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We consider the convexity correction in a multi-factor SABR type stochastic volatility
model, in which the volatility and the short-term forward rate are modeled as inde-
pendent factors. In general, the convexity correction is not analytically tractable in a

multi-factor model, but based on the assumption of linear swap rates an analytic solution

is available. Linear swap rate models are popular among practitioners for their efficiency
and their ability to capture the swaption volatility smile. For an efficient approximation

of the solution, we adopt the small disturbance asymptotics technique and construct a
stochastic Taylor series of the underlying process. Several numerical experiments com-
pare the accuracy of the approximation with a Monte Carlo benchmark solution.

Keywords: Convexity Correction; SABR Model; Stochastic Taylor Expansion.

1. Introduction

The growing popularity of transactions of constant maturity swap (CMS) type in
the fixed income market has increased the demand for accurate and efficient pricing
methods. This research topic attracts efforts from academia and practitioners alike.

The main lines of research for pricing methods seem to go basically in two direc-
tions. In the first, one deals with the problem by setting up a term-structure model
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under the T -forward measure, where the pricing originally occurs. For example,
Brigo and Mercurio [3] model the bond prices associated with the CMS swap and
quanto CMS swap by a G2++ model (2-factor Gaussian short rate model). The
papers by Lu and Neftci [24] and Henrard [7] express the CMS swap as a collection
of forward LIBOR rates under the forward measure and compute numerically the
CMS price in a full-factor LIBOR market model. These approaches result in black-
box computational schemes in which the risk sensitivities, e.g. the Vega, cannot be
derived directly.

In the second line of research the pricing problem is formulated under the so-
called swap measure and the given implied swaption volatilities are considered as
the ‘market distribution of the swap rates’. Since CMS products are mainly hedged
by forward swaps and swaptions, the advantage of the measure change approach is
consistency between the CMS products and their hedging instruments. Because of
the measure change, from the forward to the swap measure, the Radon-Nykodym
derivatives need to be approximated. Hunt and Kennedy [9] and Pelsser [19] ap-
proximate this measure change ratio in terms of a linear function of the swap rate
(assuming that the yield curve is mainly driven by the swap rate) and obtain an
analytic solution to the CMS price. Hagan [4] and Mercurio [18] succeed in stat-
ically replicating the CMS swap/options by European swaptions. Because of the
popularity of the static replication approach, an increasing volume of swaption
transactions for hedging purposes has been observed in the market, resulting in a
more pronounced smile. A problem is the assumption of a one-factor yield curve,
as only parallel shifts in the yield curve can then be taken into account. However,
a CMS structure depends significantly on the slope of the yield curve, but it is not
very sensitive to parallel shifts [2].

In this paper, we adopt the Stochastic Alpha Beta Rho (SABR) model [5] to
describe the dynamics of the underlying swap rate. The SABR model has the capa-
bility of generating rich skew/smile patterns and it is often used in the market [22].
We introduce an additional yield curve factor, next to the swap rate, in the mea-
sure change ratio, in order to take the dynamics at the short-end of the yield curve
into account. Here, the CMS convexity correction is decomposed in two parts: A
part driven by the variance of the swap rate, which is affected by the skew/smile
in the implied swaption volatilities, and a second part related to the covariance
between the swap and LIBOR rate, which is a result of the terminal decorrelation a

between these two rates. One can view our pricing approach as a perturbation of
the conventional CMS convexity correction away from the one-factor assumption.

aWhat influences the price of an exotic product, as Rebonato [21] states, is not the instantaneous

correlation or volatility functions, but, the terminal (as opposed to instantaneous) decorrelation,
ρ̄xy(T ), defined by

ρ̄xy(T ) =

R T
0 σx(s)σy(s)ρxy(s)dsqR T
0 σx(s)2ds

R T
0 σy(s)2ds

.
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We obtain an analytic approximation formula for the covariance, based on the
well-known stochastic Taylor expansion [15]. Deriving the stochastic Taylor expan-
sion by a repeated use of Itô’s lemma is somewhat cumbersome when higher orders
terms are considered. We can simplify the derivation by adopting a small distur-
bance asymptotics technique (e.g. Yoshida [25] and Kunitomo [16]) to construct the
Taylor series of the multi-factor SABR process.

There are a number of advantages to our approach. First of all, it models forward
swap rates directly, and therefore achieves a very satisfactory agreement between the
CMS contracts and their hedging instruments. Secondly, the SABR model can easily
be calibrated to implied volatilities of the liquid swaptions. Thirdly, it reflects the
CMS’ price sensitivity to the yield curve forward correlation structure. And, finally,
it provides an easy-to-implement approximation formula for the CMS convexity
correction under the multi-factor model. Hence it can be used for a quick evaluation
of the model risk resulting from the terminal decorrelation of the forward rates.

A less direct implication of our work is the following. The pricing of derivatives
written on CMS contracts, such as CMS swaps and spread options, on the basis of
underlying CMSs is impossible when the markets for the latter become illiquid, as
in the recent financial distress. In such circumstances and as long as markets for
plain interest rate swaps are still liquid, a conceptually sound and practically viable
alternative is to price CMSs on the basis of the underlying swap prices and then
price CMS derivative based on such ‘synthetic CMS prices’.

The paper is organized as follows. In Section 2, the pricing problem is formu-
lated in an arbitrage-free way so that CMS-based derivatives are consistently priced
across measures. Section 3 presents the stochastic Taylor expansion formula to the
covariance of a two-factor stochastic volatility model. Examples and corresponding
results for the approximate model are summarized in Section 4, where the approx-
imate solutions are compared against short time step Monte Carlo prices. In the
last section, conclusions are made.

2. Problem Formulation

A feature which distinguishes CMS-type contracts from plain vanilla contracts is
that they pay a swap rate of one maturity, say 10 years, at each resetting time, as
opposed to a regular swap, which pays the same coupon rate throughout a whole
period. Hence to compute the CMS rate an adjustment has to be made to the
forward swap rate implied by the swap rate curve. This adjustment is convex in
the swap rate as its ‘official’ name, convexity correction, suggests. The convexity
(in the swap rate) is the result of positive correlation in the yield curve b. The

bImagine the swap rate increases in value, then the discounting effect in the annuity, on which the

forward swap is paid, will increase. As a result, the forward swap payoff may increase more slowly
than the one-time-payment of the swap rate; On the other hand, when the swap rate decreases in
value the discounting effect in the annuity may get smaller, and, consequently, the forward swap

payoff may decrease faster than the one-time-payment swap rate.
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one-time-payment of the swap rate is always greater than, or equal to, the regular
forward swap rate.

The above description is merely heuristic; the mathematical set-up for the CMS
contract will be described in more detail in Sec. 4.2.

Because of the existence of multiple admissible pricing measures c, it is impor-
tant to make sure that a product is consistently priced across measures without
any arbitrage possibilities. The implication of this constraint is investigated in the
following sections.

2.1. Measure Change and Arbitrage-free Constraints

Girsanov’s transformation gives rise to a convexity correction, and pricing problems
in general, due to the change of measure:

EQ∗[φ(XT )|Ft] =
Nt
N∗
t

EQ
[N∗

T

NT
φ(XT )|Ft

]
, (2.1)

where φ(XT ) is a payoff function; T is maturity time. We denote the value of Xt’s
natural numeraire at time t as Nt whereas N∗

t is the (unnatural) numeraire under
which the payment terms are specified. Regarding the notation, we denote the
filtration up to time t by a subscript t to the expectation sign, i.e. EQ[·|Ft] = EQt [·],
whenever necessary. So, EQ0 [·] indicates an expectation w.r.t the filtration up to
current time point, t = 0.

In order to satisfy the no-arbitrage conditions, we make the following assump-
tion:

Assumption 2.1. All rates are priced in an arbitrage-free way under their own
natural pricing measure. So, the rate Xt is a martingale process under the natural
measure Q. Related to the RHS of Eq. (2.1), this assumption excludes the possibility
of arbitrage in the rate Xt.

