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model of Hagan et al and the interest rate dynamics are modeled by the Hull-
White short-rate model. We propose a projection formula, mapping the SABR—
Hull-White model parameters onto the parameters of the nearest SABR model.
Furthermore, a time-dependent parameter extension of this SABR—Hull-White
model is introduced to make the calibration of the model consistent across matu-
rities. The inverse of the projection formula enables a rapid calibration of the
model. As the calibration quality is subject to the approximation errors of the Changes to sentence OK?
projection formula, we subsequently apply a nonparametric numerical calibra-

tion technique based on the nonuniformly weighted Monte Carlo technique of

Avellaneda et al to improve the calibration. In this step, the Monte Carlo weights

are not uniform and are chosen in such a way that the calibration market instru-

ments are perfectly replicated.



2

“jcf_chen” — 2012/3/19 — 14:14 — page 2 — #2

B. Chen et al

1 INTRODUCTION

Equity derivative models and yield-curve models have been developed independently
of each other for a long time. Whereas equity derivative models have been focused on
the implied volatility skew/smile by local or stochastic volatility features (Gatheral
(2006)), short-rate models have improved the accuracy of the yield-curve dynam-
ics. With an increasing interest in long-maturity equity derivatives, as well as in
equity—interest rate hybrid products from retail and long-term institutional investors
(see Hunter and Picot (2005)), the industrial practice also demands models that are
capable of describing the joint dynamics of interest rates and equity. Indeed, one
would intuitively assert that the interest rate is stochastic and that there is nonzero
correlation between the interest rate and the equity.

We propose a hybrid extension of the SABR (“stochastic «80”) model (Hagan et al
(2002)) to model the joint equity—interest rate dynamics. We construct a hybrid model,
called the SABR-Hull-White (SABR-HW) model, in which the equity process is
driven by the SABR model and the interest rate by the short-rate model of Hull and
White (1996). In this framework, the equity process is assumed to be correlated with
the interest rate process.

The SABR model, which is not often used in the equity derivative literature, has
several attractive features for the modeling of long-term equity-linked products. It
generalizes stochastic volatility models such as Heston’s model by introducing an
explicit stock price dependence in a power law local volatility term f(x) = x?
(Mendoza et al (2010)). Furthermore, the SABR model admits a closed-form approx-
imation formula (“Hagan’s formula”) for the Black implied volatilities, which greatly
simplifies calibration. Third, the SABR process is, for certain parameter values, an
absorbing process at the zero asset price boundary (Chen et al (2012)), which models
the fact that companies may default in time (Mendoza et al (2010)). Last, but not least,
the parameters in the SABR model have a direct connection to market instruments
or market price features, in contrast with, for example, the speed-of-mean-reversion
parameter in the Heston model.

One contribution made in this paper is an invertible projection formula of the
constant-parameter SABR-HW model onto the plain SABR model. This formula
enables a highly efficient calibration of the constant-parameter SABR-HW model
based on the established calibration procedure for the SABR model. However, the
resulting calibration parameters only remain valid for a single maturity time and
cannot provide a consistent dynamic description of the underlying asset prices across
multiple maturity times. We deal with this issue by adopting a dynamic SABR(-HW)
extension in the spirit of Rebonato (2006).

Moreover, we will use the well-known weighted Monte Carlo technique proposed
by Avellaneda et al (2000) as another stage of calibration of the SABR-HW model.
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Using this, we can deal with the inconsistency between the true model dynamics and
those implied by Hagan’s asymptotic approximation formula (by which the calibration
instruments are quoted).

For the Monte Carlo simulation, we adopt a low-bias discretization for the SABR—
HW dynamics, which has some advantages over a basic Euler scheme as it gives a
low bias (ie, stable and accurate) when large time steps are used (say, four time steps
per year) (see Chen et al (2012)).

This paper is organized as follows. In Section 2 we define the dynamic SABR-HW
model and discuss the building blocks. We show how to project the constant-parameter
SABR-HW dynamics onto a plain SABR model in Section 3. In Section 4 we utilize
this projection formula to calibrate the constant-parameter version of the model. We
also show how to determine the time-dependent functions in the dynamic SABR-HW
model and use the weighted Monte Carlo technique (Avellaneda et al (2000)). In Sec-
tion 5 the low-bias Monte Carlo simulation for the dynamic SABR-HW model is pre-
sented. Numerical experiments for validation and calibration are discussed throughout
the paper.

2 THE DYNAMIC SABR-HULL-WHITE MODEL

This section describes the construction of the dynamic SABR-HW equity—interest
rate model.

We assume efficient markets and the existence of an equivalent martingale measure
Q when appropriate numeraires need to be chosen.

2.1 Model definition

We define the dynamic SABR-HW model in a similar fashion to Rebonato’s SABR—
LIBOR market model (Rebonato (2006)) for forward rates. The full-scale dynamic
SABR-HW model for equity—interest rate products, under the Q-measure associated
with B(t) (a money-saving account), is given by:

dS(t)/S@t) = r(t)dt + X(1)SP71 (1) dWi(r), S(0) >0
dr(t) = A(0(t) —r(t))dt + ndW,(¢), r(0) >0
2(t) = g()k()
dk(t) = h()k(t) dWx (1), k(0) =1
AWy () dWs (1) = pxodt, —1<pxe <1
dWi (@) dW,(t) = pxrdt, —1<py, <1

(2.1)

with constant parameters 8, A, n, px, and py s, and appropriately chosen time-
dependent functions 6(¢), g(¢) and h(t). For simplicity, we assume here that the
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interest rates are independent of the stochastic volatility, dW, () dWy(¢) = 0. The
parameters will be discussed in the sections to follow, and details of the functional
form of g(¢) and A(¢) are given in Section 4.2.

REMARK 2.1  For some additional insight into the functions g(¢) and /(¢), we derive
the dynamics of the time-dependent volatility X' (¢) by applying Ito’s lemma:

dX(1) = d(g()k(r)) = k(t)dg(r) + g(t) dk(z) + dk(r) dg(t)
_ 1 dg(r)
= (@T)Z(” dt + h(t)X(t)dWx(t)
_ dlog g(t)
t

1 YX(t)dt + h()X()dWs(t)

Overall, this implies that the dynamics for the volatility can be defined as:
dX()=g@®)X()dt + h(t) X () dWx(z)

with:

dlog g(t)

dt
which means that we deal with a lognormal process with time-dependent drift and

g(n) =

volatility terms. It is obvious that the function /() plays the role of volatility coef-
ficient for this volatility process and the function g(¢), appearing in the drift term,
shifts the volatility up and down deterministically.

2.1.1 The HW model

One of the building blocks of hybrid model (2.1) is the HW single-factor no-arbitrage
yield-curve model in which the short-term interest rate, 7 (¢), is driven by an Ornstein—
Uhlenbeck mean-reverting process, with 8(z) > 0,7 € R*, a time-dependent drift
term, to fit theoretical bond prices to the yield curve observed in the market. Param-
eter 1 determines the overall level of volatility and the reversion rate parameter, A,
determines the relative volatilities.

