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Abstract

A jump-diffusion model for a single-asset market is considered. Under this assumption the value of a European
contingency claim satisfies a general partial integro-differential equation (PIDE). The equation is localized and
discretized in space using finite differences and finite elements and in time by the second order backward differ-
entiation formula (BDF2). The resulting system is solved by an iterative method based on a simple splitting of the
matrix. Using the fast Fourier transform, the amount of work per iteration may be reducédltmgg):) and only
O(n) entries need to be stored for each time level. Numerical results showing the quadratic convergence of the
methods are given for Merton’s model and Kou’s model.
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1. Introduction

Based on the model by Samuelson [29], and under general equilibrium assumptions on the market,
Black and Scholes [4] derived a differential equation for option prices. Numerical inversion of the Black—
Scholes equation based on data from different strikes and fixed maturity produces the so-called volatility
skew or smile, contrary to the model’s assumption on constant volatility. Empirical studies have revealed
that the normality of the log-returns cannot capture features like heavy tails and asymmetries.
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To overcome these problems, a number of alternative models have appeared in the financial litera-
ture: Stochastic volatility models [20,18]; deterministic local volatility functions [9,13]; jump-diffusion
models [22,23,26]; Lévy models [2,7,14,25,28] amongst others. Jump-diffusion models and Lévy based
models are attractive because they explain the jump patterns exhibited by some stocks. Some studies als
reveal that Lévy models are realistic when pricing options close to maturity [10]. However, they are more
difficult to handle numerically and, in contrast to the basic Black—Scholes model, it is not immediately
obvious which hedging strategy leads to an instantaneous risk free portfolio.

In this paper we choose the jump-diffusion approach with constant coefficients and we find numer-
ically the value of European Vanilla options. More precisely, we solve the PIDE for two models: the
classical Merton’s model [26] and Kou’s model [22]. For both models analytical formulas for the solu-
tion exist, either as an infinite sum or in terms of an integral; the last one is obtained as an application
of Fourier analysis [5,8,24]. We will benefit from these formulas to draw conclusions on the accuracy of
our numerical schemes. This research is intended to create the foundations for the numerical solution of
more complicated products like American options, path-dependent options, or a combination of different
models like deterministic local volatility plus jump-diffusion [1].

There exist several papers dealing with the numerical valuation of jump-diffusion processes. In [27],
the case of American options with Poisson jumps is treated numerically by a method of lines. More
general models based on Lévy processes are also solved numerically in [1] by the ADI finite difference
method combined with the fast Fourier transform and in [25] by a finite element method that gives a
compressed sparse matrix in a convenient wavelet basis. An explicit method was used in [6] to solve
Merton’s model and a convergence theory for explicit schemes and CFL conditions were given for a
general family of integro-differential Cauchy problems. Recently, we came across [12], where the value
of American options using Merton’s model is found implicitly by the penalty method. Here, we intend to
simplify some ideas from [25] for the jump-diffusion case, while keeping the algorithm fast.

The paper is organized as follows. Section 2 is a short introduction into Lévy driven assets. In Sec-
tion 3 we show how, knowing the Lévy triplet, we may write down the equation governing option prices.
Section 4 deals with the discretization by finite differences and BDF2 and Section 5 with the discretiza-
tion by FEM and BDF2. In Section 6 we explain the solver based on a splitting of the resulting dense
matrix and how the fast Fourier transform helps to speed up the method. In the last Section 7 we carry
out some numerical tests to verify the second order accuracy of the numerical schemes.

2. The market modeled by Lévy processes

A one-dimensional stochastic procdés},~o on a probability spac&?, F, P) is a Lévy process if:

(1) Lo =0 almost surely (a.s.);

(2) it has independent increments, that is, if for ang ® < ¢ < s’ < ¢’ the random variables, — L;
andL, — Ly are independent;

(3) it has stationary increments, that is, for any ® < ¢ < oo, the law of L, — L, only depends on the
increments — s;

(4) itis stochastically continuous, that is, for any O, P[|L;.; — Ls| > ¢] — 0 ast — O;

(5) the sample paths are right continuous with left limits a.s.
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Examples of Lévy processes are the Brownian motion, the Poisson processes and also its extension t
a Compound Poisson Process. These are so-called finite activity processes, where the paths consist of
continuous Brownian component and a jump component; the jumps occurring a finite number of times
on each finite interval. However, there exist processes whose paths jump infinitely many times on each
finite interval. Here, we focus only on the first family of processes.

Once we have defined the Lévy process, we may model the asset value by the following Geometric
Lévy process

S, = Soel,
on the filtered probability spaae2, F, F;, P), where {F, } is the filtration generated by the Lévy process
{Lt}t>0-
2.1. Lévy—Khintchine representation

The large family of Lévy processes is characterized by the following fundamental result [30]:

Theorem 2.1(Lévy—Khintchine representatiorfjor all z € R andz > 0,
E(eizL’) = exp[t (—%Zz +iyz+ /(ei“ —-1- l.Z.X]l{mgl}) dv(x))], (1)
R

wherea is a non-negative real numbey, is real andv is a measure ofR satisfyingv({0}) = 0 and
Sz min(d, x2) dv(x) < oo.

