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Abstract. The full multigrid (FMG) algorithm is often claimed to achieve so-called discretization-
level accuracy. In this paper, this notion is formalized by defining a worst-case relative accuracy
measure, denoted E`

FMG, which compares the total error of the `-level FMG solution against the
inherent discretization error. This measure can be used for tuning algorithmic components so as to
obtain discretization-level accuracy. A Fourier analysis is developed for estimating E`

FMG, and the
resulting estimates are confirmed by numerical tests.
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1. Introduction. Modern numerical methods for partial differential equations
(PDE) often exploit hierarchies of computational grids of various resolutions to ac-
celerate iterative solution procedures. Typically, the problem is initially discretized
and solved on a very coarse grid, and this solution is interpolated to a finer grid,
where it serves as an initial approximation. Several iterations of some numerical al-
gorithm are employed, and the result is interpolated to a still finer grid, and so on,
until an approximate solution is obtained on the target grid. The technique, known as
nested iteration, was suggested by Kronsjö and Dahlquist in [9, 10], where it was com-
bined with the Successive Over-Relaxation (SOR) method for the Laplace equation
on a unit square. Later, nested iteration was combined with multigrid computational
techniques [2, 6, 15], yielding the so-called full multigrid (FMG) algorithm. In this
well-known approach, the iterative solver is a multigrid cycle which employs the very
same grid hierarchy to greatly accelerate the convergence of a basic iterative solver
(relaxation). Typically, just one or two multigrid cycles are applied at each level of
the hierarchy, resulting in a linear computational complexity. The key question then
is whether the solution obtained by this algorithm is “sufficiently accurate”. This
question is at the focus of this paper.

As the discrete solution approximates the continuous solution only up to dis-
cretization accuracy (formulated below), the goal of the FMG algorithm should be
to yield a numerical solution whose error is comparable to the discretization error.
It is not worthwhile to solve the discrete problem more accurately by investing more
computational work. Indeed, if more computational work is to be invested, it should
be aimed at reducing the discretization error itself, for example, by appealing to a
yet finer target grid. For some types of problems, the common lore states that one or
two multigrid cycles are sufficient to reach such discretization accuracy. In this sense,
FMG is considered to be asymptotically optimal, that is, the number of arithmetic
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operations required is proportional to the number of grid points, with only a small
constant of proportionality.

In practice, it may be quite difficult to assess whether the FMG solution indeed
yields discretization-level accuracy. The residual norm, which is a common measure
of accuracy, is not directly useful for this task. FMG has received relatively little
attention in terms of analysis. Hackbusch reserves a chapter to nested iteration in
his book [6], and in [14] a quantitative analysis is performed for multigrid W-cycles,
where a two-level convergence factor of 0.1 guarantees the optimal convergence of
FMG given one extra multigrid iteration on the finest grid level. Such a convergence
factor represents a severe criterion, which is not easily achieved, for example, for
complicated systems of equations.

Our aim here is to develop a local Fourier analysis (LFA) framework for FMG.
We wish to develop a tool which yields, a-priori, valuable insights into the various
components of the FMG algorithm and their effect on the final relative accuracy.
LFA, introduced by Brandt in 1977 [2] as local mode analysis, is a useful technique for
choosing suitable components for multigrid algorithms. In particular, the smoother,
the transfer operators, number of pre- and post-smoothing steps, type of multigrid
cycle (e.g., V-cycle or W-cycle) have to be selected for each concrete problem. From
a practical point of view, this analysis is helpful because it provides realistic quan-
titative estimates of the asymptotic multigrid convergence factor. Wienands and
Joppich [18] provide a useful software tool for experimenting with Fourier analysis.
Recent advances in LFA analysis include LFA for multigrid as a preconditioner [17],
for triangular meshes [5], optimal control problems [1], and discontinuous Galerkin
discretizations [8]. A first notion of FMG analysis appeared in the “Guide to Multi-
grid Development” by Brandt [3], but, to our knowledge, it has never been formalized
or worked out in detail in the context of LFA.

The organization of the paper is as follows. In Section 2, basic definitions and
notations for the operators of the FMG algorithm are presented. In particular, a
suitable indicator of the performance of the FMG algorithm, the so-called FMG ac-
curacy measure, is defined. Section 3 is devoted to the LFA analysis employed to
estimate the FMG accuracy measure for k grid levels. Also, the analysis is validated
by introducing the concept of the worst-case right-hand side analysis. Finally, some
numerical experiments are presented in Section 4 to demonstrate the potential of the
k−level FMG analysis, followed by conclusions.

2. Definitions and notations. In order to describe the full multigrid algo-
rithm, a general boundary value problem on an open bounded domain Ω ⊂ Rd is
considered,

Lu = f, in Ω, (2.1)

with appropriate boundary conditions. Let L1u1 = f1 be a discretization of problem
(2.1) on a (fine) target grid Ω1, where the grid function f1 is given by f1 = J1f, with
J1 denoting a transfer operator from the continuum to the fine grid. Throughout
this paper, J1 is defined as simple evaluation (injection), although, in general, local
averaging may be applied and included in the analysis. A sequence of coarser grids,
Ω2, Ω3, . . . , Ω`, and appropriate discrete problems Lkuk = fk on Ωk, k = 2, . . . , `, are
introduced. Here, Lk is a suitable approximation of the fine grid discrete operator L1

on Ωk, and fk is given by fk = Jk
k−1fk−1, k = 2, . . . , `, with Jk

k−1 : G(Ωk−1) → G(Ωk)
some restriction operator, where G(Ωk) denotes the set of grid functions defined on
Ωk.
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As commented before, the FMG algorithm combines a nested iteration with multi-
grid cycling, with approximations of coarser grids used as initial guesses for multigrid
cycles on finer grids of the hierarchy. More specifically, this algorithm starts from
the coarsest grid, Ω`, solving the corresponding discrete problem to obtain a solu-
tion, uFMG

` . This solution is interpolated to the next finer grid, obtaining an initial
guess, u0

`−1 = J`−1
` uFMG

` , where J`−1
` : G(Ω`) → G(Ω`−1) is a suitable prolongation

operator. Starting from this initial approximation, ν cycles of a suitable multigrid
algorithm are performed to obtain the approximation uFMG

`−1 on grid Ω`−1. This so-
lution is interpolated to the next finer grid, by means of a prolongation operator
Jk

k+1 : G(Ωk+1) → G(Ωk), followed again by ν cycles, and so forth, until the target
grid is reached. On the finest grid, again (typically) ν cycles are performed, yielding
the final solution, uFMG

1 . The computation of uFMG
k from uFMG

k+1 is illustrated in
Figure 2.1.

 

 

 

 

 

 

  

 

Fig. 2.1. Computation of uFMG
k from uFMG

k+1 in the case ν = 1.

The aim of the FMG method is to achieve discretization-level accuracy with
just one or a few iterations of an appropriate multigrid algorithm at each level of the
hierarchy. The purpose in this work is to obtain a quantitative bound for the accuracy
of the approximation obtained by FMG. Our goal is to provide an FMG algorithm
which yields a total error that is comparable to the discretizaton error:

‖ J1u− uFMG
1 ‖ ≈ ‖ J1u− u1 ‖,

where u is the solution of the continuous problem, J1 is the operator that transfers
continuous functions to the discrete grid function space, and ‖ · ‖ is some appropriate
norm. By definition, for any grid Ωk in the hierarchy,

uk − uFMG
k = (M `−k+1

k )ν(uk − u0
k), (2.2)

where M `−k+1
k is the iteration matrix on grid level k corresponding to the multigrid

cycle that employs `−k +1 grid levels. Following the steps of the algorithm, see [15],
one obtains the following error propagation matrix for the multigrid cycle,

M `−k+1
k = Sν2

k (Ik − Ik
k+1(Ik+1 − (M `−k

k+1)ν)L−1
k+1I

k+1
k Lk)Sν1

k , k = 1, . . . , `− 1,

M1
` = 0. (2.3)
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Here, Sk is some smoothing (relaxation) operator, ν1 and ν2 are the numbers of
pre- and post-smoothing steps, Ik is the identity operator belonging to G(Ωk), and
Ik
k+1 : G(Ωk+1) → G(Ωk), and Ik+1

k : G(Ωk) → G(Ωk+1), are the prolongation and
restriction operators, respectively.

