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Abstract

In this article we define a multi-factor equity-interest rate hybrid model with
non-zero correlation between the stock and interest rate. The equity part is
modeled by the Heston model [24] and we use a Gaussian multi-factor short-rate
process [7; 25]. By construction, the model fits in the framework of affine diffusion
processes [11] allowing fast calibration to plain vanilla options. We also provide an
efficient Monte Carlo simulation scheme.
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1 Introduction

Pricing modern contracts involving multiple asset classes requires well-developed
pricing models from quantitative analysts. Among them the hybrid models, that include
features from different asset classes, are of current interest.

In this article we propose a hybrid model based on two particular asset classes:
the equity and the interest rates. Such a model can be used for pricing specific hybrid
products or for accurate pricing of long-term equity options. Although multi-dimensional
hybrids can relatively easily be defined, real use of the models is only guaranteed if the
hybrid model is properly defined for each asset class (i.e. a satisfactory fit to implied
volatility structures), and if it is possible to set a non-zero correlation structure among
the processes from the different asset classes. Furthermore, highly efficient pricing of
fundamental contracts needs to be available for model calibration. In this article we
propose a model which satisfies these requirements.

We define a multi-factor hybrid model with correlation between the equity and
interest rate asset classes, which, by construction, enables efficient pricing of plain vanilla
equity options and goes beyond the models with a normally distributed volatility process.
We show that the new model can easily be used for calibration and for the pricing of
structured products exposed to equity and interest rate risk. The hybrid model is easily
understood and an efficient implementation is given.

In the hybrid model the equity part is driven by the Heston model [24], while for the
short-rate process a Gaussian multi-factor model [25] is taken with a non-zero correlation
between the asset classes. The model belongs to the affine diffusion framework for
which the characteristic function can be determined. This facilitates the use of Fourier-
based algorithms [9; 14] for efficient pricing of plain vanilla contracts. Additionally,
Monte Carlo simulation can be performed by a straightforward generalization of the
scheme developed by Andersen in [3]. By defining the affine hybrid Heston model under
the forward measure, we can price several financial derivative products (like American
options [15]) as under the basic Heston model.
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The interest rates are driven by multi-factor Gaussian rates [26]. This model provides
a rich pattern for the term structure movements and recovers a humped volatility
structure observed in the market. The hybrid model under consideration can be used
for hybrid payoffs which have a limited sensitivity to the interest rate smile.

For the model considered also the Greeks for plain vanilla options can be efficiently
determined and used for hedging. When hedging hybrid products, exposed to different
sources of risks coming from equity or interest rate, it is crucial to choose an appropriate
set of hedging instruments. Particularly, correlation risk needs to be taken into account
here. As it is difficult to find a pure correlation product in the market which can be used
for hedging, one may consider, similarly as for hedging of jump processes (as presented
in [17]), a mean-variance hedging strategy based on a portfolio of stocks, options and
interest rate instruments, like caplets and swaptions.

Additionally, due to the sensitivity of the model to different correlations, it is also
possible to adjust the risk-related margins.

Pricing long-maturity options with equity-interest rate hybrid models is common
practice in the market. In [22; 38] a stochastic volatility equity hybrid model
with a full matrix of correlations (the Schöbel-Zhu-Hull-White model) was presented.
Approximations for the Heston-Hull-White hybrid model were then presented in [21]. In
the same article the interest rate process of Cox-Ingersoll-Ross [10] (CIR) was analyzed.
In [2] the Heston model with CIR interest rates was analyzed with respect to forward
starting options.

In practice, especially when dealing with long-maturity options or simple hybrid
products, the short-rate models are often used. Approximations for hybrids in which
the interest rates are driven by the stochastic volatility Libor Market Model have been
presented in [23].

This article is divided in several parts. In Section 2 we define the Heston-Gaussian
two-factor hybrid model and highlight the affinity problems. In the follow-up section,
which is the core of our article, we propose an affine version of this hybrid model.
We derive the model under the T -forward measure and provide the corresponding
characteristic function. In the same section we describe the derivation of the Greeks
as well as Monte Carlo simulation; we also investigate properties like a positive definite
correlation matrix. Section 4 is dedicated to the numerical experiments where we
compare the affine model to the non-affine Heston hybrid model and the Schöbel-Zhu-
Hull-White model, and check the performance for pricing a hybrid product. Section 5
concludes.

2 Hybrid with Multi-Factor Short Rate Process

2.1 Model under the Spot Measure

Suppose we have given two asset classes defined by the vectors Xn̄×1(t), n̄ ∈ N+

for the equity and for the interest rates Rm̄×1(t), m̄ ∈ N+. One can take high-
dimensional processes with stochastic volatility, and define the following system of
governing stochastic differential equations (SDEs):

dR(t) = a(R(t))dt+ b(R(t))dWR(t),
dX(t) = c(X(t),R(t))dt+ d(X(t))dWX(t),

Z(t)Zt(t) = CHdt,

(2.1)

where H(t) = [R(t),X(t)]t, Z(t) = [dWR(t),dWX(t)]t, CH is a (n̄ + m̄) × (n̄ + m̄)
matrix which represents the instantaneous correlation between the Brownian motions 1.
The noises dW·(t) are assumed to be multi-dimensional, and correlation within the asset
classes is allowed, as well as correlations between these classes.

Since the Heston model in [24] is sufficiently complex for explaining the smile-shaped
implied volatilities in equity, we take this model for the equity part. In particular, the

1We use superscript ”t” for transpose, and superscript ”T” to indicate the T -forward measure.
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model for the state vector X(t) = [v(t), x̂(t) = logS(t)]t is described by the following
system of SDEs:{

dx̂(t) = (r(t)− 1/2v(t)) dt+
√
v(t)dWx(t), S(0) > 0,

dv(t) = ε (v̄ − v(t)) dt+ ω
√
v(t)dWv(t), v(0) > 0,

(2.2)

with dWx(t)dWv(t) = ρx,vdt, the speed of mean reversion ε > 0; v̄ > 0 is the long-
term mean of the stochastic variance process v(t), and ω > 0 specifies the volatility of
the variance process. Note that the term 1/2v(t) in the x̂(t)-process results from Itô’s
Lemma when deriving the dynamics for logS(t).

For the interest rate process we consider the Gaussian multi-factor short-rate model
(Gn++) [7], also known as a multi-factor Hull-White model. The model, for a given
state vector R(t) = [r(t), ζ1(t), . . . , ζn−1(t)]t, is defined by the following system of SDEs:

dr(t) = (θ(t) +
n−1∑
k=1

ζk(t)− κr(t))dt+ ηdWr(t), r(0) > 0,

dζk(t) = −λkζk(t)dt+ γkdWζk
(t), ζk(0) = 0,

(2.3)

where

dWr(t)dWζk
(t) = ρr,ζk

dt, k = 1, . . . , n− 1, dWζi(t)dWζj (t) = ρζi,ζj dt, i 6= j,

with κ > 0, λk > 0 the mean reversion parameters; η > 0 and parameters γk determine
the volatility magnitude of the interest rate. In the system above, coefficient θ(t) > 0,
t ∈ R+, stands for long-term interest rate (which is usually calibrated to the current
yield curve).

The Gn++ model provides a satisfactory fit to at-the-money humped volatility
structure for forward Libor rates. Moreover, the easy construction of the model (based
on a multivariate normal distribution) provides closed-form solutions for caps and
swaptions, enabling fast calibration. On the other hand, since the model is assumed
to be normal, the interest rates can become negative. This however is known and is
taken care of in practical applications (see for example [36]).

By taking the equity model X(t) as introduced in (2.2) and the interest rate part R(t)
from (2.3), a hybrid model H(t) = [R(t),X(t)]t = [r(t), ζ1(t), . . . , ζn−1(t), v(t), x̂(t)]t can
be defined with the following instantaneous correlation structure:

CH :=



1 ρr,ζ1 . . . ρr,ζn−1 0 ρx,r

ρr,ζ1 1 . . . ρζ1,ζn−1 0 ρx,ζ1

...
...

. . .
...

...
...

ρr,ζn−1 ρζn−1,ζ1 . . . 1 0 ρx,ζn−1

0 0 . . . 0 1 ρx,v

ρx,r ρx,ζ1 . . . ρx,ζn−1 ρx,v 1


. (2.4)

Model H(t) is the Heston-Gaussian n-factor hybrid model (H-Gn++). Note that the
equity and the interest rate asset classes are linked by correlations in the right-upper
and left-lower diagonal blocks of matrix CH. Our main objective is the preservation of
the correlation, ρx,r, between the log-equity and the interest rate.

As it is nontrivial to hedge equity-interest rate hybrids by liquidly traded standard
instruments (see [6] for details), and as the correlations between different asset classes
cannot be easily implied from the market, historical estimates are often used. However,
as soon as hybrid product prices become available, one can use the additional correlations
(degrees of freedom) to enhance the hybrid model performance.

