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Abstract. We consider the multigrid solution of the generalized Stokes equations from in-
compressible fluid dynamics. We introduce a segregated (i.e., equation-wise) Gauss-Seidel smoother
based on a Uzawa-type iteration. We analyze it in the framework of local Fourier analysis. We
obtain an analytic bound on the smoothing factor showing uniform performance for a family of
Stokes problems, ranging from stationary to time-dependent with small time step. These results
are confirmed by the numerical computation of the two-grid convergence factor for different types of
grids and discretizations. Numerical results also show that the actual convergence of the W-cycle is
roughly the same as that obtained with the Vanka smoother, despite this latter is significantly more
costly per iteration step.
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1. Introduction. The need to numerically solve the generalized Stokes equa-
tions appears for example in incompressible fluid dynamics and in some structural
mechanics problems such as plasticity, beam and shell studies. Furthermore, in the
large-scale simulation of fluid flow by using the nonlinear time-dependent Navier-
Stokes equations, a generalized Stokes problem has to be solved at each nonlinear
iteration, becoming a time-consuming task.

The Stokes equations form a saddlepoint problem, and depending on the choice
of discretization method, one may end up, after discretization, with a matrix in 2 ×
2 block form, in which the lower diagonal block is either a zero block or a block
containing very small matrix elements. Saddlepoint problems are well-known and
well-studied in numerical analysis. A clear overview of this topic has been presented
in [2].

The tradition of solving Stokes equations with multigrid is long, and many in-
teresting approaches have been presented during the last 35 years. Basically two
established well-known robust and efficient approaches remained. Their difference
lies in the type of smoothing operator adopted. A state-of-the-art smoother for the
Stokes equations is a Gauss-Seidel-type coupled Vanka smoother [20], in which the
primary unknowns, pressure and the velocities in a grid cell are updated simultane-
ously. Then, each smoothing step requires to solve as many small dense systems as
there are cells in the grid.
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Decoupled, i.e., equation-wise, smoothing is often preferred for reasons of cost
efficiency. For Stokes problems, one first transforms the discrete system such that
equation-wise smoothing on the transformed discrete system, followed by a back-
transformation to the original unknowns, brings excellent smoothing factors. Equation-
wise, decoupled smoothing on a transformed system is called distributive smoothing
[4, 24].

Both state-of-the-art smoothers are somewhat involved, as compared to the basic
smoothing techniques applied to the scalar elliptic PDEs. Straightforward general-
ization of the basic point-wise smoothing to systems of equations, like the Stokes
equations, implies a segregated, decoupled smoothing scheme in which the individual
equations of the PDE system are considered to be scalar equations. In this paper we
present a smoother which belongs to this category. Issues associated with standard
equation-wise smoothing procedures like damped Jacobi and Gauss-Seidel are avoided
by considering an Uzawa-type iteration. A similar, Uzawa smoother was presented
in a PhD thesis by P. Nigon, as well as in a conference proceedings paper in the
nineteen-eighties [14]. Here we present a new analysis of this approach leading to
both a deeper understanding of the multigrid performance and to the formulation of
a more efficient variant.

More precisely, the segregated smoother that we propose uses two different smooth-
ing procedures for the two different types of unknowns. For the velocity components,
any basic smoothing techniques applicable to scalar elliptic PDEs is possible, but
our analysis favors symmetric schemes. This leads us to focus on symmetric Gauss-
Seidel smoothing; that is, one forward pointwise Gauss-Seidel sweep for all velocity
unknowns followed by one backward sweep. In [14], two forward Gauss-Seidel sweeps
were used instead, and numerical results reveal that, everything else being equal, our
choice is indeed more effective.

On the other hand the Uzawa-like procedure amounts to a simple Richardson
iteration for the smoothing of the pressure unknowns. As usual, such iteration involves
a relaxation parameter, and in [14] results were given for the optimal parameter,
without giving hints on how to select it.

Here we provide an upper bound on the smoothing factor [19] associated with the
proposed Uzawa smoother that clearly indicates how the different parameters may
affect the convergence, and we deduce a rule of thumb to select the aforementioned
relaxation parameter as a function of the main problems characteristics.

We then consider three typical discretizations of a family of two-dimensional
Stokes problems, ranging from stationary to time-dependent with small time step. In
each case, we perform numerical experiments whose results confirm the relevance of
our analysis and the efficiency of the proposed approach. On the one hand, our upper
bound on the smoothing factor gives an excellent estimation of the exact smoothing
factor, and selecting the parameter according the proposed rule of is indeed optimal
or near optimal. On the other hand, the smoothing factor indeed reflects well the
two-grid convergence factor computed with local Fourier analysis (LFA), as well as
the actual convergence factor associated with practical multigrid cycles. Finally, the
convergence is roughly the same as that obtained with the Vanka smoother; since
this latter is significantly more costly per step, it means that our approach is more
effective, at least for the selected examples.

The outline of the paper is as follows. In §2, we present the generalized (i.e.,
parametrized) Stokes equations and give the general properties of the linear systems
resulting from their discretizations. The Uzawa smoother is introduced in §3, where
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we also develop our analysis of the associated smoothing factor. This general analysis
is then particularized and numerically illustrated in the subsequent sections, where
we consider successively a staggered MAC discretization (§4), a collocated grid dis-
cretization with an artificial pressure term (§5), and a stabilized linear finite element
method on a equilateral triangular mesh (§6). Concluding remarks are given in §7.

2. The generalized Stokes equations and their discretization. Given a
bounded polygonal domain Ω ⊆ R2 with a Lipschitz-continuous boundary ∂Ω, the
generalized Stokes problem in two dimensions requires finding the velocity vector
u : Ω → R2, and the kinematic pressure field p : Ω → R, satisfying

ξu− ν∆u+∇p = f , in Ω,
∇ · u = 0, in Ω,

(2.1)

where f represents a prescribed force, and the parameters ν > 0 (viscosity) and ξ ≥ 0
are given. This latter is often a proportional quantity to the inverse of the time-step
in an implicit time integration method applied to a nonstationary Stokes problem;
ξ = 0 corresponds to the classical stationary Stokes problem. Whatever the chosen
scheme, the discretization of (2.1) leads to a linear system of the form

K =

(
A BT

B −C

)
. (2.2)

In this matrix, A is the discrete representation of the operator ξ−ν∆ ; more precisely,
A is block diagonal with one diagonal block per spatial dimension, each of them being
the discrete operator acting on one of the velocity components. It further follows
that A is symmetric positive definite (SPD). The matrix block BT is the discrete
gradient and B the discrete divergence; C is a stabilization term that is needed by
some discretization schemes to avoid spurious solutions. Such spurious solutions arise
when the discrete gradient admits more than the constant vector in its null space
or near null space; i.e., when the discrete gradient is zero or near zero for some
spurious pressure modes. The existence of such modes depends on which combination
of discretization scheme is used for velocities and pressure. We refer to, e.g., [22] and
[8] for more details on, respectively, finite difference and finite element discretization.
Note a required property of the stabilization operator: if B is not full rank, C has
to be positive definite on the null space of BT , which further entails that the system
matrix is nonsingular [2].