On the other hand, the initial algebraic k-level error, uk − u0
k, can be expressed

by applying G`−k+1
k to the right-hand side fk:

uk − u0
k = G`−k+1

k fk ,

with G`−k+1
k : G(Ωk) → G(Ωk). Now, following the steps of the FMG algorithm we

find that

G`−k+1
k = L−1

k − Jk
k+1(L

−1
k+1 − (M `−k

k+1)νG`−k
k+1)J

k+1
k , k = 1, . . . , `− 1, (2.4)

G1
` = 0,

where M `−k
k+1 is the multigrid iteration operator on level k + 1 using ` − k levels,

as previously defined. The restriction and prolongation operators, Jk+1
k and Jk

k+1,
respectively, may be different from those used in the multigrid cycle M `−k+1

k .
In the particular case where only two levels are used, the structure of the FMG

iteration operator is depicted in Figure 2.2. In this case, the initial algebraic error on
the finest level is given by

u1 − u0
1 = G2

1 J1 f = (L−1
1 − J1

2L−1
2 J2

1 )J1f,

and the algebraic error yielded by the FMG algorithm is

u1 − uFMG
1 = (M2

1 )ν G2
1 J1 f = (M2

1 )ν(L−1
1 − J1

2L−1
2 J2

1 )J1f,

with M2
1 the usual two-level operator given by

M2
1 = Sν2

1 (I1 − I1
2L−1

2 I2
1L1)Sν1

1 .

The discretization error on the finest grid, J1u − u1, can also be written as an
application of the operator T1 : L2(Rd) → G(Ω1) to the continuous right-hand side
f, that is,

J1u− u1 = T1 f = (J1L−1 − L−1
1 J1) f. (2.5)

Thus, we can rewrite the total error, J1u− uFMG
1 , as follows:

J1u− uFMG
1 = (J1u− u1) + (u1 − uFMG

1 ) = F`
1 f,

by defining the operator F`
1 : L2(Rd) → G(Ω1) as

F`
1 = T1 + (M `

1)ν G`
1J1. (2.6)

To compare the total error corresponding to the solution obtained by FMG with the
discretization error, the following worst-case definition is introduced:

Definition 2.1. The FMG accuracy measure using ` grid levels, denoted by
E`

FMG, is defined as
4
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Fig. 2.2. The FMG two-level iteration operator.

E`
FMG = sup

f∈E

{ ||F`
1 f ||

||T1 f ||
}

,

where E is a set of allowable right-hand sides, and T1 and F`
1 are defined in (2.5) and

(2.6), respectively.

Remark. The set of allowable f ’s, denoted by E , needs to be selected with care, so as
to avoid cases where the discretization error “accidentally vanishes” on the grid (or
nearly so). This can happen, in particular, when f contains modes that are unresolved
on the finest grid. We return to this point in the next section, but next an explicit
example illustrating such trouble is presented.

Example 2.1. Let us consider the 1D Poisson differential equation,

Lu = −∂xxu = f,

discretized on a grid with mesh-size hk as follows:

Lkuk = −β(∂xx)kuk − (1− β)(∂xx)k+1uk,

where β is a constant, and the discrete operators (∂xx)k and (∂xx)k+1 are the standard
three-point finite difference discretizations for the second derivative with mesh-sizes
hk and hk+1, respectively.
If we fix the mesh-size hk and some single Fourier frequency θ ∈ (−π, π], it is possible
to find a discretization, i.e., a constant β, for which the discretization error vanishes,
because the symbol of the discrete operator equals that of the differential operator. In
fact, if Fourier symbols (cf. Section 3) of the continuum operator and the discrete one
are

L̃(θ) =
θ2

h2
k

,

L̃k(θ) = β
4
h2

k

sin2

(
θ

2

)
+ (1− β)

1
h2

k

sin2(θ),
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equating both and solving for β, we get the following value

β =
θ2 − sin2(θ)

4 sin2

(
θ

2

)
− sin2(θ)

.

Thus, for any frequency θ, it is possible to find a value of β for which “accidental
vanishing” of the discretization error occurs. For example for θ = π a value of β =
π2/4 gives a discretization with this behavior independently of the grid.

3. Local Fourier analysis for FMG. In this section, we introduce the local
Fourier analysis framework to estimate the FMG accuracy measure for k levels, Ek

FMG,
given in Definition 2.1. We use k to denote the number of levels used in the analysis,
as opposed to `—the number of levels used in actual numerical application of the
FMG algorithm. In Subsection 3.1 we present the basic principles and some notation
required for the k-level Fourier analysis. To keep the presentation as simple as possible,
we restrict ourselves to the two-dimensional scalar case, and standard coarsening. The
generalization to higher dimensions or to systems of equations is easily done with the
usual modifications, making the analysis more technically involved. Subsection 3.2
is devoted to the two-level FMG Fourier analysis, and some results are presented to
confirm the theoretical estimates obtained by this analysis. Finally, in Subsection 3.3
the analysis is extended to the case of k levels, and some numerical results validating
the predictions are provided.

3.1. Basic principles of local Fourier analysis. The main idea in the local
Fourier analysis is formally to extend all multigrid components to an infinite grid,
neglecting the boundary conditions, and to restrict the analysis to discrete linear
operators with constant coefficients. Therefore, for a k-level cycle, we consider k
discrete linear operators Lj , j = 1, . . . , k on k infinite grids Gj , with mesh sizes
hj = 2j−1h, j = 1, . . . , k,

Gj = {x = (x1, x2) |xi = kihj , ki ∈ Z, i = 1, 2}. (3.1)

For a fixed grid point x ∈ Gj the corresponding equation of the discrete problem
Ljuj = fj extended to the infinite grid, Gj , reads in stencil notation [14],

Ljuj(x) =
∑

κ=(κ1,κ2)∈Ij

sj
κuj(x1 + κ1hj , x2 + κ2hj) = fj(x), (3.2)

where sj
κ ∈ R are constant coefficients, and Ij ⊂ Z2 are finite index sets. From (3.2),

it can be deduced that the grid functions ϕj(θ,x) = eiθx = eiθ1x1eiθ2x2 , where the
Fourier frequencies θ = (θ1, θ2) vary continuously in R2, are formal eigenfunctions
of the discrete operator Lj . More precisely, the relation Ljϕj(θ,x) = L̃j(θ)ϕj(θ,x),
holds, where

L̃j(θ) =
∑

κ∈Ij

sj
κei(θ1κ1+θ2κ2)hj (3.3)

is the corresponding eigenvalue or Fourier symbol of Lj .
For uj , vj , discrete grid functions defined on Gj , we consider the following discrete

inner product:

< uj , vj >= h2
j

∑

x∈Gj

uj(x)vj(x), (3.4)
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and we introduce the space of bounded infinite grid functions,

l2j (Gj) = {uj : Gj → C | ||uj || < ∞},
where || · || is the norm associated with the inner product (3.4). From the inverse
Fourier transformation, each function uj ∈ l2j (Gj) can be written as a formal linear
combination of the Fourier modes, ϕj(θ,x), see [4, 7, 13]. Due to the periodicity of
these functions, those associated with Fourier frequencies satisfying max{|θ1|, |θ2|} ≥
π/hj coincide with certain Fourier modes with θ ∈ Θj = (−π/hj , π/hj ]2, and there-
fore, the Fourier space,

Ej = span{ϕj(θ, ·) |θ ∈ Θj}, (3.5)

generates any bounded infinite grid function on Gj , [4]. We would also like to remark
that the term “span” means the formal linear combination, as referred before. In
particular, the discrete solution on the finest level, u1, and the initial approximation,
u0

1, can be represented as linear combinations of grid functions in the Fourier space,
and therefore this applies also to the initial algebraic error, e0

1 = u1 − u0
1. The same

holds for the error obtained after the application of ν iterations of a k-level cycle,
eν
1 = u1 − uν

1 = (Mk
1 )νe0

1, with Mk
1 as in (2.3). For all the operators involved in the

recursive definition of Mk
1 , a stencil representation can be formulated, and therefore

the corresponding Fourier symbols can be computed similarly to (3.3) for the dis-
crete operators Lj . In [14, 15, 16, 18], the symbols for a wide range of restriction,
prolongation, and discrete operators are tabulated.

3.2. Two-level FMG analysis. The goal in this section is to use the local
Fourier analysis described in Section 3.1 to estimate the FMG accuracy measure given
in Definition 2.1 for the two-level case, E2

FMG. Assuming an infinite grid and standard
coarsening, the Fourier space E1 is decomposed into the following four-dimensional
subspaces, known as 2h−harmonics,

E4
1 (θ00) = span{ϕ1(θ00, ·), ϕ1(θ11, ·), ϕ1(θ10, ·), ϕ1(θ01, ·)}, θ00 ∈ Θ2, (3.6)

where

θ10 = θ00 − (sign(θ00
1 )π/h, 0),

θ01 = θ00 − (0, sign(θ00
2 )π/h), (3.7)

θ11 = θ00 − (sign(θ00
1 )π/h, sign(θ00

2 )π/h).

Namely, each grid function associated with a low frequency θ00 ∈ Θ2 is coupled with
three grid functions associated with high frequencies θ10, θ01, θ11 ∈ Θ1, in the sense
that these three high frequencies coincide on the coarse grid G2 with the low frequency.
With these definitions, many common smoothers S1 are invariant with respect to the
set of 2h−harmonics, S1 : E4

1 (θ00) → E4
1 (θ00), and this then also applies to the

two-level operator M2
1 for an arbitrary Fourier frequency θ00 ∈ Θ̃2 = Θ2 \Ψ2, where

Ψ2 = {θ00 ∈ Θ2 | L̃2(2θ00) = 0, or L̃1(θij) = 0, ij ∈ {00, 11, 10, 01}},
i.e., M2

1 : E4
1 (θ00) → E4

1 (θ00), with θ00 ∈ Θ̃2. Note that M2
1 |E4

1 (θ00) can be represented
by a 4 × 4 eigenmatrix1, denoted here by M2`

1 (θ00). With respect to the operator

1Here, the term eigenmatrix generalizes the classical term eigenvalue in the sense that it is a
block associated with an invariant subspace. Thus, an eigenvalue is an eigenmatrix of size 1, and its
eigenvector corresponds to the invariant subspace.
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G2
1 = L−1

1 − J1
2L−1

2 J2
1 , the same invariance property is fulfilled, i.e., G2

1 : E4
1 (θ00) →

E4
1 (θ00), for each θ00 ∈ Θ̃2, and it holds that

G2`
1 (θ00) := G2

1|E4
1 (θ00) = (L2`

1 (θ00))−1 − (J1
2 )2`(θ00)(L2`

2 (θ00))−1(J2
1 )2`(θ00),

where

L2`
1 (θ00) = diag{L̃1(θ00), L̃1(θ11), L̃1(θ10), L̃1(θ01)} ∈ C4×4,

(J1
2 )2`(θ00) = (J̃1

2 (θ00), J̃1
2 (θ11), J̃1

2 (θ10), J̃1
2 (θ01))t ∈ C4×1, (3.8)

(J2
1 )2`(θ00) = (J̃2

1 (θ00), J̃2
1 (θ11), J̃2

1 (θ10), J̃2
1 (θ01)) ∈ C1×4,

L2`
2 (θ00) = L̃2(2θ00) ∈ C1×1.

Next, we consider the remaining operators appearing in Definition 2.1 of E2
FMG, in

particular, T1, and J1. These operators map continuous functions to discrete functions.
In the proposed FMG analysis we restrict ourselves to the following set of continuous
functions,

E = span{ϕ(θ,x) = eiθx |x ∈ R2, θ ∈ Θ1 }. (3.9)

The restriction f ∈ E ensures that f is sufficiently smooth to be sampled on the fine
grid without any aliasing. This restriction can be viewed in the general context of the
restriction of Fourier transforms, [12], which is very useful in practice for the multi-
dimensional case. Without this restriction, it is possible to choose a combination of
frequencies (that alias with each other on the finest grid), for which the discretization
error vanishes on the grid, rendering our definition useless, see Example 2.1.

For each θ00 ∈ Θ2, we define the four-dimensional subspace of E by

E4(θ00) = span{ϕ(θ00, ·), ϕ(θ11, ·), ϕ(θ10, ·), ϕ(θ01, ·)}, (3.10)

where again θ00, θ11, θ10, and θ01 are defined as in (3.7). As J1ϕ(θ,x) = ϕ1(θ,x), ∀x ∈
G1, it is fulfilled that T1 : E4(θ00) → E4

1 (θ00). In fact, from the definition T1 =
J1L−1 − L−1

1 J1, we find that

T1ϕ(θij ,x) = (L̃−1(θij)− L̃−1
1 (θij))ϕ1(θij ,x), ∀x ∈ G1, with ij ∈ {00, 11, 10, 01},

where L̃(θij) is the Fourier symbol of the continuous operator L, i.e., Lϕ(θij ,x) =
L̃(θij)ϕ(θij ,x). We will call T̃1(θij) = L̃−1(θij)−L̃−1

1 (θij) the Fourier symbol of oper-
ator T1. Let us consider an arbitrary f ∈ E4(θ00), with coordinates v = (α00, α11, α10, α01)t

with respect to the basis {ϕ(θ00, ·), ϕ(θ11, ·), ϕ(θ10, ·), ϕ(θ01, ·)},

f(x) = α00ϕ(θ00,x) + α11ϕ(θ11,x) + α10ϕ(θ10,x) + α01ϕ(θ01,x), x ∈ R2. (3.11)

Then, we have T1 f(x) = β00ϕ1(θ00,x)+β11ϕ1(θ11,x)+β10ϕ1(θ10,x)+β01ϕ1(θ01,x),
where the coefficients βij are related to the coefficients αij by the following expression:




β00

β11

β10

β01


 =




T̃1(θ00) 0 0 0
0 T̃1(θ11) 0 0
0 0 T̃1(θ10) 0
0 0 0 T̃1(θ01)







α00

α11

α10

α01


 = T 2`

1 (θ00)




α00

α11

α10

α01


 .
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Since T1 : E4(θ00) → E4
1 (θ00) and (M2

1 )νG2
1J1 : E4(θ00) → E4

1 (θ00), it is straight-
forward to see that also F2

1 : E4(θ00) → E4
1 (θ00), with

F2`
1 (θ00) := T 2`

1 (θ00) + (M2`
1 (θ00))νG2`

1 (θ00),

the 4× 4 eigenmatrix representation of F2
1 with respect to the subspaces E4(θ00) and

E4
1 (θ00).