Under the HW model, the dynamics of the zero-coupon bond, paying €1 at matu-
rity T, are given by:

apr,T) N —a@-1) _
paT) DAt Ddw:() -

Since the HW model belongs to the class of affine diffusion processes, the solution
of (2.2) is known analytically and reads:

P, T)=exp(A(t,T) + B, (¢, T)r(t)) (2.3)

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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with:
1
By (1, T) =570 —1) (2.4)
P(0,T) 7]2 —2)t 2
A, T) = 1 —B,.(t,T)f(0,t) — —(1 — B,(t,T
.1 =exp (tog (0 ) = Bt T 0.0~ - P8, 7))
(2.5)
where f(0,7) := —dP(0,t)/dt, with P(0, t) the market discount factor for maturity ¢.
By the Radon—Nikodym derivative (Geman et al (1996)):
dQ? P(t,T
Qf __P@T) 06

dQ  P(0,T)B(t)

we find the following change of measure: dW,7 () = dW, (¢) — nB,(t, T) dt.
The short rate r(¢) under the 7 -forward measure is governed by the following
dynamics:

dr(1) = (A(O@) = r(0) + 1* B, (1, T)) dt + ndW," (1)
which can be written as:
dr(t) = 2(0@t) — r@))dt + ndW/[ (1) 2.7)
with: 5

0(t) = 0(t) + %Br(t, T)

and B, (¢, T) in (2.4). Since the process under the T-forward measure in (2.7) is of
“HW form?”, it is normally distributed (Brigo and Mercurio (2007)) with expectation
and variance given by:

t
ET (r(r)) = roe ™ + 1 f 6(s)e =) ds (2.8)
0
T _ Ui —2At
var' (r(t)) = ﬁ(l —e ) (2.9)

A disadvantage of the HW model is that it may give rise to negative interest rates.
The negative interest rate, however, may be present in the real market.! An alternative
to the HW model is the Cox—Ingersoll-Ross (CIR) model. A hybrid SABR-CIR
model is, however, not tractable if there is a nonzero correlation between the interest
rate and the SABR equity process. The choice between a CIR or an HW model within
the hybrid process is a trade-off between nonzero correlation and nonnegative rates.

For hybrid structured products, a nonzero correlation is a crucial feature that should
be incorporated into a model (see Grzelak and Oosterlee (2011) for analysis and further

! See http:/en.wikipedia.org/wiki/Interest_rate.
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arguments), whereas the appearance of negative interest rates in an HW process is
an inherent feature of the model and has been known by practitioners for quite some
time (Brigo and Mercurio (2007)). There are practical solutions to this problem,
eg, choosing parameters that give rise to lower probabilities for negative rates. We
therefore prefer the HW process over the CIR process as part of our equity—interest
rate hybrid model. o

2.1.2 The constant-parameter SABR—HW model

The second building block of model (2.1) is the SABR stochastic volatility model
of Hagan et al (2002).

The SABR stochastic differential equation (SDE) system with constant parameters
was originally defined under the 7 -forward measure as:

ds(t) = o()S)P dw[T ()

do(1) = yo (1) AW, (t) (210

with dW[T (t) AW () = px.o dt.

One of the reasons why the original SABR model is not applied to equity derivatives
is that adrift termis lacking. Risk-neutral equity price processes are defined with a drift
term, and are assumed to be arbitrage-free under the risk-neutral measure associated
with the money-savings account. For long-maturity equity options and equity—interest
rate hybrids, however, industrial practice is to treat the interest rate as a stochastic
process as well. As shown below, when combining the HW interest rate model with
the SABR equity model, the drift term appears naturally in the SABR equity dynamics
under the risk neutral Q-measure:

dS@)/S@) =r()dt + a(t)Sﬂ_l(t) dWi(t), S0)>0
do(t) = yo(t) dWys(?), o(0) >0 (2.11)
dr(t) = A0(¢) —r())dt +ndW,.(¢), r©0)>0
with constant model parameters 0 < 8 < 1,y > 0,4 > 0Oand > 0. As in
system (2.1), we assume nonzero correlations:
dWy(t) dWs(t) = px,o dt
dWy () dW,(t) = px,r dt
dW, (1) dWs(t) =0

Since the interest rate diffusion coefficient in (2.11) is not explicitly dependent on
the interest rate, it is convenient to move from the spot measure, generated by the
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money-savings account, B(¢), to the forward measure, for which the numeraire is the
zero-coupon bond, P (¢, T):
S(7)

FO =501

(2.12)

(details of P(¢, T) are given in (2.3)).
By Ito’s lemma, the dynamics of forward price F(¢) in (2.12) are given by:

dF(t)/F(t) = *BX(t.T) — px,rnB,(t. T)o(1)SP~ (1)) dt
+0()SP71 (1) AW, (1) — 9B, (1, T) AW, (1)

combined with the volatility process for o(¢) in system (2.11). Since the forward
F(¢) is a martingale under the T'-forward measure, the forward dynamics should not
contain a drift term. This implies that “d¢” terms will not appear in the (reformulated)
dynamics of dF (¢), ie:

nB (1, T)F(r)

dF (1) = U(t)Fﬂ(f)(Pﬂ_l(t’T)dWxT(t) o) FB()

dawT )
r 0 (2.13)

do (1) = yo (1) dW, (t)
We assume that the interest rate is independent of the volatility process, so a change

of measure will not affect the dynamics of the variance process o (¢).
By factorization, model (2.13) can be expressed as:

dF(t) = o (t)v(1)FP (1) dWFT(r)§
r (2.14)
do (1) = yo(1) dW; (1)
with:
20y . p2(B—1) nB(t,T) )2_ nB(t, T)PP~'(t, T)
v3(t) = P (t. T)+(o(t)Fﬂ—1(t) R YA =P (2.15)

Now, the instantaneous correlation coefficient pr , must be determined, which is
defined as:

cov(dF(t),do(t))

Pro = Jar@F 1)) var(do (1))
= pxoW(t,0(t). F(t), P(t.T)) (2.16)
with:2
U(t,0(t), F(t), P(t,T))
FBph-is
2.17)

= \/0_2F2/3P2(ﬂ—1) + nZB’;FZ _ px,rUFﬂ+1Pﬂ_1r]Br

2 To simplify notation we suppress the arguments ¢ and T here.

Research Paper www.journalofcomputationalfinance.com
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Model (2.14) with (2.15) and (2.16) is not in the well-known plain SABR model
form because the local volatility is not expressed only by o (t) F 2 (¢) but also contains
additional terms like v(z). Moreover, the instantaneous correlation between forward
and volatility processes pr o is a state-dependent function of time. In order to make
use of Hagan’s asymptotic formulas (Hagan et al (2002)) for the plain SABR model
in the current setting, we propose a projection formula in the next section.

3 PROJECTION FORMULA FOR THE CONSTANT-PARAMETER
SABR-HULL-WHITE MODEL

In this section we describe the model approximations that bring the SABR-HW
model into the desired SABR model form. The approximations enable us to carry
out an efficient calibration based on the analytic implied volatility formulas for the
SABR model.