Assuming V := V (t,H(t)) to represent the value of a European claim, we can derive
the corresponding pricing partial differential equation (PDE) [18] with the help of the
arbitrage-free pricing theorem and the use of Itô’s Formula:
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0 = (r − 1/2v)
∂V

∂x̂
+ ε (v̄ − v)

∂V

∂v
+
(
θ(t) +

n−1∑
k=1

ζk − κr
)∂V
∂r

−
n−1∑
k=1

λkζk
∂V

∂ζk
− rV

+
1
2
v
∂2V

∂x̂2
+

1
2
ω2v

∂2V

∂v2
+

1
2
η2 ∂

2V

∂r2
+

1
2

n−1∑
k=1

γ2
k

∂2V

∂ζk
+ ρx,vωv

∂2V

∂x̂∂v
+ ρx,rη

√
v
∂2V

∂x̂∂r

+
√
v

n−1∑
k=1

ρx,ζk
γk

∂2V

∂x̂∂ζk
+

n−1∑
k−1

ρr,ζk
γkη

∂2V

∂r∂ζk
+
∂V

∂t
+

n−2∑
k=1

n−1∑
j=k+1

ρζk,ζjγkγj
∂2V

∂ζk∂ζj
, (2.5)

with specific boundary and final conditions (for details on boundary conditions for
similar problems, see, for example, [12] pp.241).

2.1.1 Covariance Structure

The solution of the (n+2)D convection-diffusion-reaction PDE in (2.5) can be
approximated by means of standard numerical techniques, like finite differences (see for
example [32]). This may however cost substantial CPU time for the model evaluation.
An alternative is to use the Feynman-Kac theorem and reformulate the problem as an
integral equation related to the discounted expected payoff.

Let us take the following state vector H = [r(t), ζ1(t), . . . , ζn−1(t), v(t), x̂(t)]t, and
determine the associated (symmetric) instantaneous covariance matrix ΣH of hybrid
model (2.1) with (2.2) and (2.3):

ΣH :=



η2 ρr,ζ1ηγ1 . . . ρr,ζn−1ηγn−1 0 ρx,rη
√

v
ρr,ζ1ηγ1 γ2

1 . . . ρζ1,ζn−1γ1γn−1 0 ρx,ζ1γ1
√

v
...

...
. . .

...
...

...
ρr,ζn−1ηγn−1 ρζn−1,ζ1γn−1γ1 . . . γ2

n−1 0 ρx,ζn−1γn−1
√

v

0 0 . . . 0 ω2v ρx,vωv
ρx,rη

√
v ρx,ζ1γ1

√
v . . . ρx,ζn−1γn−1

√
v ρx,vωv v


.

(2.6)

For the H-Gn++ hybrid model the instantaneous covariance matrix in (2.6) is not affine
([11]) in all terms of the right-upper block. One can immediately see that the affinity
problem disappears for ρx,r = 0 and ρx,ζk

= 0, for k = 1, . . . , n − 1. This, however,
means independence between the asset classes. In order to stay in the affine class with
nonzero correlations between the assets, approximations need to be introduced. This is
the approach we take here.

In order to define an alternative model which is affine, it appears necessary to relate
the instantaneous covariance matrix in (2.6) to the corresponding stochastic differential
equations. This can be done by expressing the model in terms of the independent
Brownian motions, W̃(t) = [W̃r(t), W̃ζ1(t), . . . , W̃ζn−1(t), W̃v(t), W̃x(t)]t. For a state
vector H(t) = [r(t), ζ1(t), . . . , ζn−1(t), v(t), x̂(t)]t, the model, in terms of independent
Brownian motions, can be rewritten as:

dH(t) = µ(H(t))dt+ A(t)UdW̃(t), (2.7)

where µ(H(t)) represents the drift and U is the Cholesky lower triangular matrix so
that CH = UUt for matrix CH in (2.4) and matrix A(t) is given by:

A(t) =


η 0 . . . 0 0 0
0 γ1 . . . 0 0 0
...

...
. . .

...
.
..

.

..
0 0 . . . γn−1 0 0

0 0 . . . 0 ω
√

v(t) 0

0 0 . . . 0 0
√

v(t)

 . (2.8)

Equivalently, Model (2.7) can be expressed as:

dH(t) = µ(H(t))dt+ L(t)dW̃(t), (2.9)
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with
L(t)L(t)t = ΣH, (2.10)

and ΣH the instantaneous covariance matrix in (2.6).
The model representation of (2.9) is favorable compared to (2.7) since we have a

direct relation between the covariance matrix (2.6) and the SDEs.

2.2 Zero-coupon bonds under multi-factor Gaussian model

In the sections to follow we reduce the dimension of the pricing problem by an
appropriate measure change, and define an affine version of the multi-factor hybrid
model.

In order to derive the multi-factor hybrid model under the forward measure the
corresponding zero-coupon bond needs to be determined first.

Under the risk-neutral measure, Q, we consider the following n-factor interest rate
model: 

dr(t) = (θ(t) +
n−1∑
k=1

ζk(t)− κr(t))dt+ ηdWr(t), r(0) > 0,

dζk(t) = −λkζk(t)dt+ γkdWζk
(t), ζk(0) = 0,

(2.11)

with a full correlation matrix with ρr,ζi 6= 0, and ρζi,ζj 6= 0 for i, j = {1, . . . , n − 1},
i 6= j.

This model is affine in all state variables, so we can derive the corresponding
characteristic function (see [11]) for r(T ):

φGn++(u, r(t), τ) = EQ
(
e−

∫ T
t

r(s)dseiur(T )
∣∣F(t)

)
= exp

(
A(u, τ) +B(u, τ)r(t) +

n−1∑
k=1

Ck(u, τ)ζk(t)

)
, (2.12)

with final condition φGn++(u, r(T ), 0) = eiur(T ), where conventionally τ = T − t. The
functions A(u, τ), B(u, τ) and Ck(u, τ) are known explicitly and are given by the set of
Riccati-type ODEs:

B′(u, τ) = −1− κB(u, τ),
C ′k(u, τ) = B(u, τ)− λkCk(u, τ), (2.13)

A′(u, τ) = θ(t)B(u, τ) +
1
2
η2B2(u, τ) + η

n−1∑
k=1

ρr,ζk
γkB(u, τ)C(u, τ)

+
1
2

n−1∑
i=1

n−1∑
j=1

ρζi,ζjγiγjCi(u, τ)Cj(u, τ),

with boundary conditions B(u, 0) = iu, Ck(u, 0) = 0 and A(u, 0) = 0. These ODEs
can be solved analytically. By setting u = 0 in (2.12) the zero-coupon bond price is
obtained, i.e.:

P (t, T ) ∆= EQ
(
e−

∫ T
t

r(s)ds
∣∣F(t)

)
= exp

(
A(t, T ) +B(t, T )r(t) +

n−1∑
k=1

Ck(t, T )ζk(t)

)
,

(2.14)
where

A(t, T ) := A(0, τ), B(t, T ) := B(0, τ), Ck(t, T ) := Ck(0, τ). (2.15)

By applying Itô’s Lemma to Equation (2.14), the zero-coupon bond dynamics under the
Q measure read:

dP (t, T )
P (t, T )

= r(t)dt+ ηB(t, T )dWr(t) +
n−1∑
k=1

γkCk(t, T )dWζk
(t), (2.16)
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where the functions B(t, T ) and Ck(t, T ) satisfy the ODEs (2.13) via (2.15). Their
solution reads:

B(t, T ) =
1
κ

(
e−κ(T−t) − 1

)
, (2.17)

Ck(t, T ) =
1

κ(λk − κ)
e−κ(T−t) − 1

λk(λk − κ)
e−λk(T−t) − 1

λkκ
, (2.18)

with
Ck(t, T ) =

1
κ2

(
e−κ(T−t)(1 + κ(T − t))− 1

)
, for λk → κ,

and k = {1, . . . , n− 1}.
The dynamics for the zero-coupon bond are important when switching measures in

the hybrid model.

3 The Affine Heston-Gn++ Model (AH-Gn++)

In this section, which is the main part of the article, we define the affine hybrid Heston
model. Since the model proposed is, by its structure, similar to the Heston-multi-factor-
Gaussian model (denoted by H-Gn++) we abbreviated the model by “AH-Gn++”,
which stands for “affine version of the H-Gn++ model”.

For convenience, we start with n = 2. The AH-G2++ model with the state vector
H(t) = [r(t), ζ(t), v(t), S(t)]t under the risk-neutral measure Q, is given by the following
system of SDEs:

dr(t)
dζ(t)
dv(t)

dS(t)/S(t)

 =


θ(t) + ζ(t)− κr(t),

−λζ(t)
ε(v̄ − v(t))

r(t)

dt+ L(t)


dW̃r(t)
dW̃ζ(t)
dW̃v(t)
dW̃x(t)

 , (3.1)

where

L(t)L(t)t =


η2 ρr,ζηγ 0 ρx,rηα(t)

ρr,ζγη γ2 0 ρx,ζγα(t)
0 0 ω2v ρx,vωv

ρx,rηα(t) ρx,ζγα(t) ρx,vωv v

 =: ΣH. (3.2)

Here, the function α(t) is a deterministic function depending on time t, which will be
discussed in Section 3.3. With deterministic function α(t), matrix ΣH in (3.2) does not
contain any non-affine elements, so that the AH-G2++ model belongs to the class of
affine processes. This allows us to determine the characteristic function for the model.