By making use of the relation E[XY ] = E[X]E[Y ] + Cov[X,Y ], one finds that
the convexity correction originates from the covariance between two stochastic pro-
cesses:

EQ∗t [φ(XT )] =
Nt
N∗
t

EQt

[N∗
T

NT
φ(XT )

]
=
Nt
N∗
t

EQt

[N∗
T

NT

]
EQt

[
φ(XT )

]
+
Nt
N∗
t

CovQt
[N∗

T

NT
, φ(XT )

]
= EQt

[
φ(XT )

]
+
Nt
N∗
t

CovQt
[N∗

T

NT
, φ(XT )

]
︸ ︷︷ ︸

Convexity correction Cct

. (2.2)

The last equality in (2.2) is the result of the martingale property of the term N∗
T /NT

which is due to the fact that it is a ratio of two tradable assets and the martingale
property of XT under its natural measure Q.

cin this, as well as in many other interest rate derivative pricing problems.
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Let us focus on the numeraire ratio N∗
T /NT . Because the yield curve is highly

correlated, changes in rate XT give rise to proportional movements of the natural
numeraire NT . The numeraire N∗

T is, however, driven by another rate, which we
denote by YT . So, the numeraire ratio is a function of two rates, i.e.

N∗
T

NT
= f(XT , YT ). (2.3)

We further assume the following:

Assumption 2.2. The function f(Xs, Ys) in Eq. (2.3) is smooth and twice differ-
entiable w.r.t Xs and Ys with s ∈ (t, T ].

By Itô’s lemma [10], we have

N∗
T

NT
− N∗

t

Nt
=
∫ T

t

{ ∂f
∂Xs

dXs +
∂f

∂Ys
dYs +O(ds)}.

The CMS swap has a payoff which is linear in the swap rates, i.e. Φ(XT ) = XT (we
only consider this case in the present paper). Then, we have the payoff in stochastic
integral form

Φ(XT ) = XT = Xt +
∫ T

t

dXs, (2.4)

and hence using (2.3) and (2.4) the convexity correction (2.2) simplifies:

Cct =
Nt
N∗
t

CovQt
[N∗

T

NT
, φ(XT )

]
=
Nt
N∗
t

EQ
[(N∗

T

NT
− N∗

t

Nt

)
(XT −Xt)

]
=
Nt
N∗
t

EQt

[{ ∫ T

t

∂f

∂Xs
dXs ·

∫ T

t

dXs +
∫ T

t

∂f

∂Ys
dYs ·

∫ T

t

dXs +
∫ T

t

O(ds)ds ·
∫ T

t

dXs

}]
≈ Nt
N∗
t

{ ∂f

∂Xt
EQt
[ ∫ T

t

dXs ·
∫ T

t

dXs

]
+
∂f

∂Yt
EQt
[ ∫ T

t

dYs ·
∫ T

t

dXs

]
+
∫ T

t

O(ds)dsEQt [
∫ T

t

dXs]︸ ︷︷ ︸
=0

}

=
Nt
N∗
t

( ∂f
∂Xt

VarQt [XT ] +
∂f

∂Yt
CovQt [XT , YT ]

)
. (2.5)

Usually the partial derivatives of the numeraire ratio are smooth and slow varying [8,
11]. A widely accepted approach is therefore to freeze them to their initial values,
as demonstrated in Hull and White [8] and Jäckel and Rebonato [11]. This is also
the approximation made in Eq. (2.5).

The form of Eq. (2.5) suggests that the convexity correction is driven by the
terms VarQt [XT ] and CovQt [XT , YT ]. The covariance-based formulation naturally
combines with multi-factor arbitrage-free interest rate modeling. This is a useful
property of (2.5) because traders tend to have better formalized view about the
correlation between two arbitrary interest rates than about the joint density of
these two rates [21].
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2.2. Model Set-Up and Technical Issues

The drawback of the covariance-based formulation (2.5) is of a technical nature,
since the variance and covariance quantities are not easily computed, especially not
when skew/smile features are taken into account. The main result of this paper is,
therefore, an expansion formula for the covariance quantity in a multi-factor stochas-
tic volatility model based on the Stochastic Alpha Beta Rho (SABR) model [5] under
a reference measure, i.e. ∀s ∈ (t, T ]

dXs = σs(Xs)βxdW
(1)
s

dYs = µ(s, Ys)ds+ σs(Ys)βydW
(2)
s

dσs = ησsdZs,

(2.6)

with η the volatility-of-the-volatility. The three Brownian motions forms the follow-
ing correlation matrix  1 ρxy ρxz

ρxy 1 ρyz
ρxz ρyz 1


with 〈dW (1)

s dZs〉 = ρxzds, 〈dW (2)
s dZs〉 = ρyzds and 〈dW (1)

s dW
(2)
s 〉 = ρxyds (〈·〉 is a

notation for inner products). Note that the model is defined under rate Xs’s natural
measure Q. Superscript Q is omitted for ease of presentation. In the rest part of the
paper, the processes without specific superscripts are defined under the measure Q.
Term µ(s, Ys) is the arbitrage-free drift of the rate Ys whose natural pricing measure
is Q∗.

Practitioners often choose fewer volatility factors than the number of state
variables, like a single volatility factor in, e.g., Piterbarg [20], Andersen and An-
dreasen [1]. In this paper, we also use a single volatility factor in (2.6). It serves as
a first multi-factor academic model for the techniques proposed.

The convexity correction in a two-factor model has been derived for bi-variate
log-normal models in [23]. In a bivariate log-normal distribution, the covariance can
easily be computed by integrating over the terminal bi-variate distribution of the
rate with respect to the modified d payoff function of the two rates involved, Xt

and Yt. However, when stochastic volatility is considered, the integration over the
terminal bi-variate distribution does not result in the correct values, because the
process [Xt, Yt] is not Markovian and the volatility realized along the path has a
non-trivial impact on the convexity correction.

Even if we obtain the joint densities of the triplets [Xt, Yt, σt] correctly, there
is no guarantee that we can directly integrate the terminal joint density over the
payoff function when including the arbitrage-free constraints. In the next section,
we therefore use a different method to approximate the covariance, based on the
stochastic Taylor expansion.

dIt is modified, because the relative numeraire is also included in the expected value of the payoff.
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3. Stochastic Taylor Expansion to the Two-Factor SABR Model

Usually, multi-factor SABR prices are computed by a short time step Monte Carlo
procedure, which is time consuming. In this section, we derive an approximation
to the covariance quantity. The method used is based on the well-known Itô-Taylor
expansion, described in Kloeden and Platen [15], and references therein. Instead
of deriving the formula by directly applying Itô’s lemma, we rely on the small
disturbance asymptotics technique, described in Kunitomo and Takahashi [16], to
construct the Taylor series of the processes Xt and Yt. This technique has been
applied to interest rate derivative pricing problems by Kawai [12,13] and Hagan [6].
Its theoretical validity was discussed in detail in [17].

3.1. Stochastic Taylor Expansion to Asset Dynamics

We express the solution in terms of successive terms with different orders of growth
in time t. We first reformulate the system (2.6) by specifying a time rescaling t =
ε2τ , so that the processes εW (·)

τ , εZτ have the same variances as W (·)
t and Zt,

respectively.

dX
(ε)
τ = εσ

(ε)
τ (X(ε)

τ )βxdW
(1)
τ

dY
(ε)
τ = ε2µ(τ, Y (ε)

τ )dτ+ εσ
(ε)
τ (Y (ε)

τ )βydW
(2)
τ

dσ
(ε)
τ = εησ

(ε)
τ dZτ

(3.1)

The covariance of the time rescaling processes, X(ε)
τ and Y (ε)

τ , does not change, i.e.

〈dX(ε)
τ dY (ε)

τ 〉 ∝ ε2ρxydτ = ρxydt ∝ 〈dXtdYt〉.

Since we do not know the distribution of system (3.1) explicitly, we consider the
stochastic expansion around a deterministic process [X(0)

τ , Y
(0)
τ , σ

(0)
τ ] when the time

rescaling parameter, ε, goes to zero, as required by the adopted small disturbance
asymptotic technique. We substitute the time rescaling process in the definition
of the covariance and truncate the solution up to the desired order of accuracy to
obtain an approximation formula for the covariance.