3.1 Projection step for the constant-parameter SABR-HW model

In order to present model (2.14) in SABR form, we need to approximate the additional
terms from the local volatility for the forward process F'(¢) and simplify the associated
correlation structure. In a plain SABR model, the volatility process o (¢) is lognormal,
which suggests that a projection of the volatility term o (¢)v(¢) in (2.14) on alognormal
distribution may give the desired SABR form, which is:

dF (1) = 6(t)FE (@) dwk (), F(0)>0

3.1
dé(t) = p6() dW.] (1), 5(0) >0 G-

with constant parameters 6 (0) and y, and constant correlation pr ;.

The term v(¢) in (2.15) depends on forward FA~1(z), volatility o (¢) and on zero-
coupon bond P (t, T'). With a function v(¢), which is independent of these state vari-
ables, the expression simplifies. This can be achieved by freezing the forward and
variance, F(¢) and o(t), at their initial values, ie, F () ~ F(0) and o(¢) ~ ¢(0),
respectively, and by projecting P (¢, T') on its expectation, ie:

P(t.T) ~ET[P(1.T) | F] = (1)
Function v2(¢) is then approximated by:

nB,(t,T) )2 nBy(t, T)EP~1(1)
T N R 1 _2 X, r
o (0) FA=1(0) " G (0)FA-1(0)

With the help of the well-known formulas (2.2) and (2.7), we obtain the following
closed-form solution for £(t):

v2(t) ~ 2P V() + ( 3.2)

£(t) = exp(A(t,T) + B, (t, )ET[r ()] + 3 B2 (¢, T) var” (r(1))) (3.3)

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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with ET[r(¢)] and var” (r(r)) given by (2.8) and (2.9), respectively, and A(z, T)
defined in (2.5).

Note that F(¢) and o (¢) are both martingales, due to (2.14), which implies that the
values of their expectations oscillate around their initial values, F#~1(0) and o (0).
Function v(¢) has become deterministic from the approximations made.

We then determine the dynamics for the linearized volatility structure, o (¢) :=
o(t)v(t). By applying the Ito product rule, we find:

dG()/5(t) = v'(t)dt + yv(t) dW,] (1)

The 6 (¢)-dynamics are thus governed by a state-dependent drift term. Therefore, they
are not yet in standard SABR volatility form, which does not contain any drift term.

However, since v(¢) is approximated by a deterministic time-dependent function,
the process a(¢) := v(t)o(¢) remains lognormal. The idea is now to determine the
first two moments of process & (¢) and to project them onto the moments of the SABR
volatility process in (3.1), defined as:

d6 (1) = p6@)dw,I (), 6(0) >0

with parameters y and 6 (0).
The expectation and variance of process 6 (¢) in (3.1) are given by:

ET[6(1)] = 6(0), varT (6(1)) = 62(0)(e”*" — 1) (3.4)
On the other hand, the expectation and the variance of 6 () = v(¢)o (¢) are given by:
ET[6(1)] = v(1)o(0), varT (5(1)) = v2(1)02(0)(e”! — 1) (3.5)

The main objective is to find the effective parameters 6(0) and 7, so that the expec-
tations and variances in (3.4) and (3.5) match.
By matching the expectations and variances, we arrive at the following optimization
problem:
T
ET[EO) - ET () dt
argmin 0 3.6)
7,6(0) roo. T,
(var® (6(t)) — var” (6(t)))dt
0
Typically, the optimization problem in (3.6) is easy since the expectations and vari-

ances are analytic deterministic functions. In Result 3.1, a straightforward approach
for parameter estimation is presented.

RESULT 3.1 A simple approximation for 6 (0) is the averaged parameter estimate,
given by:

T T T
Tra _ Tri= A _0(0)
/(; E" [6(¢)] dt —/(; E'[o(t)]dt = 6(0) = wa /(; v(s)ds (3.7)

Research Paper www.journalofcomputationalfinance.com
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By matching the variances we obtain:

T T
/ varl (6(1)) dt = / var! (5(¢)) dr
0 0

— = _/ \/ 66y | 1) ds  (3.8)

C620)
with var” (G (7)) given in (3.5).

In the search for the optimal parameters 6 (0) and p, so that the constant SABR-HW
model in (2.11) is connected to the SABR dynamics given by (3.1), the correlation
PF,o has not yet been included. This allows us to determine the effective correlation,
pF.o»independent of the other approximations. Since the equation for correlation pr o
is involved and state-dependent, we look for a simplification here as well. By freezing
the volatility and forward to their initial values, and by projection of zero-coupon
bonds on their expectations, the correlation in Equation (2.16) can be approximated
by:

PF.o & Pro®(t,0(0), F0),ET[P(t,T) | F] = pro¥ (1) (3.9)

In order to use Hagan’s implied volatility SABR formula, the correlation must be
constant, so we need to determine an averaged correlation, which is defined as:

Px,o r
pro="52 [ v as (3.10)
0

with ¥ (¢) given by (3.9).

The estimates obtained for y, 6(0) and pF o allow us to use the Hagan implied
volatility formula for the plain SABR model as a first approximation in the calibration
procedure.

REMARK 3.2 Our approximations in (3.7) and (3.8) perform well for relatively
short maturity times such as 7" < 10 years. In the case of larger maturity times, such
as T = 10 years, we prefer to solve problem (3.6) using an optimization procedure
(for example, the Nelder—Mead simplex algorithm). Furthermore, the weighted Monte
Carlo method, to be discussed in Section 4, will be used to improve the calibration in
those cases.

In the next section we check the accuracy of the approximations developed for a
few parameter sets. The SABR model in (3.1) with the parameters y, 6(0) and pr &
will be called the SABR-HW; model here.

3.2 Numerical validation of the SABR-HW projection method

We check the performance of our approximation model, SABR-HW 1, in comparison
with the constant-parameter SABR—HW model.

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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TABLE 1 Sets of parameters used in the simulations.

B Yy A n a(0) px,e  Px,r
Parameter (%) (%) (%) (%) (%) (%) (%)

Setl 30 30 20 1 20 -30 20
Set 2 50 40 1 05 20 -10 40
Set 3 40 10 60 0.1 30 -30 -30

The numerical experiment is set up as follows. First we prescribe a set of param-
eters for the constant-parameter SABR-HW model in (2.11) for which, by means
of an Euler-based Monte Carlo scheme, the European option prices are simulated.
Secondly, we compute the effective parameters 7, 6 (0) and pr by solving (3.6) and
calculating (3.10). These parameters are inserted into the plain SABR model (3.1).
For the resulting SABR-HW; model, we then calculate the corresponding implied
volatilities using Hagan’s asymptotic formula. We compare these results and, in addi-
tion, we determine the error for the case where y, 0(0) and p , were used instead of
7,6(0) and Py -

The simulations were performed with 100000 paths and 207 steps. The initial
stock price is set to S(0) = 0.8, and the zero-coupon bonds, P (0, T'), were generated
by the HW model with constant long-term mean, § = 0.03. We also define the strikes,
as in Piterbarg (2006), with expiry times givenby 7' € {1, 5, 10, 15} years. The strikes
are computed by the formula:

K, (T) = F(0)exp(0.16, VT) with§, = {-1.5,-1.0,-0.5,0,0.5,1.0,1.5}
(3.11)
and F(0) is as in (2.12). This formula for the strikes is convenient, since, for n = 4,
the strikes K4(+) are equal to the forward prices.

In Table 1 we present three different sets of parameters. For those sets we determine
the estimators 7, 6(0) and pr . They are shown in Table 2 on the next page.

