion and the affine model resulting within

this approximation limit 1 is elaborated below.

• Limit 2: In order to retain the original ideas of the DD concept, an alternative derivation

appears relevant, where the non-affine components of the displaced-diffusion term are projected

onto a time-dependent function α(t):

skΦ
A
k (t) = sk (bk(f(0, t) + α(t)) + (1− bk)(f(0, 0) + xc,0)) , (3.69)

and consequently

(skΦ
A
k (t))

2 = s2k[b
2
kζ

2(t) + 2bk(1− bk)π0ζ(t) + (1− bk)
2π2

0 ], (3.70)

with

πt = f(0, t) + xc,t,

ζ(t) = f(0, t) + α(t).

Then, the affine approximation of the DDSV volatility specification results in

ηAt = δz(t)sk[bkζ(t) + (1− bk)π0], (3.71)

(ηAt )
2 = zt(skΦ

A
k (t))

2.

This strategy is referred to as affine limit 2 in the following. The crucial point is to find a

suitable time-dependent projection α(t) to serve as affine proxy of the stochastic variable xc,t.

A possible choice is to use the expected value of xc,t as time-dependent projection

α(t) = E[xc,t], (3.72)

with E[xc,t] =
η20
2λ2 (1− e−λt)2.

Applying the expectation in this form implicitly presumes xc,t to evolve with the undisturbed

initial value of η0 (as if DDSV effects would not be present). So the decisive difference between

affine limits 1 and 2 are summarized as follows:

In the affine limit 2 the initial volatility η0 of the affine proxy α(t) in the DDSV specification is

presumed to be frozen to the initial value, whereas in the affine limit 1 the IR Markov variable

xc,t = xc,0 is presumed to be frozen.

Apparently, the approximation assumptions are significantly more restrictive in the affine limit

1 than in the affine limit 2. Limit 1 completely removes any DD effects. Limit 2 is devised to

retain an adequate representation of DD effects in the affine model version H2CV. In section

3.6.4 the comparison of the full HCV model with the H2CV model results proves that these

particular choices of α(t) are viable proxies of xc,t, and the affine limit 2 gives an accurate

affine approximation of DDSV effects in the Heston DDSV Cheyette (HCV) model.
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In the next section the essentials of the CHF of model limit 1 are detailed. In accordance with

the previous abbreviations the model is named H1CV. The second limit option H2CV is considered

subsequently.

3.6.1 Heston DDSV Cheyette Model in Affine Deterministic Limit (H1CV)

The derivation of the H1CV characteristic function (CHF) assuming the limit 1 approximations is

detailed in Appendix B.3 resulting in:

Φ̂H1CV (u,Xt, t, T ) = eA(u,τ)+iuxs,t+D(u,τ)vt+C(u,τ)xc,t+Z(u,τ)zt+Y (u,τ)yt . (3.73)

The relevant Fourier coefficients are obtained as solutions of the defining ODEs from the affine system

according to the techniques introduced in section 2.1 (Appendix B.3 and dependent appendices of

relevance contain the details of the derivation).

Solutions for B(u, τ), C(u, τ) and D(u, τ) are equivalent to the affine Heston and HHW models.

Y (u, τ) in (3.88) is obtained by variation of constants. According to the derivations in Appendix

B.3 there is a connection between Fourier coefficients Y (u, τ) and C(u, τ):

Y (u, τ) = − 1
2λ2 (1− iu)(1− e−λτ )2 = − 1

2(1−iu)C
2(u, τ). (3.74)

Z(u, τ) in equation (3.83) is a Riccati-type differential equation for the SV of the IR component,

where the coefficients are in this instance time-dependent. Employing the solutions for the other

Fourier coefficients and presuming ρcz = 0, the defining ODE is of the form

d
dτZ(u, τ) = ǫ2

2 Z
2(u, τ) − βZ(u, τ) + q1(u, τ), (3.75)

with q1(u, τ) = iu
2−2iuC

2(u, τ) = iu(iu−1)
2λ2 s2kΦ

2
k(1− e−λτ )2.

One has to resort to standard numerical methods for ODE solution or to simplify towards q1(u, τ) =

q1(u) (i.e. time independent parameters) where the solution is then just a variation of the well-known

Heston-type Riccati equation as elaborated below.

Again by straightforward integration we find for A(u, τ)

A(u, τ) = −
∫ τ

0

f(0, t) dτ + κv̄

∫ τ

0

D(u, τ) dτ − βz̄

∫ τ

0

Z(u, τ) dτ

+ 1
2ρcxskΦk

∫ τ

0

δv(t)δz(t)B(u, τ)C(u, τ) dτ

= −
∫ τ

0

f(0, t) dτ + κv̄I2(u, τ) + βz̄I5(u, τ) +
1
2ρcxskΦkI7(u, τ), (3.76)

where the integral I2(u, τ) is from the derivation of the H1HW model in Appendix 3.2.1, I5(u, τ)

equals the integral resulting from the IR-SV process in the DDSV Cheyette model, and

I7(u, τ) = − 1
λ (1− iu)[a1a2(τ +

1
λ(e

−λτ − 1)) + a1b2
c2

(e−c2(T−τ) − e−c2T ) + a2b1
c1

(e−c1(T−τ)−c1T )

+ b1b2
c1+c2

(e−(c1+c2)(T−τ) − e−(c1+c2)T )

− a1b2
c2−λ

e−c2T (e(c2−λ)τ − 1)− a2b1
c1−λ

e−c1T (e(c1−λ)τ − 1)

− b1b2
c1+c2−λ

e−(c1+c2)T (e(c1+c2−λ)τ − 1))]. (3.77)
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In order to render the CHF evaluation efficient, closed form analytic representations of all Fourier

coefficients and corresponding integrals are of high value. Therefore, the coefficient Z(u, τ) is ap-

proximated yielding closed form expressions.

We presume q1(u, τ) to be piecewise constant in time, i.e.

q1(u, τ) ≃ q1(u, τj) =
iu(iu−1)

2λ2 s2kΦ
2
k(1− e−λτj )2, (3.78)

on intervals τj ∈ [Tj, Tj+1[ for a particular choice of refinement 0 ≤ j ≤ jmax. Then, the Cheyette

SV process is recursively given by

Zj(u, τj+1) = Z(u, τj) +
ξ−
j+1

ǫ2
1− e−dj+1(τj+1−τj)

1− ξ−
j+1

ξ+
j+1

e−dj+1(τj+1−τj)
, (3.79)

with coefficients (3.80)

d̂j+1 =
√

β2 − 2α̂ǫ2,

ξ̂±j = β ± (dj+1 + dj)/2− ǫ2Zj ,

α̂ = iu(iu−1)
2λ2 s2kΦ

2
k(1 − e−λτj)2.

The quality of the recursive approximation is shown in Fig. E.2 where the numerical evaluation of

the ODE by a standard Runge-Kutta method is compared to the analytic approach of recursive

Z(u, τi) computation on subsequent time intervals. For parameters typically obtained in calibration

scenarios, the analytic approach shows high quality and superior performance in CPU time.

With the mean-reversion parameter λ sufficiently large (i.e. λ > 1 is actually a merely academic

construction, since 10−2 ≤ λ ≤ 10−3 are typical calibration results), the time dependence in q(u, τ)

is lost, as

q(u, τ) ≃ iu(iu−1)
2λ2 s2kΦ

2
k q̌(u), (3.81)

appears as viable approach. Then,

d
dτ Ž(u, τ) = ǫ2

2 Ž
2(u, τ)− βŽ(u, τ) + q̌(u), (3.82)

is of well-known Riccati-type, with elementary solution

Ž(u, τ) = ξ̌−
1− e−ďτ

1− ǧe−ďτ
, (3.83)

with ǧ =
ξ̌−

ξ̌+
,

ξ̌± = 1
ǫ2

(

β ± (β2 − 2α̌ǫ2)
1
2

)

,

α̌ = iu(iu−1)
2λ2 s2kΦ

2
k,

and the corresponding integral results in the form

∫ τ

0

Ž(u, τ) dτ = ξ̌−τ − 2

ǫ2
ln

[

1− ǧe−ďτ

1− ǧ

]

≡ Ǐ2(u, τ). (3.84)

For the applications discussed in this thesis the recursive solution is the approach chosen.
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3.6.2 Transformation of the H1CV to the T-forward measure

The stock price dynamics under the T-forward measure are derived in section 3.5.2 above. The

CHF of the affine model approximation is given under the QT measure. For the state vector X̂t =

[yt, zt, xc,t, vt, x̂t]
† the affine decomposition of the SDE system in the T-forward measure assumes

the form:

µ(X̂t) = a0 + a1Xt =













s2kΦ
2
kzt − 2λyt

β(z̄ − zt) + ρczǫskΦkBczt
yt − λxc,t + s2kΦ

2
kBczt

κ(v̄ − vt)
ρxcskΦkBc

√
vt
√
zt − 1

2s
2
kΦ

2
kB

2
c zt − vt

2













(3.85)

=













0
βz̄
0
κv̄

ρxcskΦkBcδv(t)δz(t)













+













−2λ s2kΦ
2
k 0 0 0

0 −β ρczǫskΦkBc 0 0
1 s2kΦ

2
kBc −λ 0 0

0 0 0 −κ 0
0 − 1

2s
2
kΦ

2
kB

2
c 0 − 1

2 0

























yt
zt
xc,t
vt
x̂t













;

Σ
X̂t

= LL† = c0 + c†1X̂t (3.86)

=













0 0 0 0 0
0 0 0 ρzvǫγδvδz ρzxǫδvδz
0 0 0 ρcvγskΦkδvδz ρcxskΦkδvδz
0 ρvzγǫδvδz ρvcskΦkγδvδz 0 −ρvcγskΦkBcδvδz
0 ρxzǫδvδz ρxcskΦkδvδz −ρvcγskΦkBcδvδz −2ρxcskΦkBcδvδz













+













0 0 0 0 0
0 ǫ2 ρzcǫskΦk 0 −ρczǫskΦkBc
0 ρczǫskΦk s2kΦ

2
k 0 −s2kΦ2

kBc
0 0 0 0 0
0 −ρczǫskΦkBc −s2kΦ2

kBc 0 0













†

zt +













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 γ2 ρxvγ
0 0 0 ρxvγ 1













†

vt;

r = r0 + r1
†
X̂t = 0 + (0, 1, 0, 0)†X̂t. (3.87)

As indicated by the broken lines, under the T-forward measure the matrices separate into IR and EQ

components without any cross terms. For the corresponding Fourier state vector B = [Y, Z,C,D,B]†

the coefficients of the CHF follow from the defining ODEs:

d
dτB(u, τ) = −r1 + a†1B+ 1

2B
†(c1)X̂t

B, i.e.

d
dτ Y (u, τ) = −2λY + C,

d
dτZ(u, τ) = ǫ2

2 Z
2 + (ρczǫskΦkC(1 − iu)β)Z(1− 2iu)s2kΦ

2
kC

2,

d
dτC(u, τ) = −1 + ρczǫskΦkBcZ − λC,

d
dτD(u, τ) = γ2

2 D
2 + (ρxvγB − κ)D + B

2 (B − 1),

d
dτB(u, τ) = 0,

(3.88)
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and d
dτA(u, τ) = −r0 +B

†a0 +
1
2B

†c0B,

−→ d
dτAEV (u, τ) = −f(0, t) + ρxcskΦkCδvδz(1−B2)

+ D(κv̄ − ρvcγskΦkCδvδzB),

−→ d
dτAIV (u, τ) = Z(βz̄ + ρvzǫγδvδzD + ρxzǫδvδzB)

+ C(ρvcskΦkγδvδzD + ρxcskΦkδvδzB). (3.89)

The defining ODE for A(u, τ) is already split into components contributing to EQ-SV components

AEV (u, τ), and IR-SV components AIV (u, τ), respectively. Then, with initial conditions B(u, 0) =

iu, Y (u, 0) = 0, C(u, 0) = 0, D(u, 0) = 0, A(u, 0) = 0 and u
† = [0, 0, 0, 0, u]†, the corresponding

solutions are

Y (u, τ) = − 1
2C

2(u, τ),

C(u, τ) = − 1
λ(1 − e−λτ ) = Bc(t, T ) (when ρcz = 0 is presumed),

B(u, τ) = iu, s

AH1CV (u, τ) =

∫ τ

0

[ ddτA(u, τ)]dτ.

Z(u, τ) is the numerical solution described in equation (3.83). D(u, τ) is the standard Heston Riccati

solution. Since the IR dynamics separate, the CHF of the H1CV in the T-forward measure reduces

to

Φ̂T (u, X̂t, T, t) = ET
[

eiu
†
X̂t |Ft

]

= ET
[

eiux̂t |Ft
]

= eA
T
H1CV (u,τ)+B(u,τ)x̂t+D(u,τ)vt , (3.90)

with terminal condition Φ̂T (u, X̂t, T, T ) = eiu
†
X̂T = eiux̂T and

d
dτA

T
H1CV (u, τ) = d

dτAEV = −f(0, t) + ρxcskΦkBcδvδz(1 −B2)

+ D(κv̄ − ρvcγskΦkBcδvδzB). (3.91)

3.6.3 Impact of IR-SV and characteristics of the affine H1CV model

The Heston DDSV Cheyette (HCV) model is a full-scale hybrid model with two essential qualities:

• (i) Stochastic volatility in interest rates generates hybrid smiles. This actually means,

that by virtue of the CIR type IR-SV process, the HCV model reproduces smile features in

the IR component in analogy to the Heston process in EQ; in combination, EQ-SV and IR-SV

constitute hybrid smiles - smile features originating out of both asset classes sensitive to the

hybrid correlation ρxc. The stochastic volatility effects incorporated by the HCV model are

consistent with market observations: The zero bond value in the Cheyette model depends

solely on the state variables xc,t and yt, the latter containing IR-SV contributions implicitly.

Consequently a portfolio of zero bonds is insensitive to variations in IR-SV, whereas other IR
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derivatives (like caplets, swaptions etc.) are sensitive to risk patterns introduced in the presence

of IR-SV. Therefore IR-SV as additional risk factor cannot be hedged within a trading book

simply consisting of zero bonds alone. This falls into place with the reality observed in IR

markets. Hence, to point out this characteristic, the HCV model is called true IR-SV model.

• (ii) The HCV is a Markovian Gaussian model with volatility specification under the bond

measure. The HLMM is a non-Markovian log-normal model based on Libor rate volatilities

under the forward measure. Short rate and market model features are mixed by DDSV

extensions. The Cheyette approach bridges between the short rate and market model: The

number of state variables is controlled by the volatility specification and in the HCV exceeds

the dimension of classical short rate models. Displaced-diffusion extensions introduce log-

normal (i.e. market model) features into the classical Cheyette approach, allowing for implied

volatility base skew conformalizations formerly only associated with market models.

In section 3.6.1 the H1CV model was derived as the approximation of the HCV model in the affine

limit 1. In the following the H1CV model is discussed with focus on these aspects:

• (i) Validation of affine model fidelity. The first task is to clarify, whether the H1CV is

an accurate representation of the HCV hybrid model. The approximation is accurate, when

hybrid smile and skew features are correctly reproduced within a reasonable space of realistic

scenario parameters. Hybrid smiles are understood as combination of smile characteristics

originating on the EQ side by an EQ-SV process and on the IR side by a corresponding IR-SV

equivalent. The EQ-IR hybrid correlation ρxc is the control parameter for cross-asset interac-

tion and hybrid smiles.

The quality of smile representations is judged by comparing the H1CV evaluated by inverse

transforms and the corresponding full model in Monte-Carlo simulations. The comparison is

done both in the spot measure QB and the terminal measure QT , as function of moneyness,

hybrid correlation ρxc, and maturity of hybrid derivative contracts, respectively. Aside from

derivative prices, the Black implied volatilities corresponding to the individual model evalua-

tions are used as basis. In general the model validation is based on the numerical experiments

presented in the following.

• (ii) Limits of affine approximations. Approximations are not perfect and carry draw-

backs in form of deviations from the original non-affine model. When scenario parameters are

pushed towards unrealistic limits, the quality of affine approximations weakens, and spurious

deviations in derivative prices between affine and full model evaluations arise.