An important exception to this latter rule is when the boundary conditions are
such that the physical pressure is only determined up to a constant. To make the
problem well-posed, one needs then to impose some additional condition, such as∫

Ω

pdx = 0. (2.3)

At the discrete level, this is traduced by the fact that BT1 = 0 , where 1 is the
vector of all ones. Hence, matrix K may be singular with a null space spanned by
(0 1T )T . WhetherK is singular or not depends on C , but, to preserve accuracy, good
stabilization operators need be small for smooth modes, and often satisfy C 1 = 0 as
well (see §5 below for an example).

The singularity of K raises however no particular difficulties when solving the
linear system with an iterative method, see, e.g., [8, Section 8.3] for a detailed discus-
sion in the context of the Navier-Stokes equations. Basically, the system is compatible
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because the right hand side of (2.1) together with the lack of boundary conditions
for the pressure entail that the right hand side of the discrete system is zero for
the second block of equations. Further, starting from, say, the zero vector as initial
approximation, all updates are kept orthogonal to the kernel vector (0 1T )T ; that
is, all updates are such that the discrete pressure unknowns have mean value zero,
implying that the constraint (2.3) is satisfied at the discrete level by all successive
approximations. Hence the error vector has no component against the singular mode,
which thus plays no role in the convergence. Regarding the iteration matrix, it means
that the eigenvalue 1 associated with the singular mode does not have to be taken
into account. The convergence is governed by the “effective” spectral radius, which
corresponds to the maximum in modulus of other eigenvalues.

Considering more particularly multigrid methods, prolongations operators are
often such that a discrete pressure with mean value zero on the coarse grid remains
with mean value zero once prolongated on the fine grid; i.e., no particular treatment
is needed if the coarse solver picks up the “right” solution. On the other hand, as will
be seen, the smoother that we propose in the next section is such that the relaxation
preserves the mean value of the discrete pressure as soon as BT1 = 0 and C 1 = 0 ;
i.e., here too, no particular treatment is needed to enforce (2.3) at the discrete level
when the system is singular.

3. The Uzawa smoother. A well-known statement in the multigrid community
is that a good indication for the appropriate choice of relaxation method for a system
of equations is found in the systems’ determinant [6]. If the operators on the main
diagonal form the determinant of the system, smoothing is easy. In that case, the
differential operator that corresponds to the primary unknown in each equation is the
leading operator, indicating that equation-wise relaxation methods are likely efficient.

For the Stokes operator, however, the dominating terms in the determinant come
from offdiagonal blocks. As a general rule, this indicates that coupled relaxation
is likely needed, which motivated the focus on Vanka and distributive smoothers
mentioned in the Introduction. Both indeed ensure a form of coupling between the
relaxation processes applied to the unknowns belonging to a same grid cell. Interest-
ingly, the smoother proposed here does not fall into these two categories of relaxation
methods, and is truly decoupled. So, the determinant may be a good indication, but
alternative smoothing methods, based on a different analysis, may be efficient as well.

Our approach is in fact not rooted in multigrid research, but in the Uzawa method
(e.g., [2, Section 8.1]), which is an iterative scheme to solve linear systems with a
matrix of the form (2.2). It amounts to performing stationary iterations with the
preconditioner (

A
B −ω−1 I

)
,

where ω is some positive parameter. The presence of the matrix block A in this
preconditioner implies an exact solve for velocity at each iteration. This makes the
approach costly, and the Uzawa method is in fact popular thanks to the “inexact”
variants that replace this block with some preconditioner for A .

In the multigrid context, it seems then natural to consider as smoother this oper-
ator when A is replaced by a typical smoother MA ; that is, to consider the smoother

M =

(
MA 0
B − 1

ω I

)
, (3.1)
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Notice that, because of the structure of A (block diagonal with diagonal blocks cor-
responding to discrete ξ− ν∆), all commonly used smoothers for scalar elliptic PDEs
can be used to define MA .

The smoother (3.1) is a decoupled smoother, and a single smoothing step can be
described as follows: given (uT , pT )T an approximation of the solution to the system,
compute the relaxed approximation (ûT , p̂T )T according to:

• apply smoother MA to relax the system Au = f −BTp ;
i.e., û = u+M−1

A

(
f −Au−BTp

)
;

• update the pressure: p̂ = p+ ω (B û− C p) .

Observe that, when K is singular because BT1 = 0 and C1 = 0 , one has 1TB =
1TC = 0 and therefore 1T p̂ = 1Tp , i.e., the relaxation associated with the Uzawa
smoother preserves the mean value of the discrete pressure as discussed at the end of
§2.

When MA consists in two forward Gauss-Seidel sweeps for velocities, this scheme
is the one suggested in [14]. In this work, we shall mainly consider another variant,
where MA is based on symmetric Gauss-Seidel iterations for A ; i.e.,

MA = (DA + LA) D
−1
A (DA + UA) , (3.2)

where DA , LA and UA are, respectively, the diagonal, the strict lower, and the strict
upper parts of A . Indeed, besides being a good smoother, such MA satisfies two
important properties needed by our theoretical analysis. Firstly, it is SPD when A is
SPD, and, next, the associated largest eigenvalue satisfies (see, e.g., [1, Theorem 7.17])

λmax(M
−1
A A) ≤ 1. (3.3)

Numerical experiments will also reveal that, for essentially the same cost, the con-
vergence associated with such MA is often faster than that obtained with two SOR
sweeps as in [14].