From our assumptions on the right-hand side f, using the representation of F2
1 by

the 4×4 eigenmatrix F2`
1 (θ00), we can estimate the two-level FMG accuracy measure

by

Ẽ2
FMG = sup

θ00∈Θ̃2



 sup

v∈C4,
v 6=0

||F2`
1 (θ00)v||

||T 2`
1 (θ00)v|| ; det(T 2`

1 (θ00)) 6= 0



 . (3.12)

Using

||F2`
1 (θ00)(T 2`

1 (θ00))−1|| = sup
w∈C4,
w 6=0

||F2`
1 (θ00)(T 2`

1 (θ00))−1w||
||w|| = sup

v∈C4,
v 6=0

||F2`
1 (θ00)v||

||T 2`
1 (θ00)v|| ,

(3.13)
we can simplify the expression for Ẽ2

FMG as follows:

Ẽ2
FMG = sup

θ00∈Θ̃2

{||F2`
1 (θ00)(T 2`

1 (θ00))−1|| ; det(T 2`
1 (θ00)) 6= 0

}
. (3.14)

The estimation of the two-level FMG accuracy measure, Ẽ2
FMG, is thus reduced to

calculating norms of 4×4 matrices. As the Fourier space (3.5) has a non-denumerable
basis, θ varies continuously in Θ1. In general, the suprema from (3.12) and (3.14)
cannot be calculated analytically, so the practical computations in the next section
are restricted to a finite-dimensional Fourier space.

3.2.1. Validation of the two-level FMG analysis. In order to validate the
estimate of the accuracy measure, Ẽ2

FMG, defined in (3.14), we introduce the concept
of the worst-case right-hand side analysis. By means of the two-level FMG analysis
proposed above, we obtain a value for Ẽ2

FMG, which is realized for a specific θ00 =
(θ00

1 , θ00
2 ) ∈ Θ̃2. We expect that the difference between the computed solution on the

fine grid and the exact solution of the continuous problem, is at most (Ẽ2
FMG) times

the fine grid discretization error. This ratio, given in (3.12), is attained for some
vectors v = (α00, α11, α10, α01)t ∈ C4, which define specific right-hand sides f, as
in (3.11). When the two-norm matrix is used, from (3.13) a vector v can be found
by the expression v = (T 2`

1 (θ00))−1w, with w an eigenvector of the 4 × 4 matrix
W (θ00)tW (θ00), associated with its maximum modulus eigenvalue, where W (θ00) =
F2`

1 (θ00)(T 2`
1 (θ00))−1. It is thus possible to find the right-hand side for which the

ratio given by the analysis is obtained, that is, one can find the worst-case two-level
LFA convergence in practice. This permits us to validate the two-level FMG analysis
by employing this specific right-hand side.

To illustrate the process, we use the Poisson equation in a unit square domain as
our model problem, with periodic boundary conditions,

Lu(x, y) = −∆u(x, y) = f(x, y), (x, y) ∈ (0, 1)× (0, 1),
u(x, 0) = u(x, 1), x ∈ [0, 1], (3.15)
u(0, y) = u(1, y), y ∈ [0, 1].

9



The standard five-point discretization on the fine and coarse grids, Lkuk = fk, k =
1, 2, is considered. We use injection for J2

1 , bilinear interpolation for both J1
2 , and

I1
2 , and full-weighting restriction for I2

1 . The smoother (relaxation), is damped Jacobi
with parameter ω = 0.8, applying one pre- and one post-smoothing step. A single two-
level cycle, i.e. ν = 1 with ν as in (2.2), is performed in this experiment. Employing a
grid of size 64× 64 for the frequency space, the ratio predicted by the two-level FMG
analysis is Ẽ2

FMG = 6.13 for this example. For each low frequency θ00 which satisfies
det(T 2`

1 (θ00)) 6= 0, the factor

Ẽ2
FMG(θ00) = sup

v∈C4,
v 6=0

||F2`
1 (θ00)v||

||T 2`
1 (θ00)v|| ,

is depicted in Figure 3.1.

 

 

 

 

Fig. 3.1. Ẽ2
FMG(θ00) for each low frequency θ00, with injection used to restrict the right-hand

side.

The maximum value, Ẽ2
FMG, is obtained for θ00 = (−π/16h, −π/16h), and we

can find the linear combination of the four harmonics associated with θ00 yielding
exactly the worst-case right-hand side that gives rise to the value predicted by the
analysis. To this end, the eigenvector associated with the square of Ẽ2

FMG is w =
(0.0558, 0.7908, 0.4310, 0.4310)t, and, by calculating the product (T 2`

1 (θ00))−1w, the
corresponding vector v is determined. Consequently, the worst-case right-hand side
reads:

f(x, y) = 1.3356 e−i π x/16h e−i π y/16h + 11.5324 ei 15 π x/16h ei 15 π y/16h

+ 3.1872 ei 15 π x/16h e−i π y/16h + 3.1872 e−i π x/16h ei 15 π y/16h. (3.16)

Next, we apply the corresponding two-level FMG algorithm to solve the discrete
problem (3.15) on a fine grid of size 64×64, with right-hand side (3.16). The first row of
Table 3.1 shows both relative errors ‖ J1 u−u1 ‖ / ‖ f ‖ and ‖ J1u−uFMG

1 ‖ / ‖ f ‖,
computed in the two-norm, and the ratio ‖ J1u − uFMG

1 ‖ / ‖ J1u − u1 ‖, together
10



with the value predicted by the two-level FMG analysis, Ẽ2
FMG. The predicted value

matches the experimentally computed ratio, confirming the analysis.

‖ J1u− u1 ‖
‖ f ‖

‖ J1u− uFMG
1 ‖

‖ f ‖
‖ J1u− uFMG

1 ‖
‖ J1u− u1 ‖ Ẽ2

FMG

Injection 1.9604× 10−5 1.2012× 10−4 6.127 6.127

Full-weighting 2.5738× 10−5 2.8235× 10−5 1.097 1.097
Table 3.1

Results corresponding to the FMG analysis and numerical experiments for two different restric-
tion operators for the right-hand side.

Next, we perform the same experiment using the standard full-weighting operator
for the restriction of the right-hand side, J2

1 . Analogously to the previous case, the
values of Ẽ2

FMG(θ00) are depicted in Figure 3.2.

 

 

 

 

Fig. 3.2. Ẽ2
FMG(θ00) for each low frequency θ00, with full-weighting restriction of the right-

hand side.

We observe an important improvement in the value predicted by the two-level FMG
analysis, which now reads Ẽ2

FMG = 1.097. This worst-case value is obtained for
θ00 = (−π/32h, −5 π/16h). We then compute as before the worst-case right-hand
side, obtaining

f(x, y) = − 2.2784 e−i π x/32h e−i 5 π y/16h + 0.0358 ei 31 π x/32h ei 11 π y/16h

− 0.0593 ei 31 π x/32h e−i 5 π y/16h − 9.2077 e−i π x/32h ei 11 π y/16h.(3.17)

Again, we compare the worst-case ratio predicted by the analysis with the experimen-
tally obtained ratio, by using the right-hand side given in (3.17) for problem (3.15).
The results, shown in the second row of Table 3.1, once again match the analysis
prediction. This test highlights the importance of applying local averaging of the
right-hand side, rather than simple injection.
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3.3. Extension to k-level FMG analysis. Due to the recursiveness of the
operators involved in the FMG algorithm, G`−k+1

k and M `−k+1
k , the two-level FMG

analysis can be generalized to a k-level FMG analysis in order to estimate the corre-
sponding Ek

FMG. It is well-known that at least a three-level Fourier analysis is neces-
sary to gain additional insight into the behavior of a multigrid algorithm, in particular,
to distinguish between the performance of V- and W-cycles, and the division between
pre- and post-smoothing steps. Since the k-level operator Mk

1 arises in the definition
of Fk

1 , it is natural to assume that with a k-level FMG analysis more insight into
the performance of the FMG method can be obtained. If, for example, the FMG
measures increase drastically with the number of levels, this is an indication of an
unsatisfactory FMG algorithm which cannot achieve the required discretization-level
accuracy.