Deviations between affine and full model versions are in general not necessarily serious. Each

model is based on a number of a priori assumptions and is designed to represent a variety of

market features. Once calibrated, the model is supposed to have predictive power for futures

states of market observables - ideally for a number of observables beyond the ensemble size of

calibration instruments, and for a significant future period. We strive to discuss the limits of

the affine approximations of the H1CV.
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Figure 3.3: Comparison of EQ call option prices obtained with all affine hybrid models H1HW,
H1CH, H1CV, and H1LMM at disposal. H1CV and H1LMM incorporate IR-SV contributions. All
models are evaluated by the Carr-Madan FFT technique (damping factor α = 0.75) for deliberately
high EQ-IR correlation ρxc = 0.9 at times T=2, 5 and 10. Upper part: Model parameters reflect
neglegible IR smile contributions with particular choices β=10−4 and ǫ=10−4 in order to confirm
that the H1CV model based on the Heston SV Cheyette hybrid model smoothly reduces into the
H1CH limit where deterministic IR volatilities are observed. Lower part: Emphasis on significant
IR-SV contributions in hybrid prices by the extreme choices β=0.1 and ǫ=1.2 - mostly for illustrative
purposes and to introduce the discussion about the quality and limits of affine approximations.

Affine H1CV model fidelity:

In order to judge the quality of affine H1CV model approximations, several consistency checks need

to be performed to ensure the discussion is based on accurate and bias-free results. Affine models

are evaluated by the Carr-Madan (CM) FFT and COS expansion techniques. Results obtained by

both inverse transform methods are consistent, though for the discussion within the current section
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the Carr-Madan results are shown. The choice to plot CM results is completely arbitrary, as the

calculated values are indistinguishable (within numerical errors) between CM and COS methods.

CM results rely on the judicious choice of the damping parameter α; an optimal choice of α can

be found by careful analysis of the underlying CHF for each individual set of parameters, but is

rather time consuming and not applicable in general model scenarios with broad parameter spectra.

Therefore, α is tuned to values where results are stable and rather insensitive to variations of α;

for the investigations at hand α = 0.75 is typical, and is used as quasi-optimal choice. The COS

method depends on the choice of a characteristic scale length L over which COS expansion methods

are applied. L needs to be tuned heuristically presuming to obtain stable COS results insensitive to

slight variations in L. For the evaluations presented here, L=10 to 17 is found to be suitable.

For CM evaluations a numerical grid consisting of 216 points is used; the COS series expansion is

cut-off typically at Nmax = 210 − 212. The equivalence of results for CHF evaluations in the spot

measure QB and the terminal measure QT , up to spurious numerical discrepancies, are the precon-

ditons for the statement that the results under discussion obtained by inverse transform

techniques are consistent.

The corresponding full models are evaluated via the Monte-Carlo (MC) schemes described in section

3.5.3. MC schemes in the spot QB and the terminal measure QT are inherently bias free in the IR

component; Martingale corrections as suggested in [7] are employed to render EQ-SV and IR-SV

process simulations also unbiased. Consequently, MC sampling and discretization errors remain as

sources of simulation errors. Time discretizations are varied between 400 and 1600 time steps for

each maturity interval ∆T = 1. The reduction of the MC sampling error has been monitored over

the range from N = 105 to N = 108 MC paths to ensure the MC standard error reduces according

to the expected ∼ 1/
√
N behaviour.

Simulation results are presented for 800 timesteps per ∆T and 106 MC sampling paths. The inter-

pretation of results relies only on the characteristics of the hybrid model under investigation. Results

are supposed to be independent of the specific choice of the underlying simulation technique. In

analogous argumentation as for the affine model evaluations before, the results obtained by MC

evaluation of the full non-affine original models are consistent.

Another point to be clarified in the prologue of H1CV model validation is to sort out the scenario

parameters and values of specific interest. Obviously, the choice of parameters is expected to point

out the influence of IR-SV contributions. Therefore, hybrid model evaluations are studied for a fixed

set of Heston parameters in order to have a pre-defined EQ component as reference. The selected

Heston parameters are κ = 0.8, v̄ = v0 = 0.1, γ = 0.5, ρxv = −0.3 and an at-the-money (ATM)

security value of S0 = 100. The Heston parameters are chosen deliberately to have a case where the

Feller condition is violated - this is typical in realistic market environments. In order to get a first

impression where IR-SV contributions become relevant in derivatives pricing, we vary parameters

in Figs. E.1 and E.3. In both figures the affine hybrid model approximations are computed by the

Carr-Madan FFT method where pricing is accomplished within split seconds. From Fig. E.1 it is

evident that IR-SV contributions are most prominent at long maturities, high correlation ρxc be-

tween EQ and IR components, and in the regime where hybrid products are far out-of-the-money

(OTM). Simulations are performed up to T = 10 with correlations up to ρxc = 0.9, and OTM EQ
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option prices are calculated up to 300% of the ATM baseline.

Fig. E.3 shows EQ prices and associated implied volatilities for all affine hybrid models at disposal.

Evidently, the H1CV collapses to the H1HW/H1CH hybrid models in case of vanishing IR-SV con-

tributions (as seen in the left half of the figure over the complete range of maturities). When IR-SV

influences are significant for deliberately high IR-SV volatility ǫ = 1.2 and high EQ-IR correlation

ρxc = 0.9, the H1CV model shows characteristics distinguishable from the H1HW/H1CH model,

and also from the H1LMM model, though the latter incorporates the same IR-SV process.

Out of these first findings the parameters for low IR smile and high IR smile scenarios are defined

in Fig. 3.3. Based on the scenarios, the discussion of the H1CV model characteristics and model

performance is presented in the subsequent figures.

In Fig. 3.4 the EQ call option prices obtained by the affine H1CV model are compared with the

values from MC evaluation of the full non-affine HCV model. The comparison shows the quality of

affine approximations, with particular emphasis on the representation of hybrid smiles at β = 0.1

and ǫ = 1.2 when EQ-IR correlation is varied for ρxc = {0.2, 0.5, 0.9} at long maturity T = 10.

In order to assess the model fidelity the equivalent comparison is plotted for the H1CH and HCH

as the respective affine and full model versions without IR-SV contributions (H1CH is equivalent

to H1HW which is discussed in previous publications [1]). The figure shows two sets of scenario

parameters, both are based on high IR smile contributions from the IR-SV process. Set 1 combines

high IR smile parameters (β = 0.3 and ǫ = 1.2) with HW model values (λ = 0.1, sk = 0.0125)

typically observed in realistic market settings; Set 2 uses even more extreme parameters as high

IR smile scenario (β = 0.1 and ǫ = 1.2) combined with very high HW model volatilities (λ = 0.1,

sk = 0.025) to show the limits of affine model approximations.

The affine H1CV performs extremely well for the scenario Set 1, exhibiting accuracy for any value of

moneyness, EQ-IR correlation and maturity. The performance over the complete regime of maturi-

ties has been validated; accuracy is easily inferred from the results shown in Fig. 3.4 as any inherent

divergencies would integrate with time and would yield discrepencies, whenever recognizable, at the

highest maturity.

Consequently, the affine H1CV fidelity is satisfactory - an observation confirmed by the comparision

in implied volatilities in Fig. 3.5. Implied volatilities are more sensitive to inherent model dis-

crepancies, but even when affine approximations are employed under these constraints, the model

fidelity proves to be essentially unchanged in this numerical experiment.

Up to this point the model discussion is based on the EQ prices of hybrid derivative products. How-

ever, the underlying IR-SV process and displaced-diffusion (DD) extensions affect IR derivatives

such as caplets and swaptions. Caplet prices obtained from the IR component of the HCV model

are shown for various DD choices with and without IR-SV contributions in Fig. 3.6. By construction

the H1CV is an affine limit corresponding to bk = 0, where the initial short rates are frozen in the

DD volatility specification and the mixture with log-normal model features is neglected. This corre-

sponds to the implied volatility surfaces shown in the left part of Fig. 3.6. Apparently, DD features

become significant with increasing parameter bk. Consequently, whenever log-normal features are

present in the realistic IR markets (indicated by flattening out of the base skew of implied volatilities

corresponding to IR products serving as benchmark instruments) the H1CV shows deviations from
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the HCV model. This opens the subsequent discussion of the limits of affine H1CV approximations.

Limits of affine approximations in the H1CV:

As already noted the H1CV neglects DD contributions a priori, and hence, deviations from the full

HCV model become apparent as soon as the DD base skew in the HCV model is introduced. By

nature, the H1CV exhibits the orginal base skew inherent to all Gaussian short rate models. In case

DD contributions would be correctly represented in the affine approximation H1CV, the implied

volatilities would appear less skewed with increasing parameter bk. In the same line of argument

the HLMM, as log-normal model, shows flat implied volatilities. In the H1LMM however, since the

same affine approximation is employed which is based on freezing the inital state of IR rates in

the DDSV volatility, the H1LMM abandons the log-normal characteristics, and rather shows a base

skew corresponding to normal models.

The caplet implied volatility surfaces in Fig. 3.6 are obtained from the IR component of the HCV,

and expose the base skew characteristic to Gaussian models at bk = 0; this base skew then flattens

out when log-normal contributions are introduced towards higher bk. The mixture of normal and

log-normal model characteristics is of course the motivation for introducing the DD concept. This

process is clearly resembled in the caplet implied volatility structures irrespective whether IR-SV

contributions are superposed. As the H1CV is by construction incapable to reproduce DD log-normal

features, it is instructive to study the impact on EQ derivative prices obtained by the hybrid model

in the presence of DD base skew.

Fig. 3.7 shows implied volatilities of caplet and EQ call option prices as functions of the DDSV base

skew. The comparison includes the affine H1CV and the corresponding full HCV model evaluations.

Caplet implied volatilities are indicators of the IR component and call option implied volatilities

benchmark the associated EQ component of the same hybrid model. Fig. 3.7 further includes the

corresponding implied volatilities obtained by the H1CH model, where IR-SV contributions are

neglected, but aside from that shares the same DD approximations as the H1CV; consequently,

deviations from the affine DD approximations arise analogously when comparing H1CV with HCV

and H1CH with HCH, respectively. In Fig. 3.7 deviations between full model and affine approxima-

tion are apparent in caplet volatilities for bk = 0.5 and bk = 1.0, where DD significantly reshapes

the base skew. The deviations propagate via the EQ-IR correlations towards the EQ component

of the hybrid model, where deviations in option values become significant throughout the entire

OTM regime. Problems in model fidelity are observed equally in H1CV/HCV and H1CH/HCV, and

hence, the deviations have DD approximations as origin and are supposedly insensitive to IR-SV

contributions. A viable approach to include DD features in affine models is described in the next

section where the affine H2CV model is detailed.

Another source of H1CV model weaknesses is observed when parameters become more extreme as

in Set 2 (Fig. 3.4), where extreme IR-SV values are combined with challenging parameters in the

HW / CH components. The resulting deviations between affine and full model are clearly observable

in the corresponding implied volatilities shown in Fig. 3.5. It is wise to denote such limits in pa-

rameter space, even though put into context these appear not to impose restrictions with respect to
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Figure 3.4: Crucial point to assess the quality and stability of affine approximations is the model
behaviour with increasing EQ-IR correlation ρxc = {0, 0.5, 0.9} as the decisive hybrid coupling
parameter. Quality is contested by comparison with the full model evaluation; stability is stressed by
the deliberate choice of extreme parameter sets. Equity option prices at T=10 are displayed for ρxc =
{0, 0.5, 0.9} and extreme choices of IR-SV model parameters: Set 1 is based on λ = 0.1, sk = 0.0125
and β = 0.3, ǫ = 1.2. Set 2 shows results for λ = 0.1, sk = 0.025 and β = 0.1, ǫ = 1.2. Affine models
(H1CH/H1CV) are evaluated by the Carr-Madan method, full model equivalents (HCH/HCV) are
obtained by Monte-Carlo (MC) simulations conducted in the spot measure QB with 106 paths and
800 time steps/∆T (with ∆T=1). MC errors are below 8 · 10−4 throughout all strikes shown, and
hence, MC errors are below the size of marker symbols in all points.

model applicability in realistic scenarios. The deviations are not different from those observed in the

H1HW/H1CH affine model approximations which are also plotted in Fig. 3.5 for comparison, and

are studied and validated in earlier publications [1]. When HW volatilities assume values reasonable

for realistic applications (actually corresponding to a general DDSV volatility level of sk ≤ 0.02),

the affine approximations show the excellent model affinity as described above.
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H1CV features in the context of H1HW/H1CH and H1LMM:

The H1CV model is connected to Gaussian short rate models, and shares a common choice for

IR-SV contributions with the H1LMM. In addition the freezing of initial Libors introduces base

skew features into the H1LMM, which are otherwise typical for short rate models. Hence, the

H1CV is expected to expose characteristics inherent to both HW and DDSV LMM based hybrid

model approaches. When DDSV extensions are included in the model, the overall volatility level is

determined by the choice of sk. HCV/H1CV and HLMM/H1LMM are related in linear order via

sH1CV
k (t) = sH1LMM

k (t)f0(T ) (f0(T ) is the instantaneous forward rate as function of maturity T

associated with the initial term structure at t = 0). For the discussion at hand f0 = 0.05 is used,

and therefore sH1CV
k = 0.0125 and sH1LMM

k = 0.25 correspond to quasi-equivalent basis levels in

the volatility specification. The correspondence works well in practice as seen from Fig. E.3 where

all affine model versions are compared. In case of negligible IR-SV contributions all models give

comparable results, irrespective whether the affine model is Gaussian or log-normal based. At long

maturities the different nature of the H1LMM shows small deviations in call option prices, though

the differences become apparent only in implied volatilities at T = 10. When IR-SV contributions

are significant (right side of Fig. E.3), the H1CV and H1LMM both exhibit hybrid smiles. The IR-

SV process is equivalent in H1CV and H1LMM, but the DDSV volatility specification (or rather only

the SV volatility specification, since DD effects are eliminated in the affine limit 1) is propagated

in different fashion in H1CV and H1LMM as observable in Fig. E.3 (right side) in the valuation

differences towards longer maturities. These differences are then patterns which are characteristic

to whether the affine model has Cheyette or LMM based full model IR components, respectively.

Pricing differences due to model specific characteristics are most interesting for hybrid products and

are the central point of the discussion in chapter 4 below.

3.6.4 Heston DDSV Cheyette Model in Affine Limit 2 (H2CV)

In Fig. 3.8 the validity of the affine approximations in the limit 2 is studied by comparison with

the full HCV model results for significant DD contributions at bk = 0.5 and bk = 1.0. At these bk

levels the H1CV model showed deficits in reproducing the DD features present in the HCV model.

The implied caplet volatilities (top level plot series in Fig. 3.8) indicate that the H2CV model can

basically follow the base skew prescribed by the DD model extensions, whereas the H1CV model

(given as broken line for comparison) shows difficulties to reproduce DD base skew modifications.

Consequently, the H2CV model succeeds in incorporating the mixture of normal and log-normal

model contributions, and thereby retain DD effects in the limit of affine approximations. The affine

limit 2 proves to be a viable approach, irrespective whether an IR-SV process is present or not.

Consequently, by constructing the H2CV model, the corresponding H2CH model version (where IR-

SV contributions are neglected), is automatically included as limiting case. Albeit small, there are

systematic differences between H2CV and full HCV caplet impled volatilities recognizable. These
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Figure 3.5: Implied volatilities corresponding to the option values shown in Fig. 3.4. Since implied
volatilities are highly sensitive quality indicators, even slight deviations between affine approximation
and original hybrid model become visible. Apparently the H1CV model introduced in the discussion
at hand performs extremely well for the Set 1 over a wide range of EQ-IR correlations, albeit this
scenario imposes already high IR-SV conditions in order to prove the validity of approximations.
When pushing the limits even further in Set 2, fidelity of affine approximations tends to weaken,
though deviations are comparable with the H1CH model without IR-SV characteristics and are still
hardly recognizable in the corresponding EQ option prices.

deviations increase towards longer maturities T , at higher bk values when DD effects are stressed,

and in the presence of IR-SV processes, respectively. The reason for these empirical observations is

motivated straightforwardly: By construction of the affine limit 2, the affine proxy α(t) in equation

(3.72) is obtained with an approximative expected value of xc,t based on the presumption that η0

is frozen; the expectation of xc,t is determined disregarding DDSV contributions ’a priori’. Conse-

quently, deviations between H2CV and HCV models accumulate over maturity, and become more
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Figure 3.6: Implied caplet volatilities obtained for the DDSV Cheyette model (i.e. the IR component
of the HCV model, abbreviated by DDCV CH). Different displaced-diffusion (DD) settings are
selected by the choice of bk = {0, 0.5, 1.0}, both without (plot series in upper half, abbreviated by
DD CH) and with (lower half, abbreviated by DDCV CH) IR-SV contributions. The EQ option
results shown in Figs. 3.4, 3.5 correspond to bk=0, since the affine limit 1 precludes DD model
features. Apparently DD contributions increase with growing bk. When IR-SV is representable in
the hybrid model (as is the case for the DDSV contributions in the CH model), the IR smile features
appear superposed onto the DD base skew structure. Implied caplet volatilities are obtained for CH
model parameters f(0, t) = 0.05, λ = 0.1, sk = 0.0125 and SV parameters β=0.3, ǫ=1.2, respectively,
by means of MC simulations conducted with 106 paths and 800 time steps/∆T (and again ∆T = 1).
MC results obtained in QB and QT measures are equivalent within the typical error level of 0.1 bp.

pronounced in the presence of significant IR-SV contributions. The model bias introduced by the

affine limit 2 approximations can be thought of as a systematic bias in the drift component of the

xc,t propagation - consequently the systematic differences in caplet volatilities are independent of

moneyness.