Now, our analysis of the Uzawa smoother requires to first make the assumptions
and simplifications associated with the LFA framework. LFA (also known as local
mode analysis) is the most powerful tool for the quantitative analysis and design of
efficient multigrid methods for general problems. In this analysis an infinite regular
grid is considered and boundary conditions are not taken into account. LFA was
introduced by Brandt in [3] and afterwards extended in [5]. A good introduction
can be found in the paper by Stüben and Trottenberg [18] and in the books by
Wesseling [21], Trottenberg et al. [19], and Wienands and Joppich [23].

In this framework, the discrete operators can be expressed in a basis (the Fourier
basis) in which they have a simpler form. For instance, discrete representations of
ξ − ν∆ are typically diagonal, each component corresponding to a particular “fre-
quency”. LFA is further based on the classification of these frequencies in “Low
frequency” components and “High frequency” components. The idea behind this is
the following: multigrid methods work if the smoother and the coarse grid operator
interact properly, and it is generally expected that the smoother damps the high fre-
quency components of the error whereas the coarse grid correction damps the low
frequency ones. Hence, regarding the smoother, most important is its action on the
high frequency components.

It is then convenient to permute these components so that the high frequency ones
are labeled first. Then A , expressed in the Fourier basis, admits the block diagonal
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form

AF =

(
Ahigh

Alow

)
.

The exact structure of B in this basis depends on the discretization scheme, but, as a
general rule, the different types of frequency do not mismatch. That is, the discrete
gradient of a low (resp. high) frequency pressure vector involve only low (resp. high)
frequency velocity components. Moreover, typical stabilization matrices C are also
block diagonal with respect to this partitioning of frequencies. Hence, the system
matrix in the Fourier basis has the form

KF =


Ahigh B∗

high

Alow B∗
low

Bhigh −Chigh

Blow −Clow

 . (3.4)

For Bhigh and Blow , the conjugate transpose appears in the top right block because
the basis transformation is orthogonal but in general complex. Hence the transformed
matrix is no more real, and blocks that were transpose of each other become conjugate
transpose of each other. On the other hand, blocks that were symmetric become
Hermitian, and remain definite if they were previously definite. In particular, if C
was positive definite on the null space of B∗ , Chigh is positive definite on the null
space of B∗

high , and Clow is positive definite on the null space of B∗
low ,

The smoother has of course to be expressed in the same basis. In fact, standard
smoothers for scalar elliptic PDEs are also diagonal when expressed in the Fourier
basis; hence, applying to MA the same transformations and permutations as to A
yields

M
(A)
F =

(
M

(A)
high

M
(A)
low

)
.

On the other hand, because the basis transformation is orthogonal, the identity re-
mains the identity in the new basis. Hence the smoother (3.1) becomes

MF =


M

(A)
high

M
(A)
low

Bhigh −ω−1I
Blow −ω−1I

 . (3.5)

Now, despite the simpler form of the operators in the new basis, performing a
complete analysis of the multigrid iteration matrix remains often out of reach for
systems of PDEs. If one is interested in smoothers’ performances, insight can be
gained by considering a simplified (and, in some sense, idealized) scheme, in which
the coarse grid corrections erase exactly all low frequency components of the error,
while leaving the high frequency ones unchanged [19]. The corresponding convergence
factor is referred to as the smoothing factor, and the following Theorem allows to
bound this latter for the Uzawa smoother (3.1).

Theorem 3.1. Let KF be defined by (3.4), where Ahigh , Alow , Chigh and Clow

are, respectively, nhigh×nhigh , nlow×nlow , mhigh×mhigh and mlow×mlow Hermitian
matrices with mhigh ≤ nhigh . Assume that Ahigh is positive definite, that Chigh is
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nonnegative definite, and that either Bhigh has full rank or Chigh is positive definite
on the null space of B∗

high .

Let MF be defined by (3.5), where M
(A)
high , M

(A)
low are, respectively, nhigh × nhigh

and nlow × nlow Hermitian positive definite matrices.
Define the smoothing factor µ by

µ = ρ
( (

I −M−1
F KF

)
T (F)
c

)
,

where

T (F)
c =


Inhigh

0nlow ×nlow

Imhigh

0mlow ×mlow

 .

If λmax

(
M

(A)
high

−1
Ahigh

)
≤ 1 , letting

µA = ρ
(
I −M

(A)
high

−1
Ahigh

)
and

µS = ρ
(
I − ω

(
Chigh +BhighA

−1
highB

∗
high

))
,

there holds

µ ≤ µ = max
(
(µA)

1/2
, µS

)
. (3.6)

Proof. Using

M−1
F =


M

(A)
high

−1

M
(A)
low

−1

ωBhighM
(A)
high

−1
−ωImhigh

ωBlowM
(A)
low

−1
−ωImlow

 ,

one can check that

µ = ρ(I −M−1
highKhigh ) ,

where

Khigh =

(
Ahigh B∗

high

Bhigh −Chigh

)
, Mhigh =

(
M

(A)
high

Bhigh −ω−1Imhigh

)
.

The required result then follows from Corollary 4.5 in [15]. Strictly speaking, this
latter result is proved only for real matrices. But, examining thoroughly its proof
as well as that of the theorems it is based on, it turns out that the extension to the
complex case runs smoothly, reading “symmetric” as “Hermitian” and “transpose” as
“conjugate transpose”.
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Note that (3.3) implies a fortiori λmax

(
M

(A)
high

−1
Ahigh

)
≤ 1 . Hence the only

additional assumption in Theorem 3.1 always holds with the symmetric Gauss-Seidel
smoother. This theorem provides then a bound on the smoothing factor involving
only the smoothing factor µA associated with the smoother for velocities, and µS ,
which can be seen as the smoothing factor associated with Richardson iterations for
the Schur complement

S = C +BA−1BT . (3.7)

Bounding µA raises no particular difficulties. Often one can reuse available results
for scalar elliptic PDEs [19, 23]. The analysis of µS is more tricky. Moreover, even if
one is not interested in bounds, one needs to know something about the eigenvalues
of S to be able to select ω in a sensible way. The following theorem is helpful in this
respect.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Let ν > 0 and ξ ≥ 0
be real numbers such that

Ahigh = ν A
(0)
high + ξ Ghigh and Chigh = ν−1 C

(0)
high (3.8)

for some Hermitian positive definite matrices A
(0)
high , Ghigh , and Hermitian nonneg-

ative definite matrix C
(0)
high . Let h > 0 , β > 0 , η > 0 and γ ≥ 0 be real numbers such

that

λmax

(
Chigh +BhighA

(0)
high

−1
B∗

high

)
≤ β , (3.9)