Application of the Cholesky decomposition to matrix ΣH in (3.2) gives for matrix
L(t):

L(t) =


η 0 0 0

γU2,1 γU2,2 0 0

0 0 ω
√

v(t) 0

α(t)U4,1 α(t)U4,2 U4,3

√
v(t)

√
v(t)(1 −U2

4,3) − α2(t)
(
U2

4,1 + U2
4,2

)
 , (3.3)

where U is the lower triangular Cholesky matrix obtained from the correlation matrix,
with values for Ui,j given by:U2,1 = ρr,ζ , U4,1 = ρx,r, U4,3 = ρx,v,

U2,2 =
√

1− ρ2
r,ζ , U4,2 = (ρx,ζ − ρx,rρr,ζ)

/√
1− ρ2

r,ζ .
(3.4)

The correlation structure between equity and interest rate in the AH-G2++ model
in (3.1) with (3.2) is dependent on function α(t). If we set, for example, α(t) ≡ 0,
independence between the asset classes is imposed. Our main objective is to choose
a function α(t) so that the AH-G2++ model stays affine and that it resembles the
full-scale H-G2++ model. In Section 3.3 we discuss a particular choice for α(t).
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3.1 The Affine Hybrid Model Under Measure Change

It is common to move the model from the spot measure, generated by the money-
savings account, M(t), to the forward measure where the numéraire is the zero-coupon
bond, P (t, T ). As indicated in [34], the forward is defined as,

F (t) =
S(t)
P (t, T )

=
ex̂(t)

P (t, T )
, (3.5)

where F (t) represents the forward, S(t) stands for stock, x̂(t) is log-stock defined in (2.2)
and P (t, T ) as defined in (2.16) represents the value of the zero-coupon bond paying e1
at maturity T .

Under the AH-G2++ hybrid model the stock dynamics in terms of independent
Brownian motions, are given by:

dS(t)
S(t)

= r(t)dt+ ψ1(t)dW̃r(t) + ψ2(t)dW̃ζ(t) + ψ3(t)
√
v(t)dW̃v(t)

+
√
v(t)ψ4(t) + ψ5(t)dW̃x(t), (3.6)

with ψ1(t) = U4,1α(t), ψ2(t) = U4,2α(t), ψ3(t) = U4,3, ψ4(t) = 1 −U2
4,3 and ψ5(t) =

−α2(t)
(
U2

4,1 + U2
4,2

)
where Ui,j is defined by (3.4) and the time-dependent function

α(t).
The zero-coupon bond, P (t, T ), in terms of independent Brownian motions is defined

as:

dP (t, T )
P (t, T )

= r(t)dt+ (ηB(t, T ) + ρr,ζγC(t, T )) dW̃r(t)

+γC(t, T )
√

1− ρ2
r,ζdW̃ζ(t), (3.7)

with B(t, T ) in (2.17) and C(t, T ) in (2.18). By switching from the risk-neutral measure,
Q, to the T -forward measure, QT , the discounting will be decoupled from taking the
expectation, i.e.:

Π(t) = P (t, T )ET (max (F (T )−K, 0) |F(t)) . (3.8)

In order to determine the dynamics for F (t) in (3.5), we apply Itô’s Formula:

dF (t)
F (t)

=
(
γ2C2 +Bη(Bη − ψ1(t)) + γC

(
2ρr,ζηB − ρr,ζψ1(t)−

√
1− ρ2

r,ζψ2(t)
))

dt

+ψ̂1(t)dW̃r(t) + ψ̂2(t)dW̃ζ(t) + ψ3(t)
√
v(t)dW̃v(t) +

√
v(t)ψ4(t) + ψ5(t)dW̃x(t), (3.9)

with ψ̂1(t) := ψ1(t)− (ρr,ζγC + ηB), ψ̂2(t) := ψ2(t)− γC
√

1− ρ2
r,ζ and, for the sake of

notation, we have set B := B(t, T ) and C := C(t, T ).
Forward F (t) is a martingale under the T -forward measure, i.e.,

P (t, T )ET (F (T )|F(t)) = P (t, T )F (t),

and the corresponding Brownian motions under the T -forward measure, dW̃T
x (t),

dW̃T
v (t), dW̃T

r (t) and dW̃T
ζ (t), need to be determined.

A change of measure from the spot to the T -forward measure requires a change of
numéraire from the money-savings account, M(t), to the zero-coupon bond, P (t, T ).
In the model we assumed non-zero correlations between interest rates and equity, and
all the processes within each asset class, which implies that all processes, except the
variance, will change their dynamics by changing the measure.

The lemma below provides the model dynamics under the T -forward measure, QT .
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Lemma 3.1 (The AH-G2++ model dynamics under the QT measure). Under the T -
forward measure, the AH-G2++ model is governed by the following dynamics:

dF (t)
F (t)

= ψ̂1(t)dW̃T
r (t) + ψ̂2(t)dW̃T

ζ (t) + ψ3(t)
√
v(t)dW̃T

v (t) (3.10)

+
√
v(t)ψ4(t) + ψ5(t)dW̃T

x (t), (3.11)

dv(t) = ε(v̄ − v(t))dt+ ω
√
v(t)dW̃T

v (t),

where ψ̂1(t) and ψ̂2(t) are defined as in (3.9) and ψi(t), i = {1, . . . , 5} as in (3.6) with

dr(t) =
(
θ̂(t) + ζ(t)− κr(t)

)
dt+ ηdW̃T

r (t),

dζ(t) =
(
−λζ(t) + γηρr,ζB(t, T ) + γ2C(t, T )

)
dt+ γρr,ζdW̃T

r (t) + γ
√

1− ρ2
r,ζdW̃

T
ζ (t),

with θ̂(t) = θ(t) + η2B(t, T ) + ρr,ζηγC(t, T ), with a correlation matrix given in (2.4),
and with B(t, T ), C(t, T ) in (2.17) and (2.18).

Since the interest rates are Gaussian, and in the corresponding SDEs the diffusion
parts are independent of the state variables, the dimension of the underlying pricing
problem is reduced under the T -forward measure (as the forward, F (t), and the variance
process, v(t), do not contain r(t) or ζ(t)).

Proof. We express the model in terms of the independent Brownian motions as:

dH(t) = µ(H(t))dt+ L(t)dW̃(t), (3.12)

where µ(H(t)) represents the drift and L(t) is defined in (3.3). Now, we determine the
Radon-Nikodým derivative [19], ΛT

Q(t),:

ΛT
Q(t) =

dQT

dQ

∣∣∣
F(t)

=
P (t, T )

P (0, T )M(t)
, (3.13)

where P (t, T ) is a zero-coupon bond and M(t) is the money-savings account. By
calculating the Itô Derivative of Equation (3.13) we get:

dΛT
Q

ΛT
Q

= ηB(t, T )dW̃r(t) + γC(t, T )
(
ρr,ζdW̃r(t) +

√
1− ρ2

r,ζdW̃ζ(t)
)

=
(
ηB(t, T ) + ρr,ζγC(t, T )

)
dW̃r(t) + γC(t, T )

√
1− ρ2

r,ζdW̃ζ(t). (3.14)

The representation above shows the Girsanov kernel which describes the transition from
Q to QT , i.e.,

dW̃T (t) = Ξ(t)dt+ dW̃(t).

So,

dW̃(t) :=


dW̃r(t)
dW̃ζ(t)
dW̃v(t)
dW̃x(t)

 =


dW̃T

r (t)
dW̃T

ζ (t)
dW̃T

v (t)
dW̃T

x (t)

+


ηB(t, T ) + ρr,ζγC(t, T )

γC(t, T )
√

1− ρ2
r,ζ

0
0

dt. (3.15)

Now, by substitution of dW̃(t) from (3.15) in (3.12) and appropriate substitutions the
proof is finalized.