As DD effects are reproducable in the IR component, the H2CV model also succeeds in reproducing

DDSV effects in the hybrid model in this case. Comparing EQ derivative prices evaluated by H2CV

and full HCV models (lower level plot series in Fig. 3.8) proves that the H2CV model performs

better than the H1CV model in reproducing call option prices. The H2CV model reproduces the

characteristics of the HCV model particularly in the OTM regime, where hybrid model contributions

are most important. The H2CV gives results close to the HCV model at the high EQ-IR correlations

ρxc = 0.9 under discussion, where correlation effects are most critical and most important for hybrid
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Figure 3.7: Implied caplet volatilities corresponding to the caplet values shown in Fig. 3.6 (plot
series in the upper figure half), and the associated EQ option prices (lower half) where the very
same IR component (serving as basis of caplet prices) is combined with the Heston process in EQ.
All implied volatilities are shown for T = 10, the models without IR-SV process in red, and the
models with IR-SV contributions in blue, respectively. Compared are the full models (lines with
dots) and the corresponding affine approximations, employing the parameter Set 1 (as in Fig. 3.4),
and focusing on the case ρxc=0.9 where hybrid model features are most prominent. Whereas for
bk=0 the affine approximations exhibit an excellent representation of the full model, the affine limit
1 shows difficulties to reproduce the base skew features introduced with increasing bk parameter.
The deviations to the full model are understandable as the short rates are frozen in the initial state
as one of the presumptions of the affine limit 1.

product evaluations in our tests. In conclusion, the H2CV model is a very promising affine model

approximation showing accurate model prices when reproducing DDSV hybrid model extensions.

Finally, it is important to note that the conclusions here are based on numerical experiments.

Though we tested our model implementations over a range of parameters around the selected sce-

narios presented in this thesis, the validity of the models under discussion is possibly limited to

certain parameter regimes. Understanding the model behaviour over the entire available parameter

space would rely on a more rigorous error analysis to be conducted in future studies.
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Figure 3.8: Left half: Implied caplet (top) and EQ option (bottom) volatility surfaces for scenarios with significant DD base skew features, which
are reproducable within the affine model limit 2 (H2CV). Right half: Quantitative evidence of H2CV (Heston DDSV Cheyette model in affine limit
2) validity. The H2CV model reproduces DD base skew features very well up to bk=0.5. IR-SV contributions are also incorporated (equivalent to
the H1CV model). Deviations between H2CV and HCV models arise at higher base skews, though the crucial point to reproduce the log-normal
IR characteristics is well incorporated as key feature of the affine limit 2. The affine models in limit 1 are shown to contrast the case where DD
base skew features are completely neglected. Model parameters correspond to Set 1, inverse transform and MC evaluation details are identical to the
specifications in the preceding figures.
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Chapter 4

Model Validation

4.1 Calibration

In the preceding chapter hybrid models with varying degree of sophistication were introduced along

with the corresponding approximations within the class of AJD processes. The potential of each

hybrid model is defined by how well the model can reproduce realistic market features in certain

numerical experiments. The quality of the corresponding affine model approximation is given by

how well the original hybrid model features are retained. Each hybrid model under consideration

has certain features and limitations which are summarized in the following list:

• Heston Hull-White (HHW) model features implied volatility smile and skew in the EQ com-

ponent. Implied volatility features are limited to the inherent skew of Gaussian IR models.

All these basic model characteristics are retained in the affine H1HW approximation.

• Heston Cheyette (HCH) model contains the HHW as limiting case when the Cheyette model

is based on a single factor constant volatility specification. Then, also the corresponding

affine model versions H1CH and H1HW are equivalent. The HCH model characteristics are

determined by the choice of the volatility function of the IR component.

• Heston DDSV Cheyette (HCV) model reflects smile and skew features in EQ and IR compo-

nents. Therewith, as argued in the preceding chapter, the HCV is capable to generate hybrid

smiles based on IR stochastic volatility. IR smiles are reproducable by the affine H1CV version;

IR smiles and skew as introduced by the DDSV extensions of the full-scale model are retained

within the affine H2CV approximation. Though the HCV volatility spectrum is potentially

narrowed in comparison to Heath-Jarrow-Morton based market models like the HLMM, the

corresponding affine H1CV and H1LMM approximations are expected to have comparable in-

formation content in EQ and IR implied volatilities. From this point of view, the H2CV model

is expected to perform superior to both the H1CV and the H1LMM model, respectively.

• Heston DDSV LMM (HLMM) model incorporates the implied volatility smile and skew in EQ

and IR component. Like the HCV model the HLMM model is capable to reproduce hybrid

smiles. High dimensionality and most of the HLMM complexity are abandoned by freezing

initial Libors to derive the affine H1LMM model. As a consequence, H1LMM and H1CV models
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are equivalent in system complexity. The intriguing differences are that the H1LMM model

has a Libor based volatility specification and originates from a log-normal full-scale model,

whereas the H1CV model is based on bond measure volatilities and a classical Gaussian short

rate model.

The different hybrid models are compared in four hybrid scenarios defined by the implied volatility

characteristics in equity and interest rates. Model calibration and validation proceeds along the

following steps:

(i) Calibration of the IR component of the hybrid model to implied volatility surfaces defined

in section 4.1.1. The decisive differences between the hybrid models under investigation arise

from the inclusion of DDSV extensions in the IR component. Four different IR scenarios are

devised to point out particular DDSV features.

(ii) With the correlation between EQ and IR model components fixed to ρxc = ρxr = 0.5, the

hybrid model calibration set is completed with the EQ components in section 4.1.2. The EQ

component corresponding to each of the four IR scenarios is calibrated to the same EQ call

option volatility surface. Hence, in total four calibration sets result for each model representing

four different hybrid model scenarios.

(iii) Pricing of the hybrid products introduced in section 4.2 with the calibrated full and affine mod-

els. Full and affine model characteristics and performance are validated in section 4.2 based

on the pricing results.

4.1.1 Calibration of Hybrid Model Interest Rate Component

The four qualitatively different interest rate (IR) scenarios controlled by the DDSV extensions are

shown in Fig. 4.1. The displaced-diffusion (DD) concept controls the base skew of the implied

volatility surface. The choice bk = 0.5 implies large base skew, and bk = 0.9 corresponds to the

’quasi’-lognormal case with flat implied volatility. The parameters of the IR-SV process determine

the IR smile characteristics. A steep IR smile is obtained for β = 0.3 and ǫ = 1.2, and small

smile effects result for β = 1.0 and ǫ = 0.1. The four different DDSV parameter combinations are

summarized in the following scenarios:

Scenario 1 : DD sLMM
k = 0.25, bk = 0.5; IR− SV β = 1.0, ǫ = 0.1; (4.1)

Scenario 2 : DD sLMM
k = 0.25, bk = 0.9; IR− SV β = 1.0, ǫ = 0.1;

Scenario 3 : DD sLMM
k = 0.25, bk = 0.5; IR− SV β = 0.3, ǫ = 1.2;

Scenario 4 : DD sLMM
k = 0.25, bk = 0.9; IR− SV β = 0.3, ǫ = 1.2.

k = {1, .., 10} are the Libor rates relevant to the underlying DDSV LMM implementation - this

is the IR component of the HLMM model discussed in section 3.3.2 above. The corresponding IR

implied volatility surfaces shown in Fig. 4.1 are computed by the DDSV LMM model. The other

parameters of the HLMM IR component are identical to the specification in the reference publication

[4] (section 5.1 and Appendix E therein). Fig. 4.1 shows results for T = 5, albeit the complete caplet
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Figure 4.1: Caplet implied volatility smiles generated by the DDSV LMM - this is the IR component
of the HLMM model which is the most sophisticated of the hybrid models under discussion. The
interest rate (IR) caplets serve as calibration basis for the IR component of the other hybrid models
in the subsequent comparison. Four scenarios are under discussion: Significant base skew (1, top
left panel) and less base skew (2, top right) combined with hardly noticable IR smile. Steep IR
smile is combined with large base skew (3, bottom left) and less skew (4, bottom right), respectively.
Calibration data is obtained for T = {Tk} = {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10}, though solely the
snapshot at T5 is shown here for clarity.

implied volatility surface for the time set T and strike set K = {20, 40, 60, 80, 100, 120, 140, 160, 180}
is computed and employed as calibration basis. Details of the calibration process are shown in

Fig. E.4, where the parameters fixing the Cheyette volatility specification are determined to

λ = 0.0074 and η = 0.0125 ≡ sCHk with k = 1.

With these calibration results - combined with the DDSV parameter sets corresponding to the four

IR scenarios given in equation (4.1) above - all parameters of the IR components of all hybrid mod-

els under discussion are fully determined. The remaining task is to calibrate the Heston EQ model

component in the subsequent section.

4.1.2 Calibration of Hybrid Model Equity Component

Calibration of the equity (EQ) component of all hybrid models is based on the equity call option

data from the reference publication [4] (section 5.1 and Appendix E therein). The reference data
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and the corresponding implied call option volatility surface was reproduced in section 3.3.2 above.

In the respective sections the HLMM full model and H1LMM affine version were discussed, and the

implementation of the HLMM via a MC scheme and the H1LMM employing the COS method were

benchmarked with the data published in [4]. Benchmark results are shown in Fig. 3.2 for selected

times of the set T .

The EQ call option values of the complete benchmark set T serve as the basis of the calibration

process for the EQ component. As all models share a standard Heston process as common element,

the EQ calibration results apply to all hybrid models under discussion. The calibration is performed

employing a Levenberg-Marquardt algorithm. The quality and effectiveness of the calibration pro-

cedure are demonstrated in Fig. E.5, where the calibration results are shown in the context of the

reference data from [4].

With the EQ-IR correlation set to ρxr = 0.5 the Levenberg-Marquardt calibration of the EQ com-

ponent yields the following Heston parameters:

κ = 0.446, v̄ = 0.0628, v0 = 0.101, γ = 0.462, ρxv = −0.215.

Therewith the parameters of each individual hybrid model are determined for all four scenarios and

the calibration process is concluded. The calibrated models are used for pricing hybrid derivative

products in the subsequent section.

4.2 Model Performance Characteristics

Evaluation performance and pricing results are compared for the full-scale models and affine ap-

proximations under investigation. In the following two hybrid derivative products are introduced

and priced on the basis of the previously obtained calibration sets:

• Hybrid Derivative Product 1 (HD1): Plain Diversification Hybrid

A diversification hybrid is a derivatives product combining several asset classes with diverse

risk and rate of return profiles. When constructed appropriately, the hybrid is supposed to

have a risk exposure less than that of any individual contributing asset, and a rate of return

higher than the one of the least risky asset - by virtue of imperfect correlation between the

assets as argued in [41].

The most simple version of a Plain Diversification Hybrid is to combine a stock with value St at

time t with a zero coupon bond P (t, TN ) maturing at TN . Within the hybrid the contribution

of the stock is weighed by w1, and of the bond by w2, respectively. Positive weight corresponds

to a long position, negative weight to a short position. The structure with the option expiry

date t = Ti would formally be priced under the risk-neutral measure according to the following

equation:

ΠHD1(t) = EQ[ 1
BTi

(w1F
Q
Ti

+ w2P (Ti, TN)
+|Ft], (4.2)

where FQ
Ti

is the T-forward stock price at time t = Ti. In this formulation the pricing equation

Π(t) is rather tedious to handle, as the conditional distribution of the money market account
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1/Bt (with B0 = 1) and the derivative payoff (...)+ is unknown. However, like in many pricing

problems with hybrid derivatives, the pricing equation becomes accessible via transformation

to the TN -forward measure QTN . Applying the Radon-Nikodym derivative

QTN

Q
|FTi

=
B0

BTi

P (Ti, TN)

P (0, TN)
, (4.3)

the transformed pricing equation under QTN changes to

ΠHD1(t) = P (t, TN)E
TN [ 1

P (Ti,TN ) (w1STi
+ w2P (Ti, TN ))+|Ft]

= P (t, TN)E
TN [(w1F

TN

Ti
+ w2)

+|Ft]

= w1P (t, TN )ETN [(FTN

Ti
+ w2

w1
)+|Ft]. (4.4)

Apparently, the derivative price ΠHD1(t) at time t is nothing more than a plain European call

option with effective strike K ≡ w2

w1
at maturity TN , multiplied by the weight factor w1. The

advantage of this hybrid product is that the corresponding pricing equation can be immedi-

ately evaluated via MC simulation as well as inverse transform methods.

• Hybrid Derivative Product 2 (HD2): Minimum of Several Assets Payoff

This is another diversification product and a variant of HD1. A straightforward realization is

to combine a constant maturity swap (CMS) entered into at Ti and maturing at TN with a

simple stock St into a derivative contract with payoff structure

ΠHD2(t) = P (t, Ti)E
Ti





(

min

(

1− P (Ti, TN)
∑N

k=i+1 P (Ti, Tk)
, k · STi

STN

))+

|Ft



 (4.5)

as suggested in [4]. k controls the mixture between IR and EQ product contributions. Results

of HD2 valuations were used to benchmark the HLMM MC implementation in section 3.3.2

above (and particularly Fig. E.6 therein).

Performance of Full and Affine Models in Pricing Hybrids

Evaluations of the HD1 product by the HCV model and the affine H1CV and H2CV approximations

are shown in Fig. 4.2. HD1 prices are obtained for the four scenarios previously defined. In order

to price the HD1 by the Carr-Madan FFT technique the pricing equation is reformulated:

ΠHD1(t) = w1P (t, TN )ETN [(FTN

Ti
+ w2

w1
)+|Ft]

= ETi

[

w1P (t, TN )ETN [(FTN

Ti
+ w2

w1
)+|Ft]|Ft

]

= w1P (t, Ti)E
Ti

[

(FTi

Ti
+ w2

w1
P (Ti, TN))

+|Ft
]

= w1P (t, Ti)E
Ti

[

( St

P (t,Ti)
+ w2

w1

P (t,TN )
P (t,Ti)

)+|Ft
]

(4.6)

Both affine approximations of the HCV model show excellent results in reproducing HD1 prices in

all four scenarios. The H2CV model is the better approximation to the full HCV model, essentially
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because DD contributions are relevant in all four scenarios. Prices obtained with the H1CH model

(where the IR-SV contributions in the scenarios are neglected) and the H1LMM model are given

for comparison. In scenarios 1 and 2 IR-SV contributions are small. Consequently, the H1CV and

H1CH model results are almost equivalent, and the differences to the HCV and H2CV models are

due to DD effects. By comparison to the scenarios 3 and 4 we deduce that H1CV and H2CV models

are more sensitive to IR-SV parameters than the H1LMM model. The HLMM and HCV models
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Figure 4.2: HD1 prices as function of relative bond asset weight w2 for the hybrid models un-
der discussion with the model calibration parameters shown in section 4.1.1, S0 = 1, P (0, T ) =
exp[−0.05 · T ], w1 = 1, option expiry at Ti = 5 and hybrid structure maturing at TN = 10. Results
of the full-scale models are obtained by Monte-Carlo simulations (MC errors are below the size of
marker symbols). The affine model approximations are evaluated by the Carr-Madan FFT method
(damping factor α = 0.75). H1CV and H2CV models as affine approximations of the HCV model
give excellent results in all four scenarios. The H2CV model performs slightly better than the H1CV
approximation (this means the results are closer to the full HCV model), since all four scenarios
have DD contributions.

both incorporate DDSV extensions, but are hybrid models with inherently different IR component

approaches. Consequently pricing results differ in general between these models, as is shown by

example of the HD2 in Fig. E.6. Here HD2 prices obtained for the affine H2CV approximations also

give an accurate reproduction of the prices obtained with full model.
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Chapter 5

Final Remarks

In the previous chapters we introduced the HCV hybrid model and the H1CV and H2CV models

as the corresponding affine approximations. These models can represent hybrid smiles which in the

present context are understood as implied volatility smiles in correlated EQ and IR hybrid compo-

nents. By deriving the corresponding CHFs, the H1CV and H2CV models were made accessible to

evaluation by inverse transforms. The HCV model was discussed in the context of the HHW and

HLMM as alternative hybrid models. The corresponding affine H1HW and H1LMM approximations

were derived in previous publications [1, 4]. The quality of the affine H1CV and H2CV model ap-

proximations was studied and compared to the characteristics of H1HW and H1LMM models.