λmax

(
G−1

highA
(0)
high

)
≤ 1

η h2
, (3.10)

λmax

(
C

(0)
high

)
≤ γ . (3.11)

Then, setting, for some positive real number τ ,

ω =
τ ν

(
1 + η ξ h2

ν

)
β + γ η ξ h2

ν

, (3.12)

one has µS < 1 if τ < 2 . Moreover, letting

κβ =
β

λmin

(
Chigh +BhighA

(0)
high

−1
B∗

high

) , (3.13)

κη =
1

η h2 λmin

(
G−1

highA
(0)
high

) , (3.14)

κγ =


γ

λmin

(
C

(0)
high

) if Chigh is positive definite ,

∞ otherwise ,
(3.15)

there holds

µS ≤ max

τ − 1 , 1− τ
1+η

ξ h2

ν

1+κη η
ξ h2

ν

β
κβ

+
γ
κγ

κη η
ξ h2

ν

β+γ η
ξ h2

ν

 . (3.16)
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In particular, if ξ = 0 :

µS ≤ max

(
τ − 1 , 1− τ

κβ

)
. (3.17)

Proof. Reading inequalities in the nonnegative definite sense (Q ≥ R if and only
if Q−R is nonnegative definite), one first checks that

Chigh +BhighA
−1
highB

∗
high = ν−1 C

(0)
high +Bhigh

(
ν A

(0)
high + ξ Ghigh

)−1

B∗
high (3.18)

≤ ν−1

(
C

(0)
high +Bhigh

(
1 + η ξ h2

ν

)−1

A
(0)
high

−1
B∗

high

)
= ν−1

1+η
ξ h2

ν

(
C

(0)
high +BhighA

(0)
high

−1
B∗

high + η ξ h2

ν C
(0)
high

)
≤ ν−1

1+η
ξ h2

ν

(
β + γ η ξ h2

ν

)
I .

Hence, with ω given by (3.12), all eigenvalues of ω
(
Chigh +BhighA

−1
highB

∗
high

)
are in

the interval (0 , τ) , entailing µS < 1 if 0 < τ < 2 . Moreover,

µS ≤ max

τ − 1 , 1−
τ ν
(
1 + η ξ h2

ν

)
λmin

(
Chigh +BhighA

−1
highB

∗
high

)
β + γ η ξ h2

ν

 ,

whereas, reusing (3.18)

Chigh +BhighA
−1
highB

∗
high ≥ ν−1

(
C

(0)
high +Bhigh

(
1 + κη η

ξ h2

ν

)−1

A
(0)
high

−1
B∗

high

)
= ν−1

1+κη η
ξ h2

ν

(
C

(0)
high +BhighA

(0)
high

−1
B∗

high + κη η
ξ h2

ν C
(0)
high

)
≥ ν−1

1+κη η
ξ h2

ν

(
β
κβ

+ γ
κγ

κη η
ξ h2

ν

)
I .

Then (3.16) and (3.17) follow by considering, respectively, the second and the first
term in the maximum.

We now discuss the application of this result to the discretization of (2.1). Thus
we let A(0) be a discrete representation of (−∆) , G that of the identity, and C(0) the

proper stabilization term when ν = 1 .1 Then, (3.8) holds with A
(0)
high , Ghigh , C

(0)
high

equal to the high frequency part of these matrices when expressed in the Fourier basis.
Note that G = I if a finite difference scheme is used, whereas G is the mass matrix
for velocity components if a finite element method is used.

First observe that (3.9), (3.10), (3.11) a fortiori hold if

λmax

(
C(0) +BA(0)−1

BT
)
≤ β , (3.19)

λmax

(
G−1A(0)

)
≤ 1

η h2
, (3.20)

λmax

(
C(0)

)
≤ γ . (3.21)

1Because the quality of the stabilization depends on the eigenvalue distribution of the Schur
complement [8], it is clear that the stabilization term has to be kept proportional to ν−1 .
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For the infinite grid, (3.19) holds with β = 1 if a finite difference scheme is used,
and β = λmax(Q) for a finite element method, where Q is the pressure mass matrix.
Further, finding a relevant η is most often easy; e.g., η = 1/8 for a five point finite
difference scheme. Finally, γ depends on the stabilization scheme, with, of course,
γ = 0 when the discretization used is stable. In the finite element context, “ideal”
stabilization implies γ = λmax(Q) , see [8, Section 5.5.2]. On the other hand, the
simple form of stabilization used for finite difference methods (see an example below)
makes it easy to find a relevant γ . Note also that η is really needed only if ξ is
positive and, moreover, large enough so that ξ h2/ν is not fairly small. When the
corresponding term in (2.1) comes from finite differences in time with an implicit
scheme, this means using a time step of O(h2) , which is relatively rare in practice.

The analysis of κβ , κη and κγ in (3.13), (3.14), (3.15) can be more tricky. In
general, meaningful bounds cannot be obtained considering the matrices coming di-
rectly from the discretization, like in (3.19), (3.20), (3.21). At least for κη and κγ ,
it is important to restrict the operators to the high frequency components to obtain
estimates that remain bounded for decreasing h . However, doing so, it is clear that
these constants will be only moderately larger than 1 and independent of h and other
problem parameters; see below for some examples.

On the other hand, it is not necessary to know κβ , κη and κγ to properly im-
plement the method. More precisely, they are needed if one wants to define ω using
the rule (3.12) with τ such that the corresponding bound on µS is minimal. However,
recall that the final bound µ on µ cannot be better than the square root of µA – and
it would be disappointing if it would be much larger. Hence we have a good rule of
thumb if one uses (3.12) with τ somehow larger than one, so that this square root
and τ − 1 are roughly comparable. For instance, this approach with τ = 1.4 has been
found effective in all examples considered below.

A last but not least remark in this section. We found that ω can be defined
using (3.12) with some default value for τ and parameters β , η , γ defined from
(3.19), (3.20), (3.21); i.e., without involving anything specifically connected to the
simplifications associated with LFA. It suggests that, if our analysis is restricted to
that context, the approach itself is not, and the Uzawa smoother with the same rule
to define ω can be proposed as a general approach to solve systems of the form (2.2)
with a multigrid method. Note here that the value of β in (3.19) can be larger
than that indicated above, depending on the boundary conditions. For finite element
methods, see [8], β = λmax(Q) remains valid if Dirichlet boundary conditions are
used everywhere for velocity, whereas, otherwise, β can increase up to 2λmax(Q) for
two-dimensional problems, and 3λmax(Q) for three-dimensional ones. The constant
β may similarly increase for finite difference discretizations, but remains O(1). Since,
for typical stabilization schemes, γ is also O(h2) for finite element discretizations and
O(1) for finite difference ones, it means that, when ξ = 0 , one will have ω = O(h−2)
in the former case (recall that λmax(Q) = O(h2)), and ω = O(1) in the latter.