To avoid excessive complication, in this section a detailed three-level FMG analy-
sis is described. However, the generalization to a k-level FMG analysis can be made,
and, in fact, some results obtained by a four-level FMG analysis are presented later.
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Fig. 3.3. Structure of the FMG iteration operator for three grid levels in the case ν = 1.

The aim of the three-level FMG Fourier analysis is to estimate the FMG accuracy
measure E3

FMG. The operators involved in the definition of E3
FMG are T1, and F3

1 :=
T1 + (M3

1 )ν G3
1 J1, where

M3
1 = Sν2

1 (I1 − I1
2 (I2 − (M2

2 )γ)L−1
2 I2

1L1)Sν1
1 ,

G3
1 = L−1

1 − J1
2 (L−1

2 − (M2
2 )νG2

2)J
2
1 ,

with M2
2 and G2

2 as defined in Section 2. These are illustrated, together with the other
operators involved in the three-level FMG cycle, in Figure 3.3, where one V-cycle is
applied. The initial algebraic error on the finest level is now given by

u1 − u0
1 = G3

1 J1 f,

12



and the final FMG algebraic error is

u1 − uFMG
1 = (M3

1 )ν G3
1 J1 f.

Finally, the total error reads

J1u− uFMG
1 = (J1u− u1) + (u1 − uFMG

1 ) = F3
1 f.

It is well-known that the three-level operator M3
1 couples 16 Fourier frequencies

(see Figure 3.4), which define the subspaces of 4h-harmonics (composed of four sub-
spaces of 2h-harmonics), E16

1 (θ00) = E4
1 (θ00

00) ∪ E4
1 (θ00

11) ∪ E4
1 (θ00

10) ∪ E4
1 (θ00

01), θ00 ∈
Θ̃3 = Θ3 \ Ψ3, where Θ3 = (−π/h3, π/h3] × (−π/h3, π/h3], and Ψ3 = {θ00 ∈
Θ3 | det(L̃3(4θ00)) = 0, or det(L̃2(2θ00

ij )) = 0, or det(L̃1(θij
nm)) = 0, i, j, n, m ∈

{0, 1}}, with

θ00
ij = θ00 − (iπ sign(θ00

1 )/h2, jπ sign(θ00
2 )/h2)

θij
nm = θ00

nm − (iπ sign((θ00
nm)1)/h1, jπ sign((θ00

nm)2)/h1).

Note that the subspaces E16
1 (θ00), θ00 ∈ Θ̃3, are invariant with respect to the operator

M3
1 . M3

1 |E16
1 (θ00) can therefore be represented by a 16 × 16 eigenmatrix, denoted by

M3`
1 (θ00).
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Fig. 3.4. Frequencies coupled by a two-level and a three-level iteration, which generate the space
of 2h- and 4h- harmonics.

Operator G3
1 has the required invariant properties, G3

1 : E16
1 (θ00) → E16

1 (θ00),
for each θ00 ∈ Θ̃3, yielding a block-diagonal representation G3

1|E16
1 (θ00) = G3`

1 (θ00),
given by

G3`
1 (θ00) = (L3`

1 (θ00))−1−(J1
2 )3`(θ00)((L3`

2 (θ00))−1−(M3`
2 (θ00))νG3`

2 (θ00))(J2
1 )3`(θ00),

where M3`
2 (θ00) is the 4× 4 eigenmatrix representation of the two-level operator M2

2

on the subspace E4
2 (θ00

00) = span{ϕ2(θ00
ij , ·) | i, j ∈ {0, 1}, θ00

00 ∈ Θ3}, and

L3`
1 (θ00) = bdiag{L2`

1 (θ00
00), L

2`
1 (θ00

11), L
2`
1 (θ00

10), L
2`
1 (θ00

01)} ∈ C16×16,

(J1
2 )3`(θ00) = bdiag{(J1

2 )2`(θ00
00), (J

1
2 )2`(θ00

11), (J
1
2 )2`(θ00

10), (J
1
2 )2`(θ00

01)} ∈ C16×4,

(J2
1 )3`(θ00) = bdiag{(J2

1 )2`(θ00
00), (J

2
1 )2`(θ00

11), (J
2
1 )2`(θ00

10), (J
2
1 )2`(θ00

01)} ∈ C4×16,

L3`
2 (θ00) = diag{L2`

2 (θ00
00), L

2`
2 (θ00

11), L
2`
2 (θ00

10), L
2`
2 (θ00

01)} ∈ C4×4,

G3`
2 (θ00) = (L3`

2 (θ00))−1 − (J2
3 )3`(θ00)(L3`

3 (θ00))−1(J3
2 )3`(θ00) ∈ C4×4,
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where bdiag denotes a block diagonal matrix, and

(J2
3 )3`(θ00) = (J̃2

3 (θ00
00), J̃2

3 (θ00
11), J̃2

3 (θ00
10), J̃2

3 (θ00
01))

t ∈ C4×1,

(J3
2 )3`(θ00) = (J̃3

2 (θ00
00), J̃3

2 (θ00
11), J̃3

2 (θ00
10), J̃3

2 (θ00
01)) ∈ C1×4,

L3`
3 (θ00) = L̃3(4θ00) ∈ C1×1.

T̃1(θij
nm) = L̃−1(θij

nm)− L̃−1
1 (θij

nm) is the Fourier symbol of operator T1, and because
T1 : E16(θ00) → E16

1 (θ00), where E16(θ00) = E4(θ00
00) ∪ E4(θ00

11) ∪ E4(θ00
10) ∪ E4(θ00

01),
the matrix representation of T1 on these subspaces is

T 3`
1 (θ00) = bdiag{T 2`

1 (θ00
00), T 2`

1 (θ00
11), T 2`

1 (θ00
10), T 2`

1 (θ00
01)} ∈ C16×16.

Analogously, F3
1 : E16(θ00) → E16

1 (θ00), with

F3`
1 (θ00) := T 3`

1 (θ00) + (M3`
1 (θ00))νG3`

1 (θ00),

is the 16×16 eigenmatrix representation of F3
1 with respect to the subspaces E16(θ00)

and E16
1 (θ00).

Finally, we can estimate the three-level FMG accuracy measure by the following
expression

Ẽ3
FMG = sup

θ00∈Θ̃3

{||F3`
1 (θ00)(T 3`

1 (θ00))−1|| ; det(T 3`
1 (θ00)) 6= 0

}
, (3.18)

and the k-level FMG accuracy measure, using a k-level FMG analysis, by

Ẽk
FMG = sup

θ00∈Θ̃k

{||Fk`
1 (θ00)(T k`

1 (θ00))−1|| ; det(T k`
1 (θ00)) 6= 0

}
, (3.19)

where T k`
1 , Fk`

1 , are the (4k−1 × 4k−1) eigenmatrix representations of operators T k
1 ,

and Fk
1 , with respect to the subspaces E4k−1

(θ00) and E4k−1

1 (θ00). In the numerical
experiments section some estimates of the k-level FMG accuracy measure, with k =
2, 3, 4, are presented.