The HCV model generates hybrid smiles by virtue of an IR-SV process. Originally descending from

the short rate model ansatz, the displaced-diffusion (DD) extensions of the HCV model bridge to-

wards log-normal model characteristics. The affine deterministic H1CV version gives an excellent

representation of the Gaussian model characteristics of the HCV and hybrid smile features. The

H2CV model is proposed as more sophisticated affine model where the DD model effects are retained.

Hence, the H2CV model is an affine model incorporating hybrid smiles and DD contributions mixing

classical short rate with the HJM relevant log-normal model characteristics.

The HCV model is inherently 5D irrespective whether QB or QT are the selected choice of measure.

Due to the DDSV contributions the dimensional reduction applicable to simpler HHW/HCH hybrid

models is rendered impossible. By suitable approximation assumptions - like freezing the initial

interest rates within the volatility specification of the IR component - the EQ-IR hybrid models are

reducable to 3D systems consisting of EQ, EQ-SV and IR-SV processes upon transformation to QT .

Such approximations are effective in the affine H1CV and H1LMM models.

Finally, a few words of caution about the limitations of the presented results. The statements about

the quality of affine approximations, and the overall comparison of the characteristics of the various

hybrid models, are based on numerical studies. Though we have tested a wide parameter set in

addition to the selectively presented results in the figures, the statements are possibly limited to

certain parameter regimes. Conducting a rigorous numerical error analysis would completely ensure

the validity of affine model derivations. However, we leave this loose end as the connection to future

studies.
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Appendix A

Basic Characteristic Functions

A.1 Heston Process CHF in Gatheral’s formulation

The Heston process incorporates stochastic volatility in equity prices by presuming CIR-type mean-

reverting variance dynamics in the geometric Brownian motion of the underlying security St:

dxt = (r − vt
2 )dt+

√
vtdWx(t), (A.1)

dvt = κ(v̄ − vt)dt+ γ
√
vtdWv(t),

with dWxdWv = ρxvdt, as correlatedBrownianmotions.

The following notations for the equity stochastic volatility (EQ-SV) process are used:

• Equity security price xt = x(t,Wx) = logSt.

• Stochastic variance vt = v(t,Wv).

• Mean-reversion rate κ of stochastic variance towards the long-term mean-level v̄ (as long as

not indicated explicitly otherwise, v̄ = v(0) is presumed throughout)

• Volatility γ of the variance process.

• Interest rate component rt = r(t), which in the Heston EQ-SV framework is deterministic and

not a state variable (i.e. here within the stand-alone Heston model for simplicity presumed to

be constant r̄ =
∫

rsds).

Apparently, the Heston EQ-SV process with state variable vector Xt = [xt, vt]
† is within the class

of affine jump-diffusion (AJD) processes (cf. section 2.1), since

µ(Xt) =

(

0
κv̄

)

+

(

0 − 1
2

0 −κ

)(

xt
vt

)

, (A.2)

ΣX =

(

vt ρxvγvt
ρxvγvt γ2vt

)

=

(

0 0
0 0

)

+

(

(0, 1) (0, ρxvγ)
(0, ρxvγ) (0, γ2)

)(

xt
vt

)

, (A.3)

r(Xt) = r, (A.4)

as interest rate component, respectively, assume affine characteristics.

Consequently, the Heston CHF is derived in the form

Φ̂H(u,Xt, t, T ) = eA(u,τ)+B(u,τ)xt+D(u,τ)vt , (A.5)
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with the Fourier coefficients as solutions of the following ODEs and associated initial conditions:

d

dτ
B(u, τ) = 0, (A.6)

d

dτ
D(u, τ) = γ2

2 D(u, τ)2 + (ρxvγB(u, τ)− κ)D(u, τ) +B(u, τ)(B(u, τ) − 1)/2, (A.7)

d

dτ
A(u, τ) = −r +D(u, τ)κv̄, (A.8)

with B(u, 0) = iu, D(u, 0) = 0, A(u, 0) = 0. (A.9)

With B(u, τ) = iu, the Heston Riccati ODE simplifies

d

dτ
D(u, τ) = γ2

2 D(u, τ)2 − β0D(u, τ) + α0

= γ2

2 (D(u, τ)− ξ+0 )(D(u, τ) + ξ−0 ), (A.10)

and, as a consequence thereof, an analytic solution is derivable in closed form via the method of

separation of variables:

−
∫ D(τ)

D(0)

dD

D − ξ+0
+

∫ D(τ)

D(0)

dD

D − ξ−0
= −

∫ τ

0

dτ̂ γ
2

2 ξ
+
0 (1− g), (A.11)

ln
(D − ξ+0 )ξ

−
0

(D − ξ−0 )ξ+0
= −τd.

Solving for D(u, τ) we obtain

D(u, τ) = D0(u, τ) with Dk(u, τ) = ξ−k
1− e−dkτ

1− gke−dkτ
, (A.12)

where gk = ξ−k /ξ
+
k

and ξ±k =
βk ± (β2

k − 2αkγ
2)

1
2

γ2
=
βk ± dk
γ2

,

αk = iu( iu2 − 1
2 + k) = −u2

2 − iu
2 + iuk

βk = κ− ρxvγ(k + iu) ∀ k = {0, 1}.

Then,

A(u, τ) = −rτ + κv̄

(

ξ−0 τ −
2

γ2
ln

[

1− g0e
−d0τ

1− g0

])

(A.13)

= −rτ + κv̄H0(u, τ), (A.14)

is obtained by integration. It is important to denote the argument of the complex logarithm in

Gatheral’s reformulation [12] as shown above, which deviates from Heston’s original derivation [8],

H̃0(u, τ) = ξ+0 τ −
2

γ2
ln

[

ed0τ − g0
1− g0

]

. (A.15)

In Heston’s original derivation the complex logarithm in A(u, τ) branches to another Riemann sheet

when the contour path integration crosses the negative real axis of the complex plane. Gatheral’s

formulation ensures the evaluation of the real part of the logarithm argument remains positive in

any event the imaginary part becomes zero (for the explicit proof cf. [27]), and hence, branching
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never takes place.

Finally, the discounted Heston CHF reads

φ̂H,0(u,Xt, t, T ) = e−r(T−t)+κv̄H0(u,τ)+iuxt+D0(u,τ)vt (A.16)

In Heston’s orginal publication [8] the value of a call option with strike K is given in the T-Forward

measure QT ≡ T and is constructed from the cumulative distribution functions represented as Fourier

inversa in the following form:

CT(zt, vt, τ) = F (τ)fk=1(zt, vt, τ)−Kfk=0(zt, vt, τ) (A.17)

with fk(zt, vt, τ) =
1

2
+

1

π

∫ ∞

0

R
[

e+rτ φ̂H,k(u, X̂t, t, T )

iu

]

du, (A.18)

zt = lnF (t) = xt + rτ, and X̂t = [zt, vt]
†, (A.19)

where F (t) = S(T ) = S(t)
P (t,T ) is the T-forward stock price at time t = T − τ , and P (t, T ) is the zero

bond value maturing at T , respectively.

By virtue of the fundamental (Lévy / Gil-Pelaez) Fourier inversion theorem the Cumulative Distri-

bution Function (CDF)

CDF (x) = P(X ≤ x) = 1
2 − 1

π

∫ ∞

0

R
[

e−iuxφ̂X(u)

iu

]

du (A.20)

and its complement CDF (x) = P(X > x) = 1 − CDF (x) are representable by the CHF of the

underlying stochastic process.

By denoting that the change from k = 1 to k = 0 just corresponds to the simple substitution

u→ u− i (which represents just a simple shift in the complex plane)

φ̂H,k=0(u− i, X̂t, t, T ) = φ̂H,k=1(u, X̂t, t, T ), (A.21)

the option pricing formula (here given in the spot measure Q, for more details on the calculations

cf. [34]) is reducable to the generic form

C(xt, vt, t, T ) = S(t)D0(k)−Ke−r(T−t)D1(k) (A.22)

with D0(k) = 1
2 + 1

π

∫ ∞

0

R
[

e−iukφ̂H(u− i)e−xt−r(T−t)

iu

]

du (A.23)

D1(k) = 1
2 + 1

π

∫ ∞

0

R
[

e−iukφ̂H(u)

iu

]

du (A.24)

and k = lnK (A.25)

based solely on the Heston CHF

φ̂H(u) = φ̂H(u,Xt, t, T ) ≡ e−r(T−t)+κv̄H0(u,T,t)+iuxt+D0(u,T,t)vt . (A.26)
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A.2 CHF of the classical Hull-White process

A.2.1 Derivation without Hull-White decomposition

The Hull-White (HW) approach models stochastic interest rates by an Ornstein-Uhlenbeck-type

process,

drt = λ(θ(t) − rt)dt+ ηdWr(t) (A.27)

• for the short rate rt = r(t,Wr(t)) as the only state variable,

• with reversion rate λ towards the current HW mean reversion level θ(t); as shown below

θ(t) = f(0, t) + 1
λ
∂
∂tf(0, t) +

1
2λ2 (1− e−2λt), (A.28)

resembles the connection to the initial yield curve by means of the instantaneous forward

rate f(0, t) of the initial term structure; constant mean reversion rate λ=const is presumed

throughout the discussion to avoid unnecessary complexity in the model calibration,

• volatility η of the short rate (η is presumed constant for the moment.

Integrating d(eλtrt) = λeλtrtdt+e
λt(λ(θ(t)−rt)dt+ηdWr(t)) = λθ(t)eλtdt+eλtηdWr(t) with t0 = 0

yields,

rt = r0e
−λt + λ

∫ t

0

ds θ(s)e−λ(t−s) + η

∫ t

0

dWr(s) e
−λ(t−s) (A.29)

= ψ(t) + η

∫ t

0

dWr(s) e
−λ(t−s) = ψ(t) + r̃t.

Upon introduction of ψ(t) we obtain the defining equation for θ(t) by

1
λ
∂
∂tψ(t) = −r0e−λt − λ

∫ t

0

dsθ(s)e−λ(t−s) + λθ(t) = −ψ(t) + θ(t),

θ(t) = ψ(t) + 1
λ
∂
∂tψ(t). (A.30)

As shown in section A.2.3 ψ(t) connects to the initial yield curve via

ψ(t) = f(0, t) + 1
λ
η2

2λ2 (1− e−λt)2 = f(0, t) + η2

2 µ(0, t), (A.31)

which is basically the initial instanteneous forward curve and an additional drift correction µ(0, t).

The HW model is already in affine form, and hence, the CHF is composed of

Φ̂HW = EQ
[

e−
∫

T

t
rsds+iu

†
Xt |Ft

]

= eAHW (u,τ)+C̃(u,τ)rt (A.32)

with
d

dτ
C̃(u, τ) = −r1 + (−λ)C̃(u, τ) + 0 = −1− λC̃(u, τ)

d

dτ
A(u, τ) = λθ(t)C̃(u, τ) + 0 + 1

2 C̃(u, τ)η
2C̃(u, τ)

= λθ(t)C̃(u, τ) + η2

2 C̃
2(u, τ)

and C̃(u, 0) = iu, AHW (u, 0) = 0, for initial conditions.
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C̃(u, τ) is a first order ODE solved by separation of variables, AHW (u, τ) is straightforwardly inte-

grated, and consequently

C̃(u, τ) = − 1
λ

(

(1− iuλ)− e−λτ
)

= − 1
λ(1 − e−λτ ) + iue−λτ , (A.33)

AHW (u, τ) = η2

2

∫ τ

0

dτ C̃2(u, τ) + λ

∫ τ

0

dτ θ(T − τ)C̃(u, τ)

= η2

2 Ĩ3(u, τ) + λ

∫ τ

0

dτ θ(t)C̃(u, τ), (A.34)

since η2

2

∫ τ

0

dτ C̃2(u, τ) = η2

2 Ĩ3(u, τ)

= η2

2λ3 (λτ − 2(1− e−λτ ) + 1
2 (1− e−2λτ ))

− iu η2

2λ2 (1− e−λτ )2 − 1
2u

2 η2

2λ (1− e−2λτ )2. (A.35)

In case of an initial yield curve specification in closed analytic form, AHW (u, τ) is reducable to an

explicit expression. For the calibration scenarios specified, the initial term structure is simply based

on a constant initial instantaneous forward rate, f(0, t) = f0,

f0 = − ∂
∂T lnP (0, T ), P (0, T ) = e−f0T . (A.36)

and the quantities respectively are calculated as

ψ(t) = r0e
−λt + f0(1− e−λt) + η2

2λ2 (1− e−λt)2, (A.37)

θ(t) = f0 +
η2

2λ2 (1− e−2λt), (A.38)

λ

∫ τ

0

dτ θ(T − τ)C̃(u, τ) = −(f0 +
η2

2λ2 )τ − η2

4λ3 (e
−2λT − e−2λ(T−τ)) + 1

λ(1 + iuλ)

(

f0(1− e−λτ ) + η2

2λ2 (1 − e−λτ ) + η2

2λ2 (e
−2λT e−λ(2T−τ))

)

(A.39)

adding up to the discounted HW CHF:

AHW (u, τ) = −f0τ + f0
λ (1− e−λτ ) + iuf0(1− e−λτ )− 1

2u
2 η2

2λ(1− e−2λτ ), (A.40)

Φ̂HW (u, rt, T, t) = eAHW (u,τ)+C̃(u,τ)r0, (A.41)

which, for the particular choice r0 = f0, reduces to

Φ̂HW (u, rt, T, t) = e−r0(T−t)+iur0−
1
2u

2 η
2

2λ2 (1−e−2λ(T−t)). (A.42)

Apparently, the initial term structure fixes only ψ(t). HW reversion rate λ and volatility η are to

be calibrated by means of liquid marked instruments, like IR caps and swaptions.

A.2.2 Connection to CHF employing Hull-White decomposition

The HW decomposition [30] is based on the separation of the mean reversion off-set r̃t = rt − ψ(t),

so that the short rate process is retained:

dr̃t = −λr̃tdt+ ηdWr̃(t). (A.43)
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The CHF is calculated as

Φ̂HW−dc = EQ
[

e−
∫

T

t
r̃(s)ds+iu†

Xt |Ft
]

= eÃ(u,τ)+B̃(u,τ)r̃t = eÃ(u,τ)+B̃(u,τ)(rt−ψ(t)), (A.44)

with
d

dτ
B̃(u, τ) = −r1 +−λB̃(u, τ) + 0 = −1− λB̃(u, τ),

d

dτ
Ã(u, τ) = 0 + 0 + 1

2 B̃(u, τ)η2B̃(u, τ)

= η2

2 B̃
2(u, τ), (A.45)

and B(u, 0) = iu, A(u, 0) = 0 for initial conditions.

The ODE solutions are known. Obviously, the solution B̃(u, τ) = B(u, τ) is equivalent for both

HW variants. The connection between the CHF of the decomposed and the standard HW model is

established by

Φ̂HW = EQ
[

e−
∫

T

0
ds (ψ(s)+r̃s)+iu(ψT+r̃T )|Ft

]

= EQ
[

e−
∫

T

0
dsψ(s)+iuψT |Ft

]

· Φ̂HW−dc (A.46)

−
∫ τ

0

ψ(s)ds+ iuψT −B(u, τ)ψ(t) ≡ λ

∫ τ

0

θ(T − τ)B(u, τ)dτ

with −
∫ T

t

ψ(s)ds = −
∫ τ

0

ψ(t)d(T − t).

A.2.3 Zero coupon bond value derived from the HW CHF

Since the definition of the risk-neutral value at time t of the zero coupon bond maturing at T is

P (t, T ) = EQ
[

e−
∫

T

t
rsds|Ft

]

, (A.47)

the zero bond value is obtained from the affine HW model CHF in the limit u = 0:

Φ̂(0,Xt, t, T ) = EQ
[

e−
∫

T

t
rsds · 1|Ft

]

= eA(0,τ)+B
†(0,τ)Xt (A.48)

−→ P (t, T ) = Φ̂HW (0, rt, t, T ) = eAHW (0,τ)+C̃(0,τ)rt (A.49)

= e−
∫

T

0
ψ(s)ds+Ã(0,T ) (A.50)

The HW zero bond formula is frequently used, since there exists an analytic solution in closed form.

The connection to the intial term structure is contained in the coefficent AHW (0, τ) = A0,t,T,θ(t) via

the mean-reversion level

θ(t) = fM (0, t) + 1
λ
∂
∂T f

M (0, t) + η2

2λ2 (1− e−2λt) (A.51)

with fM (0, t) = − ∂
∂T lnPM (0, t).