Proposition 3.1. The stochastic Taylor expansion of the volatility process, σ(ε)
τ ,

up to fourth order, reads

σ(ε)
τ = σ(0)

τ + εσ(1)
τ + ε2σ(2)

τ + ε3σ(3)
τ +O(ε4),
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where

σ(0)
τ = σ0,

σ(1)
τ :=

∂σ
(ε)
τ

∂ε

∣∣∣
ε=0

=
∫ τ

0

ησ0dZs,

σ(2)
τ :=

1
2
∂2σ

(ε)
τ

∂ε2

∣∣∣
ε=0

=
∫ τ

0

η

∫ s1

0

ησ(0)
s2 dZs2dZs1 ,

σ(3)
τ :=

1
6
∂3σ

(ε)
τ

∂ε3

∣∣∣
ε=0

=
∫ τ

0

η

∫ s1

0

η

∫ s2

0

ησ(0)
s3 dZs3dZs2dZs1 .

Proof. This is a well-known result. The Taylor expansion of σ(ε)
τ around ε = 0

gives

σ(ε)
τ = σ(0)

τ + ε
∂σ

(ε)
τ

∂ε

∣∣∣
ε=0

+
1
2
ε2
∂2σ

(ε)
τ

∂ε2

∣∣∣
ε=0

+
1
6
ε3
∂3σ

(ε)
τ

∂ε3

∣∣∣
ε=0

+O(ε4).

From the volatility process in integral form,

σ(ε)
τ = σ0 + ε

∫ τ

0

ησ(ε)
s dZs,

one finds that σ(0)
τ = σ0.

Then

∂σ
(ε)
τ

∂ε

∣∣∣
ε=0

=
[ ∫ τ

0

ησ(ε)
s dZs + ε

∫ τ

0

η
∂σ

(ε)
s

∂ε
dZs

]∣∣∣
ε=0

=
∫ τ

0

ησ0dZs;

∂2σ
(ε)
τ

∂ε2

∣∣∣
ε=0

=
[
2
∫ τ

0

η
∂σ

(ε)
s

∂ε
dZs + ε

∫ τ

0

η
∂2σ

(ε)
s

∂2ε

]∣∣∣
ε=0

= 2
∫ τ

0

η
∂σ

(0)
s

∂ε
dZs = 2

∫ τ

0

η

∫ s1

0

ησ(0)
s2 dZs2dZs1 .

Similarly, we find

∂3σ
(ε)
τ

∂ε3

∣∣∣
ε=0

= 6
∫ τ

0

η

∫ s1

0

η

∫ s2

0

ησ(0)
s3 dZs3dZs2dZs1 .

Proposition 3.2. The stochastic Taylor expansion of X(ε)
τ , up to fourth order, can

be expressed as follows:

X(ε)
τ = X(0)

τ + εX(1)
τ + ε2X(2)

τ + ε3X(3)
τ +O(ε4), (3.2)
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where

X(0)
τ =X0,

X(1)
τ :=

∂X
(ε)
τ

∂ε

∣∣∣
ε=0

=
∫ τ

0

σ0(X0)βxdW (1)
s ,

X(2)
τ :=

1
2
∂2X

(ε)
τ

∂ε2

∣∣∣
ε=0

=
∫ τ

0

σ0

∫ s1

0

σ0βx(X0)βx−1dW (1)
s2 dW

(1)
s1 +

∫ τ

0

(X0)βx

∫ s1

0

ησ0dZs2dW
(1)
s1 ,

X(3)
τ :=

1
6
∂3X

(ε)
τ

∂ε3

∣∣∣
ε=0

=
∫ τ

0

σ0

∫ s1

0

σ0

∫ s2

0

σ0βx(βx − 1)(X0)βx−2dW (1)
s3 dW

(1)
s2 dW

(1)
s1

+
∫ τ

0

σ0

∫ s1

0

βx(X0)βx−1

∫ s2

0

ησ0dZs3dW
(1)
s2 dW

(1)
s1

+
∫ τ

0

(X0)βx

∫ s1

0

η

∫ s2

0

ησ0dZs3dZs2dW
(1)
s1

+
∫ τ

0

∫ s1

0

η
(
σ0

)2
βx(X0)βx−1Zs1W

(1)
s1 dW

(1)
s1 .

Proof. We make a Taylor expansion of the process X(ε)
τ around ε = 0:

X(ε)
τ = X(0)

τ + ε
∂X

(ε)
τ

∂ε

∣∣∣
ε=0

+
1
2
ε2
∂2X

(ε)
τ

∂ε2

∣∣∣
ε=0

+
1
6
ε3
∂3X

(ε)
τ

∂ε3

∣∣∣
ε=0

+O(ε4).

It is again easy to see that X(0)
τ = X0. Following the arguments in Kunitomo [16],

we have

∂X
(ε)
τ

∂ε

∣∣∣
ε=0

=
[ ∫ τ

0

σ(ε)
s (X(ε)

s )βxdW (1)
s + ε

∫ τ

0

σ(ε)
s

∂(X(ε)
s )βx

∂ε
dW (1)

s + ε

∫ τ

0

(X(ε)
s )βx

∂σ
(ε)
s

∂ε
dW (1)

s

]∣∣∣
ε=0

=
∫ τ

0

σ(0)
s (X(0)

s )βxdW (1)
s =

∫ τ

0

σ0(X0)βxdW (1)
s ;

∂2X
(ε)
τ

∂ε2

∣∣∣
ε=0

=
[
2
∫ τ

0

σ(ε)
s

∂(X(ε)
s )βx

∂ε
dW (1)

s + 2
∫ τ

0

(X(ε)
s )βx

∂σ
(ε)
s

∂ε
dW (1)

s + ε

∫ τ

0

σ(ε)
s

∂2(X(ε)
s )βx

∂ε2
dW (1)

s

+ ε

∫ τ

0

(X(ε)
s )βx

∂2σ
(ε)
s

∂ε2
dW (1)

s + 2ε
∫ τ

0

∂(X(ε)
s )βx

∂ε

∂σ
(ε)
s

∂ε
dW (1)

s

]∣∣∣
ε=0

=2
∫ τ

0

σ0

∫ s1

0

σ0βx(X0)βx−1dW (1)
s2 dW

(1)
s1 + 2

∫ τ

0

(X0)βx

∫ s1

0

ησ0dZs2dW
(1)
s1 .
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Recursive application of this scheme gives

∂3X
(ε)
τ

∂ε3

∣∣∣
ε=0

=
[
3
∫ τ

0

σ(ε)
s

∂2(X(ε)
s )βx

∂ε2
dW (1)

s + 3
∫ τ

0

(X(ε)
s )βx

∂2σ
(ε)
s

∂ε2
dW (1)

s

+ 6
∫ τ

0

∂(X(ε)
s )βx

∂ε

∂σ
(ε)
s

∂ε
dW (1)

s

]∣∣∣
ε=0

=3
∫ τ

0

σ(0)
s

∂2(X(0)
s )βx

∂ε2
dW (1)

s + 3
∫ τ

0

(X(0)
s )βx

∂2σ
(0)
s

∂ε2
dW (1)

s

+ 6
∫ τ

0

∂(X(0)
s )βx

∂ε

∂σ
(0)
s

∂ε
dW (1)

s

=6
∫ τ

0

σ0

∫ s1

0

σ0

∫ s2

0

σ0βx(βx − 1)(X0)βx−2dW (1)
s3 dW

(1)
s2 dW

(1)
s1

+ 6
∫ τ

0

σ0

∫ s1

0

βx(X0)βx−1

∫ s2

0

ησ0dZs3dW
(1)
s2 dW

(1)
s1

+ 6
∫ τ

0

(X0)βx

∫ s1

0

η

∫ s2

0

ησ0dZs3dZs2dW
(1)
s1

+ 6
∫ τ

0

∫ s1

0

η
(
σ0

)2
βx(X0)βx−1Zs1W

(1)
s1 dW

(1)
s1 .