We measure the maximum absolute difference in the implied volatilities for
model (3.1) with the estimates in (3.7), (3.8) and the constant-parameter SABR-HW
model (2.11).

Two errors are defined: error 1 is the error when the naive approach is used, ie,
7 =y and 6(0) = ¢(0); error 2 corresponds to the bias obtained using the adjusted
parameters p and 6 (0) (the SABR-HW; model). Table 3 on the next page presents
these results.

Our approach for y, 6 (0) and pr » provides a significantly better fit to the constant-
parameter SABR—HW model than the model with the naively chosen parameters. For
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TABLE 2 Effective constant parameters 7, 6(0) and o, defined in (3.6), and determined
by solving the nonlinear least-squares problem (by MaTLAB function “Isgcurvefit”).

T
lyear 5years 10years 15years
Estimators (%) (%) (%) (%)
Set 1
Y 29.76 29.02 28.34 27.85
6(0) 20.30 21.51 23.01 24.56
PF,o —-30.08 -30.25 —30.30 —-30.29
Set 2
% 39.75 38.93 38.16 37.50
6(0) 20.24 21.28 22.73 24.52
PF.o —10.00 -10.01 —9.97 —9.90
Set3
% 9.97 9.78 9.56 9.35
6(0) 30.26 31.36 32.83 34.39
PF.c —-30.01 -30.02 —30.02 —30.02

TABLE 3 The absolute maximum percentage difference between implied volatilities from
two different models.

T = 1year T =5 years T = 10 years T = 15 years

Errorl Error2 Errorl Error2 Errorl Error2 Errorl Error?2
(%) (%) (%) (%) (%) (%) (%) (%)

Setl 0.36 0.02 1.63 0.19 2.93 0.43 3.94 0.61
Set 2 0.27 0.01 1.38 0.08 2.65 0.32 3.74 0.51
Set 3 0.31 0.03 1.63 0.04 3.12 0.07 4.31 0.11

Both errors relate to the constant-parameter SABR—HW model and respective approximations.

the maturity times of one, five and fifteen years, Figure 1 on the facing page presents
the corresponding implied volatilities.
The performance of the SABR-HW, approximation is most accurate when the
volatility for the short rate, determined by 7, is not too large, ie, n < 1.5%. For-
tunately, this is very often the case in the calibration of the HW model to market
data. In the experiments we have chosen parameter 8 < 50% (in the case § > 50%
an even better accuracy is expected, because then the model behavior is closer to
that of a lognormal model (Chen et al (2010))). We also see that the correlation — wordadsea-ok:
approximation, pr g, is close to the initial correlation pr . This is because the func-
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FIGURE 1 Comparison of implied Black—Scholes volatilities for European equity options
and parameter set 2 in Table 1 on page 11.
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Implied volatilities for (a) T = 1, (b) T = 5 and (c) T = 15. For the SABR—-HW model, Euler Monte Carlo was used
with 100 000 paths and 207 intermediate steps.
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tion W(¢t,0(t), F(t), P(¢t,T)) in (2.17) converges to 1 as t — T, implying that
PF.oc = PFo-

4 THE CALIBRATION PROCEDURE

We present a calibration procedure for the SABR—HW model in three stages, and start
by applying the inverse projection formulas from the previous section to calibrate the
constant-parameter SABR—-HW model for every single maturity. In the second stage,
we determine the parameters of the time-dependent functions in the dynamic SABR
model in order to produce coherent model dynamics across the different maturities.
In the final stage, the calibration is refined by means of a weighted Monte Carlo
simulation. These stages are discussed in subsequent subsections.

4.1 Stage I: parameter projection for the SABR—-HW model

In the calibration of the SABR-HW model, the HW part, which is connected to the
function 6(z), is calibrated to the yield curve, whereas the parameters A and 7 are
calibrated to swaption prices separately. This is well-known (we refer the interested
reader to Brigo and Mercurio (2007) for further information on this topic). The asset—
interest rate correlation will be prescribed a priori based on historical data.

After the calibration of the HW model, we consider the determination of the param-
eters of the stochastic volatility SABR part.

One of the consequences of the projection of the constant-parameter SABR-HW
model onto a plain SABR model is the rapid calibration by means of Hagan’s formula
(West (2005)). The projection formula described in Section 3 can also be inverted
numerically to retain the constant-parameter SABR-HW parameters, 0 (0), ¥, px.o>
Px.rs A, (1) and 1, from those of a plain SABR model, 6(0), y and pr . Since two
parameters 8 and py o control the skewness of the implied volatility curve, one of
them (parameter f in our case) is fixed a priori, as in Rebonato (2009).

We briefly recall the calibration of the plain SABR model, in which different values
are prescribed for B, such as § € {0.25,0.5,0.75, 1} (see, for example, West (2005)
and Rebonato (2009)). By numerical experiments we observe that different combina-
tions of B and p give rise to parameter fits of very similar quality. This is especially
true for short-maturity implied volatilities (see Figure 2 on page 17). The specific
B that gives the best fit for both short and long maturities will be determined in the
second calibration stage.

Parameter 6 (0) is determined with the help of the at-the money (ATM) implied
volatility. West (2005) shows that when the forward in the plain SABR model is equal
to the strike price, F' = K, the ATM implied volatility in Hagan’s formula simplifies

The Journal of Computational Finance Volume 15/Number 4, Summer 2012
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to:

oarm = (F17P)71

. (1—P)% 6002  1prefys(0)  2-3p%, .,
XJ(O)(H( % Fed Ty i T V)T

This equation is inverted, as in West (2005), to calculate 6 (0) as a root of the cubic

equation:
1= BT, broBPT . 2-3p%45 5.\
—(24F’23_)2B 0(0)3+—”;f3_yﬁ 0(0)2+(1+—24F"’ sz)o(O)—aATMFl—ﬁ =0

For typical parameters, the above cubic equation has only one real-valued root (and
two imaginary roots), but it is in general possible to have three real-valued roots. In
such cases, the smallest positive root should be chosen (West (2005)). As a result of
the cubic equation formulation, 6 (0) is not a free variable anymore, but a function of
the parameters pr s, ¥ and the market ATM implied volatility, oarm. Subsequently,
the calibration only has to be performed over the parameters pr , and y, which can
be done very efficiently.
From Equation (3.7), we know that:

T
6(0) = @/0 v(s)ds

where:

N _ nB,(t,T) \ B, (t, T)EF~1(t)
v~ \/gZ(ﬂ @+ (o(O)Fﬂ—Im)) P 0 FA1(0)

So, 6(0) itself is a function of ¢ (0) (since the other parameters and functions in
the equation for v(¢) have been determined in earlier steps). Applying a numerical
root-finding routine provides us with a value for ¢(0). Similarly, we can find the
solution for y via Equations (3.8) and (3.5). With formula (2.16) we can rewrite the
correlation pf o as a function of py . The numerical inversion of this expression
gives us parameter px . After this, all parameters of the SABR-HW system, o (0),
Vs Px.o» Px.r» A, 0(2) and 1, have been determined.

This stage of the calibration procedure is highly efficient as most of the evaluations
are based on analytic expressions. The numerical root-finding procedure is used four
times. The overall computational time is less than one second.