3.3.1. Validation of the three-level FMG analysis. Similarly to the two-
level case, the three-level FMG analysis can be validated by means of the worst-case
right-hand side analysis. Here, we briefly describe how to obtain the worst-case right-
hand side. This particular right-hand side, f , is given by a linear combination of
the Fourier components associated with the sixteen frequencies coupled by the three-
level operators. The coefficients of this linear combination are given by a vector
v ∈ C16, which can be obtained from v = (T 3`

1 (θ00))−1w, with w an eigenvector of
the 16×16 matrix W (θ00)tW (θ00) associated with its maximum modulus eigenvalue,
with W (θ00) = F3`

1 (θ00)(T 3`
1 (θ00))−1.

To validate the three-level FMG analysis based on this particular right-hand side,
we again employ model problem (3.15). As in Section 3.2.1, two different tests are
performed, using either injection or full-weighting operators for J2

1 and J3
2 . The

other operators involved in the three-level FMG algorithm are the same as in the
two-level case. In particular, the discrete operators, Lk, are the standard five-point
discretizations. The initial solution on each grid is obtained by bilinear interpolation
of the approximation from the next-coarser grid. For Ik+1

k and Ik
k+1, full weighting

and bilinear interpolation are used, respectively, and the smoother is again damped
14



Jacobi with relaxation parameter ω = 0.8. A single three-level V-cycle with one pre-
and one post-smoothing step is performed in both experiments.

In the first test, where the injection operator is used for restriction of the right-
hand sides, the ratio computed by the three-level FMG analysis, with a grid of size
64×64 in the frequency space, is Ẽ3

FMG = 30.3709, obtained with the frequency θ00 =
(−π/32h, −π/32h) and its harmonics. Associated with θ00 is a linear combination
of the corresponding sixteen harmonics, from which the worst-case right-hand side
predicted by the analysis can be constructed. The same procedure as in the two-level
case is followed, that is, vector v is calculated by the product (T 3`

1 (θ00))−1w, where
w is an eigenvector associated with the square of Ẽ3

FMG.
We apply the three-level FMG algorithm to solve the discrete problem (3.15) on a

fine grid of size 64×64, with the worst case right-hand side. The first row of Table 3.2
shows both relative errors ‖ J1u−u1 ‖ / ‖ f ‖ and ‖ J1u−uFMG

1 ‖ / ‖ f ‖, computed
in the two-norm, and the ratio ‖ J1u − uFMG

1 ‖ / ‖ J1u − u1 ‖, together with the
value predicted by the three-level FMG analysis, Ẽ3

FMG. Once again, we see a match
with the analysis.

‖ J1u− u1 ‖
‖ f ‖

‖ J1u− uFMG
1 ‖

‖ f ‖
‖ J1u− uFMG

1 ‖
‖ J1u− u1 ‖ Ẽ3

FMG

Injection 2.006× 10−5 6.094× 10−4 30.371 30.371

Full-weighting 1.043× 10−5 3.749× 10−5 3.595 3.595
Table 3.2

Three-level results of the worst-case analysis computations and LFA analysis for two different
restriction operators.

Next, we repeat the experiment using full-weighting for the restriction of the right-
hand sides. The maximum value is now Ẽ3

FMG = 3.595, and an important improve-
ment is again observed. This value is obtained for a frequency θ00 = (−π/8h,−π/8h),
and in order to validate the predictions of the three-level FMG analysis for this case
the worst-case right-hand side is again numerically computed. These results are shown
in the second row of Table 3.2, once again demonstrating a match with the analysis.

4. Numerical experiments. To demonstrate the potential use of the k-level
FMG analysis, we consider several problems and discretizations. The first test prob-
lem, the standard five-point discretization for the Laplace operator, serves to show
how to determine the influence of various components of the FMG algorithm. For ex-
ample, the importance of the type of cycle, number of pre- and post-smoothing steps,
the type of smoother, and the restriction for the right-hand side, are all evaluated.
The remaining experiments test other PDEs and discretizations.

For the calculation of the estimates of the k-level FMG accuracy measure, Ẽk
FMG,

a 512 × 512 grid in frequency space is employed. The transfer operators are bilinear
interpolation and full-weighted restriction, Ik

k+1 and Ik+1
k , respectively, and these

remain fixed for all the experiments. Moreover, the discrete operator on each level of
the hierarchy will be taken as the direct discretization of operator L.

4.1. O(h2) Laplace discretization. The first example is the standard O(h2)
five-point finite difference discretization of the Laplace operator. First, we fix the re-
striction for the right-hand sides to be the full-weighting operator. Then, we compare
the performance of different types of cycles and numbers of pre- and post-smoothing
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steps for three smoothers, plain Jacobi, damped Jacobi with relaxation parameter
ω = 0.8, and red-black relaxation. For prolongation of the solution we use bilinear
interpolation, and only a single k-level cycle is applied, that is, ν = 1. In Figure 4.1,
the estimates of the two, three and four-level FMG accuracy measures are depicted
for V(1,0), V(1,1), W(1,0) and W(1,1), using red-black relaxation. It can be observed
that, except for the V(1,0)-cycle, all choices lead to an Ẽk

FMG-factor independent of
the number of levels in the analysis, k, which is clearly a desirable property. Fur-
thermore, both V(1,1) and W(1,1) cycles yield k-level FMG measures close to one,
independently of k, indicating discretization level accuracy.

 

 

Fig. 4.1. Ẽk
FMG with k = 2, 3, 4, for various types of cycles, with full-weighting restriction of

the right-hand sides and red-black Gauss-Seidel smoothing.

Similarly, estimates for Ẽk
FMG with k = 2, 3, 4, are depicted in Figure 4.2, with

plain Jacobi (right-hand panel), or damped Jacobi with relaxation parameter ω =
0.8 (left-hand panel) in a k-level cycle. A rather surprising observation is that the
performance of undamped Jacobi appears to be a satisfactory choice in FMG (even
better than damped Jacobi), despite the well-known lack of the smoothing property
of this scheme. For both smoothers, k−independent Ẽk

FMG factors close to one are
obtained with the W(1,1)-cycle. The V-cycle, however, results in a deterioration of
the FMG accuracy measure as the number of levels increases.

From the analysis results, we conclude that one V(1,1)-cycle with a red-black
Gauss-Seidel relaxation, combined with full-weighting restriction of the right-hand
sides, provides a very efficient FMG method for the standard five-point discretization
of the Laplace operator. The practical utility of this analysis is shown by means of
some numerical experiments using different numbers of levels in FMG. The results ob-
tained with the k-level FMG analysis with k = 2, 3, 4, provide significant information
about the performance of the FMG algorithm with an arbitrary number of levels.

As an example, we consider again problem (3.15) with a right-hand side consisting
of a combination of sines associated with five different frequencies αi = 64π/2i, i =
1, . . . , 5, that is,

f(x, y) =
5∑

i=1

sin(αi x) sin(αi y).