Proposition 3.3. The stochastic Taylor expansion of Y (ε)
τ , up to fourth order,

gives:

Y (ε)
τ = Y (0)

τ + εY (1)
τ + ε2Y (2)

τ + ε3Y (3)
τ +O(ε4),

where

Y (0)
τ = Y0,

Y (1)
τ :=

∂Y
(ε)
τ

∂ε

∣∣∣
ε=0

=
∫ τ

0

σ0(Y0)βydW (2)
s ,

Y (2)
τ :=

1
2
∂2Y

(ε)
τ

∂ε2

∣∣∣
ε=0

=
∫ τ

0

µ(0, Y0)dτ +
∫ τ

0

σ0

∫ s1

0

σ0βy(Y0)βy−1dW (2)
s2 dW

(2)
s1 +

∫ τ

0

(Y0)βy

∫ s1

0

ησ0dZs2dW
(2)
s1 ,

Y (3)
τ :=

1
6
∂3Y

(ε)
τ

∂ε3

∣∣∣
ε=0

=
∫ τ

0

σ0

∫ s1

0

σ0

∫ s2

0

σ0βy(βy − 1)(Y0)βy−2dW (2)
s3 dW

(2)
s2 dW

(2)
s1

+
∫ τ

0

σ0

∫ s1

0

βy(Y0)βy−1

∫ s2

0

ησ0dZs3dW
(2)
s2 dW

(2)
s1

+
∫ τ

0

(Y0)βy

∫ s1

0

η

∫ s2

0

ησ0dZs3dZs2dW
(2)
s1

+
∫ τ

0

∫ s1

0

η
(
σ0

)2
βy(Y0)βy−1Zs1W

(2)
s1 dW

(2)
s1 .

The proof is similar to that of Proposition 3.2.
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3.2. Expansion Solution to the Covariance

We recall the definition of the covariance and substitute the expansions X(ε)
τ and

Y
(ε)
τ of Xτ and Yτ , respectively. This way we obtain a stochastic Taylor expansion

formula for the covariance, which is given by the following lemma.

Lemma 3.1. For a multi-factor parametric stochastic volatility model of the
form (3.1), the stochastic Taylor expansion of the covariance, Cov0[X(ε)

t , Y
(ε)
t ], is

given by

Cov0[X(ε)
t , Y

(ε)
t ] =ν2t+ (Λ + Γ + Σ)

t2

2
+O(t6), (3.3)

where

ν2 =
(
σ0

)2(
X0

)βx
(
Y0

)βy
ρxy,

Λ =
(
σ0

)4
βx
(
X0

)βx−1
βy
(
Y0

)βy−1(ρxy)2,

Γ =η
(
σ0

)3
βx
(
X0

)βx−1(
Y0

)βy
ρxyρxz + η

(
σ0

)3(
X0

)βx
βy
(
Y0

)βy−1
ρxyρyz

+ η
(
σ0

)3(X0)βxβy(Y0)βy−1ρyzρxy + η
(
σ0

)3
βx(X0)βx−1(Y0)βyρxzρxy,

Σ =η2
(
σ0

)2(
X0

)βx
(
Y0

)βy
ρxy.

Proof. To facilitate the proof, we firstly recall the product formula for two Itô
integrals:

E
[ ∫ t

0

fdW (1)
s ·

∫ t

0

gdW (2)
s

]
=
∫ t

0

(f · g)ρds, (3.4)

with 〈W (1)
s W

(2)
s 〉 = ρdt.

Since the process Xτ is a martingale, we have E0[Xτ ] = X0. For process Yτ we
have

E0[Yτ ] = Y0 +
∫ τ

0

µ(s1, Ys1)ds1.

We substitute these two expectations and the expansions for Xτ and Yτ in the
definition of the covariance:

Cov(ε)
0 [X(ε)

τ , Y (ε)
τ ] =E

[(
X(ε)
τ − E0[X(ε)

τ ]
)(
Y (ε)
τ − E0[Y (ε)

τ ]
)]

≈E
[(
X(0)
τ + εX(1)

τ + ε2X(2)
τ + ε3X(3)

τ −X0

)
·(

Y (0)
τ + εY (1)

τ + ε2Y (2)
τ + εY (3)

τ − Y0 − ε2
∫ t

0

µ(s1, Y (ε)
s1 )ds1

)]
=E
[(
ε2X(1)

τ Y (1)
τ + ε3X(1)

τ Y (2∗)
τ + ε4X(1)

τ Y (3)
τ + ε3X(2)

τ Y (1)
τ +

ε4X(2)
τ Y (2∗)

τ + ε4X(3)
τ Y (1)

τ +O(ε5)
)]
, (3.5)

where we have eliminated the drift term from Y
(2)
τ and defined

Y (2∗)
τ :=

∫ τ

0

σ0

∫ s1

0

σ0(Y0)βydW (2)
s2 dW

(2)
s1 +

∫ τ

0

(Y0)βy

∫ s1

0

ησ0dZs2dW
(2)
s1 .
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By Itô product formula (3.4), we find that

X(1)
τ Y (1)

τ =
∫ τ

0

(
σ0

)2(
X0

)βx
(
Y0

)βy
ρxyds =

(
σ0

)2(
X0

)βx
(
Y0

)βy
ρxyτ, (3.6)

X(1)
τ Y (2∗)

τ =
∫ τ

0

(
σ0

)2(
X0

)βx

∫ s1

0

σ0

(
Y0

)βy
dW (2)

s2 ρxyds1 +
∫ τ

0

σ0

(
X0

)2βx
(
Y0

)βy

∫ s1

0

ησ0dZ2ρxyds1

=
(
σ0

)3(
X0

)βx
(
Y0

)βy
ρxy

∫ τ

0

∫ s1

0

dW (2)
s2 ds1 + η

(
σ0

)2(
X0

)2βx
(
Y0

)βy
ρxy

∫ τ

0

∫ s1

0

dZs2ds1.

(3.7)

It is not difficult to see that the two terms in (3.7) are Itô integrals with mean zero.
After taking the expectation, the termX

(1)
τ Y

(2∗)
τ disappears, i.e., E0[X(1)

τ Y
(2∗)
τ ] = 0.

The same holds for all terms of odd order, e.g. for ε3, ε5, . . .. Hence we only have to
consider the even terms in the expansion of the covariance, for example:

X(1)
τ Y (3)

τ =
∫ τ

0

(
σ0

)2(
X0

)βx

∫ s1

0

σ0

∫ s2

0

σ0(Y0)βydW (2)
s3 dW

(2)
s2 ρxyds1

+
∫ τ

0

(
σ0

)2(
X0

)βx

∫ s1

0

(Y0)βy

∫ s2

0

ησ0dZs3dW
(2)
s2 ρxyds1

+
∫ τ

0

σ0(X0)βx(Y0)βy

∫ s1

0

η

∫ s2

0

ησ0dZs3dZs2ρxyds1

+
∫ τ

0

σ0

(
X0

)βx

∫ s1

0

η
(
σ0

)2(Y0)βyρyzds2ρxyds1

=
(
σ0

)4(
X0

)βx(Y0)βyρxy

∫ τ

0

∫ s1

0

∫ s2

0

dW (2)
s3 dW

(2)
s2 ds1

+
(
σ0

)3(
X0

)βx(Y0)βyηρxy

∫ τ

0

∫ s1

0

∫ s2

0

dZs3dW
(2)
s2 ds1

+
(
σ0

)2(X0)βx(Y0)βyη2ρxy

∫ τ

0

∫ s1

0

∫ s2

0

dZs3dZs2ds1

+ η
(
σ0

)3(X0)βx(Y0)βyρxyρyz
τ2

2
. (3.8)

The computation of the expectation of X
(1)
τ Y

(3)
τ requires that we deal with

three double Itô integrals, i.e. E
[ ∫ s1

0

∫ s2
0
dW

(2)
s3 dW

(2)
s2

]
, E
[ ∫ s1

0

∫ s2
0
dZs3dW

(2)
s2

]
and

E
[ ∫ s1

0

∫ s2
0
dZs3dZs2

]
. For the first integral in (3.8), we can compute its expectation

by applying Itô’s lemma:

W (2)
s2 dW

(2)
s2 =

1
2
d
(
W (2)
s2

)2 +
1
2
ds2, or,∫ s1

0

W (2)
s2 dW

(2)
s2 =

1
2

∫ s1

0

d
(
W (2)
s2

)2 +
∫ s1

0

1
2
ds2 =

1
2
(
W (2)
s1

)2 +
1
2
s1

⇒ E
[ ∫ s1

0

∫ s2

0

dW (2)
s3︸ ︷︷ ︸

=W
(2)
s2 −W (2)

0

dW (2)
s2

]
= E

[1
2
(
W (2)
s1

)2 +
1
2
s1
]

= 0.
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Similarly, we find that E
[ ∫ s1

0

∫ s2
0
dZs3dZs2

]
= 0 and E

[ ∫ s1
0

∫ s2
0
dZs3dW

(2)
s2

]
= 0.