The notationil g, stands for the indicator function of the s@t The set of three parametdis y, v) is
commonly known as thgenerating Lévy tripletThe first parameter is calledGaussian variancesince
it is associated with the Brownian part of the Lévy process, the third quanistyalledLévy measure
If v =0 thenL, is a drifted Brownian motion. It = 0 thenL, is said to be purely hon-Gaussian. For
further details on Lévy processes see [3,30].

In this paper, we will concentrate on the family of processes for whishtisfies

/|x| dv(x) < oo. 2
R
In that case, (1) may be written as
E[e""] = exp[t(—%zz +ibz + /(e"” —1—izx) dv(x))i|. ©)
R
We will refer to(a, b, v) as thereduced Lévy tripleand to the function in (3)

a .
W(Z):—Ezz—l-ibz—i-/(e’“ —1—izx) dv(x), (4)
R
as thereduced Lévy—Khintchine exponeifihis is a convenient reformulation because it gives a direct

link between the coefficients in the PIDE satisfied by the option’s price and the reduced triplet; see
Theorem 3.1.
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Example 1.Drifted Brownian motion (classical Samuelson model [29])

0.2
L= (M_ E>I+UWZ,

where W, is a Brownian motion in(£2, F, Q). It is well known [21] that in this case there is only one
2

martingale measure, and since the pro¢ess '+ W }r>0is aQ-martingale we havg = r. The reduced
Lévy—Khintchine exponent is

)= o? 2 o2\
V(z =-57 + r—— )iz,
so that the Lévy (and reduced) triplet resultgdrt, r — 02/2, 0).

Example 2.Drifted Brownian motion with finite number of jumps

2 Ne
o
LIZ(M—?>I+O'WI+ZYZ',

i=1
where{Y;} are independent, identically distributed random variables with commorFlatie Poisson
procesg N;} has intensity,, and{N;}, {Y;} and{W,} are mutually independent.
The “EMM condition” [5] implies the restriction on the asset mean retura: r — ¢, whereg is the
following constant:

= (ex — 1) dF(x). (5)
/

Letting ¢ = ¢ — E[Y], the reduced Lévy triplet results in
(02, r—Ail —o?/2, AF).

Special cases

e Classical Merton’s model [26F; are normally distributed, with mean, and standard deviatiary.
Thatis, &F (x) = f,,(x) dx, where

Fon) 1= \/z_%mew’)z/z“f : (6)
We may compute then (cf. (5)):
¢ =etitoli2 g, (7)
e Non-symmetric double exponential (Kou’s model [22,23])
Jew(x) = page”™ P >0 + gaze® 1 g, (8)

wherep, g are positive real numbers such that- ¢ = 1. In order to integrate* over the real line

we must haver; > 1 anda, > 0. We then obtain the expression
po1 qo

2
= —1. 9
¢ Ol]_—1+0l2+1 ©)




A. Almendral, C.W. Oosterlee / Applied Numerical Mathematics 53 (2005) 1-18 5

2.2. Option pricing via equivalent martingale measures

Lévy markets are in general incomplete, i.e., not every contingent claim can be replicated, or in other
words, a perfect hedging strategy is impossible. Therefore, in contrast to the classical Black and Scholes
model, option prices cannot be obtained by replication. However, a price can still be found based on the
no-arbitrage assumption.

An Equivalent Martingale Measure (EMM) is a measure otf with the same null sets & such
that the discounted price proce® = ¢~"' S, becomes &)-martingalet It is known from [11] that the
existence of such a measure is in some sense equivalent to the no-arbitrage assumption. For earlier relate
works see [16,17]. Hence, one of the main problems in option pricing is that of finding a reasonable
EMM. Several ideas to find an EMM have been suggested in the financial literature. We briefly outline
one method to find an EMM that has been known for long in actuarial sciences, based on the Esscher
transform [15,28].

In this paper we deal with the following type of Lévy process (compare with Example 2):

Ni
Z,:(,u—r—%z)t—i-GWl-i-i_ZlYi. (20)
The new measur® is defined by the relation
where mgt-) denotes the moment generating functiorf@f
mgf(u) := E[exp(uL,)], (12)
andé is a constant satisfying the equality:
mgf(é + 1) = mgf(9). (13)

It is proven in [28] that, if Eq. (13) has a solution, théndefines an EMM and_, becomes a Lévy
process unde.

3. The partial integro-differential equation for option prices and the reduced Lévy triplet

In this section we explain the connection between the martingale approach to option pricing and the
PDE approach. From now on we assume that we have already chosen one possible EMM.