These results are applied in the following sections, where the Uzawa smoother is
analyzed, implemented and tested for three different types of discretizations.

4. Finite difference discretization on staggered grid. As first example of
discretization, we consider the Marker-and-Cell (MAC) finite difference scheme [12].
We assume that Ω is a unit square region (0, 1) × (0, 1) divided into a uniform grid
of cells of size h. The discrete velocities and pressures are distributed in a staggered
arrangement. That is, the discrete pressure unknowns p are defined at the cell centers
(the ×–points), and the discrete values of u and v, the components of the velocity
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vector, are located at the grid cell faces in the ◦– and •–points, respectively, see
Figure 4.1

• • • •

• • • •

• • • •

• • • •

• • • •

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

× × × ×

× × × ×

× × × ×

× × × × ×: p
◦: u
•: v

Fig. 4.1. Staggered grid location of unknowns for Stokes equations.

It is well-known that the MAC scheme is naturally stable with C = 0; see for
example [17]. Hence the matrix of the discrete system writes

Kh =

(
Ah BT

h

Bh 0

)
. (4.1)

Notice that Bh is full rank, except that BT
h 1 = 0 , but, as discussed at the end of §2,

this singularity entails no practical difficulty.
In order to solve the linear system, a geometric multigrid method based on the

Uzawa smoother described above can be designed. Regarding the coarse-grid correc-
tion part of the algorithm, in multigrid methods for Cartesian grid discretizations,
one chooses standard geometric grid coarsening, i.e., the sequence of coarse grids is
obtained by doubling the mesh size in each space direction. In this framework, an ap-
propriate coarse-grid correction consists of geometric transfer operators Rh,2h, P2h,h,
and a direct coarse-grid discretization. The inter-grid transfer operators that act on
the different unknowns are dictated by the staggered grid. For the Stokes equations,
they are defined as follows: At grid-points corresponding to velocity unknowns u and
v, one can consider 6-point restrictions and at grid-points associated with pressure
unknowns ph a 4-point cell-centered restriction can be applied. In stencil notation
these restriction operators are given by

Ru
h,2h =

1

8

 1 2 1
∗

1 2 1

 , Rv
h,2h =

1

8

 1 1
2 ∗ 2
1 1

 , Rp
h,2h =

1

4

 1 1
∗

1 1

 ,

respectively. For the prolongation of the corrections, we have applied the correspond-
ing adjoint operators multiplied by a factor of 4.

To apply the results of the preceding section, we need to set up the framework
of LFA analysis. In this context, we define an extension of the staggered grid to an
infinite grid Gh = G1

h ∪G2
h ∪G3

h, where

Gj
h := {xj

k1,k2
= (k1, k2)h+ δj | k1, k2 ∈ Z}, with δj =

 (0, h/2), if j = 1,
(h/2, 0), if j = 2,
(h/2, h/2), if j = 3.

The velocity unknowns u, and v, are located at points x1
k1,k2

∈ G1
h and x2

k1,k2
∈ G2

h,

respectively, whereas pressure unknowns are situated at nodes x3
k1,k2

∈ G3
h. From the
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definition of the occurring operators on Gh, the discrete solution, its current approx-
imation and the corresponding error or residual can be represented by formal linear
combinations of complex exponential functions, the Fourier modes. These functions
form a unitary basis of the space of bounded infinite grid functions, and in Gh they
are given by

φh(θ,xk1,k2) :=

 eıθ·x
1
k1,k2

/h

eıθ·x
2
k1,k2

/h

eıθ·x
3
k1,k2

/h

 ,

where θ ∈ Θ := (−π, π]2, xk1,k2 = (x1
k1,k2

,x2
k1,k2

,x3
k1,k2

), xj
k1,k2

∈ Gj
h. In this way,

the Fourier space is defined by

F(Gh) := span{φh(θ, ·) |θ ∈ Θ},

and the behavior of the multigrid components can be analyzed by evaluating their
effect of the Fourier modes. The subset of low frequencies is defined as Θ2h

low =
(−π/2, π/2]2, and the subset of high frequencies is Θ\Θ2h

low . In the transition from
Gh to G2h, each low-frequency θ = θ00 ∈ Θ2h

low is coupled with three high-frequencies
θ11, θ10, θ01, given by

θij = θ00 − (i sign(θ1), j sign(θ2))π, i, j = 0, 1.

Because of this, the Fourier space can be subdivided into the corresponding four-
dimensional subspaces, known as 2h−harmonics:

F2h(θ) := {φh(θ
00, ·),φh(θ

11, ·),φh(θ
10, ·),φh(θ

01, ·)}, with θ = θ00 ∈ Θ2h
low .

Now, the two-grid iteration matrix is

Mh,2h = Sν2

h (Ih − P2h,h(K2h)
−1Rh,2hLh)S

ν1

h ,

where Sh = I−M−1
h Kh is the iteration matrix associated with the smoother, and ν1 ,

ν2 are, respectively, the number of pre- and post-smoothing steps. The LFA two-grid
convergence factor

ρ = ρ (Mh,2h) (4.2)

is easy to compute because Mh,2h is block diagonal with respect to the partitioning
in 2h−harmonics; that is, only four coupled frequencies have to be considered at a
time.

Often this convergence factor is well approximated by µν1+ν2 , where µ is the
smoothing factor already introduced in the preceding section and which can also be
defined as

µ = sup
Θ\Θ2h

low

ρ (Sh(θ)) .

We now discuss the application of Theorems 3.1 and 3.2 to bound µ while selecting
the parameter ω in the Uzawa smoother on a sensible basis. 2 It is well-known that the

2The theorems are proved for finite dimensional matrices only. However, if LFA matrices are
infinite dimensional, they are block diagonal with respect to the partitioning in 2h−harmonics, and
one may check that applying the theorems separately to each diagonal block yields the same result
as a formal extension of these theorems to the infinite dimensional case.
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smoothing factor of the symmetric Gauss-Seidel method for the standard five-point
discretization of Laplace operator is µA = 0.25 [18]. Further, for the MAC-scheme β
and κβ in (3.9), (3.13) are equal to one. Hence, assuming that the parameter ω has
been selected according to (3.12), one has, for ξ = 0 ,

µ = max (0.5 , τ − 1) .