The computations of E
[
X

(2)
τ Y

(2)
τ

]
and E

[
X

(3)
τ Y

(1)
τ

]
are performed in the same

manner. Finally, we substitute the result in Eq. (3.5) and obtain

Cov0[Xτ , Yτ ] =ε2
(
σ0

)2
τ + ε4(

(
σ0

)4(
X0

)βx
(
Y0

)βy (ρxy)2
τ2

2

+ 2ε4η
(
σ0

)3(
X0

)βx
(
Y0

)βy
ρxy(ρxz + ρyz)

τ2

2
+ ε4η2

(
σ0

)2(
X0

)βx
(
Y0

)βy
ρxy

τ2

2
+O(ε6)

=
(
σ0

)2
t+ (

(
σ0

)4(
X0

)βx
(
Y0

)βy (ρxy)2
t2

2

+ 2η
(
σ0

)3(
X0

)βx
(
Y0

)βy
ρxy(ρxz + ρyz)

t2

2
+ η2

(
σ0

)2(
X0

)βx
(
Y0

)βy
ρxy

t2

2
+O(t6),

where the last equality is a consequence of the time rescaling we defined earlier,
i.e. ε2τ = t. As stated earlier, the rescaled system [X(ε)

t , X
(ε)
t , σ

(ε)
t ] preserves the

variance and covariance. Therefore, we obtain the desired approximation for the
covariance in the original time scale.

The terms in Eq. (3.3) can be interpreted as follows:

• The first term, ν2, is the leading term of the covariance which grows linearly
with time. It is also the solution we would obtain by assuming a constant
volatility;

• Correction term Λ is due to the first order sensitivity of the covariance w.r.t
to the forward rate dynamics;

• Term Σ quantifies the impact of stochastic volatility. It is positive, hence
it adds a positive contribution to the covariance;

• Finally, term Γ is related to the interaction between the forward rate and
the volatility dynamics [6] and hence it can be of either sign, depending on
the correlation parameters, ρxz, ρyz, in the model.

4. Examples

In this section, we present some examples of the expansion formula for the covari-
ance.

4.1. Two-Factor Log-Normal Model

We begin by analyzing the accuracy of the stochastic Taylor expansion formula
for the two-factor log-normal model. This is a special case of the two-factor SABR
model, with βx = βy = 1 and volatility-of-volatility parameter, η, equal to zero, i.e.

dXt = σxXtdW
(1)
t ,

dYt = σyYtdW
(2)
t .

(4.1)
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Since an analytic solution for the covariance is available for this model, the stochas-
tic Taylor expansion solution (4.5) is compared to the exact solution. It is shown
that the stochastic Taylor expansion of the covariance between two log-normally
distributed variables agrees well with the Taylor expansion of the exact solution of
the same quantity.

We reformulate system (4.1) by making the time rescaling t = ε2τ , so that the
processes εW (1)

τ , εW (2)
τ have the same variances as W (1)

t and W
(2)
t , respectively,

dX
(ε)
τ = εσxXτdW

(1)
τ ,

dY
(ε)
τ = εσyYτdW

(2)
τ ,

(4.2)

with E[dW (1)
τ dW

(2)
τ ] = ρ.

The asymptotic expansion of X(ε)
τ , up to fourth order, reads:

X(ε)
τ = X0 + εσxX0

∫ τ

0

dW (1)
s +

1
2
ε22σ2

xX0

∫ τ

0

∫ s1

0

dW (1)
s2 dW

(1)
s1 ,

+
1
6
ε36σ3

xX0

∫ τ

0

∫ s1

0

∫ s2

0

dW (1)
s3 dW

(1)
s2 dW

(1)
s1 +O(ε4). (4.3)

Similarly, we have

Y (ε)
τ = Y0 + εσyY0

∫ τ

0

dW (1)
s + ε2σ2

yY0

∫ τ

0

∫ s1

0

dW (1)
s2 dW

(1)
s1 + ε3σ3

yY0

∫ τ

0

∫ s1

0

∫ s2

0

dW (1)
s3 dW

(1)
s2 dW

(1)
s1 +O(ε4).

(4.4)

Substituting Eqs. (4.3) and (4.4) in the definition of the covariance, we find

Cov0

[
X(ε)
τ , Y (ε)

τ

]
=E
[(
X(ε)
τ − E[X(ε)

τ ]
)(
Y (ε)
τ − E[Y (ε)

τ ]
)]

=E
[(
ε2X(1)

τ Y (1)
τ +

1
4
ε4X(2)

τ Y (2)
τ +

1
6
ε4X(1)

τ Y (3)
τ +

1
6
ε4X(3)

τ Y (1)
τ

)]
+O(ε6),

where

X(1)
τ Y (1)

τ = σxσyX0Y0ρτ,

X(2)
τ Y (2)

τ = 4σ2
xσ

2
yX0Y0ρ

2 τ
2

2
,

X(1)
τ Y (3)

τ = 6σxσ3
yX0Y0ρτ

∫ s1

0

∫ s2

0

dW (2)
s3 dW

(2)
s2 ,

X(3)
τ Y (1)

τ = 6σyσ3
xX0Y0ρτ

∫ s1

0

∫ s2

0

dW (1)
s3 dW

(1)
s2 .

Since
∫ s1
0

∫ s2
0
dW

(1)
s3 dW

(1)
s2 and

∫ s1
0

∫ s2
0
dW

(2)
s3 dW

(2)
s2 have zero expectation, we find

Cov0

[
X(ε)
τ , Y (ε)

τ

]
=

1
2
ε2X(1)

τ Y (1)
τ +

1
4
ε4X(2)

τ Y (2)
τ

= X0Y0

(
ε2σxσyρτ + ε4σ2

xσ
2
yρ

2 τ
2

2

)
= X0Y0

(
σxσyρt+ σ2

xσ
2
yρ

2 t
2

2

)
. (4.5)
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The first term in (4.5) is the Gaussian approximation which grows linearly with
time t. The second term acts as the convexity correction and accounts for the non-
Gaussian part of the distribution.

Due to the tractability of log-normally distributed random variables, their co-
variance can be computed directly by:

Cov0

[
Xt, Yt

]
=E
[
(Xt − E[Xt])(Yt − E[Yt])] = E

[
XtYt

]
− E[Xt]E[Yt]

=X0Y0e
− 1

2σ
2
xt− 1

2σ
2
ytE
[
eσxZ

(1)
t +σy(ρZ

(1)
t +
√

1−ρ2)Z(2)
t
]
−X0Y0

=X0Y0e
− 1

2σ
2
xt− 1

2σ
2
ytE
[
e(σx+σyρ)Z

(1)
t eσy

√
1−ρ2Z(2)

t
]
−X0Y0

=X0Y0e
− 1

2σ
2
xt− 1

2σ
2
yte

1
2 (σx+σyρ)

2t+ 1
2

(
σy

√
1−ρ2

)2
t −X0Y0

=X0Y0e
ρσxσyt −X0Y0, (4.6)

since E
[
e(σx+σyρ)Z

(1)
t − 1

2 (σx+σyρ)
2teσy

√
1−ρ2Z(2)

t − 1
2

(
σy

√
1−ρ2

)2
t
]

= 1, and Z
(1)
t and

Z
(2)
t are independent Brownian motions.