3.2 The Log-transform and the Characteristic Function

Under the log-transform, x(t) := logF (t), we obtain the following model dynamics:

dx(t) = −1
2

(
ψ̂2

1(t) + ψ̂2
2(t) + ψ5(t) + v(t)

(
ψ2

3(t) + ψ4(t)
))

dt+ ψ̂1(t)dW̃T
r (t)

+ψ̂2(t)dW̃T
ζ (t) + ψ3(t)

√
v(t)dW̃T

v (t) +
√
v(t)ψ4(t) + ψ5(t)dW̃T

x (t) (3.16)

dv(t) = ε(v̄ − v(t))dt+ ω
√
v(t)dW̃T

v (t), (3.17)
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with independent Brownian motions, dW̃T
r (t), dW̃T

ζ (t), dW̃T
v (t) and dW̃T

x (t). The
remaining parameters are as in (3.1). With the closed-form expressions for ψ̂1(t), ψ̂2(t),
ψ3(t), ψ4(t) and ψ5(t):

ψ̂1(t) = α(t)U4,1 − (ρr,ζγC(t, T ) + ηB(t, T )),

ψ̂2(t) = α(t)U4,2 − γC(t, T )
√

1− ρ2
r,ζ ,

ψ3(t) = U4,3,

ψ4(t) = 1−U2
4,3,

ψ5(t) = −α2(t)
(
U2

4,1 + U2
4,2

)
,

and U the Cholesky matrix in (3.4), the dynamics in (3.16) can be simplified:

dx(t) =
1
2

(χ(t, T )− v(t)) dt+ ψ̂1(t)dW̃T
r (t) + ψ̂2(t)dW̃T

ζ (t) + ψ3(t)
√
v(t)dW̃T

v (t)

+
√
v(t)ψ4(t) + ψ5(t)dW̃T

x (t), (3.18)

with:

χ(t, T ) = −γ2C2(t, T )− η2B2(t, T )− 2ρr,ζγηB(t, T )C(t, T )

+2α(t)
(
ρx,rηB(t, T ) + ρx,ζγC(t, T )

)
. (3.19)

For the log-forward, x(t), the Fokker-Planck equation for V (t) := V (t,H(t)) with H(t) =
[x(t), v(t)]t is given by:

− ∂V

∂t
= ε(v̄ − v)

∂V

∂v
+

1
2

(v − χ(t, T ))
(
∂2V

∂x2
− ∂V

∂x

)
+

1
2
ω2v

∂2V

∂v2
+ ρx,vωv

∂2V

∂x∂v
, (3.20)

with the deterministic, time-dependent function χ(t, T ) in (3.19).
For the affine model, with τ = T − t, the forward characteristic function is of the

following form:

φT (u, x(t), τ) = ET
(
eiux(T )|F(t)

)
= eÂ(u,τ)+B̂(u,τ)x(t)+Ĉ(u,τ)v(t), (3.21)

with terminal condition φT (u, x(T ), 0) = eiux(T ). Functions Â(u, τ), B̂(u, τ) and Ĉ(u, τ)
satisfy, using B̂(u, τ) = [B̂(u, τ), Ĉ(u, τ)]t, the following Riccati ordinary differential
equations (see [11]):

d
dτ

B̂(u, τ) = −r1 + aT
1 B̂(u, τ)+

1
2
B̂T(u, τ)c1B̂(u, τ),

d
dτ
Â(u, τ) = −r0 + B̂T(u, τ)a0+

1
2
B̂T(u, τ)c0B̂(u, τ).

(3.22)

Here, ai, ci, ri, i = 0, 1, are given by a linear decomposition:

µH = a0 + a1H(t), for any (a0, a1) ∈ Rl × Rl×l,

ΣHΣT
H = (c0)ij + (c1)TijH(t), for arbitrary (c0, c1) ∈ Rl×l × Rl×l×l,

rH = r0 + rT1 H(t), for (r0, r1) ∈ R× Rl,

where l indicates the dimension of the state vector H(t). The forward characteristic
function in (3.21) is defined by:

B̂′(τ) = 0,
Ĉ ′(τ) = 1/2(B̂2(τ)− B̂(τ)) + (ρx,vωB̂(τ)− ε)Ĉ(τ) + 1/2ω2Ĉ2(τ),

Â′(τ) = εv̄Ĉ(τ)− 1/2χ(t, T )(B̂2(τ)− B̂(τ)),
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with χ(t, T ) in (3.19), B̂(0) = iu, Ĉ(0) = 0 and Â(0) = 0. The ODEs are of Heston-
type [24], so that the solution is given in closed-form as B̂(u, τ) = iu, and

Ĉ(u, τ) =
1− e−d1τ

ω2 (1− ge−d1τ )
(ε− ρx,vωiu− d1) , (3.23)

and for Â(u, τ) we find:

Â(u, τ) =
εv̄

ω2

[
(ε− ρx,vωiu− d1) τ − 2 log

(
1− ge−d1τ

1− g

)]
+

1
2
(u2 + iu)

∫ τ

0

χ(T − s, T )ds, (3.24)

with d1 =
√

(ρx,vωiu− ε)2 + ω2 (u2 + iu), and g = −ρx,vωiu+ ε− d1

−ρx,vωiu+ ε+ d1
, and χ(t, T )

defined in (3.19).
The integral in (3.24) of the deterministic function χ(t, T ) can be calculated

explicitly. This integral does not contain the Fourier argument “u” which implies that
for pricing a whole strip of strikes, one computation suffices. This is an advantage
compared to other hybrid models, like the Schöbel-Zhu-Hull-White model, where each
argument, u, requires the calculation of an integral.

Remark (Extension to an n-factor Affine Model). In Section 3.1 we have shown that
switching between the measures, from the spot to the forward, reduces the complexity
of the corresponding PDE for the forward price F (t) considerably. By taking Gaussian
interest rates the forward dynamics for F (t) do not depend on interest rate variables, as
only volatility coefficients from the interest rate processes are present. The generalization
from a two-factor interest rate model to an n-factor model does therefore not complicate
the pricing problem- it is merely a change of coefficients.

It is easy to deduce that under the AH-Gn++ model the Fokker-Planck equation for
V (t) := V (t,H(t)) with H(t) = [x(t), v(t)]t is given by:

− ∂V

∂t
= ε(v̄ − v)

∂V

∂v
+

1
2

(v − χ̂(t, T ))
(
∂2V

∂x2
− ∂V

∂x

)
+

1
2
ω2v

∂2V

∂v2
+ ρx,vωv

∂2V

∂x∂v
, (3.25)

with function χ̂(t, T ) given by:

χ̂(t, T ) = −
n−1∑
i=1

n−1∑
j=1

ρζi,ζj
γiγjCi(t, T )Cj(t, T )− 2ηB(t, T )

n−1∑
k=1

ρr,ζk
γkCk(t, T )

−η2B2(t, T ) + 2α(t)
(
ρx,rηB(t, T ) +

n−1∑
k=1

ρx,ζk
γkCk(t, T )

)
, (3.26)

with B(t, T ) and Ck(t, T ) defined in (2.17) and (2.18), a certain deterministic function
α(t) and all the parameters as defined in (2.2) and (2.3).

Since the PDE structure in (3.25) of the AH-Gn++ model is the same as for the
AH-G2++ model in (2.5), the results from Section 3.2 can directly be used (only the
function χ(t, T ) in (3.24) needs to be replaced by χ̂(t, T ) from (3.26)).

3.2.1 Positive Definiteness of the Covariance Matrix ΣH

When performing a simulation of a model, either by a Monte Carlo method or by
finite-differences for the associated PDE, the corresponding covariance matrix needs to
be defined properly.

Since L(t) in the AH-G2++ model is obtained from the Cholesky decomposition of
the covariance matrix, L(t)L(t)t = ΣH, we need to determine under which conditions
matrix ΣH is positive definite.
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Positive definiteness of the covariance matrix is necessary for performing a Monte
Carlo simulation.

Since we deal with a 2×2 covariance matrix (by the change of measure the number of
state variables was reduced from four to two), we use Sylvester’s Criterion to determine
whether the covariance matrix is positive-definite. For a 2×2-matrix the criterion states
that a Hermitian matrix is positive definite if the upper left element of matrix ΣH and
matrix ΣH itself have positive determinants.

Covariance matrix ΣH is given by:

ΣH =
1
2

[
(v(t)− χ(t, T )) ρx,vωv(t)
ρx,vωv(t) ω2v(t)

]
, (3.27)

with χ(t, T ) in (3.19).
We check when v(t) > χ(t, T ). Since we deal with a non-negative square-root process

for v(t), the expression on the left-hand side is always non-negative, i.e., v(t) ≥ 0.
By (3.19) we can rewrite χ(t, T ) as:

χ(t, T ) = − (γC(t, T ) + ρr,ζηB(t, T ))2 − η2B2(t, T )
(
1− ρ2

r,ζ

)
+2α(t)

(
ρx,rηB(t, T ) + ρx,ζγC(t, T )

)
.

Since B(t, T ) ≤ 0 and C(t, T ) ≤ 0 for any t ≤ T and λ > 0, κ > 0, by setting ρx,r > 0
and ρx,ζ > 0 the expression for χ(t, T ) is negative guaranteeing that the condition
for positive definiteness is satisfied. In the case ρx,r < 0 or ρx,ζ < 0, the inequality
v(t) > χ(t, T ) needs to be satisfied, which is typically is not a problem, especially for
large values of v(t).

For the determinant of matrix ΣH we find:

detΣH = ω2v(t) (v(t)− χ(t, T ))− ρ2
x,vω

2v2(t) > 0, (3.28)

which can be expressed as:

v(t)(1− ρ2
x,v) > χ(t, T ). (3.29)

As before the left-hand side of Inequality (3.29) is positive for |ρx,v| < 1 and v(t) > 0
whereas χ(t, T ) is negative for the conditions described before.