The superscript ’M’ points out that initial instantaneous forward rates and initial zero bond values

are derived from market instruments. In order to emphasize the connection to the initial term
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structure the HW zero bond formula is reformulated to

Φ̂(0,Xt, t, T ) =
PM (0, T )

PM (0, t)
eBc(t,T )fM(0,t)−

1
2B

2
c (t,T )

η2

2λ (1−e−2λt)−Bc(t,T )rt (A.52)

=
PM (0, T )

PM (0, t)
eBc(t,T )fM(0,t)−

1
2B

2
c (t,T )y(t)−Bc(t,T )rt ,

with Bc(t, T ) = −C̃(u, τ) = 1

λ
(1− e−λ(T−t)). (A.53)

y(t) is a quantity from the Cheyette model derived in the next section. It is used here to indicate

the connection between the zero bond value derived in the HW model, and the corresponding zero

bond expression obtained in the Cheyette model below. The definition Bc(t, T ) is introduced, since

this relation is a structural element recurring in all IR and hybrid models under discussion.

When the simplifying assumptions on the initial yield curve structure (f(0, t) = f0 and f0 = r0) are

in effect, the expression for the HW zero bond value reduces down to P (0, T ) = e−r0T .

A.3 Cheyette model CHF

A.3.1 1D Markovian CHF derivation in the single factor volatility case

Presuming constant volatility η for the moment, the single factor Cheyette model remains affine and

the CHF is obtained as

Φ̂c(u,Xt, t, T ) = EQ
[

e−
∫

T

t
(f(0,t)+xc,t) ds+iu

†
Xt |Ft

]

,= eAc(u,τ)+C̃(u,τ)xc,t+Y (u,τ)y(t),

with spot rate rt = f(0, t) + xc,t. (A.54)

and instantaneous forward rate f(t, T ) in the limit t → 0 and T → t. Apparently, the Cheyette

state variable xc,t establishes a link between the forward rates and the spot rates evolving in time.

This is the decisive point, where the Cheyette model derives from the HJM framework and proceeds

beyond basic short rate models.

Then, the affine model framework [21] assumes the representation

µ(Xt) =

(

λf(0, t) + ∂
∂tf(0, t)

η2

)

+

(

−λ 1
0 −2λ

)(

xc,t
y(t)

)

, (A.55)

ΣX = (c0)ij + (c1)
†
ij,x

(

xc,t
y(t)

)

=

(

η2 0
0 0

)

+ ((0,0))ij,x

(

xc,t
y(t)

)

,

and r(Xt) = r0 + r1
†

(

xc,t
y(t)

)

= f(0, t) + (1, 0)

(

xc,t
y(t)

)

,
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and consequently the Fourier coefficients result from the following defining ODEs and initial condi-

tions:

d

dτ
C̃(u, τ) = −1− λC̃(u, τ), (A.56)

d

dτ
Y (u, τ) = −0 + C̃(u, τ)− 2λY (u, τ), (A.57)

d

dτ
ACH(u, τ) = −f(0, t) + η2Y (u, τ) + 1

2η
2C̃2(u, τ),

= −f(0, t), (A.58)

and C̃(u, 0) = iu, Y (u, 0) = 0, A(u, 0) = 0 for initial conditions.

The ODE solution for C̃(u, τ) is known from the HW model derivations above. Then, Y (u, τ) is

solvable by standard first order ODE techniques and finally ACH(u, τ) results from simple integra-

tion:

C̃(u, τ) = 1
λ

(

(1 + iuλ)e−λτ − 1
)

= − 1
λ (1− e−λτ ) + iue−λτ , (A.59)

Y (u, τ) = − 1
2λ2 (1− 2e−λτ + e−2λτ − 2iuλe−λτ + 2iuλe−2λτ ),

ACH(u, τ) = −
∫ τ

0

f(0, t)dτ + η2
τ
∫

0

Y (u, τ)dτ + η2

2

τ
∫

0

C̃2(u, τ)dτ

= −
∫ τ

0

f(0, t)dτ + η2ĨCH,y(u, τ) +
η2

2 Ĩ3(u, τ),

with

η2ĨCH,y(u, τ) = η2
τ
∫

0

Y (u, τ)dτ

= η2

2λ3 [−λτ − 2e−λτ + 1
2e

−2λτ + 3
2 ] + iu η2

2λ3 (1− e−λτ )2,

η2

2

∫ τ

0

dτ C̃2(u, τ) = η2

2 Ĩ3(u, τ).

The integral Ĩ3(u, τ) is obtained as part of the HW model derivations in the preceding section.

For the particular case of constant volatility η the state variable y(t) decouples from the Markovian

process and the deterministic solution of the defining ODE is treatable in closed form by the method

of variation of constants:

y(t) = η2

2λ + (y0 − η2

2λ)e
−2λτ (A.60)

with y0 = y(0) as initial condition.

Irrespective of the particular choice of y0, apparently y(t) tends towards the long-term mean η2

2λ .

With the coefficients given above, the discounted CHF of the 1D Markovian Cheyette system is

given by

Φ̂CH(u,Xt, T, t) = eACH(u,τ)+C̃(u,τ)xc,t+Y (u,τ)y(t),

= e−
∫

τ

0
f(0,t)dτ+C̃(u,τ)xc,t+Y (u,τ)y(t). (A.61)
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A.3.1.1 Connection to HW short rate model

Transition from the single volatility factor Cheyette to the HW model can be seen directly from the

SDE system. Starting with the Cheyette model

dxc,t = (yt − λxc,t)dt+ ηtdWc(t), (A.62)

yt = (η2t − 2λyt)dt,

for ηt = η =const the yt decouples from the Markovian state variable xc,t and becomes deterministic.

By the choices

dxc,t = drt − ∂
∂tf(0, t), (A.63)

y(t) = λθ(t)− λf(0, t)− ∂
∂T f(0, t),

so y(t) = η2

2λ(1− e−2λτ )

the HW model is retained from xc,t dynamics:

drt − ∂
∂T f(0, t) = (λθ(t) − λf(0, t)− ∂

∂T f(0, t)− λxc,t)dt+ ηdWc(t),

drt = λ[θ(t) − (f(0, t) + xc,t)]dt+ ηdWc(t),

with rt = f(0, t) + xc,t.

An analogous argument is valid in Fourier space. Upon closer comparison of the Cheyette (CH) and

HW CHFs, i.e.

Φ̂HW (u, rt, t, T ) = eAHW (u,τ)+C̃(u,τ)rt

= eλ
∫

τ

0
θ(t)C̃(u,τ)dτ+

η2

2

∫
τ

0
C̃2(u,τ)dτ+C̃(u,τ)rt

= eλ
∫

τ

0
f(0,t)C̃(u,τ)dτ+

∫
τ

0
∂T f(0,t)C̃(u,τ)dτ+

∫
τ

0
y(0,t)C̃(u,τ)dτ

· e
η2

2

∫
τ

0
C̃2(u,τ)dτ+C̃(u,τ)rt; (A.64)

Φ̂CH(u, xc,t, yt, t, T ) = eACH(u,τ)+C̃(u,τ)xc,t+Y (u,τ)y(t) (A.65)

= e−
∫

τ

0
f(0,t)dτ+η2ĨCH,y(u,τ)+

η2

2 Ĩ3(u,τ)+C̃(u,τ)(xc,t+f(0,t))−C̃(0,t)f(0,t)+Y (u,τ)y(t),

the connection between individual Fourier constituent terms in the exponential becomes apparent

by the reformulations

HW :

∫ τ

0

∂T f(0, t)C̃(u, τ)dτ = −f(0, t)C̃(u, τ)−
∫ τ

0

f(0, τ)dτ − λ ∈τ0 f(0, t)C̃(u, τ)dτ, (A.66)

CH : Y (u, τ)y(t) = η2

2λ3 [− 1
2 + e−λτ − 1

2e
−2λτ + 1

2e
−2λt − e−2λte−λτ + 1

2e
−2λte−2λτ ]

+ iu η
2

2λ [(e
−λτ − e−2λτ )(1− e−2λt)]. (A.67)

Inserting the reformulations, most of the terms cancel out and the equivalence between HW and

Cheyette terms reduces to the following identity:
∫ τ

0

C̃(u, τ)y(t)dτ = η2

2λ3 [−λτ + 1− e−λτ + 1
2e

−2λt(1− e−λτ )2]

+ iu η2

2λ2 [(1− e−λτ )2 + (1− e−λτ )(1− e−2λt)e−λτ ]

= η2ĨCH,y +
η2

2 Ĩ3(u, τ). (A.68)
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Comparing coefficients has thus revealed the connection between HW and this most basic Cheyette

model, as well as the relation to the initial yield curve:

θ(t) = f(0, t) + 1
λ
∂
∂T f(0, t) +

η2

2λ2 (1− e−2λt) (A.69)

= f(0, t) + 1
λ
∂
∂T f(0, t) +

1
λy(t). (A.70)

For the particular specification of the initial term structure, f(0, t) = f0 and f0 = r0, employed

in the model calibration scenarios in the present context, the HW connection is established by the

particular relation θ(t) = r0 +
1
λy(t).

A.3.2 Zero coupon bond value in the Cheyette model

As elaborated in the context of the HW model above, the value of the zero coupon bond is obtained

from the CHF corresponding to the respective model in the limit u→ 0:

P (t, T ) = Φ̂CH(0,Xt, t, T ) = eACH(0,τ)+C(0,τ)xc,t+Y (0,τ)y(t)

= e−
∫

τ

0
f(0,t) dτ−

1
λ (1−e−λτ )xc,t−

1
2λ2 (1−e−λτ )2y(t)

= e−
∫

T

t
f(0,s) ds−Bc(t,T )xc,t−

1
2B

2
c (t,T )y(t), (A.71)

where f(0, t) provides the connection to the market data via

P (t, T ) = EQ
[

e−
∫

T

0
rs ds|Ft

]

= e−
∫

T

0
f(t,s) ds (A.72)

−→ PM (0, T )

PM (0, t)
= e−

∫
T

t
f(0,s) ds, (A.73)

and consequently, the Cheyette zero bond value is given by

PCH(t, T, xt, yt) =
PM (0, T )

PM (0, t)
e−Bc(t,T )xc,t−

1
2B

2
c (t,T )yt . (A.74)

It is important to note that this zero bond value formulation is also valid in the context of model

extensions towards stochastic volatility like in the Stochastic Volatility Cheyette model. Hence, the

choice of yt (instead of y(t)) in the final equation.

The reason is that the volatility contribution is completely absorbed in the state variable yt, and is

particularly noteworthy, because thereby the Cheyette model allows for stochastic volatility extension

beyond the capability of the classical short rate models.

For the special case of the initial term structure, f(0, t) = f0 and f0 = r0,

yt = y(t) = λr0 +
η2

2λ (1− e−2λt), (A.75)

is basically the variance of the HW process.

67



A.3.3 CHF of the DDSV Cheyette model

In the most general form the volatility specification in the Cheyette model is ηt = η(xc,t, yt, zt, t).

A possible calibration approach is by means of the zero bond formula,

PDDSV CH(t, T ) =
PM (0, T )

PM (0, t)
e−Bc(t,T )xc,t−

1
2B

2
c (t,T )yt , (A.76)

to be used in the analytic Black caplet formula. Critical point is the efficient numerical evaluation

of the SDE for yt.
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Appendix B

Characteristic Functions of Full-Scale

Hybrid Models in the Spot Measure

B.1 Single correlation Heston Hull-White (1F-HHW) model

B.1.1 Derivation of CHF 1F-HHW

Combining Heston EQ-SV and HW-IR process

dxt = (rt − v
2 )dt+

√
vtdWx(t), (B.1)

dvt = κ(v̄ − vt)dt+ γ
√
vtdWv(t),

drt = λ(θ − rt)dt+ ηdWr(t),

with correlations ρxvdt = dWxdWv, ρrxdt = dWrdWx, ρrvdt = dWrdWv the covariance matrix

ΣXt
=





vt ρxvγvt ρxrη
√
vt

ρvxγvt γ2vt ρvrγη
√
vt

ρrxη
√
vt ρrvγη

√
vt η2



 = LXt
L†
Xt

(B.2)

with LXt
=





√
vt 0 0

ρvxγ
√
vt Lxvγ

√
vt 0

ρrxη Lrvη Lrxη



 ,

and Lxv =
√

1− ρ2xv, Lrv = (ρrv − ρrxρxv)/Lxv, Lrx =
√

1− ρ2rx − L2
rv.

contains non-linear terms Σ1,3 = Σ3,1 and Σ2,3 = Σ3,2 in the state variable
√
vt. LXt

is the

Cholesky decomposition of the covariance matrix to express the HHW process in differential form

by uncorrelated Brownian drivers,





dxt
dvt
drt



 = µ(Xt)dt+ LXt





dW̃x(t)

dW̃v(t)

dW̃r(t)



 . (B.3)

This formulation is the basis of Monte-Carlo simulation schemes detailed in the description of com-

putational evaluation methods.

By choosing EQ-IR correlation ρrx = 0 and SV-IR correlation ρrv = 0 the non-affine terms in the

covariance matrix vanish. The remaining HHW model contains the Heston EQ-SV correlation ρxv
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as correlation factor, and hence, the acronym 1F-HHW. An analytic solution for the CHF is then

derivable in closed form by means of the commonly known techniques [21]. With the coefficients

extracted from the affine model formulation

µ(Xt) =





0
κv̄
λθ



+





0 − 1
2 1

0 −κ 0
0 0 −λ









xt
vt
rt



 , (B.4)

ΣX = (c0)ij + (c1)
†
ij,x





xt
vt
rt





=





0 0 0
0 0 0
0 0 η2



+





(0, 1, 0) (0, ρxvγ, 0) (0, 0, 0)
(0, ρxvγ, 0) (0, γ2, 0) (0, 0, 0)
(0, 0, 0) (0, 0, 0) (0, 0, 0)









xt
vt
rt



 , (B.5)

and r(Xt) = r0 + r1
†





xt
vt
rt



 (B.6)

= 0 + (0, 0, 1)





xt
vt
rt



 ,

the defining ODEs for the Fourier coefficients B(u, τ) = [B(u, τ), D(u, τ), C(u, τ)]† and associated

initial conditions are given by

d

dτ
B(u, τ) = 0. (B.7)

d

dτ
D(u, τ) = −0 + (− 1

2 ,−κ, 0)





B
D
C



+ 1
2 (B,D,C)





1 ρxvγ 0
ρxvγ γ2 0
0 0 0









B
D
C





= −B
2 − κD + B2

2 + ρxvγBD + γ2

2 D
2

= γ2

2 D
2 + (ρxvγB − κ)D + B

2 (B − 1)

d

dτ
C(u, τ) = −1 + (1, 0,−λ)





B
D
C



 = −1 +B − λC, (B.8)

d

dτ
A(u, τ) = κv̄D + λθC + η2

2 C
2, (B.9)

and initial conditions B(u, 0) = iu, D(u, 0) = 0, C(u, 0) = 0, A(u, 0) = 0.

Substituting the solution, B(u, τ) = iu, the ODE for D(u, τ) becomes the Heston Riccati ODE

with the solution already detailed in Appendix A.1. C(u, τ) is solved by standard techniques (only

a slight variation from the Fourier coefficient B in the HW and Cheyette model context above).

Finally A(u, τ) is obtained by straightforward integration, where the integral over D(u, τ) returns
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the complex logarithm denoted in Gatheral’s formulation (cf. to appendix A.1 for details):

B(u, τ) = iu, (B.10)

C(u, τ) = − 1
λ(1 − iu)(1− e−λτ ),

D(u, τ) = ξ−
1− e−dτ

1− ge−dτ
,

where g = ξ−/ξ+,

and ξ± =
β ± (β2 − 2αγ2)

1
2

γ2
=
β ± d

γ2
,

α = iu
2 (iu− 1) = −u2/2− iu/2 = B

2 (B − 1),

β = κ− ρxvγiu

A(u, τ) = λθ

∫ τ

0

C(u, τ) dτ + η2

2

∫ τ

0

C2(u, τ) dτ + κv̄

∫ τ

0

D(u, τ) dτ

= λθI1(u, τ) +
η2

2 I3(u, τ) + κv̄I2(u, τ), (B.11)

with
∫ τ

0

C(u, τ) dτ = 1
λ2 (iu− 1)

(

−λτ + (1− e−λτ )
)

≡ I1(u, τ),

∫ τ

0

C2(u, τ) dτ = 1
λ2 (−u2 − 2iu+ 1)

∫ τ

0

(1− 2e−λτ + e−2λτ ) dτ

= 1
2λ3 (i + u)2(−2λτ − 4e−λτ + 3 + e−2λτ ) ≡ I3(u, τ),

∫ τ

0

D(u, τ) dτ = ξ−τ − 2

γ2
ln

[

1− ge−dτ

1− g

]

≡ I2(u, τ).