We present an example of the calibration of the parameters o, and y to the five-
year and fifteen-year DAX options with equally spaced strike values from 40% to
220% with 10% intervals (nineteen strikes in total), from September 27, 2010, based
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TABLE 4 Calibrated parameters for the SABR (parameters with a hat) and SABR-HW
(without a hat) models, to five-year and fifteen-year DAX options.

(@) T =5 years

Squared
sum
B 6(0) y PF,c error o (0) y PF,o
0.25 0.280 0.033 -1 3.82x10™* 0.274 0.034 —0.964
0.5 0.276 0.113 -0.955 222x107% 0.269 0.117 -0.922
0.75 0.274 0.224 —-0.824 9.947% 0.267 0.234 —-0.800
1 0.279 0.319 -0.840 6.537° 0.272 0.333 -0.815

(@ T = 15 years

Squared
sum
B a(0) y AF,o error a(0) 4 PF,c
025 0402 1077 -1 1.16x10™% 0.369 1.0134x10~7 -0.942
05 035 1077 -1 1.75x1075 0.327 1.0134x10~7 —0.937
075 0328 107 -1 1.73x107% 0.301 1.0134x10~7 —0.933
1 0.319 0.033 -0.758 3.89x1078 0.292 0.033 -0.722

on the procedure described. The calibration has been performed with four sets of
parameters with different a priori chosen values for 5. The whole procedure (for the
four sets of parameters) takes approximately 0.3 seconds computational time on a
desktop computer. The resulting parameters and squared sum errors are presented in
Table 4. Different values of B result in a qualitatively similar fit to the market implied
volatilities. The fit of the SABR-HW model (based on Hagan’s formula) to the market
implied volatilities is presented in Figure 2 on the facing page.

The last three columns in Table 4 (the o(0), y and pfr, columns) present the
constant-parameter SABR—-HW model parameters obtained from the inversion of the
projection formulas described above. We see that constant parameters produce a very
good fit for individual maturity times, but that the resulting parameters differ for
different maturities.

4.2 Stage ll: calibration of the dynamic SABR-HW model

Calibration of the constant-parameter SABR—HW model results in a series of indepen-
dent implied volatility smiles across several maturities, which do not show coherent
dynamics over a longer time period. We therefore describe the calibration of the time-
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FIGURE 2 Calibration results for the SABR model with different a priori chosen g param-
eters to the implied volatilities of (a) five-year and (b) fifteen-year maturity.
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dependent functions in the dynamic SABR-HW system (2.1), and start with the § and
Px,c parameters for this dynamic SDE system. The value for f that fits optimally for
all maturities (eg, the optimal value from Table 4 on page 16) is chosen, and we simul-
taneously average the calibrated correlation parameters, px o, for the corresponding
B value, over the different maturity times.

Then the time-dependent function /(¢) in system (2.1) is parameterized in the form
proposed by Rebonato (2006):

h(t) = (a1 + bit)e V' +d, 4.1)

The parameters a1, b1, ¢1 and d; are determined, as in Rebonato and White (2007),
by solving the following system of equations for all maturities 7; included in the
calibration instruments:

T _ ; /T 20 (42 _
y ST ()T, \/2 | g®)?h()?tdt =0 4.2)

Here, superscript 7; denotes the maturity for which the parameter is determined, and
h(t) denotes the mean value of /(-) up to time ¢, ie:

h(t) = ,/;/0 (h(s))2 ds

Equation (4.2) can the product of g(-) and A(-) (the squared difference will be even

more complicated). In this case, be best dealt with using a numerical root-finding
technique.
For the time-dependent function g(¢), a common parametrization is:

g(t) = (az + bat)e™ " + d, (4.3)

which can also be found in Brigo and Mercurio (2007) or Rebonato (2002). More
precisely, we obtain a», b,, ¢; and d» by a minimization of the sum of squared errors:

M T
: T; _ 2 2 A _ i ' —cat 2
L, DT OO 40 = \/ [ e+ bt apar
with M the number of option maturity times.

The time-dependent functions g (¢) (4.3) and /i (¢) (4.1) are then fitted for all maturity
times to the parameters ¢ (0) and y obtained from the constant-parameter calibration.
The resulting parameters are presented in Table 5 on the facing page. The functions
are illustrated in Figure 3 on the facing page. We fix the parameter d; in function /(¢)
to the value of the volatility-of-volatility parameter of the longest maturity to prevent
it from attaining negative values.
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TABLE 5 Parameters a1, by, ¢; and d; for calibrated function &(-) and ay, b», ¢ and d;
for function g(-) for DAX option implied volatilities on September 27, 2010.

Parameters al(az) bl(bz) cl(cz) dl(dz)

h() 0.5928 -0.1943 1.1936 0.1080
g() 0.0949  0.0673 0.1297 0.0858

FIGURE 3 The calibrated g(-) and A(-) functions.

0.8 T T

— ¥ Function g
0.7 —©— Function h ||

0 5 10 15

ReEMARK 4.1  The Hagan implied volatility function (Hagan et al (2002)) is based
on asymptotic expansions that have a limited range of applicability. The formula
is not exact, for deep-out-of-the-money strikes, for example, particularly for strikes
close to zero, and for long maturities. Thus, the model dynamics that are simulated
by the Monte Carlo technique may not resemble the parameters determined during
calibration. In the next section we propose a method to eliminate such approximation-
error-induced calibration error.

4.3 The weighted Monte Carlo technique

We employ a nonparametric approach to further improve the SABR-HW model cal-
ibration. The general idea is to perturb the weights of the individual Monte Carlo
paths so that calibration instruments such as options, forwards and bonds resemble
the corresponding market prices more closely.

Research Paper www.journalofcomputationalfinance.com
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Most often, one deals with ordinary Monte Carlo methods, which are governed by
the fact that the same weight (ie, 1/ N, with N the total number of paths) is assigned
to each sampled path. For a claim with a payoff, ¢, the derivative value at t = 0 is
then determined as:

| N
V= Z (@)
i=1
where w; denotes the ith Monte Carlo path.

In addition, weighted Monte Carlo methods have been developed by Avellaneda
(1998) and Avellaneda et al (1997, 2000), where different “probability” weights,
P1, P2, .., PN, are assigned to the individual Monte Carlo paths. The value of the
claim then reads:

N
V=> ¢)pi
i=1
The weights are determined so that the model values of the calibration instruments
match well with the market prices and these weights should be kept as close as possible
to the uniform weights (p; = 1/N).

We denote the market prices of M calibration instruments by Cy, ..., Cys and rep-
resent the present values of the derivative products of the j th calibration instruments
along path w; by ¢;;, j = 1,2,..., M. The first index represents the Monte Carlo
path number and the expression is short notation for ¢;; = ¢; (w;).

The path weights, or probabilities p = (p1, p2,..., pn), have to be determined,
so that:

N
> pidij =C; (4.4)
i=1
or so that the difference between the left-hand side and the right-hand side is mini-
mized. A criterion (which is adopted here) to find these weights is the minimization of
the relative entropy of a nonuniformly sampled probability with respect to a uniform
distribution.