We solve this problem by FMG, with the components described previously and a
16



 

  

Fig. 4.2. Ẽk
FMG with k = 2, 3, 4, for different type of cycles, with full-weighting restriction of

the right-hand sides, and a Jacobi smoother, with ω = 0.8 (left-hand panel) and with no damping
(right-hand panel).

finest grid of size 128 × 128, for which the discretization error is 2.565 × 10−6. In
Table 4.1, for each of the three smoothers and various numbers of levels in the FMG
algorithm, employing a V(1,0)-cycle, the relative total error ‖ J1u− uFMG

1 ‖ / ‖ f ‖,
and the experimentally obtained ratio ‖ J1u − uFMG

1 ‖ / ‖ J1u − u1 ‖ are shown.
A deterioration of the experimental ratio is observed for all three smoothers as the

Jacobi ω-Jacobi Red-black
` ratio error ratio error ratio error
2 0.925 2.373× 10−6 1.297 3.326× 10−6 0.928 2.379× 10−6

3 2.079 5.331× 10−6 3.313 8.496× 10−6 1.679 4.306× 10−6

4 4.496 1.153× 10−5 7.589 1.946× 10−5 3.241 8.313× 10−6

5 8.383 2.150× 10−5 15.712 4.029× 10−5 5.533 1.419× 10−5

6 14.256 3.656× 10−5 30.740 7.884× 10−5 8.565 2.197× 10−5

Table 4.1
Experimentally computed ratios and total errors for various numbers of levels used in the FMG

cycle, employing V(1,0)-cycles with three different smoothers.

number of levels in the FMG V(1,0)-cycle increases. These results confirm the trend
from the two, three and four FMG analysis from Figures 4.1 and 4.2.

Next, the same experiments are performed using FMG with W(1,1)-cycles; the
corresponding results are given in Table 4.2. In this case, the experimentally computed
ratios remain constant and close to one for all numbers of levels, independently of
the smoother chosen. Furthermore, the discrete solution obtained with any of these
approaches approximates the continuous solution to discretization level accuracy.
Note in summary that the two-level convergence factors predicted by a basic local
Fourier analysis tool are insufficient for seeing the deterioration of FMG using V(1,0)
cycles, but the k-level analysis yields a practical and useful tool.

To complete the analysis for this problem, some results with injection for the
restriction of the right-hand sides are reported. In Table 4.3 the estimates of the
FMG accuracy measure for k = 2, 3, and 4 levels are shown for different types of
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Jacobi ω-Jacobi Red-black
` ratio error ratio error ratio error
2 0.722 1.851× 10−6 0.539 1.382× 10−6 0.776 1.991× 10−6

3 0.735 1.884× 10−6 0.873 2.240× 10−6 0.744 1.909× 10−6

4 0.706 1.810× 10−6 0.909 2.332× 10−6 0.740 1.899× 10−6

5 0.703 1.803× 10−6 0.909 2.331× 10−6 0.740 1.899× 10−6

6 0.703 1.803× 10−6 0.909 2.331× 10−6 0.740 1.899× 10−6

Table 4.2
Experimentally computed ratios and total errors for different numbers of levels used in the FMG

algorithm with W(1,1)-cycles and three different smoothers.

cycles and numbers of pre- and post-smoothing steps, for one and two cycles per
level in the FMG method. When the right-hand sides on coarse levels are defined by
injection, FMG V-cycles do not exhibit good performance, as for increasing values of
k the estimates Ẽk

FMG also increase. On the other hand, FMG W-cycles provide very
satisfactory convergence results, even with one cycle: Ẽk

FMG values do not depend
on the number of levels, and the values are sufficiently small. Results obtained by
bicubic interpolation of the FMG solution are not shown here, as the corresponding
factors are very similar to those obtained by bilinear interpolation.

One cycle Two cycles

Ẽ2
FMG Ẽ3

FMG Ẽ4
FMG Ẽ2

FMG Ẽ3
FMG Ẽ4

FMG

V(1,1) 4.437 20.751 86.497 1.106 1.755 5.208

W(1,1) 4.437 5.013 5.102 1.106 1.111 1.111

V(2,1) 4.408 20.711 86.276 1.069 1.476 3.666

W(2,1) 4.408 4.736 4.789 1.069 1.072 1.072
Table 4.3

Ẽk
FMG values for k = 2, 3, 4, obtained with injection for the restriction of the right-hand sides,

bilinear interpolation for the solution in FMG, and different types of cycles and numbers of pre- and
post-smoothing steps. One and two cycles within the FMG algorithm are considered.

Remark. The examples presented have been selected to show that there is no imme-
diate relation between the quality of the k-grid convergence factors of the multigrid
cycle and the corresponding FMG convergence measure. In fact, undamped Jacobi
iteration provides very satisfactory FMG results, whereas an unsatisfactory iterative
multigrid convergence is obtained. On the other hand, concerning the results in Ta-
ble 4.3, we find fine results for W-cycles and poor performance of V-cycles, where the
corresponding multigrid convergence factors are both approximately 0.1.

18



4.2. O(h4) Laplace discretization. We next test the fourth-order “long sten-
cil” discretization of the Laplace operator,

L1u1 =
1

12h2




1
−16

1 −16 60 −16 1
−16
1




u1.

For this operator, we use injection for the restriction of the right-hand sides, and
a red-black smoother of Jacobi-type (see [18]) for the relaxation. For the inter-grid
transfer operators in the multigrid cycle, bilinear interpolation and full-weighting
restriction are used, since we have observed that higher-order operators do not lead
to any improvements in the FMG performance. The performance of two different
interpolation operators for the FMG solution, bilinear and bicubic, is compared.

First, results obtained with an FMG method with a single cycle are presented in
Table 4.4. W-cycles are considered since V-cycles display even worse convergence than
the unsatisfactory results shown in this table. The Ẽk

FMG ratios are nearly constant
with respect to the number of levels, but they are too large from a practical point
of view. A significant improvement is obtained when bicubic interpolation is used
instead, although the factors obtained then are also unsatisfactory. In both tests we
found that an increase in the number of relaxation steps did not improve the estimated
FMG accuracy.

Ẽ2
FMG Ẽ3

FMG Ẽ4
FMG

Bicubic
W(2,1) 11.419 14.752 15.069

W(2,2) 11.240 13.369 13.553

Bilinear
W(2,1) 909.534 910.037 910.039

W(2,2) 907.201 907.721 907.723
Table 4.4

Ẽk
FMG values for k = 2, 3, 4, obtained with injection for the restriction of the right-hand sides

and two different interpolations for the FMG solution. A single cycle per level is performed in the
FMG algorithm.

In the next test, we present in Figure 4.3 FMG analysis results with both inter-
polation operators, for an FMG method using two cycles per FMG level. The Ẽk

FMG

ratios for V-cycles increase with the number of levels. However, the FMG W-cycle
factors remain constant with respect to increasing k. The FMG W(1,1)-cycle based
on bicubic FMG interpolation appears most promising.

Next, we provide some numerical results to assess the practicality of the LFA
FMG measure. Problem (3.15) is again considered, with the right-hand side given
by f(x, y) = sin(2πx) sin(2πy). Two cycles per FMG level are applied, with injection
and bilinear interpolation used for the FMG restriction and prolongation, respectively.
FMG algorithms with V- and W-cycles are compared. In Table 4.5, the discretization
and total errors obtained for different grid sizes and three different types of cycles are
shown. For the V (1, 1)-cycle, for which the FMG analysis predicts increasing Ẽk

FMG-
values with respect to k, we observe that indeed the fourth-order accuracy is lost. For
the W (1, 1)-cycle, the FMG accuracy estimates using k = 2, 3, 4 levels were constant
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Fig. 4.3. Ẽk
FMG with k = 2, 3, 4, for different type of cycles, with injection used to restrict the

right-hand sides, red-black smoothing, and bilinear (right-hand panel) or bicubic (left-hand panel)
interpolation.

but too large (Ẽk
FMG ≈ 60). Also here the fourth order is not preserved. However,

with an FMG W (2, 1)-cycle the reduction of the total error is satisfactory, and the
expected fourth-order accuracy is achieved. This is predicted by the FMG analysis
(Ẽk

FMG remain constant and close to one).

grid size
‖ J1u− u1 ‖

‖ f ‖

‖ J1u− uFMG
1 ‖

‖ f ‖
V(1,1) W(1,1) W(2,1)

32× 32 2.085× 10−7 7.955× 10−6 2.514× 10−7 4.626× 10−8

64× 64 1.306× 10−8 2.163× 10−6 4.096× 10−8 7.881× 10−9

128× 128 8.169× 10−10 5.531× 10−7 4.942× 10−9 6.967× 10−10

256× 256 5.106× 10−11 1.391× 10−7 8.765× 10−10 4.867× 10−11

512× 512 3.192× 10−12 3.484× 10−8 1.965× 10−10 4.469× 10−12

Table 4.5
Experimentally computed discretization and total errors for different levels, using V(1,1),

W(1,1) and W(2,1) cycles.