3.3 The function α(t)

In this section we determine function α(t) in (3.2) for the AH-Gn++ model. In the
H-Gn++ model each of the non-affine terms contains the term

√
v(t), where v(t) is the

square-root process defined in (3.1) with dynamics:

dv(t) = ε(v̄ − v(t))dt+ ω
√
v(t)dW̃v(t), (3.30)

(with all the parameters specified in (2.2)). Since function α(t) is related to the
√
v(t)-

term in the H-Gn++ model, a natural definition for α(t) in the AH-Gn++ model appears
to be:

α(t) := E(
√
v(t)), (3.31)

where variance process v(t) is of square-Bessel CIR type [10].
The process is guaranteed to be positive if the Feller condition [16] for v(t), i.e.,

2εv̄ ≥ ω2, is satisfied.
It is shown in [10; 8] that, for a given time t > 0, v(t) is distributed as c(t) times

a non-central chi-squared random variable, χ2(d, λ(t)), with d the “degrees of freedom”
parameter and non-centrality parameter λ(t), i.e.:

v(t) ∼ c(t)χ2 (d, λ(t)) , t > 0, (3.32)

with

c(t) =
1
4ε
ω2(1− e−εt), d =

4εv̄
ω2

, λ(t) =
4εv(0)e−εt

ω2(1− e−εt)
. (3.33)
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So, the corresponding cumulative distribution function (CDF) can be expressed as:

Fv(t)(x) = P(v(t) ≤ x) = P
(
χ2 (d, λ(t)) ≤ x/c(t)

)
= Fχ2(d,λ(t)) (x/c(t)) , (3.34)

where:

Fχ2(d,λ(t))(y) =
∞∑

k=0

exp
(
−λ(t)

2

) (λ(t)
2

)k

k!
Γ
(
k + d

2 ,
y
2

)
Γ
(
k + d

2

) , (3.35)

with
Γ(a, z) =

∫ z

0

ta−1e−tdt, Γ(z) =
∫ ∞

0

tz−1e−tdt. (3.36)

Further, the corresponding density function (see for example [33]) reads:

fχ2(d,λ(t))(y) =
1
2
e−

1
2 (y+λ(t))

(
y

λ(t)

) 1
2 ( d

2−1)
B d

2−1(
√
λ(t)y), (3.37)

with

Ba(z) =
(z

2

)a ∞∑
k=0

(
1
4z

2
)k

k!Γ(a+ k + 1)
, (3.38)

which is a modified Bessel function of the first kind (see for example [1; 20]).
The density for v(t) can now be expressed as:

fv(t)(x)
def
=

d
dx
Fv(t)(x) =

d
dx
Fχ2(d,λ(t))(x/c(t)) =

1
c(t)

fχ2(d,λ(t)) (x/c(t)) . (3.39)

By using the properties of the non-central chi-square distribution the mean and variance
of the process v(t) are known explicitly:

E(v(t)|v(0)) = c(t)(d+ λ(t)),

Var(v(t)|v(0)) = c2(t)(2d+ 4λ(t)).
(3.40)

In the lemma below we derive the corresponding expectation for
√
v(t).

Lemma 3.2 (Expectation for
√
v(t)). For a given time t > 0 the expectation of

√
v(t),

where v(t) has a non-central chi-square distribution function with CDF in (3.35), is
given by:

α(t) := E(
√
v(t)) =

√
2c(t)e−λ(t)/2

∞∑
k=0

1
k!

(λ(t)/2)k Γ
(

1+d
2 + k

)
Γ(d

2 + k)
, (3.41)

where c(t), d and λ(t) are defined in (3.33).

Proof. The proof can be found in Appendix A.

3.4 Option Pricing and Hedging

3.4.1 European Options

European option prices can be obtained efficiently by use of the COS pricing method
from [14], which is based on the availability of the characteristic function. The method
employs a Fourier-cosine expansion of the density function.

From the general risk-neutral pricing formula the price of any European claim,
V (T, F (T )), defined in terms of the underlying process, F (T ), can be written as:

Π(t, F (t)) = P (t, T )ET (V (T, F (T ))|F(t)) = P (t, T )
∫

R
V (T, y)f̂Y (y|x)dy, (3.42)

where f̂Y (y|x) is the transitional probability density function of F under the forward
measure QT .
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Assuming fast decay of the density function, we can use the following approximation:

Π(t, x) ≈ P (t, T )
∫ δ2

δ1

V (T, y)f̂Y (y|x)dy, (3.43)

with δ1 < δ2. Now, in order to recover the density function f̂Y (y|x) one employs a
Fourier cosine expansion based on the characteristic function:

f̂Y (y|x) ≈
N∑

n=0

2ωn

δ2 − δ1
<
{
φT (kn, x(t), τ) e−iknδ1

}
cos(kn(y − δ1)), (3.44)

with < denoting taking the real part of the argument in brackets; φT (u, x(t), τ) is defined
in (3.21), ω0 = 1/2, ωn = 1, n ∈ N+ and k = π/(δ2 − δ1). The transitional probability
density function f̂Y (y|x) in Equation (3.42) is replaced by the cosine expansion:

Π(t, x) ≈ P (t, T )
N∑

n=0

ωn<
(
φT (kn, x(t), τ) e−iknδ1

)
Γδ1,δ2

n , (3.45)

where the coefficients Γδ1,δ2
n are known analytically for European options, see [14] for

details and for error analysis regarding the different approximations.
The expansion in (3.45) exhibits an exponential convergence in the number of

terms, N . Moreover, a whole vector of strikes can be priced simultaneously. A proper
range of integration in (3.43) is a guarantee for fast convergence with only a few terms
in the Fourier-cosine expansion. In [14], the integration range was based on the behavior
of the probability density function. There, the choice was δ1 = −L

√
τ and δ2 = L

√
τ ,

with L = 8. We use this integration range also here.
An important asset of the AH-G2++ model is the availability of the corresponding

characteristic function so that we can calibrate the model fast and efficiently to plain
vanilla contracts. We can also price certain exotic contracts, whose pricing can be related
to the characteristic function. Moreover, Greeks can be derived easily for European
contracts.

The Greeks determine the price sensitivities to changes in the underlying model
parameters. We provide formulas for Delta, ∆, Gamma, Γ, and the sensitivities to the
correlations, ρx,r, ρx,ζ and ρr,ζ .

From the definition of a delta hedge we have:

∆ :=
∂Π(t, x)
∂S(t)

=
∂Π(t, x)
∂F (t)

∂F (t)
∂S(t)

=
1

P (t, T )
∂Π(t, x)
∂F (t)

.

With u = kn, the characteristic function of the AH-G2++ model reads:

φT (kn, x(t), τ) = exp
(
ikn log(F (t)) + Ĉ(kn, τ)v(t) + Â(kn, τ)

)
, (3.46)

with Ĉ(kn, τ) and Â(kn, τ) from (3.23), (3.24) and Equation (3.45), so that we have:

∆ ≈ 1
F (t)

N∑
n=0

ωn<
{
φT (kn, x(t), τ) e−iknδ1ikn

}
Γδ1,δ2

n , (3.47)

with k = π/(δ2 − δ1).

For Gamma, Γ =
∂∆
∂S

we find:

Γ ≈ 1
P (t, T )

1
F 2(t)

N∑
n=0

ωn<
{
φT (kn, x(t), τ) e−iδ1kn

(
(ikn)2 − ikn

)}
Γδ1,δ2

n . (3.48)
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For the derivatives with respect to correlation, which we call 2 Rho(ρ), for ρ =
{ρx,r, ρx,ζ , ρr,ζ}, we find:

Rho(ρ) :=
∂

∂ρ
Π(t, x) ≈ P (t, T )

N∑
n=0

ωn<
{
φT (kn, x(t), τ) e−iδ1kn ∂

∂ρ
Â(kn, τ)

}
Γδ1,δ2

n ,

(3.49)
with Â(kn, τ) as in (3.46).