With the solution of the Fourier components completed, the CHF of the 1F-HHW model results

Φ̂1F−HHW (u, xt, vt, rt, t, T ) = eA1F (u,τ)+B(u,τ)xt+D(u,τ)vt+C(u,τ)rt . (B.12)

B.1.2 Analytic European call price in the 1F-HHW model

The result on the 1F-HHW CHF is consistent with the derivation of the valuation formula of a

European call option in [29]. The derivation of the European call price within the 1F-HHW model

is derived in [29] via solution of the Kolmogorov backward equation otained by the Feynman-Kac

theorem. Heston already pointed out that the 1F-HHW is an affine model. Analoguos to the pure
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Heston case the derivation is based on the formulation of the European call value.s

VC(S, v, t, T, r0) = S(t, T )fk=1(X, v, t, T, r0)−KP (t, T )fk=0(S, v, t, T, r0, u) (B.13)

with fk(S, v, t, T, r0) =
1

2
+

1

π

∫ ∞

0

R
[

exp(−iu logK)φ̂j(S, v, t, T, r0
iu

]

,

φ̂k(S, v, t, T, r0) = exp [Fk(t, T, u) +Dk(t, T, u)v +Hk(t, T, u)r0] ·

exp [iu logS + (k − 1)b(t, T, r0)] (B.14)

with Fk(t, T, u) = Ck(t, T, u)v̄ + (iu− (1− k)) [ζ2(t, T ) + (iu− (1− k))ζ3(t, T )]

and Hk(t, T, u) =
iu− (1− k)

λ
(1− exp(−λ(T − t)))

where Ck(t, T, u) and Dk(t, T, u) are defined in Appendix A.1; ζ2(t, T ) and ζ3(t, T ) are derived in

conjunction with the zero bond value P (t, T ) = exp(bc(t, T, r0)) in the HW framework (cf. Appendix

A.2.3), though in slightly alternative arrangement of constituent terms:

P (t, T ) = exp[(bc(r0, t, T )], (B.15)

bc(t, T, r0) = −r0
λ

(1− exp(−λ(T − t)))

− 1

λ

∫ T

t

θHW (s) (1− exp(−λ(T − s))) ds

+
η2

2λ2
(

T − t+ 2
λ exp(−λ(T − t))− 1

2λ exp(−2λ(T − t))− 3
2λ

)

≡ ζ1(t, T, r0) + ζ2(t, T ) + ζ3(t, T )

with θHW (t) → θHW = const follows

ζ2(t, T ) =
θHW
λ2

(1− exp(−λ(T − t))− λ(T − t))

In analogy to the pure Heston case, the 1F-HHW CHF results in the case k = 0.

B.1.3 Zero coupon bond price in the 1F-HHW model

In standard fashion the zero bond value is obtained from the CHF of The 1F-HHW in the limit

u→ 0:

Φ̂1F−HHW = eA(0,τ)+B(0,τ)xt+D(0,τ)vt+C(0,τ)rt. (B.16)

It is trivial to show D(0, τ) = 0 and B(0, τ) = 0 and the remaining terms coincide with terms of the

zero bond value in the stand-alone HW model. Consequently the zero bond prices are equivalent

in HW and 1F-HHW model environments, which is intuitively embraced by the consideration, that

correlations between EQ and IR components are excluded ’a priori’.
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B.1.4 Separability of interest rate process in 1F-HHW

A noteworthy feature is that the transformation of the 1F-HHW towards the T-forward measure

corresponds to the simple displacement shift of the IR component of the CHF in the complex plane

(quite analogously the Fourier coefficient corresponding to the IR component in the H1HW hybrid

model changes to CB(u, τ) → CT (u, τ) upon transformation to QT as simple displacement in the

complex plane). When only the EQ-SV correlation is non-vanishing ρxv 6= 0, the CHF separates

into the interest rate φ̂IR and Heston process φ̂H :

φ̂1F−HHW (u, t, T ) = φ̂IR(u, t, T )φ̂H(u, t, T ). (B.17)

Then, following [36], the CHF under the T-forward measure φ̂IR is derived straightforwardly, by

splitting the underlying equity process dSt = rStdt+
√
vStdWx into an interest rate drift and pure

driftless Heston process:

d(log S) = (r − v
2 )dt+

√
vdWx,

dXt = dXIR + dXH (B.18)

with XIR(t, T ) =
∫ T

t r(s)ds = D(t, T ) the discount factor. Then, the CHF ensues to

φ̂THRHW (t, T, u) = ET [eiuXT |Ft],

= EQ[eiuXT
QT

Q
|Ft]/EQ[

QT

Q
|Ft],

−→ φ̂THRHW (t, T, u) = P−1(t, T )E[D(t, T )eiuXT ] (B.19)

= P−1(t, T )E[e−XIR+iuXT ]

= P−1(t, T )E[ei
2XIR+iu(XIR+XH )] (B.20)

= P−1(t, T )φ̂IR(u + i, t, T )φ̂H(u, t, T )

where P (t, T ) is the standard zero bond. Transformation of the CHF towards the T-forward measure

is simply performed by substituting u→ u+ i in φ̂IR(u, t, T ).
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B.2 Heston Cheyette CHF in the Affine Deterministic Limit:

H1CH Model

The Cheyette model in single-factor volatility formulation is comprised of the following set of SDEs:

dxs,t = (πt − vt
2 )dt+

√
vtdWx(t), (B.21)

dvt = κ(v̄ − vt)dt+ γ
√
vtdWv(t),

dxc,t = (yt − λxc,t)dt+ ηtdWc(t),

dyt = (η2t − 2λyt)dt,

with πt = f(0, t) + xc,t,

ηt = η = const.

For the IR component constant volatility η is considered for the moment, though this constraint is

relaxed in the next section. Then, drift, volatility and IR specification assume the expressions:

µ(Xt) = a0 + a1Xt

=









0
κv̄
0
η2









+









0 − 1
2 1 0

0 −κ 0 0
0 0 −λ 1
0 0 0 −2λ

















xs,t
vt
xc,t
yt









, (B.22)

ΣXt
=









vt ρxvγvt ρxcη
√
vt 0

ρvxγvt γ2vt ρcvηγ
√
vt 0

ρcxη
√
vt ρcvηγ

√
vt η2 0

0 0 0 0









. (B.23)

Deliberately setting ρcv = 0, and introducing the affine approximation

E[
√
vt] ≃ δv(t) = a+ be−ct (B.24)

the volatility can be written as

Σ̂Xt
= (c0)ij + (c1)ij,X

=









0 0 ρxcηδv(t) 0
0 0 0 0

ρcxηδv(t) 0 η2 0
0 0 0 0









+









(0, 1, 0, 0) (0, ρxvγ, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(0, ρvxγ, 0, 0) (0, γ2, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
(0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)

















xs,t
vt
xc,t
yt









. (B.25)

Finally, the IR component is represented by

r(Xt) = r0 + r†1Xt = f(0, t) + (0, 0, 1, 0)









xs,t
vt
xc,t
yt









. (B.26)
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Then, the Fourier coefficients of the state variable vector B(u, τ) = [B,D,C, Y ]† are defined by the

following set of ODEs

d
dτB(u, τ) = 0, (B.27)

d
dτD(u, τ) = −0 + (−B

2
− κD) + 1

2 (B + ρxvγD,Bρxvγ + γ2D, 0, 0)









B
D
C
Y









= γ2

2 D
2(u, τ) + (iuρxvγ − κ)D(u, τ) + B

2 (B − 1)

= γ2

2 D
2(u, τ) + (iuρxvγ − κ)D(u, τ) + iu

2 (iu− 1),

d
dτC(u, τ) = −1 +B − λC = −(1− iu)− λC(u, τ),

d
dτ Y (u, τ) = C(u, τ) − 2λY (u, τ),

d
dτA(u, τ) = −f(0, t) + κv̄D(u, τ) + η2Y (u, τ)

+ ρxcηδ1(t)B(u, τ)C(u, τ) + η2

2 C
2(u, τ),

and associated initial conditions B(u, τ) = iu, D(u, τ) = 0, C(u, τ) = 0, Y (u, τ) = 0. With the

apparent solution, B(u, τ) = iu, D(u, τ) is reduced to the well-known solution for the Heston-type

Riccati equation, and the other Fourier coefficients are determined with standard techniques to solve

first order ODEs:

C(u, τ) = − 1
λ(1 − iu)(1− e−λτ ), (B.28)

Y (u, τ) = − 1
2λ2 (1− iu)(1− e−λτ )2 = − 1

2(1−iu)C
2(u, τ), (B.29)

AH1CH(u, τ) = −
∫ τ

0

f(0, t) dτ + κv̄I2(u, τ)− η2

2(1−iu) I3(u, τ)

+ ρxcηI4(u, τ) +
η2

2 I3(u, τ), (B.30)

with
∫ τ

0

D(u, τ) dτ = I2(u, τ),

∫ τ

0

Y (u, τ) dτ = − 1
2(1−iu)

∫ τ

0

C2(u, τ) dτ

= − 1
2(1−iu) I3(u, τ) =

∫ τ

0

C(u, τ)y(t)dτ, (B.31)

the last relationwith y(t) = η2

2λ (1− e−2λτ ) is the connection to theHWsystem, (B.32)
∫ τ

0

δv(T − τ̂ )C(u, τ̂ )dτ̂ = − 1
λ iu(1− iu)

∫ τ

0

(1− e−λτ̂ )(a1 + b1e
c1(T−τ̂)) dτ̂

= I4(u, τ).

These Fourier coefficients define the CHF of the H1CH model:

Φ̂H1CH = eAH1CH (u,τ)+iuxs,t+D(u,τ)vt+C(u,τ)xc,t+Y (u,τ)yt . (B.33)
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B.3 Heston DDSV Cheyette CHF in the Affine Limit 1: H1CV

Model

The Heston DDSV Cheyette model combines the Heston process for EQ with a Cheyette framework

for the interest rate (IR) component incorporating IR-SV by means of a displaced-diffusion (DD)

stochastic volatility (SV) model, which captures IR skew and IR smile features. The model is defined

by the following system of stochastic differential equations:

dxs,t = (πt − vt
2 )dt+

√
vtdWx(t), (B.34)

dvt = κ(v̄ − vt)dt+ γ
√
vtdWv(t),

dxc,t = (yt − λxc,t)dt+ ηtdWc(t),

dzt = β(z̄ − zt)dt+ ǫ
√
ztdWz(t),

dyt = (η2t − 2λyt)dt,

with

πt = f(0, t) + xc,t,

ηt =
√
ztsk(t)(bk(t)πt + (1− bk(t))π0) ≡

√
ztsk(t)Φk(t)

and correlations ρxvdt = dWxdWv, ρcxdt = dWcdWx, ρczdt = dWcdWz , ρcvdt = dWcdWv, and

ρvzdt = dWvdWz . The SV processes of the EQ and IR components are presumed to be uncorrelated

(ρzv = 0). Substituting the limit 1 approximations (see section 3.6), the constituents of the affine

model assume the following form:

µ(Xt) =













0
κv̄
0
βz̄
0













+













0 − 1
2 1 0 0

0 −κ 0 0 0
0 0 −λ 0 1
0 0 0 −β 0
0 0 0 s2kΦ

2
k −2λ

























xs,t
vt
xc,t
zt
yt













, (B.35)
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ΣXt
=













0 0 ρcxskΦkδv(t)δz(t) 0 0
0 0 0 0 0

ρcxskΦkδv(t)δz(t) 0 0 0 0
0 0 0 0 0
0 0 0 0 0













+













(0, 1, 0, 0, 0) (0, ρxvγ, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)
(0, ρvxγ, 0, 0, 0) (0, γ2, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)
(0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, s2kΦ

2
k, 0) (0, 0, 0, ρzcskΦkǫ, 0) (0, 0, 0, 0, 0)

(0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, ρzcskΦkǫ, 0) (0, 0, 0, ǫ2, 0) (0, 0, 0, 0, 0)
(0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

























xs,t
vt
xc,t
zt
yt













, (B.36)

r(Xt) = f(0, t) +
(

xs,t vt xc,t zt yt
)













0
0
1
0
0













. (B.37)

Then, with the vector of Fourier coefficients, B = [B,D,C, Z, Y ]†, the defining ODEs are

d
dτB(u, τ) = 0, (B.38)

d
dτD(u, τ) = −0 + (− 1

2 , κ, 0, 0, 0)B

+ 1
2 (B,D,C, Z, Y )













1 ρxvγ 0 0 0
ρxvγ γ2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

























B
D
C
Z
Y













= − 1
2B − κD + 1

2 (B
2 + 2ρxvγBD + γ2D)

= γ2

2 D
2(u, τ) + (ρxvγB(u, τ)− κ)D(u, τ) + B

2 (B − 1), (B.39)

d
dτC(u, τ) = −1 + (1, 0, λ, 0, 0)B+ 0 = −1 +B(u, τ)− λC(u, τ), (B.40)

d
dτZ(u, τ) = −0 + (0, 0, 0,−β, s2kΦ2

k)B

+ 1
2 (B,D,C, Z, Y )













0 0 0 0 0
0 0 0 0 0
0 0 s2kΦ

2
k ρczskΦkǫ 0

0 0 ρczskΦkǫ ǫ2 0
0 0 0 0 0

























B
D
C
Z
Y













= ǫ2

2 Z
2(u, τ) + (ρczs

2
kΦ

2
kǫC(u, τ)− β)Z(u, τ)

+s2kΦ
2
kY (u, τ) + 1

2s
2
kΦ

2
kC

2(u, τ), (B.41)

d
dτ Y (u, τ) = −0 + (0, 0, 1, 0,−2λ)B+ 0 = C(u, τ) − 2λY (u, τ), (B.42)

d
dτA(u, τ) = −f(0, t) + κv̄D(u, τ) + βz̄Z(u, τ) + 1

2ρcxskΦkδv(t)δz(t)B(u, τ)C(u, τ), (B.43)

with t = T −τ and initial conditions B(u, 0) = iu, D(u, 0) = 0, C(u, 0) = 0, Z(u, 0) = 0, A(u, 0) = 0.
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The underlying ODEs and corresponding solutions for B(u, τ), C(u, τ) and D(u, τ) are equivalent

to the affine HHW models derived previously (cf. relevant appendices for the details).

B(u, τ) = iu,

C(u, τ) = − 1
λ(1− iu)(1− e−λτ ),

D(u, τ) = Heston− typeRiccati solution

Y (u, τ) is obtained by variation of constants:

Y (u, τ) = − 1
2λ2 (1− iu)(1− e−λτ )2 = − 1

2(1−iu)C
2(u, τ). (B.44)

Z(u, τ) is a Riccati-type differential equation for the SV of the IR component, though different to

the Riccati equation obtained for the Heston EQ-SV component earlier, the coefficients are time-

dependent. Employing the solutions for the other Fourier coefficients and presuming ρcz = 0, the

defining ODE is of the form

d
dτZ(u, τ) = ǫ2

2 Z
2(u, τ)− βZ(u, τ) + q1(u, τ), (B.45)

q1(u, τ) = iu
2−2iuC

2(u, τ) = iu(iu−1)
2λ2 s2kΦ

2
k(1− e−λτ )2.

As a consequence, an elementary analytic solution is not available. One has to resort to standard

numerical methods for ODE solution or to simplify towards q1(u, τ) = q(u), time independent

parameters where the solution is then a variation of the well-known Heston-type Riccati equation.