The concept of relative entropy is not new in computational finance. Buchen and
Kelly (1996) proposed the use of the minimization of relative entropy to determine
the Arrow—Debreu probability in a single-period model. This method was generalized
to dynamic models by Avellaneda (1998) and Avellaneda et al (1997, 2000).

Based on two sets of N discrete probabilities, p = (p1, p2,...,pn) and g =
(91,92, - .. ,qnN), the relative entropy of p, with respect to ¢, is defined as:

N .
D(plq):=)_ pilog (&)

i=1 !
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In the case of a Monte Carlo simulation, in which ¢; = 1/N, Vi, we have:

N N :
D(pllg)="_ pilog(pi)— Y pilog (ﬁ)

i=1 i=1
N
=) pilog(pi) +log(N) (4.5)
i=1
where we used that ZIN=1 pi = 1. The objective is to minimize Equation (4.5)
under the linear constraints implied by Equation (4.4). A true advantage of the rel-
ative entropy objective function lies in the fact that Equation (4.5) is convex in all
pi-values.? It is well-known in optimization theory that the above minimization prob-
lem has a unique global minimum solution, if it exists (Boyd and Vandenberghe
(2004)), and that the Lagrange multiplier technique determines this solution in an
efficient way.

Here we present results obtained by the weighted Monte Carlo approach (see Avel-
laneda et al (2000) for details).

In probability and in information theory, the relative entropy, or Kullback—Leibler
divergence, is a so-called nonsymmetric measure of the difference between two prob-
ability distributions p and g. The relative entropy measure is an indication of the
difference between any two models. In our case, it quantifies the consistency, or
inconsistency, between the calibrated true SABR-HW model and the SABR-HW
model obtained from the first stages of the calibration. The relative entropy distance
is defined as D(p || u) in Equation (4.5), in which u denotes a uniform probability of
N Monte Carlo samples. Since the term ZZJV=1 pi log p; in Equation (4.5) is negative
(as p; < 1), D(p || u) € [0,log N]. The minimum value, D(p || u) = 0, corresponds
to p; = 1/N, ie, the calibrated vector p equals the prior . The maximum value,
D(p || u) = log N, is realized when the probability is concentrated at a single path,
ie, p; = 1. Consider a probability distribution that is uniformly distributed on a subset
of paths of size N%, with 0 < o < 1. Substitution of the corresponding probabilities
gives (Avellaneda et al (2000)):

1
D(p||lu) =1logN + log (—)

N@
=(1—-a)logN (4.6)
31t is straightforward to show that:
aD 3?D 1
PID _ you(pi) + 1. (p2|| D_1_,
op; 8pi Pi
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using YV N = 1.

The relative entropy distance can therefore be connected to the effective number
of paths, N*, supported by the prior probability measure. The effective number of
paths can be obtained, as @ = 1 — D(p ||u)/log N, with D(p ||u)/log N € [0, 1].
If D(p|u)/logN <« 1, the number of significant paths is close to N, whereas
D(p|lu)/log N ~ 1 is connected to a measure with “thin support” (Avellaneda
et al (2000)). Thin support implies that a large number of paths are discarded in the
calibration, which is inefficient from a computational point of view.

REMARK 4.2 It is possible that a solution to the minimum entropy problem does
not exist, when the initial problem parameters result in prices of the calibration instru-
ments that are very different from the market prices. In such a case, the minimum
entropy algorithm will not work, but one may use a quadratic difference function:

N 1 2
Py =3 (pl- - N)
i=1
instead of the relative entropy distance, which guarantees a solution (see Avellaneda
and Jickel (2010)).

4.4 Stage llI: calibration by weighted Monte Carlo method

Here, we use the DAX one-year, five-year and ten-year implied volatilities from
September 27, 2010 with equally spaced strike values from 40% to 220% with 10%
intervals. After the computation of the weighted Monte Carlo weights for these finan-
cial derivatives, the weighted Monte Carlo method perfectly replicates the prices of
these calibration instruments (see Figure 4 on the facing page).

We plot the resulting weighted Monte Carlo weights in a log scale in part (a) of
Figure 5 on page 24. The weights seem to be randomly distributed around their mean
value of 107, Certain paths are given a small weight, which means that these paths
are effectively discarded. The histogram of the weights in part (b) of Figure 5 on
page 24 indicates that only a small fraction of the weights is in the left tail and most
of them are distributed around the mean. The resulting effective number of paths,
obtained by Equation (4.6), is 9.3517 x 10%, so that 6.48% of the paths are discarded.
This is efficient from a computational point of view, given the excellent weighted
Monte Carlo calibration results.

REMARK 4.3 The weighted Monte Carlo calibration procedure is highly efficient,
but it is nonparametric, and this may hamper its practical application. If either the
model or the model parameters are not carefully chosen, too many paths will be dis-
carded and the weighted Monte Carlo efficiency would be lost. However, the weighted
Monte Carlo technique can also be used as an a posteriori check of the quality of
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FIGURE 4 (a) Five-year and (b) ten-year option implied volatilities produced by weighted
Monte Carlo compared with the input market implied volatilities.
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FIGURE5 (a) Cloud plot of the 10° weights (in log scale) of the weighted Monte Carlo paths
obtained after the calibration, and (b) histogram of the values of the calibrated weights in
log scale.
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parameters obtained from calibration to Hagan’s implied volatilities. If, after the first
stage of calibration, the Monte Carlo weights are equally distributed and very close
to p; = 1/ N, this may give confidence in the quality of the first stage of calibration.

5 PRICING OPTIONS UNDER THE SABR-HULL-WHITE MODEL

On the basis of the calibrated SABR-HW model, we are now ready to apply a
(weighted) Monte Carlo simulation for the pricing and hedging of exotic deriva-
tives. We present an advanced time-stepping scheme for the Monte Carlo simulation,
leading to a low-bias Monte Carlo simulation. This scheme is also accurate when
only a few time steps are employed. It has also been used within the weighted Monte
Carlo part of the calibration procedure described earlier.

5.1 Low-bias time-discrete scheme

Applications of the SABR-HW model include the pricing of long-maturity equity
options, equity-linked structured notes (like cliquet options) and equity-linked hybrid
derivatives. Structured products usually have a long time horizon and a complicated
payoff. It is difficult to find analytic approximations for these product prices, and
often one has to rely on Monte Carlo methods to obtain prices and hedge ratios (eg,
price sensitivities and Greeks). If we apply an Euler discretization scheme to the
SABR-HW system, the discrete bias has to be analyzed with care. For example, in
Equation (2.11) the drift term is stochastic and driven by two stochastic factors. In
this case, an Euler approximation for the drift term:

A
/ r(s)S(s)ds ~ r(0)S(0)A
0

is biased in general and a large number of time steps is required to reach an acceptable
level of accuracy. An Euler scheme may therefore be inefficient for pricing long-term
equity-linked structured products.

Here we adapt the low-bias Monte Carlo scheme proposed for the SABR model
in Chen et al (2012) to discretize the SABR-HW model. The approach is to map
the asset price process onto a square-root process using a series of spatial and time
transformations. In the Monte Carlo simulation we will draw samples from the ana-
lytic distribution function of the square-root process (ie, the noncentral chi-squared
distribution), as described in Section 5.2 (and described in full detail in Chen et al
(2012)).