The expansion solution (4.5) for the variables Xt and Yt in (4.1) agrees with the
first two terms of the Taylor expansion of the solution in Eq. (4.6). We denote the
term ρσxσyt in (4.5) by “Expn. O1” (the first order term), the term 1

2

(
ρσxσyt

)2
in (4.5) by “Expn. O2” (the second order term), etc.

4.1.1. Numerical Experiment

In this section, we evaluate numerically the accuracy of the expansion solution (4.5)
for two different sets of parameters, given in Table 1. The correlation between the
two Brownian motions is set to ρxy = 0.6, for both experiments.

X0 σx Y0 σy
High vol. 1 40% 1 45%
Low vol. 1 20% 1 25%

Table 1. Two parameter sets for the evaluation of the expansion in the log-normal case.

The results of the Taylor approximation are presented in Table 2. The expansion
is accurate, especially when the volatilities are small. In order to obtain a satisfac-
tory accuracy in the case of high volatility, one has to expand up to terms of higher
order. In the interest rate derivative pricing problems, however, the value of an
underlying is typically only a few percentage points. Figure 1 displays the accuracy
results graphically. The results of the left-hand side in Table 2 suggest that the
expansion up to order fourth order is sufficient even for long time to maturity.
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Expn. O2 Expn. O3 Expn. O4 Exact Expn. O2 Expn. O3 Expn. O4 Exact
Low volatility High volatility

2 yr 0.0618 0.0618 0.0618 0.0618 0.2393 0.2410 0.2411 0.2411
5 yr 0.1613 0.1618 0.1618 0.1618 0.6858 0.7120 0.7156 0.7160
10 yr 0.3450 0.3495 0.3498 0.3499 1.6632 1.8732 1.9298 1.9447
15 yr 0.5513 0.5664 0.5681 0.5683 2.9322 3.6408 3.9278 4.0531
20 yr 0.7800 0.8160 0.8214 0.8221 4.4928 6.1724 7.0794 7.6711
25 yr 1.0313 1.1016 1.1147 1.1170 6.3450 9.6255 11.8398 13.8797
30 yr 1.3050 1.4265 1.4538 1.4596 8.4888 14.1575 18.7492 24.5337

(Unit: percentage points)

Table 2. Comparison of the accuracy of the expansion for the covariance against the exact covari-

ance, for the log-normal case.

4.2. Constant Maturity Swap

We will now analyze the approximation for the CMS contract, which we first de-
scribe in some more detail.

Recall that the computation of the CMS convexity correction is reduced to the
approximation:

Cct ≈
Nt
N∗
t

( ∂f
∂Xt

VarQt [XT ] +
∂f

∂Yt
CovQt [XT , YT ]

)
, (4.7)

where the numeraire ratio is a function of the rates Xs and Ys, i.e., N
∗
s

Ns
= f(Xs, Ys),

s ∈ (t, T ].

Fig. 1. Accuracy of the expansion solution (4.5) for two-factor log-normal model. Left-hand side:

low volatility, i.e. σx = 20% and σy = 45%; Right-hand side: high volatility with σx = 40% and
σy = 45%.
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The CMS pricing formula reads:

CMS(t) = P (t, Tpay)EQ
Tpay

[SR(T0)] = A(t)EQ
A

[
SR(T0)P (T0, Tpay)

A(T0)

∣∣∣Ft],(4.8)

where

• t denotes the current time point,
• T0 is the starting (or expiry) time of the CMS contract,
• Tpay is the delayed payment time of the CMS contract, i.e. Tpay = T0 + τ

where τ is the time fraction of the payment delay,
• A(T0) is the T0-value of the annuity of the reference swap SR(T0), i.e.
A(T0) =

∑m
i=1 δiP (T0, Ti) with accrual factors δi,

• Ti (i = 1, 2, 3, . . . ,m) represents a series of m resetting dates for the under-
lying reference swap,
• SR(T0) stands for the T0-value of a swap starting from T0 with maturity
Tm, i.e. SR(T0) = SR(T0, T0, Tm),

Two measures are involved in the CMS pricing problem:

• The T-forward measure, which is denoted by QTpay , is associated to zero
coupon bonds with some maturity T ;
• The annuity measure, denoted by QA, is the natural martingale measure

for (forward starting) swaps and swaptions. The annuity pays 1 Euro at
each coupon day of the swap, accrued according to the swap day count
conventions.

Note that the swap rate, SR(t), corresponds to the rate Xt in Eq. (4.7). There
is no drift term under the annuity measure. Since the LIBOR rate on the payment
date, L(t, Tpay), corresponds to the rate Yt in our problem formulation, it is, in
general, not a martingale process under the swap measure.

The variance/covariance quantity in (4.7) can be approximated by the Taylor ex-
pansion formula once the parameters are calibrated. The numeraire ratio is problem-
specific and the partial derivatives in (4.7) have to be determined according to the
payment features. The numeraire ratio is here given by: Nt/N∗

t = P (t, Tpay)/A(t).
P (t, Tpay) is driven by a LIBOR rate, so that:

P (t, Tpay) = P (t, T0)
1

1 + τL(t, Tpay)
.

The swap annuity is defined by A(t) :=
∑m
i=1 δiP (t, Ti). This expression is ap-

proximated by the following relation

P (t, Ti) ≈ P (t, T0)
i∏

j=1

1
1 + δjSR(t)

, i = 1, . . . ,m.
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Then, the annuity reads

A(t) =
m∑
i=1

δiP (t, Ti) ≈ P (t, T0)
m∑
i=1

(
δi

i∏
j=1

1
1 + δjSR(t)

)
.

So, the numeraire ratio considered in the CMS pricing problem reads
N∗
t

Nt
=f
(

SR(t), L(t, Tpay)
)

=
P (t, Tpay)
A(t)

=
1(

1 + τL(t, Tpay)
)∑m

i=1

(
δi
∏i
j=1

1
1+δjSR(t)

) . (4.9)

The partial derivatives to the numeraire ratio (4.9) w.r.t the swap rate and the
LIBOR rate then read:

∂f

∂SR(t)
=

m∑
i=1

δi

i∑
j=1

δj
1 + δjSR(t)

· 1∏i
j=1

(
1 + δjSR(t)

) · ( 1∑m
i=1 δi

∏i
j=1

1
1+δjSR(t)

)2

,

(4.10)
∂f

∂L(t, Tpay)
=− τ(

1 + τL(t, Tpay)
)2 1∑m

i=1

(
δi
∏i
j=1

1
1+δjSR(t)

) . (4.11)

4.2.1. Numerical Experiment for CMS with SABR Model

Here, we compare numerically the accuracy of the approximation for the CMS con-
vexity correction with a reference solution, generated by the Monte Carlo method,
and also with other approximations available in the literature. We are also inter-
ested in the price impact of the factor decorrelation. The SABR model is popular
among practitioners and often used as an “implied volatility interpolation tool” for
swaptions and caplets.

The CMS contract priced here pays a 10 years, annually reset, par swap rate
with a 6 month payment delay.

For the multi-factor SABR model described in Eq. (2.6), the parameters chosen
for the processes Xt and Yt are given in Table 3.

X0 vol-of-vol Corr. (ρxz) skew (β)

3.4% 0.2 -0.4 1 and 0.6

Y0 vol-of-vol Corr. (ρxz) skew (β)

3.0% 0.2 -0.5 1 and 0.6

Table 3. Parameters for the CMS experiments.

In the Monte Carlo method for the benchmark prices for the convexity correc-
tion, we choose the Euler time discretization scheme and use a grid of 10 steps per
year.

The following methods are compared in this section:
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(1) MC represents the short time step Monte Carlo method for the two-factor
SABR model;

(2) Expn. is the expansion solution derived in this paper. The features captured by
this method are the skew/smile surface and the factor decorrelation;

(3) Gausn. App. denotes the Gaussian approximation method, obtained by assum-
ing that the underlying diffusion processes are Gaussian; This approximation
can model a terminal decorrelation but not a smile or skew.