Again, by straightforward integration A(u, τ) is given by

A(u, τ) = −
∫ τ

0

f(0, t) dτ + κv̄

∫ τ

0

D(u, τ) dτ − βz̄

∫ τ

0

Z(u, τ) dτ

+ 1
2ρcxskΦk

∫ τ

0

δv(t)δz(t)B(u, τ)C(u, τ) dτ

= −
∫ τ

0

f(0, t) dτ + κv̄I2(u, τ) + βz̄I5(u, τ) +
1
2ρcxskΦkI7(u, τ), (B.46)

where the integral I2(u, τ) is found in the derivation of the H1HW model above, I5(u, τ) references

the integral resulting from the IR-SV process in the DDSV Cheyette model, and

I7(u, τ) = − 1
λ (1− iu)[a1a2(τ +

1
λ(e

−λτ − 1)) + a1b2
c2

(e−c2(T−τ) − e−c2T ) + a2b1
c1

(e−c1(T−τ)−c1T )

+ b1b2
c1+c2

(e−(c1+c2)(T−τ) − e−(c1+c2)T )

− a1b2
c2−λ

e−c2T (e(c2−λ)τ − 1)− a2b1
c1−λ

e−c1T (e(c1−λ)τ − 1)

− b1b2
c1+c2−λ

e−(c1+c2)T (e(c1+c2−λ)τ − 1))]. (B.47)

With all Fourier coefficients well defined, the CHF of the Heston DDSV Cheyette model in the

approximations of the affine limit 1 is determined:

Φ̂H1CV (u,Xt, t, T ) = eA(u,τ)+iuxs,t+D(u,τ)vt+C(u,τ)xc,t+Z(u,τ)zt+Y (u,τ)yt . (B.48)
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B.4 Heston DDSV Cheyette CHF in the Affine Limit 2: H2CV

Model

The approximations inherent to the H2CV model are introduced in section 3.6. The key idea is to

use the volatility specification

ηAt ≡ δz(t)skΦ
A
k (t), and (ηAt )

2 ≡ zt(skΦ
A
k (t))

2, (B.49)

with skΦ
A
k (t) = sk (bk(f(0, t) + α(t)) + (1 − bk)(f(0, 0) + xc,0)) ,

(skΦ
A
k (t))

2 = s2k[b
2
kζ

2(t) + 2bk(1− bk)π0ζ(t) + (1− bk)
2π2

0 ],

and ζ(t) = f(0, t) + α(t),

α(t) ≡ E[xc,t] =
η20
2λ2 (1− e−λt)2,

in order to place the SDE system of the HCV model within the AJD process class. With this volatility

specification the CHF derivation proceeds completely analogous to the preceding Appendix B.3, and

the Fourier coefficients are obtained as the solution to the following first order ODEs:

d
dτB(u, τ) = 0, (B.50)

d
dτD(u, τ) = γ2

2 D
2(u, τ) + (ρxvγB(u, τ)− κ)D(u, τ) + B

2 (B − 1),

d
dτC(u, τ) = −1 +B(u, τ) − λC(u, τ),

d
dτZ(u, τ) = − ǫ2

2 Z
2(u, τ) + [ρcz(skΦ

A
k (t))

2ǫC(u, τ)− β]Z(u, τ)

+ (skΦ
A
k (t))

2Y (u, τ) + 1
2 (skΦ

A
k )

2C2(u, τ),

d
dτ Y (u, τ) = C(u, τ)− 2λY (u, τ),

d
dτA(u, τ) = −f(0, t) + κv̄D(u, τ) + βz̄Z(u, τ) + 1

2ρcxskΦ
A
k (t)δv(t)δz(t)B(u, τ)C(u, τ),

with t = T −τ and initial conditions B(u, 0) = iu, D(u, 0) = 0, C(u, 0) = 0, Z(u, 0) = 0, A(u, 0) = 0.

The solutions of B(u, τ), D(, u, τ), C(u, τ), Y (u, τ) are equivalent to the preceding Appendix B.3.

The coefficient Z(u, τ) is calculated as recursive as recursive solution to

d
dτZ(u, τ) = ǫ2

2 Z
2(u, τ)− βZ(u, τ) + q2(u, τ), (B.51)

q2(u, τ) = iu
2−2iuC

2(u, τ) = iu(iu−1)
2λ2 (skΦ

A
k (T − τ))2(1 − e−λτ )2.

We presume q2(u, τ) to be piecewise constant in time q2(u, τ) ≃ q2(u, τj) on intervals τj ∈ [Tj, Tj+1[

for a particular choice of refinement 0 ≤ j ≤ jmax. Then, the Cheyette SV process is recursively

given by

Zj(u, τj+1) = Z(u, τj) +
ξ−
j+1

ǫ2
1− e−dj+1(τj+1−τj)

1− ξ−
j+1

ξ+
j+1

e−dj+1(τj+1−τj)

, (B.52)

with coefficients

d̂j+1 =
√

β2 − 2α̂ǫ2,

ξ̂±j = β ± (dj+1 + dj)/2− ǫ2Zj ,

α̂ = iu(iu−1)
2λ2 (skΦ

A
k (T − τj))

2(1− e−λτj )2.
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The quality of the recursive approximation of Z(u, τ) with the term q2(u, τ) is very close to the

recursive solution of Z(u, τ) with q1(u, τ) corrsponding to the H1CV model as shown in Fig. E.2.

Finally, A(u, τ) is obtained by integration,

A(u, τ) = −
∫ τ

0

f(0, t) dτ + κv̄

∫ τ

0

D(u, τ) dτ − βz̄

∫ τ

0

Z(u, τ) dτ

+ 1
2ρcxsk

∫ τ

0

ΦAk (t)δv(t)δz(t)B(u, τ)C(u, τ) dτ

= −
∫ τ

0

f(0, t) dτ + κv̄I2(u, τ) + βz̄I8(u, τ) +
1
2ρcxskΦkI9(u, τ).

Though the integral I9(u, τ) is straightforwardly derived in closed form, the numerical integration

of I7(u, τ) and I9(u, τ) is a computationally practical approach.
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Appendix C

Change of Measure

C.1 Derivation of H1HW CHF in the Forward Measure QT

Forward Dynamics are obtained from the definition of the forward price Ft = F (St, Pt) =

St/P (t, T ) by Ito’s lemma:

dFt =
∂F

∂S
+
∂F

∂P
+ 1

2

∂2F

∂S2
+ 1

2

∂2F

∂P 2
+

∂2F

∂P∂S

=
1

P
dS − S

P 2
dP + 0 + 1

2

2S

P 3
(dP )2 − 1

2

2

P 2
dPdS

=
St

P (t, T )

dS

S
− St
P (t, T )

dP

P
+ drift terms

= F

(

dS

S
− dP

P

)

+ F

[

(

dP

P

)2

− dS

S

dP

P

]

,

dF

F
=

dS

S
− dP

P
+

(

dP

P

)2

− dS

S

dP

P
. (C.1)

The change of measure is to be applied to uncorrelated Brownian drivers. Therefore, the covariance

matrix ΣXt
= LXt

L†
Xt

is decomposed into Cholesky components:

dXt = µ(Xt)
0dt+ LXt

dW̃0,




drt
dvt
dSt

St



 =





λ(θ(t) − rt)
κ(v̄ − vt)

rt



 dt+





ηt 0 0
ρvrγ

√
vt Lvvγ

√
vt 0

ρxr
√
vt Lxv

√
vt Lxx

√
vt









dW̃ 0
r (t)

dW̃ 0
v (t)

dW̃ 0
x (t)



 ,(C.2)

with Lvv =
√

1− ρ2rv, Lxv = (ρxv − ρxrρrv)/Lvv, Lxx =
√

1− ρ2xr − L2
xv.

The superscript ′0′ indicates that at this point the drift and Brownian drivers are still considered in

the spot measure Q0.

We have as stock dynamics

dS

S
= rtdt+

√
vtdW

0
x = rtdt+ ρxr

√
vtdW̃

0
r + Lxv

√
vtdW̃

0
v + Lxx

√
vtdW̃

0
x , (C.3)

as zero coupon bond dynamics,

dP

P
= rtdt+ ηBrdW

0
r = rtdt+ ηBrdW̃

0
r with Br = − 1

λ(1− e−λτ ), (C.4)
(

dP

P

)2

= η2B2
rdt and −

(

dP

P

)(

dS

S

)

= −ρxr
√
vtηBrdt. (C.5)
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Then, the forward dynamics read

dFt
Ft

= (η2B2
r − ρxrηBr

√
vt)dt+ (ρxr

√
vt − ηBr)dW̃

0
r + Lxv

√
vtdW̃

0
v + Lxx

√
vtdW̃

0
x . (C.6)

The Girsanov kernel obtained from the zero coupon bond dynamics to perform the transformation

from the risk-neutral towards the T-forward measure, Q0 → QT reads




dW̃ 0
r

dW̃ 0
v

dW̃ 0
x



 =





ηBr
0
0



 dt+





dW̃T
r

dW̃T
v

dW̃T
x



 . (C.7)

Since the forward price is a martingale under the T-forward measure Ft = ET [FT |Ft], the forward

dynamics should be driftless:

−→ dFt
Ft

= (ρxr
√
vt − ηBr)dW̃

T
r + Lxv

√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x

= −ηBrdWT
r +

√
vtdW

T
v . (C.8)

However, drift components arise in the log-transform

dx̂t = d logF = − 1
2 [(ρ

2
xr + L2

xv + L2
xx)vt − 2ρxrηBr

√
vt + η2B2

r ]dt+

(ρxr
√
vt − ηBr)dW̃

T
r + Lxv

√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x

= − 1
2 (vt − 2ρxrηBr

√
vt + η2B2

r )dt+

(ρxr
√
vt − ηBr)dW̃

T
r + Lxv

√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x

= − 1
2 (vt − ξ(t))dt +

(ρxr
√
vt − ηBr)dW̃

T
r + Lxv

√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x . (C.9)

For the state vector Xt = [rt, vt, x̂t]
† the affine decomposition of the SDE system in the T-Forward

measure assumes the form:

µ(Xt) = a0 + a1Xt (C.10)

=





λ(θ(t) − rt)− η2Br
κ(v̄ − vt)

ρxrηBrδv − η2

2 B
2
r − vt

2



 =





λθ(t) − η2Br
κv̄

1
2ξ(t)



+





−λ 0 0
0 −κ 0
0 − 1

2 0









rt
vt
x̂t



 ,

ΣXt
= LL† = c0 + c†1Xt (C.11)

=





η2 ρrvγηδv ρrxηδv
ρrvγηδv 0 0
ρrxηδv 0 0



+





(0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 0, 0) (0, γ2, 0) (0, ρxvγ, 0)
(0, 0, 0) (0, ρxvγ, 0) (0, 1, 0)





†

Xt,

r = r0 + r1
†
Xt = 0 + (1, 0, 0)†Xt.

As indicated by the broken lines, in the T-forward measure the matrices separate into IR and EQ

components without cross terms; in particular the coefficients on the EQ side are independent of rt.

Therefore, the Browian drivers dW̃T
r and dW̃T

x are combined without any loss of information

ρxr
√
vt − ηBr)dW̃

T
r + Lxx

√
vtdW̃

T
x + LxvdW̃

T
v ,

[(ρxr
√
vt − ηBr)

2 − L2
xxv(t)]

1
2 dW̃T

F + ρxvdW̃
T
v

= [η2B2
r − 2ρxrηBrδv(t) + vt − ρ2xvvt]

1
2 dW̃T

F + ρxv
√
vtdW̃

T
v

≡ [(vt − ξ(t))− ρ2xvvt]
1
2 dW̃T

F + ρxv
√
vtdW̃

T
v = (vt − ξ(t))

1
2 dW̃T

F , (C.12)
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to form the Brownian drivers under the T-forward measure. This is in effect a dimensional reduction

from 3D to 2D. With the corresponding state vector X̂t = [vt, x̂t]
† the affine decompositon of the

H1HW hybrid model gives rise to the following form under QT :

µF (Xt) = a0 + a1X̂t (C.13)

=

(

κ(v̄ − vt)

ρxrηBrδv − η2

2 B
2
r − vt

2

)

=

(

κv̄
1
2ξ(t)

)

+

(

−κ 0
− 1

2 0

)(

vt
x̂t

)

,

ΣFXt
=

(

γ2vt ρxvγvt
ρxvγvt vt − ξ(t)

)

= c0 + c†1X̂t

=

(

0 0
0 −ξ(t)

)

+

(

(γ2, 0) (ρxvγ, 0)
(ρxvγ, 0) (1, 0)

)†

X̂t,

r = r0 + r1
†
X̂t = 0 + (1, 0, 0)†X̂t.

For the corresponding Fourier state vector, B = [D,B]†, the coefficients of the CHF are defined by

ODEs

d
dτB(u, τ) = −r1 + a†1B+ 1

2B
†(c1)X̂t

B, (C.14)

d
dτD(u, τ) = γ2

2 D
2 + (ρxvγB − κ)D + B

2 (B − 1),

d
dτB(u, τ) = 0,

and d
dτA(u, τ) = −r0 +B

†a0 +
1
2B

†c0B,

d
dτA(u, τ) = κv̄D + ξ(t)

2 B − ξ(t)
2 B2

= κv̄D + (ρxrηBrδv − η2

2 B
2
r )
B
2 (1−B).

with initial conditions B(u, 0) = iu, D(u, 0) = 0, A(u, 0) = 0 given by the choice u
† = [0, 0, u]†. The

corresponding solutions are

CT (u, τ) = − 1
λ (1− e−λτ ) = Br, (C.15)

D(u, τ) = (HestonRiccati solution),

B(u, τ) = iu,

AH1HW (u, τ) =

∫ τ

0

[ ddτA(u, τ)]dτ

Since the IR dynamics separate, the CHF of the H1HW model in the T-forward measure reduces to

Φ̂T (u, X̂t, T, t) = ET
[

eiu
†
X̂t |Ft

]

= ET
[

eiux̂t |Ft
]

= eA
T
H1HW (u,τ)+B(u,τ)x̂t+D(u,τ)vt , (C.16)

with initial condition Φ̂T (u, X̂t, T, T ) = eiu
†
X̂T = eiux̂T ,

and d
dτA

T
H1HW (u, τ) = κv̄D + (u2 + iu)(ρxrηBrδv − η2

2 B
2
r ), (C.17)

ATH1HW (u, τ) = κv̄

∫ τ

0

D(u, τ)dτ + (u2 + iu)ρxrη

∫ τ

0

δvCT (u, τ)dτ − (u2 + iu)η
2

2

∫ τ

0

C2
T (u, τ)dτ

= κv̄I2(u, τ) + ρxrηI
T
4 (u, τ)− η2

2 I
T
3 (u, τ), (C.18)
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with integrals modified with respect to the spot measure results obtained earlier (cf. sections B.1

and 3.2.1):

ρrxηI
T
4 (u, τ) = ρrxη

∫ T

0

(u2 + iu)δv(t)C(u, τ) dτ = (u2 + iu)ρxrη
λ

[

− b
ce

−cT (1 − ecτ ) + aτ − a
λ (1− e−λτ ) + b

c−λ(1− e−τ(λ−c))
]

= 1
iu−1ρxrI4,

∫ τ

0

C2
T (u, τ) dτ = u2+iu

λ2

∫ τ

0

(1− 2e−λτ + e−2λτ ) dτ

= u2+iu
2λ3 (−2λτ − 4e−λτ + 3 + e−2λτ ) = IT3 (u, τ). (C.19)

C.2 Derivation of the H1CH CHF in the Forward Measure QT

In order to derive the forward dynamics, we define the SDE system represented by the covariance

matrix ΣXt
= LXt

L†
Xt

in Cholesky components, i.e.

dXt = µ0(Xt)dt+ LXt
dW̃0, (C.20)









dyt
dxc,t
dvt
dSt

St









=









η2 − 2λyt
yt − λxc,t
κ(v̄ − vt)

rt









dt+









0 0 0 0
0 η 0 0
0 ρvcγ

√
vt Lvvγ

√
vt 0

0 ρxc
√
vt Lxv

√
vt Lxx

√
vt

















dW̃ 0
y (t)

dW̃ 0
c (t)

dW̃ 0
v (t)

dW̃ 0
x (t)









,

with Lvv =
√

1− ρ2vc ∧ Lxv = (ρxv − ρxcρvc)/Lvv ∧ Lxx =
√

1− ρ2xc − L2
xv.

Superscript ′0′ indicates that at this point the drift and Brownian drivers are in the spot measure

Q0.