The SABR model considered in Chen et al (2012) was developed for a system
without a drift term. A stochastic interest rate can be incorporated by a technique
described in Goldenberg (1991, p. 28), which was introduced for a constant elasticity
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of variance (CEV) process with drift term rS(¢) d¢:
SO @) = rSP@)dr + oSV (1) dW(r) (5.1)

We use the superscript “(r)” to distinguish the process with drift from the process
without drift, which does not have a superscript. The distribution of the CEV process
in (5.1) can be obtained from its sister without drift via a time change:

SO@) =eS(x(r)), t@t) = (> B-Dr _q) (5.2)

1
2r(B—1)
The validity of this transformation can easily be explained as the limit 7 — 0 recovers
the original clock, ie:

1
lim 7(¢) = lim ——— (2" ®-t _ 1)y =¢
r—0 ( ) r—0 2]’(/3 — 1)( )
This result is not restricted to the constant interest rate case. The time transformation
in (5.2) also applies to stochastic interest rates (Goldenberg (1991)).
In an SDE system with a stochastic interest rate, the time transformation is different
for each path, due to the randomness of the rates:

A A
, = xp | 2(8 — 1 r(s)ds | —1 53
ree) 28 -1) [ r(s)ds (e p( ¥ )/0 ) s) ) e

where w € £2 denotes a random scenario. Expression (5.3) suggests that the pathwise
time transformation, 7 (¢, w), can be determined without all details of the interest rate
path, w, as long as we have knowledge of fOA r(s) ds at each path.

Following the arguments by Andersen (2008), we focus on the evolution of the
system over a small time interval [0, A] and repeat the one-period A scheme to
produce a complete time-discrete path. Note that we consider the SDE system in the
7 timescale, so that the time interval for the system equals [0, T (A, w)].

The CEV system in (5.2) is then simulated on a timescale t(¢, w), induced by
a stochastic interest rate. Subsequently, the result is multiplied by an exponentially
integrated interest rate:

T(A,w)

S(t(A,w)) = S(0) +/(; o (T(s, ))S(t(s, w))? AWy (2 (s, w))

A
STI(A) = exp (/ r(s) ds)S(r(A,a)))
0

Although a transformed model based on time changes may not be intuitively clear, it
is easy to implement numerically. We just replace the uniform time interval A by t,
based on the computation on each interest rate path.
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5.2 Discretization of the SDE system

For the SABR-HW system, we also consider the system without drift with timescale
7(¢, ), and a low-bias Monte Carlo simulation scheme (see Section 5.2 and Chen
et al (2012)). We then multiply the result by the exponentially integrated interest rate.

In this section we describe the low-bias time discretization scheme to simulate the
plain SABR system in the interest rate-dependent timescale (¢, ):

dS(r) = o(1)S(x)? AWy (7)
do(7) = yo(v) dWs(7)

where we denote t(¢, w) simply by 7. Let us consider a system of three Brownian
motions correlated with the following correlation matrix:

1 Px,0c Px,r
Px,o 1 0
Px,r 0 1
Applying the Cholesky decomposition gives: Second and third equation
numbers deleted and brace
added so that first number
— li I three lines as i
AW (7) = px,0 AW1(T) + px,r AW2(7) + /1 = 03, — %, AU(7) Ropeand o he codin
this was the intention — OK or
dw, (_[) = dw, (‘[) (5.4)  reverttooriginat?

dW, () = dW,(1)

where the Brownian motions Wi (t), W>(t) and U(t) are mutually independent.
Based on an argument from Schroder (1989), we consider the invertible transfor-
mation of variables X(7) = S(z)'"#/(1 — B), B # 1, such that:

po(r)?
dX(r) = dw; - ——d 55
(0 = 0@ dW(0) = g de (5:5)
We substitute Equation (5.4) into Equation (5.5) and integrate from O to t(A, w),
which gives:

X(1(A )
(A,w) (A,0)
= X(0.0) + pro /0 o(5) AWi(s) + pr.r / o (s) dWa(s)

7(A,0) ,BU(S)Z (A0)
_/0 2-2B)X(s) ds + m/ o(s)dU(s)

In Chen et al (2012) it was shown that:

7(A,w) _
/0 o(s)dWi(s) = U(T(A’a;)) o
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It is also not difficult to show that:

7(A,w)
/0 o (s) dWa (s)

. . . . A .
is a Gaussian integral with variance fot( ) o(s)? ds, because of the independence
of W; and W,. Hence, we can replace the Gaussian integral:

7(A,w)
/0 o (5) dWa(s) = £(x(A., ) Wa(z(A. 0)) (5.6)

where we have defined: Stacked fraction here OK?

T(A,w) 2d
{(E(A ) = \/ fo ZESA) -

Based on these results, we can sample the SABR system without drift term and use
the conditional scheme proposed in Chen et al (2012), conditional on the terminal
volatility, the integrated volatility and the realization of W:

X (A, w))

— X(0) + Px.,o

) {o(t(A, ) —0(0)} + pxr E(T(A, 0)) Wa(T(A, w))

7(A,w) ﬂU(S)z (A0)
_/0 (2 28)X(5) ds + m/ o(s)dU(s)

where we have used (5.6).
Conditional on the volatility, the integrated variance and Brownian motion W5,
process X is a shifted Bessel process, X, with dynamics:

oo 2 5 po(r)?
dX (1) := /1= p% s — p%,0(0)dU(T) — m dr

X0 = x©) + = U{G(f(A)) —0(0)} + px,rE(x(A))Wa(z(A))

We define another change of variables, Y (7) := X ()2, and apply Ito’s lemma:
dY(7) = 2X (1) dX (v) + dX (¢)?

N po(?
_ 2X(t)(ma(t) dU(z) — m dr)

+(1—p3,— P2, )0(0)de

=2VY(0) /1 -2, — p2,0() dU(z)

(1 — 28— (P + P21 - ﬁ)) -
A=A —p2,—r2,)

—p3)o(0)*dr (5.7)
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Let us define the time change:

7(A,w)
v(r(A,w)) = (1 — ,0,26’(T — pi’r)/o o(s)?ds

Due to the independence of the Brownian motion, U, and the volatility process, a
Brownian motion under clock v(z(-,-)) has the same distribution as:

7(A,w)
J1=Pa=pi, [ aave)
0
ie:
v(t(A,w))
U (A, w)) = / dU(s)
0
7(A,w)
—1=R ek [ e
0

We substitute this time change into Equation (5.7), and obtain:

1 =28~ (03, +p3,)(1 - ﬁ)) av()
(1= —p2,—p2,)

dY(v(r)) =2 Y (1))dUW (7)) + (

(5.8)
which gives us a time-changed squared Bessel process of dimension:

=28~ (p3 5 +pi, )1 —P)
(1 =B —pt o —P3,)
with initial value Y(0) = X (0)2. The time change depends on the interest rate path

via 7(-,-) and depends on the volatility path as a result of the time-change function
v(-). Each change of time is conditioned on specific path information of the volatility

and the interest rate paths.