This implies that if τ ≤ 1.5, the upper bound on the smoothing factor is determined
by the smoother for velocities, whereas, if τ > 1.5, it corresponds to the smoothing
factor associated with Richardson iterations for the Schur complement.

For ξ > 0, since

λmin

(
A

(0)
high

)
≥ 2

h2
, λmax

(
A

(0)
high

)
≤ 8

h2
,

it follows that η = 1/8 in formula (3.10), and κη = 4 in (3.14), so that (because C = 0,
γ = 0 and therefore κγ is not important)

µS ≤ max

(
τ − 1 , 1− τ

8ν + ξh2

8ν + 4ξh2

)
. (4.3)

Notice that µA decreases with increasing ξ and becomes fairly small when ξ is fairly
large; then, our bound µ on µ amounts to the above value of µS .

To illustrate this numerically, we fix h−1 = 256 and ν = 1 (observe that only the
ratio ξ/ν matters), and consider two values of ξ , whereas the parameter τ is varied
in the interval [1, 1.6]. In Table 4.1, the relaxation parameter ω given by (3.12), and
the theoretical bound of the smoothing factor µ provided by (3.6), together with the
exact LFA smoothing factor µ are shown for ν1 + ν2 = 1.

ξ τ = 1 τ = 1.1 τ = 1.2 τ = 1.3 τ = 1.4 τ = 1.5 τ = 1.6
ω 1 1.1 1.2 1.3 1.4 1.5 1.6

0 µ 0.5 0.5 0.5 0.5 0.5 0.5 0.6
µ 0.5 0.5 0.5 0.5 0.5 0.5 0.6
ω 1.19 1.30 1.42 1.54 1.66 1.78 1.90

105 µ 0.36 0.36 0.36 0.36 0.36 0.36 0.42
µ 0.36 0.36 0.36 0.36 0.36 0.36 0.42

Table 4.1
LFA smoothing factor µ together with its theoretical bound µ provided in (3.6), as a function

of the relaxation parameter ω given in (3.12) for τ ∈ [1, 1.6].

One sees that our bound µ accurately matches the actual smoothing factor µ.
Regarding the choice of parameter τ, any value τ ∈ [1, 1.5] seems appropriate. From
now on, we fix the value τ = 1.4. This choice is based on the robustness of the result-
ing method for all cases analyzed in this work, including the different discretization
schemes.

With parameter τ fixed, we analyze the behavior of the proposed smoother (3.1)
based on symmetric Gauss-Seidel (SGS) relaxation for MA, and compare its perfor-
mance with variants where MA is based instead on a standard (forward) Gauss-Seidel
(GS) method; with two sweeps, this corresponds to the method suggested in [14],
which has roughly the same cost, whereas one sweep represents a cheaper alternative.
In Table 4.2, for different values of ξ and different numbers of smoothing steps, we
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present the smoothing factor and the LFA two-grid convergence factor (4.2), using ω
as in (3.12) with thus τ = 1.4. Results are displayed for h−1 = 256 and h−1 = 1024.
The method suggested in this work is significantly better than the method in [14],
except in one case where both perform similarly. On the other hand doing just one
forward sweep on velocities does not lead to a convergent method. Observe further
that the convergence factors associated with the proposed approach are uniformly
very small when using four smoothing steps,.

h−1 = 256 h−1 = 1024

SGS for MA GS for MA SGS for MA GS for MA

2 sw. 1 sw. 2 sw. 1 sw.
ξ ω µ ρ ρ ρ ω µ ρ ρ ρ

ν1 + ν2 = 1
0 1.40 0.50 0.44 0.87 1.42 1.40 0.50 0.44 0.87 1.42

100 1.40 0.50 0.44 0.87 1.42 1.40 0.50 0.44 0.87 1.42
105 1.66 0.36 0.80 0.80 1.24 1.41 0.48 0.43 0.84 1.42

ν1 + ν2 = 4
0 1.40 0.06 0.08 0.71 4.16 1.40 0.06 0.08 0.72 4.16

100 1.40 0.06 0.08 0.71 4.16 1.40 0.06 0.08 0.72 4.16
105 1.66 0.01 0.04 0.18 2.40 1.41 0.05 0.07 0.65 4.00

Table 4.2
Results for the MAC-scheme using the rule (3.12) with τ = 1.4 ; 1 (resp. 2) sw. stands for 1

(resp. 2) Gauss-Seidel sweep(s) for velocities in each smoothing step; 2 sw. is the strategy in [14].

We now consider the performance of multigrid cycles on finite grids, and compare
the Uzawa smoother as defined in this work with a state-of-the-art Vanka smoother
[20]. Vanka smoothers are block Gauss-Seidel methods where one block consists of
a small number of degrees of freedom. For the MAC scheme, the pressure and the
velocities in the x- and y-directions in a grid cell are simultaneously updated, resulting
in 5 × 5 blocks that are updated during the processing of a grid cell. A relaxation
parameter w = 0.7 has been used in the implementation of the Vanka smoother
for improving its results. In Table 4.3, for different numbers of smoothing steps,
we show for both smoothers the number of iterations needed to reduce the initial
residual norm by a factor of 10−10, together with the asymptotic convergence factor
(in brackets). In this table, the results for W-cycles are presented for ξ = 0 and
ξ = 105 . One sees that the performances are similar in all cases. Hence it does not
pay off to incur the additional computational cost and implementation efforts related
to a Vanka smoother.