4.3. Biharmonic operator. We conclude the numerical experiments section
by considering the discrete biharmonic operator, discretized by the following stencil

L1u1 =
1
h4




1
2 −8 2

1 −8 20 −8 1
2 −8 2

1




u1.

Here, we look for an efficient FMG algorithm for the resolution of this scalar problem,
although it is also common to rewrite the biharmonic operator as a system of two
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coupled Poisson equations. As in the previous example, a red-black Jacobi smoother
is used, and for the inter-grid transfer operators in the multigrid cycle bilinear inter-
polation and full-weighting restriction are chosen.

First, some results obtained by an FMG algorithm using injection for the restric-
tion of the right-hand sides and bilinear prolongation for the interpolation of the FMG
solutions are presented. The LFA estimates obtained, Ẽk

FMG, for k = 2, 3, 4, with
this FMG method are very large, giving rise to unsatisfactory numerical FMG results.
In order to improve these values, the acceleration by weighting the relaxation scheme
is pointed out in [2] as an interesting strategy, for PDEs with higher-order derivatives.
Optimal relaxation parameters for red-black Jacobi (determined in [11]) were found
to be ω1 = 1.25 (pre-smoothing) and ω2 = 0.7, (post-smoothing) for the biharmonic
operator. These relaxation parameters gave an impressive multigrid convergence im-
provement in [11], compared to the standard case ω1 = ω2 = 1. As we will see, this
significant improvement is also observed for FMG. The FMG accuracy measures with
LFA, for k = 2, 3, 4, are presented in Table 4.6, for algorithms employing different
numbers of cycles and pre- and post-smoothing steps. A significant improvement by
the optimal relaxation parameters is observed, yielding FMG measures close to one
and independent of k for the FMG W (2, 1)-cycle with ν = 3 2.

Ẽ2
FMG Ẽ3

FMG Ẽ4
FMG

W(1,1), ν = 2
ω1 = ω2 = 1.0 1.616× 107 1.406× 107 1.411× 107

ω1 = 1.25, ω2 = 0.7 4.293× 103 4.297× 103 4.297× 103

W(3,2), ν = 2
ω1 = ω2 = 1.0 1.428× 105 1.422× 105 1.423× 105

ω1 = 1.25, ω2 = 0.7 5.272 5.662 5.849

W(2,1), ν = 3
ω1 = ω2 = 1.0 5.722× 104 2.847× 104 2.860× 104

ω1 = 1.25, ω2 = 0.7 1.262 1.465 1.471
Table 4.6

Ẽk
FMG values for k = 2, 3, 4, obtained with injection for the restriction of the right-hand sides

and bilinear interpolation for the solution in FMG. Different FMG cycles: W (1, 1) and W (3, 2) with
ν = 2 and W (2, 1) with ν = 3 are considered, for both ω1 = ω2 = 1.0 and ω1 = 1.25, ω2 = 0.7.

To test the influence of various components in the FMG algorithm, we consider
the biharmonic model problem on a unit square domain with periodic boundary con-
ditions, and right-hand side f(x, y) = sin(2πx) sin(2πy). Choosing, for example, an
FMG algorithm based on W (1, 1) and two cycles per FMG level, with ω1 = ω2 = 1
in the relaxation, gives estimates of the FMG measure which are too large. This is
confirmed in the corresponding column of Table 4.7, where the relative total error
increases as the grid is refined. For a W (3, 2)-cycle, however, with two cycles per
FMG level and the optimal values of ω1 and ω2, the values of the FMG analysis are
sufficiently small, and independent of k, resulting in a satisfactory performance of the
FMG algorithm. The FMG approximation is indeed of discretization accuracy, as
displayed in the corresponding column of Table 4.7.

2Note that FMG algorithms using only one cycle are not considered, since the estimates exceed
values of 104, nor are V-cycles considered since the ratios provided by the analysis increase as k gets
larger.
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grid size
‖ J1u− u1 ‖

‖ f ‖

‖ J1u− uFMG
1 ‖

‖ f ‖
W(1,1), ν = 2 W(3,2), ν = 2 W(2,1), ν = 2

64× 64 2.579× 10−7 4.643× 10−7 2.579× 10−7 2.579× 10−7

128× 128 6.443× 10−8 5.879× 10−7 6.443× 10−8 6.443× 10−8

256× 256 1.611× 10−8 6.199× 10−7 1.611× 10−8 1.615× 10−8

512× 512 4.027× 10−9 6.288× 10−7 6.220× 10−9 4.980× 10−9

Table 4.7
Experimentally computed discretization and total errors for different numbers of levels, using

W(1,1) and W(3,2) cycles, with two cycles per FMG level (ν = 2), injection for the right-hand sides
and bilinear interpolation for the FMG solution, and also W(2,1) cycles with two cycles per FMG
level (ν = 2), and high-order inter-grid transfer operators.

Finally, when high-order inter-grid transfer operators are used in the FMG al-
gorithm, in particular high-order restrictions for the right-hand side and bicubic in-
terpolation of the FMG solution, the estimates predicted by the FMG analysis are
significantly better than those presented in the Tables 4.6, and 4.7 (2 columns). Again,
the choice of the optimal relaxation parameters yields methods with improved perfor-
mance. With one cycle per FMG level, for example, a constant value, Ẽk

FMG = 3.05,
is obtained with an FMG W (2, 1)-cycle, and the optimal values for ω1, ω2. With two
cycles per FMG level, the values of the FMG measure are close to one when W-cycles
are used: An FMG W (2, 1)-cycle, with two FMG cycles, gives Ẽk

FMG = 1.178 for
k = 2, 3, 4. The corresponding total errors on various grids are presented in the last
column of Table 4.7. The reduction of the total error is very satisfactory, and the
expected second-order accuracy is achieved.

5. Conclusions. One of the challenging tasks in the application of FMG is
to determine a-priori when the computed approximation has achieved the desired
discretization accuracy. We deal with this problem in this paper by means of a
local Fourier analysis technique for FMG algorithms. This technique gives us, a-
priori, insights into the performance of various FMG components. An FMG accuracy
measure has been defined, which appears to be a highly satisfactory indicator for the
accuracy achieved by FMG. Some Fourier analysis results are presented to confirm
the theoretical estimates, and numerical experiments illustrate its practical utility.

Looking ahead, we would like to point out that the measure and the LFA de-
veloped may naturally be applied to other techniques and situations in which the
residual may not always be an accurate reflection on the discretization accuracy. For
example, it can be applied to obtain convergence estimates for classical techniques like
defect-correction or double discretization schemes [3]. This is part of future research.
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