The stochastic volatility induced time change, v(-), can be computed by an asymp-
totic expansion (see Chen et al (2012, Section 3.4)). In order to determine the change
of timescale 7(-,-), we have to compute the integral fOA r(s)ds in Equation (5.3).
There are several ways to approximate this integral. A straightforward approach is
the following discrete approximation:

A
/ r(s)ds =~ Alwyr(0) + war(A)]
0

The constants w; and w, can be chosen in different ways. For example, in an Euler
scheme we have w; = 1 and w, = 0. A central discretization employs w; = wy = %
This scheme is computationally efficient and sufficiently accurate if the underlying
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stochastic process is slowly varying. This is the case for these interest rate processes.
The calibrated interest rate process usually includes a volatility parameter n < 1%.
The cumulative distribution function of process ¥ can be obtained by the properties
of squared Bessel processes. By a mapping:
§2—28
h:s > ——, 5=

(1-p)*

S

with its inverse:

yz—zﬂ

Aty B —
YT a=pe

y=0

we can define:

- S0P
SEA, @) =hYOEA, o). YO =hE0) = =g

We now have the following proposition.

ProposiTION 5.1  (Cumulative distribution for the conditional SABR process) The
cumulative distribution for S(t(A, w)), conditional on:

7(A,w)
o(t(A,w)) and / o2ds
0

N
with an absorbing boundary at S = 0 reads:
Pr[S(z(A,w)) < x| S(O)] = 1~ y*(a:b.c) (5.9)

where:

S©)'#
1 [(0) +§{g(f(A,a)))—0(O)}

T N0 ) (-B)

2
T perb(r(A. ) Wz (A, w))]

1 =28 —(p% 5 + p2,)(1—B)
O (0=-p-p2,—p2,)
. S
(1-B)2v(z(A, )

7(A,w)
v(T(A,w) = (1 —pz)/o o(s)?ds

(5.10)

and y*(x:;8,A) is the noncentral chi-squared cumulative distribution function for
random variable x with noncentrality parameter A and degree of freedom §.

ProOOF The proof proceeds along the same lines as the work in Islah (2009) and Chen
et al (2012). Ol
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Summary of the algorithm

The algorithm to sample the SABR-HW system for a time interval [0, A] involves
the following steps.

(1) Draw samples of r(A) from a normal distribution with mean and variance
defined by Equation (2.8) and (2.9), respectively.

(2) Apply a drift interpolation:

A
/ r(s)ds ~ AGr(0) + 1r(a))
0

for the quantity in formula (5.3) for the pathwise (stochastic interest rate
induced) rescaled time step T(A, w).

(3) Conditional on o (7(A, w)), draw samples of fot(A’w) o (s)? ds by the method
proposed in Section 3.4 of Chen et al (2012).

(4) Conditional on o (7 (A, w)) and for (A.0) o (s)? ds, draw samples of the dynam-
ics without drift, S, in the timescale 7 from the noncentral chi-squared distri-

bution described in Proposition 5.1.

(5) Find the asset price process with drift, S (7(A, w)), by multiplying the esti-
mated fOA r(s) ds (step (2)) with S(z(A, w)).

5.2.1 Numerical experiment with European options

We consider the pricing of European options in the SABR-HW model using the low-
bias Monte Carlo method. We focus on a call option, maturing at time 7 with strike
price K, and denote the exact option price at initial time by C (K, 0). Itis approximated
by:

C(K.,0) = P(t, T)ET[(S(T) — K)7]

where C (K, 0) is typically not equal to C(K,0), and we define the bias, e, of the
simulation as a function of the time step, A, and analyze its behavior.

We will use the parameter sets 1, 2 and 3 from Table 1 on page 11 to carry out
the numerical experiments for the call options with 7 = 10 and ATM strikes. As
the benchmark, we apply a Monte Carlo simulation based on the Euler discretization
with a large number of time steps (400 time steps per year), and we report the average
of three runs as the reference prices. For sets 1, 2 and 3, the option prices obtained by
the low-bias Monte Carlo method are listed in Table 6 on the next page for time steps
A ranging from one to thirty-two steps a year.

We plot the differences between the Monte Carlo estimate and the reference values
for different step sizes in Figure 6 on page 33, from which we see that the low-bias
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TABLE 6 Estimated ten-year ATM call option prices for cases 1, 2 and 3.

Casel Case 2 Case 3
A Low-bias Euler Low-bias Euler Low-bias Euler
1 0.4653 0.4699 0.4731 0.4771 0.5485 0.5374
% 0.4680 0.4697 0.4680 0.4703 0.5473 0.5382
% 0.4664 0.4662 0.4665 0.4691 0.5420 0.5479
% 0.4666 0.4664 0.4659 0.4681 0.5440 0.5451
% 0.4669 0.4675 0.4644 0.4676 0.5430 0.5449
% 0.4669 0.4673 0.4633 0.4667 0.5431 0.5432
Reference 0.4671 — 0.4634 — 0.5431 —

scheme is advantageous to the Euler scheme with respect to its low bias. By increasing
the number of time steps, the low-bias scheme produces smaller errors than the Euler
scheme for all parameter settings.

5.2.2 Time-dependent parameters

We can also discretize system (2.1) with the low-bias scheme by assuming that the
functions can be approximated by piecewise constant functions on [¢,7 + A] with
value y. According to the arguments of Andersen (2008) and Glasserman (2004,
p. 130), we then use y = %(y(l) + y(t + A)), which leads to a modification of
system (2.1) that can easily be simulated by the low-bias scheme. More precisely,
the volatility process in the dynamic SABR-HW system is sampled by the following
formula:

Dt + A) = gh(t) exp(—3h*A + hZVA),  k(0) =1 (5.11)
where:
g2=30.0+g0,r+A),  h=30:0,0)+h01+A))
As a result, the formula for the integrated variance has to be adapted as well: it has to
be multiplied by the factor g2.
6 CONCLUSION

We have presented the dynamic SABR-HW model as an alternative model for pric-
ing long-maturity equity options and equity—interest rate hybrid products. We have
defined the model, introduced its building blocks and described several issues for the
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FIGURE 6 The Monte Carlo error as a function of the number of time steps.
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practical application of the SABR-HW model, such as model calibration and option
pricing. At several points we have presented numeric techniques that are not com-
monly used by the financial industry, like the low-bias discretization scheme and a
weighted Monte Carlo technique to enhance the calibration.

In particular, we have proposed an invertible projection formula for the constant-
parameter SABR-HW model connecting it to the plain SABR model. The basis for
this projection was a change of measure, to the 7'-forward measure, and a linearization.
The projection formula greatly simplifies the calibration of the SABR—-HW model.

The inversion of the projection formula serves as a first step in the calibration
procedure, ie, it gives a rapid and fairly accurate approximation of the constant
SABR-HW parameters at each maturity. Based on these parameters, we have defined
time-dependent functions in the dynamic SABR-HW model that are consistent with
the market implied volatilities for all maturities.

In the final calibration step, nonuniform Monte Carlo weights have been determined
in such a way that the implied volatilities from the market and those generated by the
Monte Carlo paths of the SABR—-HW model match optimally. The overall calibration
procedure is highly efficient and accurate.

Exotic contracts were then priced using the weighted Monte Carlo paths gener-
ated by a low-bias time discretization scheme of the dynamic SABR-HW model.
An advantage of the low-bias scheme is that accurate Monte Carlo results can be
obtained for large time steps. This is particularly useful when long-maturity options
are considered.
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