(4) 1fSK is a one-factor model with skew/smile features. More specifically, we con-
sider Mercurio’s method [18] in this experiment. The skew/smile is captured,
but the terminal decorrelation is not modeled.

In order to investigate the price impact of factor decorrelation, we set up two ex-
periments with different correlations between the swap rate and the LIBOR rate,
ρxy: One with a positive correlation, ρxy = 0.3, and another in which a negative
correlation is chosen, ρxy = −0.3. The numerical results obtained are summarized
in Figure 2 and Table 4 for β = 1, and in Table 5 for β = 0.6.

The expansion solutions derived in this paper, Expn, agree well with the Monte
Carlo benchmark prices for these two experiments, see Tables 4 and 5. The one-
factor-with-skew model, 1fSK, returns, by construction, the same price in the two
experiments, which is an obvious drawback of that model. For short expiry times,
e.g. smaller than 10 years, all four methods provide more-or-less the same level of
accuracy for β = 1. This is different for β = 0.6, for which only approximation
“Expn” agrees well with the benchmark prices. For longer expiry times, the differ-
ences between the Monte Carlo prices and the one-factor, as well as the Gaussian,
approximation increase. Our approximation, Expn, resembles the benchmark prices
rather well, even up to expiration times of 30 years.

When β ≈ 1, the skew/smile feature has a more significant impact than the

Fig. 2. Comparison of several convexity correction methods with βx = βy = 1 and two different

swap-LIBOR correlations. Left-hand side: the convexity correction in time for ρxy > 0. Right-hand
side: convexity correction for ρxy < 0.
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MC Expn. Gausn. App. 1fSk MC Expn. Gausn. App. 1fSk

Positive Correlation ρxy = 0.3 Negative Correlation ρxy = −0.3

5 yr 16.75 17.30 16.49 15.98 17.33 18.07 17.36 15.98

10 yr 35.36 36.23 32.98 33.36 37.54 37.05 34.73 33.36

15 yr 59.18 56.78 49.47 52.15 59.97 58.41 52.09 52.15

20 yr 82.38 78.95 65.96 72.34 82.73 80.70 69.45 72.34

25 yr 102.88 102.75 82.45 93.94 122.24 104.38 86.81 93.94

30 yr 140.71 128.17 98.94 116.94 152.49 129.48 104.18 116.94

(Unit: basis points)

Table 4. The CMS convexity corrections with βx = βy = 1 and two different swap-LIBOR corre-
lations. Left-hand side: ρxy > 0; Right-hand side: ρxy < 0

MC Expn. Gausn. App. 1fSk MC Expn. Gausn. App. 1fSk

Positive Correlation ρxy = 0.3 Negative Correlation ρxy = −0.3

5 yr 46.40 45.93 58.15 42.11 47.17 46.91 59.89 42.11

10 yr 119.00 121.10 169.98 110.34 122.20 121.54 173.47 110.34

15 yr 237.53 225.52 335.49 204.70 214.52 223.89 340.72 204.70

20 yr 371.47 359.18 554.68 325.18 345.88 353.96 561.66 325.18

25 yr 535.45 522.08 827.55 471.79 529.24 511.74 836.27 471.79

30 yr 740.33 714.23 1154.10 644.53 728.20 697.25 1164.57 644.53

(Unit: basis points)

Table 5. The CMS convexity corrections with βx = βy = 0.6 and two different swap-LIBOR

correlations. Left-hand side: ρxy > 0; Right-hand side: ρxy < 0

terminal decorrelation. Figure 2 shows that the one-factor model with skew is pre-
ferred over the two-factor model, Gausn. App., for all expiry times farther than 5
years.

The reason is that a significant part of the change in f(Xt, Yt) = P (t, Tpay)/A(t)
is related to changes in the level of the annuity. The changes in the numeraire
ratio are therefore highly correlated to the movements in the swap rate. In the
present experiment, the partial derivative ∂f/∂X is significantly larger than ∂f/∂Y
(∂f/∂X = 0.595602318 >> ∂f/∂Y = −0.058036757). So, even if the covariance
between the two rates is low by specifying a strongly negative correlation between
the swap and the LIBOR rate, the terminal decorrelation of the convexity correction,
∂f
∂Y Cov[X,Y ], is still very small compared to the overall convexity correction.

However, when β ≤ 0.5 the terminal decorrelation has a more significant impact
and the accuracy of the expansion reduces quickly with increasing time. Small values
of β imply a stronger variability in the underlying process, and the approximation
obtained is not sufficiently accurate then.
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4.2.2. Decomposition of the Error

Two approximations that we made that may have an impact on the accuracy of
our pricing formula are the following: We keep the partial derivatives ∂f

∂Xs
, ∂f∂Ys

con-
stant, at their initial values, and we approximate the variance/covariance term by
the stochastic Taylor expansion. Here, we consider the impact of each of these sim-
plifications separately, so that we can indicate directions for further improvement.
We consider here the case β = 1.

First of all, we focus on the error which originates from the assumption of
constant partial derivatives. We compare a CMS convexity correction with frozen
partial derivatives sampled with the Monte Carlo method with the Monte Carlo
results for the true convexity correction. More specifically, given the same set of
Monte Carlo paths, we compute the convexity correction, with constant partial
derivatives, by

Cc
(1)
t =

1
M

∂f

∂Xt

M∑
k=1

[ N∑
i=1

((
σ(k)(si−1)

)2(X(k)
si−1

)2βx∆t
)]

+
1
M

∂f

∂Yt

M∑
k=1

[ N∑
i=1

(
σ(k)(si−1)(X(k)

si−1
)βxσ(k)(si−1)(Y (k)

si−1
)βyρ1ρ2∆t

)]
,

where i = 1, 2, . . . , N represents the index for the time steps and k denotes for the
number of trails.

We then compute the convexity correction by a step-wise approximation of the
time varying partial derivatives, i.e.,

Cc
(2)
t =

1
M

M∑
k=1

[ N∑
i=1

∂f

∂Xsi−1

((
σ(k)(si−1)

)2(X(k)
si−1

)2βx∆t
)]

+
1
M

M∑
k=1

[ N∑
i=1

∂f

∂Ysi−1

(
σ(k)(si−1)(X(k)

si−1
)βxσ(k)(si−1)(Y (k)

si−1
)βyρ1ρ2∆t

)]
.

Since we choose the same set of paths, the distributional statistics for the two
formulas above are exactly the same. The difference in the prices, Cc(1)t and Cc(2)t ,
therefore comes from the assumption of constant partial derivatives. The results for
β = 1 are summarized in Table 6.

The approximation with constant partial derivatives consistently undervalues
the convexity correction. The error grows almost linearly in time (see Figure 3).
This error can be explained as follows: In the derivation of the convexity correction
formula (2.5), constant values for the partial derivatives are set, so that

EQt

[ ∫ T

t

∂f

∂Xs
dXs ·

∫ T

t

dXs

]
≈ ∂f

∂Xt
EQt

[ ∫ T

t

dXs ·
∫ T

t

dXs

]
.

This can be interpreted as a first order approximation to the stochastic integral
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∫ T
t

∂f
∂Xs

dXs. The accuracy will improve if we include higher order terms, i.e.,

∫ T

t

∂f

∂Xs
dXs =

∫ T

t

( ∂f
∂Xt

+
∫ s

t

( ∂2f

∂X2
s1

)
dXs1 +O(s)

)
dXs

=
∂f

∂Xt

∫ T

t

dXs +
∫ T

t

∫ s

t

( ∂2f

∂X2
s1

)
dXs1dXs + o(T )

=
∂f

∂Xt

∫ T

t

dXs +R,

where R is the remainder resulting from the approximation with constant partial
derivatives. Thus, the integral related to the second order partial derivatives, which
is the leading term of the remainder R, forms the basis of the pricing error in Table 6.
Under the assumption in Sec. 2.1 that the numeraire ratio is varying slowly and thus
that the second order partial derivatives in the swap rate are small, these second
and higher order partial derivative terms can be neglected.