Depending on the different correlations, ρ = {ρx,r, ρx,ζ , ρr,ζ}, we determine the three
partial derivatives ∂

∂ρA(kn, τ):

∂

∂ρx,r
Â(kn, τ) = η((kn)2 + ikn)

∫ τ

0

E(
√
v(T − s))B(T − s, T )ds,

∂

∂ρx,ζ
Â(kn, τ) = γ((kn)2 + ikn)

∫ τ

0

E(
√
v(T − s))C(T − s, T )ds,

∂

∂ρr,ζ
Â(kn, τ) = −γη((kn)2 + ikn)

∫ τ

0

B(T − s, T )C(T − s, T )ds,

with B(t, T ) defined in (2.17) and C(t, T ) in (2.18).
Here, we check the effect of correlations on the Greeks for a basic call option under

the AH-G2++ model. We perform two experiments. First of all, in Figure 3.1(a), we
show ∆, Γ, Rho(ρx,r), Rho(ρx,ζ) and Rho(ρr,ζ). Secondly, in Figure 3.1(b) we vary the
correlation between stock and the interest rate, ρx,r, and present the effect on ∆. In
the experiments we consider a maturity of 15 years, T = 15, and the discount factor
P (0, T ) = exp(−0.06T ) with the following set of parameters, S(0) = 1, ε = 0.3, v̄ = 0.02,
ω = 0.251, κ = 0.03, η = 0.02, λ = 1.1 and γ = 0.02. The correlation structure is set as
follows: 

1 ρx,v ρx,r ρx,ζ

∗ 1 0 0
∗ ∗ 1 ρr,ζ

∗ ∗ ∗ 1

 =


1 −30% 20% 10%
∗ 1 0 0
∗ ∗ 1 −90%
∗ ∗ ∗ 1

 . (3.50)

The experiments indicate that when hedging these long-maturity European options,
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Figure 3.1: (a) Several Greek values for a call option. (b) Effect on delta of correlation,
ρx,r, for a call option.

the correlation between stock and interest rates, ρx,r, has a significant effect on a delta
hedge. Figure 3.1(b) also shows that if one assumes ρx,r = 0 and performs delta hedging
a portfolio will be under/over hedged if the correlation is non-zero in reality.

In order to explain the increase of ∆ as ρx,r increases, we need to look at the
underlying forward price, F (t). The forward dynamics in Lemma 3.1 can be expressed

2not to confuse with the derivative with respect to interest rate in standard Black-Scholes model
which is also called “rho”.
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as:
dF (t)
F (t)

=
√

Ω(t)− 2ρx,rηE(
√
v(t))B(t, T )dWT

F (t), (3.51)

with

Ω(t) = v(t) + γ2C2(t, T ) + η2B2(t, T ) + 2ρr,ζγηB(t, T )C(t, T )

−2ρx,ζγE(
√
v(t))C(t, T ), (3.52)

and another Brownian motion dWT
F (t).

Assuming that all the parameters stay constant, we analyze how the volatility term
in front of dWF (t) in (3.51) behaves for different correlations ρx,r. We find that for
any set of parameters E(

√
v(t)) > 0 and B(t, T ) ≤ 0. Therefore an increase of the

correlation ρx,r is directly related to an increase of the volatility of the forward. This
explains the additional hedging costs presented in Figure 3.1(b) in presence of positive
correlation between stock and the interest rate. The same pattern may be observed
regarding ρx,ζ and ρr,ζ .

3.4.2 Efficient Monte Carlo Simulation

Here, we briefly discuss an efficient Monte Carlo simulation scheme for the AH-G2++
model. We will adopt the algorithm by Andersen (see [3]), originally developed for the
pure Heston stochastic volatility model.

As presented in Lemma 3.1 the AH-G2++ (as well as the H-G2++) model can
formulated as:

dF (t)
F (t)

= ψ̂1(t)dW̃T
r (t) + ψ̂2(t)dW̃T

ζ (t) + ρx,v

√
v(t)dW̃T

v (t)

+
√
v(t)

(
1− ρ2

x,v

)
+ ψ5(t)dW̃T

x (t), (3.53)

dv(t) = ε(v̄ − v(t))dt+ ω
√
v(t)dW̃T

v (t), (3.54)

with

ψ̂1(t) = U4,1α(t)− (ρr,ζγC(t, T ) + ηB(t, T )),

ψ̂2(t) = U4,2α(t)− γC(t, T )
√

1− ρ2
r,ζ ,

ψ5(t) = −α2(t)
(
U2

4,1 + U2
4,2

)
,

and U4,1, U4,2 are defined in (3.4). We have α(t) = E(
√
v(t)) for the AH-G2++ model

(and α(t) =
√
v(t) for the H-G2++ model). Since the difference between the AH-G2++

and the H-G2++ model appears only in function α(t) the Monte Carlo schemes are very
similar.

In both models the dynamics for the forward, F (t), do not depend on the interest
rate processes, r(t) or ζ(t). This implies that for Monte Carlo paths for F (t) only the
2D stochastic differential equations for the forward, F (t), and its variance process, v(t),
need to be discretized.

Since the Brownian motions in the models are independent, we can perform a
simplifying factorization,

dF (t)
F (t)

=
√
ψ̂2

1(t) + ψ̂2
2(t) + v(t)

(
1− ρ2

x,v

)
+ ψ5(t)dW̃T

F (t) + ρx,v

√
v(t)dW̃T

v (t),

dv(t) = ε(v̄ − v(t))dt+ ω
√
v(t)dW̃T

v (t),

with dW̃T
F (t) independent of dW̃T

v (t).
In log-transformed coordinates, x(t) = logF (t), we find with Itô’s Lemma:

dx(t) =
1
2

(χ(t, T )− v(t)) dt+
√
ξ(t, v(t))dW̃T

F (t) + ρx,v

√
v(t)dW̃T

v (t), (3.55)

15



with ξ(t, v(t)) = −χ(t, T ) + v(t)− ρ2
x,vv(t), where

χ(t, T ) := −γ2C2(t, T )− η2B2(t, T )− 2ρr,ζγηB(t, T )C(t, T )

+2α(t)
(
ρx,rηB(t, T ) + ρx,ζγC(t, T )

)
, (3.56)

with α(t) =
√
v(t) for the H-G2++ model or α(t) = E(

√
v(t)) for the AH-G2++ model.

The variance process v(t) is also independent of the interest rates processes, r(t) and
ζ(t):

dv(t) = ε(v̄ − v(t))dt+ ω
√
v(t)dW̃T

v (t). (3.57)

For t > 0, v(t) is from a non-central chi-square distribution [10]. The direct sampling
of v(t) can be very efficiently performed with the Quadratic Exponential (QE) scheme
proposed in [3].

In order to obtain a bias-free scheme (see [8]) for sampling the forward price process,
it is convenient to first integrate the SDE for v(t), i.e:

v(t+ δ) = v(t) +
∫ t+δ

t

ε(v̄ − v(s))ds+ ω

∫ t+δ

t

√
v(s)dW̃T

v (s). (3.58)

Process x(t) from (3.55) can be expressed in integral form as:

x(t+ δ) = x(t) +
1
2

∫ t+δ

t

(χ(s, T )− v(s)) ds+
∫ t+δ

t

√
ξ(s, v(s))dW̃T

F (s)

+ρx,v

∫ t+δ

t

√
v(s)dW̃T

v (s). (3.59)

The last integral in (3.59) can easily be determined by Equation (3.58). In the
discretization (3.59) we distinguish the time and stochastic-type integrals. Those
integrals can be handled as indicated in [3]. For a state-dependent function f(t, v(t))
the time integrals can be approximated by∫ t+δ

t

f(t, v(s))ds ≈ δ (γ1f(t, v(t)) + γ2f(t+ δ, v(t+ δ))) , (3.60)

with certain weights γ1 and γ2. For the stochastic integrals we have, with help of Itô’s
Isometry, ∫ t+δ

t

√
ξ(s, v(s))dW̃T

F (s) ∼ N

(
0,
∫ t+δ

t

ξ(s, v(s))ds

)
, (3.61)

with N (a, b) indicating a normal distribution with mean a and variance b.
We note that an extension from a 2-factor interest rate process to n factors is trivial,

since only the functions χ(s, T ) and ξ(s, v(s)) then consist of more terms.
The scheme developed will be used in a number of experiments in the next sections.

4 Numerical Experiments

In this section we compare prices obtained by the AH-G2++ model with those by the
Schöbel-Zhu-Hull-White model and by the H-G2++ model. We use European options,
and also check the performance of the hybrid models when pricing an exotic hybrid
derivative in the final subsection.

4.1 Comparison with Schöbel-Zhu Model

Here, we compare the AH-Gn++ model to the Schöbel-Zhu model with Gaussian
interest rates. The Schöbel-Zhu model is driven by the SDEs: dx̃(t) =

(
r(t)− 1

2
σ2(t)

)
dt+ σ(t)dWx̃(t),

dσ(t) = ε̃ (σ̄ − σ(t)) dt+ ω̃dWσ(t),
(4.1)
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with dWx̃(t)dWσ(t) = ρx̃,σdt and positive parameters. The stochastic volatility model
by Heston (as for the AH-Gn++ model) has the following dynamics:dx(t) =

(
r(t)− 1

2
v(t)

)
dt+

√
v(t)dWx(t),

dv(t) = ε (v̄ − v(t)) dt+ ω
√
v(t)dWv(t),

(4.2)

with positive parameters and the correlation dWx(t)dWv(t) = ρx,vdt. For both models
the interest rate process r(t) is identical, driven by a correlated, normally distributed,
short-rate model, so that we only need to focus on a differences in the volatility processes.

The volatility in the Schöbel-Zhu model is driven by a normally distributed Ornstein-
Uhlenbeck process σ(t), whereas in the Heston model the volatility is

√
v(t) with

v(t) distributed as c(t) times a non-central chi-squared random variable, χ2(d, λ(t)),
as discussed in Subsection 3.3.