So, we find for the stock dynamics

dS

S
= rtdt+

√
vtdW

0
x = rt + ρxc

√
vtdW̃

0
c + Lxv

√
vtdW̃

0
v + Lxx

√
vtdW̃

0
x . (C.21)

For the zero coupon bond dynamics we have

dP

P
= rtdt+ ηBcdW

0
x = rtdt+ ηBcdW̃

0
c with Bc = − 1

λ (1− e−λτ ), (C.22)
(

dP

P

)2

= η2B2
cdt and −

(

dP

P

)(

dS

S

)

= −ρxc
√
vtηBcdt. (C.23)

Then, the forward dynamics are found as

dF

F
= (η2B2

c − ρxcηBc
√
vt)dt+ (ρxc

√
vt − ηBc)dW̃

0
c + Lxv

√
vtdW̃

0
v + Lxx

√
vtdW̃

0
x .(C.24)

The Girsanov kernel obtained from the zero coupon bond dynamics to perform the transformation

from the risk-neutral towards the T-forward measure Q0 → QT is given by




dW̃ 0
c

dW̃ 0
v

dW̃ 0
x



 =





ηBc
0
0



 dt+





dW̃T
c

dW̃T
v

dW̃T
x



 . (C.25)
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Since the forward price is as a martingale under the T-forward measure, Ft = ET [FT |Ft], the forward

dynamics should be driftless:

−→ dFt
Ft

= (ρxc
√
vt − ηBc)dW̃

T
c + Lxv

√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x , (C.26)

however, drift components arise in the log-transform

dx̂t = d logFt = − 1
2 [(ρ

2
xc + L2

xv + L2
xx)vt − 2ρxcηBc

√
vt + η2B2

c ]dt+

(ρxc
√
vt − ηBc)dW̃

T
c + Lxv

√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x

= (− vt
2 + ρxcηBc

√
vt − η2

2 B
2
c )dt+

(ρxc
√
vt − ηBc)dW̃

T
c + Lxv

√
vtdW̃

T
v + Lxx

√
vtdW̃

T
x . (C.27)

For the state vector, X̂t = [yt, xc,t, vt, x̂t]
†, the affine decomposition of the SDE system in the

T-forward measure is given by

µ(X̂t) = a0 + a1Xt =









η2 − 2λyt
yt − λxc,t
κ(v̄ − vt)

ρxcηBcδv − η2

2 B
2
c − vt

2









=









η2

f(0, t)
κv̄

1
2ξc(t)









+









−2λ 0 0 0
1 −λ 0 0
0 0 −κ 0
0 0 − 1

2 0

















yt
xc,t
vt
x̂t









,

Σ
X̂t

= LL† = c0 + c†1X̂t (C.28)

=









0 0 0 0
0 η2 ρcvγηδv ρcxηδv
0 ρvcγηδv 0 0
0 ρxcηδv 0 0









+









(0) (0) (0, 0, 0, 0) (0, 0, 0, 0)
(0) (0) (0, 0, 0, 0) (0, 0, 0, 0)
(0) (0) (0, 0, γ2, 0) (0, 0, ρxvγ, 0)
(0) (0) (0, 0, ρxvγ, 0) (0, 0, 1, 0)









†

X̂t,

r = r0 + r1
†
X̂t = 0 + (0, 1, 0, 0)†X̂t. (C.29)

As indicated by the broken lines, in the T-forward measure the matrices separate into IR and EQ

components without cross terms; in particular the coefficients on the EQ side are independent of

xc,t and yt. Therefore

ρxc
√
vt − ηBc)dW̃

T
c + Lxx

√
vtdW̃

T
x + LxvdW̃

T
v

−→ [(ρxc
√
vt − ηBc)

2 − L2
xxv(t)]

1
2 dW̃T

F + ρxvdW̃
T
v

= [η2B2
c − 2ρxcηBcδv(t) + vt − ρ2xvvt]

1
2 dW̃T

F + ρxv
√
vtdW̃

T
v

≡ [(vt − ξc(t)) − ρ2xvvt]
1
2 dW̃T

F + ρxv
√
vtdW̃

T
v = (vt − ξc(t))

1
2 dW̃T

F , (C.30)

Again in analogy to the H1HW system discussed in the preceding section, this is in effect a dimension

reduction from 3D to 2D. With the corresponding state vector X̂t = [vt, x̂t]
† the affine decompositon
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of the H1CH hybrid model assumes the following form under QT :

µF (Xt) = a0 + a1X̂t (C.31)

=

(

κ(v̄ − vt)

ρxcηBcδv − η2

2 B
2
c − vt

2

)

=

(

κv̄
1
2 ξc(t)

)

+

(

−κ 0
− 1

2 0

)(

vt
x̂t

)

,

ΣFXt
=

(

γ2vt ρxvγvt
ρxvγvt vt − ξc(t)

)

= c0 + c†1X̂t

=

(

0 0
0 −ξc(t)

)

+

(

(γ2, 0) (ρxvγ, 0)
(ρxvγ, 0) (1, 0)

)†

X̂t. (C.32)

r = r0 + r1
†
X̂t = 0 + (1, 0, 0)†X̂t. (C.33)

For the corresponding Fourier state vector B = [D,B]† the coefficients of the CHF follow from the

defining ODEs

d
dτB(u, τ) = −r1 + a†1B+ 1

2B
†(c1)X̂t

B,

d
dτD(u, τ) = γ2

2 D
2 + (ρxvγB − κ)D + B

2 (B − 1), (C.34)

d
dτB(u, τ) = 0,

and d
dτA(u, τ) = −r0 +B

†a0 +
1
2B

†c0B,

d
dτA(u, τ) = κv̄D + ξc(t)

2 B − ξc(t)
2 B2,

= κv̄D + (ρxcηBcδv − η2

2 B
2
c )
B
2 (1−B),

with initial conditions B(u, 0) = iu, D(u, 0) = 0, A(u, 0) = 0 given by the deliberate choice u
† =

[0, 0, u]†. The corresponding solutions are

CT (u, τ) = − 1
λ (1− e−λτ ) = Bc, (C.35)

D(u, τ) = (HestonRiccati solution), (C.36)

B(u, τ) = iu, (C.37)

AH1CH(u, τ) =

∫ τ

0

[ ddτA(u, τ)]dτ

Since the IR dynamics separate, the CHF of the H1CH in the T-forward measure reduces to

Φ̂T (u, X̂t, T, t) = ET
[

eiu
†
X̂t |Ft

]

= ET
[

eiux̂t |Ft
]

= eA
T
H1CH (u,τ)+B(u,τ)x̂t+D(u,τ)vt , (C.38)

with terminal condition : Φ̂T (u, X̂t, T, T ) = eiu
†
X̂T = eiux̂T ,

and d
dτA

T
H1CH(u, τ) = κv̄D + (u2 + iu)(ρxcηBcδv − η2

2 B
2
c ) (C.39)

−→ ATH1CH(u, τ) = κv̄

∫ τ

0

D(u, τ)dτ + (u2 + iu)ρxcη

∫ τ

0

δvCT (u, τ)dτ − (u2 + iu)η
2

2

∫ τ

0

C2
T (u, τ)dτ

= κv̄I2(u, τ) + ρxcηI
T
4 (u, τ)− η2

2 I
T
3 (u, τ) (C.40)

with integrals modified with respect to the spot measure results obtained earlier (cf. appendix C.1).

Evidently, the relation between H1HW and H1CH, which is somewhat more difficult to see in the

spot measure and has to be made accessible via explicit reformulations under QB, becomes perfectly

obvious upon transformation to QT .

86



Appendix D

Model Test Parameters

D.1 Heston Model Test Sets

The Heston model is the EQ component of all hybrid models under discussion in this thesis. Nu-

merical evaluations of the Heston model need to be performed with care, in particular when the

Feller condition is violated. In all hybrid model implementations the Heston model is retained in the

limit of deterministic IRs. In order to ensure the quality of all numerical implementations, results

for the Heston EQ component are calculated with test parameters. Test results are cross-checked

with the corresponding published results, and compared between different implementation methods

(Monte-Carlo, PDE, FFT and COS methods).

ID T S0 v0 κ v̄ γ ρxv r0 Reference
H-1 10 100 0.05 0.3 0.05 0.6 -0.3 0.02 [1], Tbl. 4.1
H-2 0.5 1 0.0407 0.3 0.0823 0.5992 -0.5832 0.04 [1], Tbl. 6.1
H-3 10 1 0.0411 0.3 0.0828 0.6019 -0.4849 0.04 [1], Tbl. 6.1
H-4 0.5 1 0.0407 0.3 0.0822 0.5840 -0.6006 0.04 [1], Tbl. 6.2
H-5 10 1 0.0418 0.3 0.0826 0.4921 -0.6150 0.04 [1], Tbl. 6.2
H-6 1 100 0.04 1.5 0.04 0.3 -0.9 0.025 [39], Tbl. 1
H-7 1 100 0.12 3.0 0.12 0.04 0.6 0 [39], Tbl. 1
H-8 3 100 0.0707 0.6067 0.0707 0.2928 -0.7571 0 [39], Tbl. 1

Table D.1: Heston model test sets. Model parameters as introduced in Appendix A.1 above.

D.2 Hull-White Model Test Sets

Hull-White model test sets to ensure the quality of HW implementations by comparison with pub-

lished results.

ID λ θ η ρxr Reference
HW-1 0.01 0.02 0.01 {0.0, 0.2, 0.6} [1], Tbl. 4.1
HW-2 0.501 0.04 0.005 {0.0, 0.2, 0.6} [1], Ch.6

Table D.2: Hull-White Model test sets with HW parameters as introduced in Appendix A.2.1.
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Appendix E

Additional Numerical Experiments
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Figure E.1: Comparison of implied volatilities of affine hybrid model approximations in order to see
DDSV effects. All results are obtained for equity call options in the high IR smile scenario (corre-
sponding to β = 0.2, ǫ = 1.2). Left: Difference in implied volatilities between H1CV (with DDSV)
and H1CH (without DDSV) as function of maturity T (top) and of EQ-IR correlation (bottom),
respectively. Apparently DDSV effects are relevant at all maturities T > 0.5, and become more
pronounced with increasing EQ-IR correlation. Right: Differences between H1LMM (with DDSV,
IR component LMM based) and H1CV (with DDSV, IR component Cheyette based). Differences
are relevant at all maturities (top), increase with higher EQ-IR correlation and strikes X (bottom).
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Figure E.2: Z(u, τ) computation by numerical evaluation of the ODE with the Runge-Kutta method
in comparison to the recursive analytic approach. Evaluation of the recursive ansatz proves to be
viable with respect to quality and superior in view of performance. The plotted time range is spaced
into about 20 subintervals for the recursion.
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Figure E.3: Comparison of full-scale hybrid model affine approximations: The Heston EQ component
is combined with a HW (H1HW), Cheyette (H1CH, H1CV) or LMM (H1LMM) IR component.
EQ-IR correlation is set to ρxr = 0.9. Compared are European equity call options evaluated by
Carr-Madan FFT (damping factor α = 0.75) at maturities T = 2 (black), T = 5 (blue) and T = 10
(red), respectively. EQ option prices are shown in both top panels (model identification according
to symbols in top level legend); corresponding implied volatilities are shown below, identified by the
color code for maturities and symbol code for the models. Left half: Parameter limit where IR smile
contributions are negligible (β = 0, ǫ = 0). Right half: IR smile contributions are pushed to high
limits (β = 0.2, ǫ = 1.2). H1CV and H1LMM include DDSV extensions. Implied volatility results
(particularly at long maturities) show that the H1CV bridges between classical hybrid short rate
models and HJM based market models with DDSV extensions.
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Figure E.4: Calibration results to fix the volatility specification of short rate based IR model compo-
nents. Calibration proceeds on the basis of the caplet prices corresponding to the DD LMM implied
volatility base skew surface in IR scenario 1. The results are compared with the reference data
published in [4] (section 3 therein).
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Figure E.5: Levenberg-Marquardt calibration of the Heston EQ component for selected snapshots
of maturity. Calibration basis are the EQ call option quotes from [4] (section 5.1 and Appendix
E therein). The calibration results are compared with the reference data and the corresponding
calibration results of the reference publication [4] (section 5.3 therein).
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Figure E.6: HLMM Monte-Carlo results for the hybrid product HD2 - Minimum Of Several Assets

Payoff for comparison with [4] (Fig 5.3, left panel therein). The hybrid product value (presuming
S0 = 1, Ti = 5, TN = 10) as function of the relative equity contribution k is in very grood agreement
with the reference results. Results for the same hybrid product and corresponding parameters are
shown for the HCV and H2CV models for comparison.
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Appendix F

Additional Derivations

HHW/HCH IR component: Analytic prices of contingent claims

In case of constant volatility an analytic valuation formula for contingent claims with European

exercise features is constructable in the Cheyette framework in analogy to the Black pricing for-

mula.In analogy to the HW model, the initial term structure fixes only the mean reversion level, and

products of the IR market are employed to calibrate reversion rate λ and volatility η. For the simple

1D Markov Cheyette system (like in the HW model) analytic formulas exist to price IR caplets and

swaptions. The calibration in the model validation context under consideration is performed using

IR caplets. By definition,

Vcpl(t) = P (t, Ti)(Ti+1 − Ti)E
Ti

[

(L(Ti;Ti, Ti+1)−K)+

1 + (Ti+1 − Ti)L(Ti;Ti, Ti+1)

]

, (F.1)

the caplet price Vcpl is the expected value of a call option on the forward Libor rate L(Ti;Ti, Ti+1)

at t = Ti with strike K and actual payoff at t = Ti+1 (so the payoff is discounted assuming simple

compounding to t = Ti).

In order to use the analytic bond option valuation formula (obtained by Jamshidian’s trick [30b])

the following reformulation is performed:

Vcpl(t) = P (t, Ti)E
Ti

[

1 + (Ti+1 − Ti)L(Ti;Ti, Ti+1)− (1 + (Ti+1 − Ti)K)

1 + (Ti+1 − Ti)L(Ti;Ti;Ti+1)

]+

= P (t, Ti)E
Ti

[

1− 1 + τiK

1 + τiL(Ti;Ti;Ti+1)

]+

= P (t, Ti)E
Ti [1− (1 + τiK)P (Ti;Ti+1)]

+

= P (t, Ti)(1 + τiK)ETi [Kp − Fp]
+ . (F.2)

Hence, in short rate models caplets are understood as a portfolio of zero bond put options. The

pricing is accomplished by an adoption of the Black formula for put options,

Vcpl(t) = P (t, Ti)(1 + τiK)
(

KpN(−d̄2)− FpN(d̄1)
)

, (F.3)
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with generalized arguments for strike Kp, forward price Fp and bond volatility Vp:

Kp =
1

(1 + τiK)
, (F.4)

Fp = P (Ti, Ti+1), (F.5)

Vp = V[P (Ti, Ti+1)] = bc(Ti, Ti+1)
2V[xc,t]

= 1
λ2 (1− e−λ(Ti+1−Ti))2 η

2

2λ(1− e−2λTi) (F.6)

≡ σ2
p, (F.7)

−→ d̄1 = 1
σp

ln
Fp

Kp
+

σp

2 and d̄2 = d̄1 − σp. (F.8)

Here V[x] denotes the variance of the stochastic variable x. With the bond variance explicitly

derivable, the Cheyette CHF based on the bond variance is known, i.e.

Φ̂pc = eiu(lnF−
1
2Vp)−

u2

2 Vp . (F.9)

Therefore, it is in principle possible to calculate the caplet prices by Fourier valuation methods (cf.

Appendix A.1) - as an alternative to the Black formula. It is important to note that the IR model

calibration to caplets proceeds under the bond measure (with CH volatility η). Up to linear order

the volatilities in the bond and T-forward measure ηf are related in the following fashion,

η ≃ f(0, t) ηf , (F.10)

though the two caplet prices obtained in the respective measures are in principle not straightfor-

wardly exchangeable.

Caplet prices to validate numerical implementations

Analytic caplet prices serve to validate numerical implementations of the HW and CH IR components

of the hybrid models under discussion. The extension of the Cheyette (CH) IR component by a

displaced-diffusion (DD) and stochastic volatility (SV) approach is an essential point of the present

work, where the volatility specification assumes the form (for details and variable descriptions cf.

section 3.4.2):

ηt(xc,t, zt) = sk(t)(bk(t)πt + (1 − bk(t))π0)
√
zt, (F.11)

with πt = f(0, t) + xc,t

dzt = β(z̄ − zt)dt+ ǫ
√
ztdWz(t).

Though caplet prices in DDSV model extensions have no analytic reference, the plain CH caplet price

follows for limiting parameter sets. By freezing the initial short rates in the DD approach (βk → 0),

and rendering the SV process quasi-deterministic by the choices β ≪ 1 and ǫ→ 0, analytical refer-

ence prices are applicable. In Fig. F.1 typical error levels for the caplet implied volatility surfaces

are shown for Monte-Carlo (MC) implementations of the CH IR component in the spot measure

QB and terminal measure QT , respectively. In general, all numerical implementations presented are

validated against limiting cases where analytical cross-checks are applicable.
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Figure F.1: HW/CH caplet prices obtained by Monte-Carlo (MC) simulation in the spot QB and
QT measure are compared to the analytic reference value (with η=const) at times T=2, 5 and 10
(left subfigure). Simulations are performed with 106 MC paths and 800 timesteps per maturity
tenor ∆T = Ti+1 − Ti = 1. The corresponding error levels measured as absolute difference to the
analytical reference amount to much less than 0.5% over most of the relevant caplet implied volatility
surface in the spot measure QB (middle) as well as in the terminal measure QT (right), respectively.
Cheyette parameters for this particular demonstration are λ = 0.3, η = 0.125; initial term structure

is given by P (0, Ti) = e−
∫ Ti
0 f(0,τ)dτ with f(0, t) = 0.05. Number of paths and time discretization is

typical for the model validation scenarios discussed below. Under these MC constraints, the error
level is generally much below the symbol size of plot markers, and hence, the use of error bars is not
applicable.

HHW/HCH hybrid models: Analytic prices of contingent claims

In the limit of vanishing EQ-IR correlations ρxr = ρxc → 0 an analytic solution for European call

options is derivable as detailed in Appendix B.1.2.

This limit corresponds to the uncorrelated hybrid 1F-HHW model introduced above and the analyt-

ical equity option prices serve as important consistency check to validate all numerical implementa-

tions of hybrid models.
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