Convexity corrections

Reference Values Constant Approx. Error

Positive Correlation ρxy = 0.3

2 yr 6.59 6.55 -0.03

5 yr 16.56 16.22 -0.34

10 yr 35.36 32.67 -2.69

15 yr 59.18 51.72 -7.46

20 yr 82.38 69.80 -12.58

25 yr 112.92 91.64 -21.28

30 yr 143.16 104.89 -38.26

Negative Correlation ρxy = −0.3

2 yr 6.5878 6.87 -0.04

5 yr 17.33 16.90 -0.43

10 yr 36.35 34.16 -2.19

15 yr 58.74 52.48 -6.26

20 yr 91.59 76.05 -15.54

25 yr 125.42 99.68 -25.74

30 yr 152.64 117.97 -34.67

(Unit: basis points)

Table 6. Approximation error due to constant partial derivatives, β = 1.

We also consider the accuracy of the variance/covariance approximation by com-
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Variance approximation Covariance approximation

MC Expn. Err. MC Expn. Err.

Positive Correlation ρxy = 0.3

2 yr 1.43 1.47 0.04 0.36 0.37 0.01

5 yr 3.55 3.78 0.23 0.80 0.88 0.08

10 yr 7.10 7.89 0.79 1.31 1.61 0.30

15 yr 11.00 12.33 1.33 1.66 2.20 0.53

20 yr 15.00 17.11 2.11 1.90 2.63 0.73

25 yr 20.00 22.21 2.21 2.05 2.91 0.86

30 yr 24.00 27.65 3.65 2.18 3.05 0.87

Negative Correlation ρxy = −0.3

2 yr 1.44 1.47 0.03 -0.34 -0.36 -0.01

5 yr 3.54 3.78 0.24 -0.73 -0.79 -0.07

10 yr 7.18 7.89 0.71 -1.12 -1.26 -0.13

15 yr 12.00 12.33 0.33 -1.34 -1.39 -0.05

20 yr 16.00 17.11 1.11 -1.48 -1.20 0.28

25 yr 21.00 22.21 1.21 -1.56 -0.67 0.89

30 yr 25.00 27.65 2.65 -1.63 0.18 1.81

(Unit: basis points)

Table 7. Error in the variance and in the covariance approximation for positive and negative

correlations, β = 1.

paring the expansion solution (3.3) with the following Monte Carlo statistics:

Var ≈ 1
M

M∑
k=1

[ N∑
i=1

((
σ(k)(si−1)

)2(X(k)
si−1

)2βx∆t
)]
,

Cov ≈ 1
M

M∑
k=1

[ N∑
i=1

(
σ(k)(si−1)(X(k)

si−1
)βxσ(k)(si−1)(Y (k)

si−1
)βyρ1ρ2∆t

)]
.

We find that the approximation of the variance by the expansion over-estimates
the true variance (see Figure 4). In the current model, the variance component
dominates the convexity correction as the partial derivatives of the numeraire ratio
w.r.t the swap rate are approximately a factor of 10 larger in size than the partial
derivatives of the numeraire ratio w.r.t the LIBOR rate. Hence the approximation
errors in the variance component and the corresponding partial derivatives represent
the dominant part of the error.

This over-estimation of the variance cancels out, to a large extent, the under-
valuation due to the constant approximation of the partial derivatives, and, there-
fore, the overall error is smaller than the individual errors generated by each ap-
proximation. Table 7 presents the details of this test for β = 1.

Finally, we found that the approximation for the covariance is not stable for
contracts with long expiry times and that the error increases with cubic order in
time (see Figure 5). This suggests that an approximation of quadratic polynomial
(in time) is not sufficient for the estimation of the covariance and that higher order
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terms (e.g. O(t6) terms) need to be included for a more accurate approximation.

5. Conclusion

In this paper we have focused on the convexity correction for CMS products under a
two-factor SABR model. We derived an approximation for the convexity correction
by applying the small time asymptotics technique to the Wiener processes involved.
An efficient and easy-to-implement approximation formula for the CMS convexity
correction with standard measure change is the result of this work.

By numerical experiments, comparing with the corresponding Monte Carlo

Fig. 3. Error due to constant partial derivatives, with β = 1. Left-hand side: positive correlation

between swap rate and the LIBOR rate. Right-hand side: negative correlation between these two
rates.

Fig. 4. Error due to the expansion for the variance, β = 1. Left-hand side: positive correlation

between swap rate and the LIBOR rate; Right-hand side: negative correlation between these two

rates.
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prices, we find that the approximations result in satisfactory accuracy for β-values
larger than one-half. In order to detail the impact of the various approximations
in our pricing approach, we have set up numerical experiments to determine the
individual errors of each approximation. Apparently, two significant parts of the ap-
proximation error cancel out, to a large extent. However, a fourth order expansion
formula for the covariance as presented here does not appear to be fully sufficient
for contracts with very long expiration times, like thirty years.

The approximation has been derived for payoffs that are linear in the swap rate.
For more general contracts, the constant partial derivatives approximation requires
improvement. Furthermore, only a small amount of terminal decorrelation can be
captured by adding an additional factor on the payment leg, since the annuity is
still driven by one factor only. A two-factor model which has the two factors that are
principal components of the empirical covariance matrix could in principle describe
the terminal decorrelation of forward and swap rates in a more realistic way. This
will be covered in near-future research.

Appendix A. Description of the Monte Carlo Scheme

We explain the set up of the Monte Carlo simulation of the covariance. The imple-
mentation is done in a short time step procedure.

Given the SABR dynamics of Xt and Yt described in Eq. (2.6), where the
stochastic volatility process of both rates is driven by Brownian motion Zt.

By the Euler discretization of the stochastic differential equation system, we

Fig. 5. Error due to the approximation for the covariance, β = 1. Left-hand side: positive correlation

between swap rate and the LIBOR rate; Right-hand side: negative correlation between these two

rates.
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have the following discretization for Xt in time:

Xsi
= Xsi−1 + σ(si−1)(Xsi−1)βx

(
λxZi +

√
1− λ2

xUi
)√

∆t, and

σ(si) = σ(si−1) + ηxσ(si−1)Zi
√

∆t, ∀si = t+ i∆t ≤ T,

where Zi and Ui are independent Gaussian pseudo-random numbers (with zero
mean and unit variance). Similarly, the process Yt, in discrete time, reads

Ysi
= Ysi−1 +

( A(si−1)
P (si−1, Tpay)

− A(si−2)
P (si−2, Tpay)

)(
Ysi−1 − Ysi−2

)
+ σ(si−1)(Ysi−1)βy

(
λyZi +

√
1− λ2

yVi
)√

∆t,

and

σ(si) = σ(si−1) + ηyσ(si−1)Zi
√

∆t, ∀si = t+ i∆t ≤ T,

where Zi represents the same set of random numbers used before, and the Vi repre-
sents another set of random numbers. As a result, for the variance and covariance
quantities in Eq. (4.7), in discrete time, we find:

∂f

∂Xt
VarQt [XT ] +

∂f

∂Yt
CovQt [XT , YT ] ≈ ∂f

∂Xt
E
[ N∑
i=1

(
σ(si−1)2(Xsi−1)2βx∆t

)]
+
∂f

∂Yt
E
[ N∑
i=1

(
σ(si−1)(Xsi−1)βxσ(si−1)(Ysi−1)βyρ1ρ2∆t

)]
≈ 1
M

∂f

∂Xt

M∑
k=1

[ N∑
i=1

((
σ(k)(si−1)

)2(X(k)
si−1

)2βx∆t
)]

+
1
M

∂f

∂Yt

M∑
k=1

[ N∑
i=1

(
σ(k)(si−1)(X(k)

si−1
)βxσ(k)(si−1)(Y (k)

si−1
)βyρ1ρ2∆t

)]
,

where the superscript denotes the k-th path of the Monte Carlo simulation. The
expectation is approximated by the average of a large number of paths. Note that
we have applied the Itô product formula to obtain the time discretization scheme
above.
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