We determine under which conditions the two volatility processes, for the Schöbel-
Zhu, σ(t), and for the Heston model,

√
v(t), coincide. In other words: we determine

under which conditions
√
v(t) is approximately a normal distribution (as σ(t) in the

Schöbel-Zhu model is normally distributed).

Result 4.1 (
√
v(t) as a normal distribution for 0 < t < ∞). For t < ∞, the square

root of v(t) in (4.2) can be approximated by

√
v(t) ≈ N

(√
c(t)(λ(t)− 1) + c(t)d+

c(t)d
2(d+ λ(t))

, c(t)− c(t)d
2(d+ λ(t))

)
, (4.3)

with c(t), d and λ(t) from (3.33). Moreover, for a fixed value of z in the cumulative
distribution function F√

v(t)
(z), and a fixed value for parameter, d, the error is of order

O(λ2(t)) for λ(t) → 0 and O(1/
√
λ(t)) for λ(t) →∞.

As already indicated in [35] the normal approximation (4.3) is a satisfactory
approximation for either a large number of degrees of freedom, d, or a large non-centrality
parameter λ(t). A large number of degrees of freedom, d � 0, implies that 4εv̄ � ω2,
which is closely related to the Feller condition, 2εv̄ > ω2. The Heston model thus
has a similar volatility structure as the Schöbel-Zhu model when the Feller condition is
satisfied.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

2

4

6

8

10

12

x

D
en

si
ty

Volatilities:
√

v(t) and σ(t), for T=2, (Feller Satisfied)

 

 

vol. Heston:
√

v(t)

vol. Sch.-Zhu: σ(t)

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

x

D
en

si
ty

Volatilities:
√

v(t) and σ(t), for T=2, (Feller not Satisfied)

 

 

vol. Heston:
√

v(t)

vol. Sch.-Zhu: σ(t)

Figure 4.1: Histogram for
√
v(t) (the Heston model) and density for σ(t) (the Schöbel-

Zhu model); Maturity T = 2. LEFT: Feller condition satisfied κ = 1.2, v(0) =
v̄ = 0.0625, γ = 0.1; RIGHT: The Feller condition violated κ = 0.25, v(0) = v̄ =
0.0625, γ = 0.625 as in [4].

Figure 4.1 confirms this observation. The volatilities for the Heston and Schöbel-Zhu
models differ significantly when the Feller condition does not hold as the volatility in
the Heston model gives rise to much heavier tails than those in the Schöbel-Zhu model.
This may have a significant effect when calibrating the models to the market data with
significant implied volatility smile or skew.
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4.1.1 Calibration of the Hybrid Models

Here we examine the two models and check their performance when calibration to
real market data. The Schöbel-Zhu-Hull-White and the AH-G1++ models (i.e. affine
Heston with Hull-White short-rate process) are calibrated to implied volatilities from
the S&P500 (27/09/2010) 3 with spot price at 1145.88.

Firstly, we calibrate the parameters for the interest rate process by using caplets
and swaptions. Standard procedures for the Hull-White calibration are employed [7].
Secondly, the remaining parameters, for the underlying asset, the equity volatility and
the correlations, are calibrated to the plain vanilla equity options.

For both models the correlation between the stock and interest rates, ρx,r, is set to
+30%.

Implied Volatility [%] Error [%]
T Strike Market SZHW AH-G1++ err.(SZHW) err.(AG-G1++)

40% 57.61 54.02 57.05 3.59 % -0.56 %
80% 31.38 34.33 33.22 -2.95 % 1.84 %

T=6m 100% 22.95 25.21 21.57 -2.26 % -1.38 %
120% 15.9 18.80 16.38 -2.90 % 0.48 %
180% 24.54 22.60 24.40 1.94 % -0.14 %
40% 48.53 47.01 48.21 1.52 % 0.32 %
80% 30.37 31.69 31.07 -1.32 % -0.70 %

T=1y 100% 24.49 24.97 24.28 -0.48 % 0.21 %
120% 19.23 19.09 19.14 0.14 % 0.09 %
180% 18.42 18.28 18.40 0.14 % 0.02 %
40% 41.30 40.00 41.20 1.30 % 0.10 %
80% 31.12 31.88 31.38 -0.76 % -0.26 %

T=5y 100% 27.83 28.75 27.86 -0.92 % -0.03 %
120% 25.13 25.93 24.91 -0.80 % 0.22 %
180% 19.28 18.57 19.32 0.71 % -0.04 %
40% 36.76 36.15 36.75 0.61 % 0.01 %
80% 31.04 31.25 31.08 -0.21 % -0.04 %

T=10y 100% 29.18 29.47 29.18 -0.29 % 0.00 %
120% 27.66 27.93 27.62 -0.27 % 0.04 %
180% 24.34 24.15 24.35 0.19 % -0.01 %

Table 4.1: Calibration results for the Schöbel-Zhu hybrid model (SZHW) and the AH-
G1++ hybrid.

The calibration results, presented in Table 4.1, confirm that the AH-G1++ model
is more flexible than the Schöbel-Zhu-Hull-White model. The difference is pronounced
for large strikes for which the error for the affine Heston hybrid model is up to 20 times
lower than for the Schöbel-Zhu-Hull-White hybrid model.

4.2 The AH-G2++ and the H-G2++ Models for Pricing Long-
term Maturity Options

In the second experiment we check the performance of the H-G2++ model against
its affine sister, the AH-G2++ model pricing plain vanilla options.

First of all, we generate European call prices with the H-G2++ hybrid model by a
Monte Carlo simulation (from Section 3.4.2). Secondly, we compare, in terms of implied
volatilities, with results from the AH-G2++ hybrid model obtained by the COS method.
We consider two cases, one in which the model parameters satisfy the Feller condition
for the stock and another experiment in which they do not satisfy this condition.

Experiment 4.2 (Feller’s condition satisfied, 2εv̄ ≥ ω2). We compare the results of the
H-G2++ and AH-G2++ models. The parameters are chosen as:

ε = 0.8 v̄ = 0.2, ω = 0.2, κ = 1.1, η = 0.01, λ = 0.8, γ = 0.015,
3dataset obtained from Rabobank International.
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and the correlation is given by:
1 ρx,v ρx,r ρx,ζ

∗ 1 ρv,r ρv,ζ

∗ ∗ 1 ρr,ζ

∗ ∗ ∗ 1

 =


1 −30% 35% 8%
∗ 1 0% 0%
∗ ∗ 1 −40%
∗ ∗ ∗ 1

 . (4.4)

The initial conditions are S(0) = 1 and v(0) = v̄ with the initial yield given by P (0, T ) =
exp(−0.03T ). With these parameters the Feller condition for the stock is satisfied. We
choose four maturities τ = 1, τ = 5, τ = 10 and τ = 20. Table 4.2 shows an almost
perfect correspondence between the volatilities.

Implied Volatility [%]
T Strike H-G2++ (MC) AH-G2++ (Fourier) difference

0.8869 44.81 (0.19) 44.79 -0.02 %
0.9324 44.67 (0.23) 44.65 -0.02 %

1y 1.0305 44.40 (0.30) 44.38 -0.02 %
1.1388 44.16 (0.38) 44.13 -0.03 %
1.1972 44.04 (0.42) 44.01 -0.03 %
0.8308 44.59 (0.11) 44.60 0.01 %
0.9290 45.07 (0.12) 45.07 0.01 %

5y 1.1618 37.89 (0.15) 37.89 0.00 %
1.4530 30.86 (0.23) 30.85 -0.01 %
1.6248 27.52 (0.25) 27.50 -0.02 %
0.8400 44.57 (0.09) 44.54 -0.02 %
0.9839 44.44 (0.13) 44.42 -0.02 %

10y 1.3499 44.22 (0.25) 44.20 -0.02 %
1.8519 44.00 (0.40) 43.99 0.02 %
2.1692 43.90 (0.48) 43.88 0.01 %
0.9316 44.55 (0.18) 44.49 -0.05 %
1.1651 44.46 (0.22) 44.40 -0.06 %

20y 1.8221 44.31 (0.38) 44.24 -0.07 %
2.8497 44.16 (0.45) 44.07 -0.08 %
3.5638 44.08 (0.52) 44.00 -0.08 %

Table 4.2: Difference in implied volatilities between the H-G2++ (simulated with Monte
Carlo) and the AH-G2++ (COS method). Numbers in brackets indicate standard
deviations. The simulation was performed with Feller’s condition satisfied.

Experiment 4.3 (Feller’s condition violated, 2εv̄ ≤ ω2). In practice there are many
cases in which the Feller condition is not satisfied. Therefore we check the performance
of the affine hybrid model in such a setup. In this experiment we choose ε = 0.4,
v̄ = 0.2 and ω = 0.6 and the remaining parameters are as in Experiment 4.2. The
Feller condition does not hold in this case, as 0.16 � 0.36. Therefore, the probability of
hitting zero is positive. Table 4.3 shows that our tractable hybrid model, the AH-G2++,
provides values close to the H-G2++ model.