5. Finite difference discretization on collocated grid. The second example
of discretization is a standard finite difference discretization on collocated grids; i.e.,
all unknowns are located at the vertices of grid cells, which makes the discretization
somewhat easier but induces the presence of spurious pressure modes with zero dis-
crete divergence. To rule out these modes, the continuity equation is perturbed by
adding an artificial elliptic pressure term. The matrix of the discrete system is then

K =

(
A BT

B −C

)
, (5.1)
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ξ = 0 ξ = 105

Uzawa Vanka Uzawa Vanka
(ν1 + ν2) #it. (ρ) #it. (ρ) #it. (ρ) #it. (ρ)

1 27 (0.45) 26 (0.45) 35 (0.53) 22 (0.40)
2 17 (0.29) 15 (0.24) 13 (0.22) 11 (0.15)
3 11 (0.14) 11 (0.16) 9 (0.10) 8 (0.08)
4 8 (0.07) 10 (0.13) 8 (0.06) 7 (0.04)

Table 4.3
Comparison of Uzawa and Vanka smoother for the MAC scheme. Number of iterations and

asymptotic convergence factor of W-cycle for different number of smoothing steps.

where C = −αh2∆h is a scaled discrete Laplacian (with Neumann boundary condi-
tions) acting on pressure unknowns. As this term is proportional to h2, second order
accuracy is maintained when all terms in the system are discretized with second order
accuracy. Notice that K is singular because BT1 = 0 and C1 = 0; this singularity is
managed as discussed at the end of §2 and therefore entails no practical difficulty.

For the parameter α a well-balanced choice needs to be made. It should be
chosen sufficiently small to maintain accuracy but at the same time sufficiently large
to guarantee stable solutions; here we use α = 1/16 , which appears to be a reasonable
choice in practice [13].

To solve the resulting system of algebraic equations, a geometric multigrid with
standard coarse-grid correction components is adopted. Standard, h–2h, grid coars-
ening is employed and the inter-grid transfer operators are full-weighting restriction
and bilinear interpolation. We analyze whether the proposed Uzawa smoother also
gives satisfactory results for this type of collocated grid discretization. Here, basic lo-
cal Fourier analysis [23] accompanies the numerical experiments, based on an infinite
collocated grid Gh. Fourier modes are three-component vectors whose elements are
identical to the scalar Fourier components φh(θ,x) = eıθx/h.

To define ω with the rule (3.12), we need information about the parameter β
in (3.9), and, when ξ > 0 , also on η and γ in (3.10), (3.11). After some algebraic
calculations, Eq. (3.9) is satisfied with β = 0.775. On the other hand, for the five point
finite difference scheme, we have η = 1/8 as in the preceding section, whereas, due
to the simple form of the stabilization term, it is easy to derive that γ = 1/2. Since
we deal with the same five-point discretization of the Laplacian, the smoothing factor
of the symmetric Gauss-Seidel method remains µA = 0.25 when ξ = 0 and smaller
for increasing ξ. Because κβ is larger than 1 in this example, it follows that, when
using τ = 1.4, the dominating term in our upper bound µ is always µS ; i.e., (3.6)
amounts to µ ≤ µ = µS . In Table 5.1, for different values of ξ and different numbers of
smoothing steps, we present the smoothing factor and the LFA two-grid convergence
factor for the proposed smoother. As in the previous section, we compare with the
same Uzawa smoother but with standard Gauss-Seidel (GS) instead of symmetric
Gauss-Seidel for MA. Similar conclusions apply. The method proposed here exhibits
significantly better convergence results than the method in [14], except for very large
values of ξ, for which both perform similarly for h−1 = 256.

As discussed at the end of §3, it may be easier or, in some sense, more general, to
define ω based on β from (3.19) instead of (3.9). In the present case, this would lead
to a slightly larger value, namely β = 1 instead of β = 0.775 considered above. Using
as usual τ = 1.4 , this yields, e.g., ω = 1.40 when ξ = 0 , and a two-grid convergence



16 F.J. GASPAR, Y. NOTAY, C.W. OOSTERLEE AND C. RODRIGO

h−1 = 256 h−1 = 1024

SGS for MA GS for MA SGS for MA GS for MA

2 sw. 1 sw. 2 sw. 1 sw.
ξ ω µ ρ ρ ρ ω µ ρ ρ ρ

ν1 + ν2 = 1
0 1.80 0.53 0.53 0.80 0.86 1.80 0.53 0.53 0.80 0.86

100 1.80 0.53 0.53 0.80 0.86 1.80 0.53 0.53 0.80 0.86
105 1.91 0.51 0.51 0.51 0.66 1.81 0.53 0.53 0.77 0.85

ν1 + ν2 = 4
0 1.80 0.08 0.10 0.61 0.79 1.80 0.08 0.10 0.61 0.79

100 1.80 0.08 0.10 0.61 0.79 1.80 0.08 0.10 0.61 0.79
105 1.91 0.06 0.16 0.16 0.25 1.81 0.08 0.09 0.52 0.73

Table 5.1
Results for finite difference discretizations on collocated grids using the rule (3.12) with τ = 1.4 ;

1 (resp. 2) sw. stands for 1 (resp. 2) Gauss-Seidel sweep(s) for velocities in each smoothing step;
2 sw. is the strategy in [14].

factor equals 0.17 for h−1 = 256 and ν1 + ν2 = 4. Hence there is no significant
difference with ω induced by β = 0.775. Similar conclusions are obtained for other
values of ξ and h, suggesting that one may indeed define ω with β from (3.19) without
significant loss of performance.

6. Linear finite element discretization on triangular grid. The third ex-
ample of discretization deals with a linear finite element formulation of problem (2.1)
on an equilateral structured triangular mesh. We therefore consider the weak formu-
lation of (2.1).

Find (u, p) ∈ U ×Q, such that

ξ(u,v) + ν(∇u,∇v)− (p,∇ · v) = (f ,v), ∀v ∈ U , (6.1)

(∇ · u, q) = 0, ∀q ∈ Q, (6.2)

where (·, ·) denotes the L2 scalar product, Ω is a bounded domain in R2, U =
(H1

0 (Ω))
2, and Q = L2

0(Ω) = {q ∈ L2(Ω) |
∫
Ω
qdx = 0}, i.e., L2(Ω)-functions which

only differ by a constant are not distinguished.
Let Th be an equilateral structured triangulation of Ω, and Uh ⊂ (H1

0 (Ω))
2, and

Qh ⊂ L2
0(Ω) be the corresponding spaces of piecewise linear functions on Th. Since

the pair (Uh,Qh) provides an unstable finite element scheme, similarly to the case of
finite differences on a collocated grid, we must add an additional term to the discrete
equations for stabilization. To this end, we consider the bilinear form on Qh × Qh,
defined by

c(ph, qh) =
∑
T∈Th

h2

∫
T

∇ph ∇qhdx,

where h denotes grid size (i.e. the length of the edge on T ). The stabilized discrete
formulation of the Stokes problem in its weak form reads as follows.
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Find (uh, ph) ∈ Uh ×Qh, such that

ξ(uh,vh) + ν(∇uh,∇vh)− (ph,∇ · vh) = (f ,vh), ∀vh ∈ Uh, (6.3)

(∇ · uh, qh) + ᾱc(ph, qh) = 0, ∀qh ∈ Qh, (6.4)

where the term ᾱc(ph, qh) refers to the stabilization of the problem, and ᾱ > 0 is a
given parameter. The choice ᾱ = 1/12 appears to be optimal for linear elements [7],
so it is used here as well.