These experiments, with standard parameters, show that the results of the AH-
G2++ model resemble the results of the H-G2++ very well.

Remark. The AH-Gn++ and the H-Gn++ models differ only in the definition of
function α(t) in the associated covariance matrix. This α(t) is multiplied either by
ρx,rη or by ρx,ζγ. It is therefore evident that both models produce very similar results
when either the correlations or the volatilities for the interest rates, γ, η, are small.
Obviously the correlations are, by definition, bounded by 1. The volatilities for the
short-rate models are on the other hand typically also of small size (values < 0.1 are
often reported in the literature [7]). In the experiments to follow we check the model
performance for unrealistically high volatilities to stress the proposed AH-G2++ model.

4.3 Pricing of a Hybrid Product

In this test we consider an equity-interest rate diversification hybrid product. This
product is based on sets of assets with different expected returns and risk levels. Proper
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Implied Volatility [%]
T Strike H-G2++ (MC) AH-G2++ (Fourier) difference

0.8869 43.12 (0.15) 43.17 0.05 %
0.9324 42.53 (0.16) 42.58 0.05 %

1y 1.0305 41.48 (0.16) 41.54 0.06 %
1.1388 40.71 (0.20) 40.76 0.04 %
1.1972 40.44 (0.26) 40.48 0.04 %
0.8308 40.29 (0.08) 40.26 -0.03 %
0.9290 39.59 (0.09) 39.54 -0.05 %

5y 1.1618 38.40 (0.13) 38.33 -0.08 %
1.4530 37.59 (0.17) 37.48 -0.11 %
1.6248 37.33 (0.17) 37.22 -0.11 %
0.8400 39.82 (0.14) 39.71 -0.11 %
0.9839 39.22 (0.17) 39.11 -0.11 %

10y 1.3499 38.17 (0.23) 38.06 -0.11 %
1.8519 37.37 (0.35) 37.28 -0.10 %
2.1692 37.09 (0.40) 37.01 -0.08 %
0.9316 39.71 (0.06) 39.60 -0.11 %
1.1651 39.24 (0.06) 39.13 -0.11 %

20y 1.8221 38.40 (0.15) 38.29 -0.11 %
2.8497 37.73 (0.30) 37.62 -0.11 %
3.5638 37.48 (0.41) 37.36 -0.12 %

Table 4.3: Difference in implied volatilities between the H-G2++ (simulated with Monte
Carlo) and the AH-G2++ (COS method). Numbers in brackets indicate standard
deviations. The simulation was performed with Feller’s condition violated.

construction of such a product may give reduced risk compared to any single asset,
and an expected return that is greater than that of the least risky asset [28]. A basic
example is a portfolio with two assets: a stock with a high risk and high return and a
zero-coupon bond with a low risk and low return. If one introduces an equity component
in a zero-coupon bond portfolio the expected return will increase. However, because of a
non-perfect correlation between these two assets also a risk reduction is expected. If the
percentage of the equity in the portfolio is increased, it eventually starts to dominate
the structure and the risk may increase with a higher impact for a low or negative
correlation. The example is defined as follows:

payoff = max (ŵ1S(T1) + ŵ2P (T1, T ), 0) , (4.5)

where for T1 < T , S(T1) is the underlying asset at time T1, P (T1, T ) is a zero-coupon
bond and which pays e1 at time T and ŵ1 and ŵ2 are weighting factors, which can be
either positive (in a long-position) or negative (in a short position).

The value of the contract in (4.5), at time t, under the risk-neutral measure Q, can
be expressed by:

Π(t, S(t)) = EQ
(

1
M(T1)

max (ŵ1S(T1) + ŵ2P (T1, T ), 0)
∣∣∣F(t)

)
. (4.6)

Since the expectation in (4.6) contains a correlated stock, a zero-coupon bond, and the
money-savings account this expectation is difficult to determine analytically.

However, by a change of numéraire, from the money-savings account, to a zero
coupon bond maturing at time T the expectation in (4.6) simplifies significantly.

The Radon-Nikodým derivative is known as:

dQT

dQ

∣∣∣
F(T1)

=
1

M(T1)
P (T1, T )
P (0, T )

. (4.7)

So, the price in (4.6) under the T−forward measure, QT , reads:

Π(t, S(t)) = P (0, T )ET

(
1

P (T1, T )
max (ŵ1S(T1) + ŵ2P (T1, T ), 0)

∣∣∣F(t)
)
. (4.8)
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Since the forward F (t) is defined as F (t) = S(t)/P (t, T ) the expectation above reduces
to:

Π(t, S(t)) = P (0, T )ET
(
max (ŵ1F (T1) + ŵ2, 0)

∣∣∣F(t)
)
. (4.9)

We recognize that the Expectation (4.9) is a call option with strike K = −ŵ2 and a
constant multiplier, ŵ1.

Since we consider the affine Heston hybrid model, AH-G2++ here, we can simply
determine the price of (4.9) by the COS method described in Section 3.4. The evaluation
of such a payoff can be evaluated in a split-second.

We now perform the experiment in which we compare the performance of the H-
G2++ and the AH-G2++ models for this hybrid product. For T1 = 5 and T = 8 we
choose the following set of parameters 4: ε = 0.25, v̄ = v(0) = 0.0625, ω = 0.625,
κ = 0.05, η = 0.03, λ = 0.4, γ = 0.05, ρx,v = −30% and ρr,ζ = −20%. The zero-
coupon bond P (0, T ) = exp(−0.03T ) and ρx,r = ρx,ζ . The prices for the hybrid product
Π(t, S(t)) in (4.9) are calculated for different correlations between stock and the interest
rate, ρx,r. For the payoff we take ŵ1 = 1 and ŵ2 = {−4, . . . , 0} and compute Monte
Carlo prices with 100.000 paths and 10T1 time-steps for the H-G2++ model and by the
Fourier expansion for the AH-G2++ model. The output is presented in Figure 4.2(a).

In Figure 4.2(b) the results for an extreme parameter setting are presented. In
this experiment we have taken a high volatility for the interest rates η = 0.25 (whereas
typically η, γ < 0.025 as presented in [7]). We report that for such an extreme parameter
set the AH-G2++ model provides results which agree rather well with those obtained by
the H-G2++ model. This is another indication of the highly satisfactory performance
of AH-G2++.
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Figure 4.2: Prices generated by the H-G2++ and the AH-G2++ models. LEFT: results
for η = 0.03, RIGHT: results for η = 0.25.

5 Conclusions and Final Remarks

In this article we have constructed an equity-interest rate hybrid model with non-
zero correlation between the asset classes. The model is in the class of affine diffusion
processes so that we can determine a closed-form characteristic function. Availability of
a characteristic function is crucial for efficient model calibration to plain vanilla options.
By defining the affine hybrid Heston model under the forward measure, we can price
several financial derivative products as under the basic Heston model.

For the affine Heston-Gaussian multi-factor model, AH-Gn++, we have discussed an
efficient Monte Carlo simulation scheme and an effective way for calculating the Greeks
of plain vanilla options.

4The stochastic volatility parameters are chosen as in [4].
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We have also shown that the AH-Gn++ model provides derivative prices similar to
the (non-affine) Heston-Gaussian multi-factor (H-Gn++) model and superior to Schöbel-
Zhu variants if the Feller condition is violated.
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A Proof of Lemma 3.2

Proof. First of all by [13] we have that:

E(
√
v(t)|v(0)) :=

∫ ∞

0

√
x

c(t)
fχ2(d,λ(t))

(
x
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dx
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d
2

) 1F1

(
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2
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d

2
,−λ(t)

2

)
, (A.1)

where 1F1(a; b; z) is a confluent hyper-geometric function, which is also known as
Kummer’s function [29] of the first kind, given by:

1F1(a; b; z) =
∞∑

k=0

(a)k

(b)k

zk

k!
, (A.2)

with (a)k and (b)k being Pochhammer symbols of the form:

(a)k =
Γ(a+ k)

Γ(a)
= a(a+ 1) · · · · · (a+ k − 1). (A.3)

Now, using the principle of Kummer (see [30] pp.42) we find:
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(A.4)
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Therefore, by (A.3) and (A.4), Equation (A.1) reads:
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which concludes the proof.

24


	Introduction
	Hybrid with Multi-Factor Short Rate Process
	Model under the Spot Measure
	Covariance Structure

	Zero-coupon bonds under multi-factor Gaussian model

	The Affine Heston-Gn++ Model (AH-Gn++)
	The Affine Hybrid Model Under Measure Change
	The Log-transform and the Characteristic Function
	Positive Definiteness of the Covariance Matrix H

	The function (t)
	Option Pricing and Hedging
	European Options
	Efficient Monte Carlo Simulation


	Numerical Experiments
	Comparison with Schöbel-Zhu Model
	Calibration of the Hybrid Models

	The AH-G2++ and the H-G2++ Models for Pricing Long-term Maturity Options
	Pricing of a Hybrid Product

	Conclusions and Final Remarks
	Proof of Lemma 3.2 