The discrete problem obtained gives rise to a saddle point problem like (5.1). A
geometric multigrid method based on the proposed Uzawa smoother is employed to
solve the discrete equations. The hierarchy of grids is obtained by a regular refinement,
dividing the triangular domain into four congruent triangles, connecting the midpoints
of their edges and so forth until the mesh has the desired scale. The inter-grid transfer
operators are the canonical operators related to linear finite elements over triangles,
i.e., the seven-point prolongation and its adjoint as the restriction [11].

Local Fourier analysis used to be applied to discretizations on rectangular grids,
however, in [9] LFA was extended to discretizations on non-rectangular grids, in par-
ticular, to triangular grids. The key to this generalization was a two-dimensional
Fourier transform using coordinates in non-orthogonal bases. A unitary basis fitting
the structure of the grid is considered as the spatial basis, and its reciprocal basis is
considered for the frequency space. This way, a discrete Fourier transform for discrete
functions defined on non-rectangular grids can be defined and LFA on non-rectangular
grids can be performed as on rectangular grids.

We first apply Theorem 3.2 to the FEM structured equilateral triangular grid
discretization. The smoothing factor of the symmetric Gauss-Seidel method for this
discretization of the Laplacian is µA = 0.173. Further, we find η = 1/24, and γ =√
3h2/4. Finally, Eq. (3.9) is satisfied with β = 0.68h2.
With the help of the triangular LFA, the convergence behavior of multigrid based

on the Uzawa smoother is analyzed for different values of ξ and different numbers of
smoothing steps. Its performance is compared to the Uzawa smoother resulting from
standard Gauss-Seidel relaxation for MA and the approach in [14]. These compar-
isons are presented in Table 6.1, where for different numbers of smoothing steps and
different values of ξ the two-grid convergence factors computed by LFA are shown, to-
gether with the relaxation parameter given by the theory, as well as the corresponding
smoothing factor. The results are displayed for h = 1/256 and h = 1/1024. For small
ξ-values the proposed approach is superior to the other two multigrid strategies, when
more than one smoothing step is considered. In the case of large ξ, the performances
are comparable.

As in previous numerical sections, we are interested in the numerical convergence
of the multigrid cycles. Moreover, we compare the behavior of the proposed strategy
with multigrid based on a suitable Vanka smoother. It simultaneously updates, for
each grid point, the corresponding pressure unknown and the twelve unknowns asso-
ciated to the velocities located at the six points around it, resulting in 13×13 systems
that are updated during the processing of a vertex of the triangulation. A relaxation
parameter w = 0.7 has been chosen for improving the smoothing properties of the
Vanka smoother. In Table 6.2, the number of iterations to reduce the initial residual
by a factor of 10−10 are shown, together with the asymptotic convergence factors in
brackets. The results are displayed for W-cycles with different numbers of smoothing
steps, for ξ = 0. The convergence of the Uzawa-based multigrid method is comparable
to the performance with Vanka smoothers, that are however more expensive.
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h−1 = 256 h−1 = 1024

SGS for MA GS for MA SGS for MA GS for MA

2 sw. 1 sw. 2 sw. 1 sw.
ξ ω µ ρ ρ ρ ω µ ρ ρ ρ

ν1 + ν2 = 1
0 2.06/h2 0.33 0.66 0.72 0.58 2.06/h2 0.33 0.66 0.72 0.58

100 2.06/h2 0.33 0.66 0.72 0.58 2.06/h2 0.33 0.66 0.72 0.58
105 2.10/h2 0.24 0.44 0.48 0.44 2.06/h2 0.32 0.65 0.70 0.58

ν1 + ν2 = 4
0 2.06/h2 0.01 0.10 0.27 0.43 2.06/h2 0.01 0.10 0.27 0.43

100 2.06/h2 0.01 0.10 0.27 0.43 2.06/h2 0.01 0.10 0.27 0.43
105 2.10/h2 0.003 0.19 0.19 0.19 2.06/h2 0.01 0.08 0.23 0.40

Table 6.1
Results for the P1-P1-scheme for equilateral triangular grids using the rule (3.12) with τ = 1.4 ;

1 (resp. 2) sw. stands for 1 (resp. 2) Gauss-Seidel sweep(s) for velocities in each smoothing step;
2 sw. is the strategy in [14].

ξ = 0
Uzawa Vanka

(ν1 + ν2) #it. (ρ) #it. (ρ)

1 41 (0.63) 21 (0.38)
2 14 (0.22) 10 (0.14)
3 10 (0.13) 8 (0.08)
4 9 (0.10) 7 (0.06)

Table 6.2
Comparison of Uzawa and Vanka smoother for the linear finite element method. Number of

iterations and asymptotic convergence factor of W-cycle for different number of smoothing steps.

7. Conclusions. An Uzawa smoothing method for the multigrid solution of the
generalized Stokes system has been introduced, discussed and analyzed. Detailed
LFA smoothing analysis resulted in a formula to determine the appropriate relax-
ation parameter ω. The resulting multigrid method based on the Uzawa smoother
with suitable parameter appears as highly efficient for staggered and collocated fi-
nite difference discretizations, as well as for a finite element Stokes discretization.
The multigrid results are confirmed by two-grid LFA, and comparison with Vanka
smoother based multigrid appears favorably for the Uzawa smoother in the Stokes
case.

As any study based on LFA, our analysis is restricted to constant coefficient
problems. Regarding situations where, like in [10], the viscosity ν (strongly) varies
inside the domain, we further observe that our rule (3.12) to define the relaxation
parameter cannot be used anymore without ambiguity, as it sets ω proportional to
ν. A straightforward adaptation would then consists in letting ω be variable as well,
to keep it proportional to ν. In practice, it amounts to apply a “local” value of ω
according to the “local” value of ν when relaxing the pressure unknowns as indicated
in the pseudo algorithm on page 5. Such generalization deserves however further
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investigations that are outside the scope of the present paper.
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