Let {w(z, S;)};>0 be the value process of a European contingency claim on theSsasset letg(s) :=
w(T, s). For example, for a European call we hamg) = (s — K)*, whereK is the strike price. If we
assume that the discounted value prodesSw(z, S;)};>o0 is a martingale, then we have w(z, S;) =
E@[e—’Tw(T, St)|F:]. This yields the well-known formula for the claim,

w(t,s)=e T PEg[g(se"")]. (14)

1a martingale undefQ is a process satisfyingg[M; |Fs] = M;, whereEg[ - | 7] is the conditional expectation operator.
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In order to have a full characterization of the equation satisfiedvbyt is convenient to change
variablesx = Ins and consider the proces#, X;) := w(t, eX’). This leads to

v(t,x) =e " TDEg[g (e )] (15)

Then, the following theorem exists (see, e.qg., [28]):

Theorem 3.1.Let v(t, x) € CY%([0,T) x R) N C%([0, T] x R) and assumé2). Thenv satisfies the
following partial integro-differential equatio(PIDE)

vt Lo 4 bv, — v+ /(va,x ) = 0, %) = vt 2)y) du(y) =0,

2
R
V(t,x)€[0,T) x R, (16)
with final condition
v(T,x)=g(x):= g(ex), Vx e R. an

The parameters involved are the risk-free interest ratend the reduced Lévy triplét, b, v) under the
risk-neutral measuré).

For Example 2 discussed in Section 2, the PIDE reads

—(r+Mv+Aa o, x+y)dF(y) =0, V(,x)€[0,T) xR, (18)

v + %Uzvm + (r - %02 — A;)vx
v(T,x)=g(e"), VxeR,

where dF (x) = f(x) dx. In this paper we focus oyi given by (6) and (8).
In terms of the prices, and the functionw(z, s), the above problem transforms into

— @+ VNwHA S wt,s2)dF () =0, Y(,s) €[0,T) x Ry, (19)

wy + %stzwss +(r— )"é‘)sws
w(T,s)=g(S), VSER-F;

with dF (z) := dF (In(z)) = f(z) dz. This is the form given by Merton [26]. He studied this problem with

f given by the log-normal density

Fu(2) = R T (20)

1
V2rmogz
Analogously, for Kou’s model [22]f is the log-double-exponential density

fkw(z) = palz_al_l:u-{z2l} + qaZZa2_11{0<z<l}- (21)

Remark 3.1.Only for a few particular cases, an analytical expression has been found for the solution of
(19). E.g., for Merton’s model and Kou’s model, the solution is given in the form of an infinity series [22,
26].
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4. Discretization with finite differences

In this section we concentrate on a straightforward numerical scheme for problem (18) with the normal
density (6) and the exponential density (8). In the next section, a somewhat more elegant approach is
given; a comparison of numerical results for both schemes is presented in Section 7.

The time variable is transformed to obtain a forward problem in time. If wa&et) := v(T — 1, -)
andg(x) := g(e"), (18) becomes

U — %azuxx — (r — %02 — A{)ux
+(r+Mu—2x [pu,x+y)dF(y) =0, V(r,x)€[0,T) xR, (22)
u0,x)=gx), VxeR.

To discretize the integral term, we change variables

/u(t,x+y)f(y)dy=/u(t,z)f(z—x)dz.

R R

Next, we split the integral on the right-hand sidefas= [, + [, , Where, := (—x*,x*). In case
we are computing a European call option, the integratd z) over R\$2, must be replaced by the
approximations:

rt

u(t,x) > e* —Ke'", asx — 4oo, (23)
u(t,x) -0, asx— —oo. (24)
This motivates the introduction of the function
e(r,x,x*) = /(eZ —Ke ") f(z—x)dz. (25)
2
After some computations we find for Merton’s model (6), with = 0, the following expression:

o2 ¥ 2 ¥
8(t,x,x*)=ex+71®(w) —Ke_”q§<x a ), (26)

gy oy

where® (y) is the cumulative normal distribution:

y
D(y) = \/%/ e_% dx. (27)

Consider a uniform mesh in space and in time, that isgjlet —x*+ ( — Dh (i =1,...,n), and
T, =m—-Dk(m=1,...,q9). Letu]" ~u(r,,x;) and f;; := f(x; — x;). By the composite trapezoidal
rule on[—x*, x*], we have the following approximation of the integral:

/u(rm, 2) f(z—x;)dz

R

n—1
h .
%§|:uglﬁ’l+u:?ﬁyn+zzu7ﬁ,ji|+8(Tm,xi,x*)’ i=2,....,n—1 (28)
j=2
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For the time variable and space variable we may write the following approximations:

3.m m—1 1. m—2 .

o | Gt =2 ) ke, =2, o

Ur(Tis Xi) { (l,t;n _ u;n—l)/k’ it m=1, ( )
Unx (Tiny X)) A (Mﬁ_l — ZM:" + ulr.n_l)/hz, (30)
Mx(‘[ma X;) A (uﬁ-l - M;n_l)/Zh. (31)

That is, the time derivative is discretized by BDF2 fo> 2 and BDF1 form = 1, whereas the first spa-
tial derivative is approximated by the(&F) central scheme and the second spatial derivative is estimated
by the standard, @?)-accurate 3-point difference scheme.

Define the vectoru” := (uf,..., un’”)T. From the initial condition, the initial vector isi! :=
(g(x1), ..., g(x,))T. With this notation and using the difference schemes (28)—(31), the finite difference
discretization of (22) may be written in matrix form as

(wol +C + Dyu™ =b", (32)
where
1 ifm=1,
@o= {3/2 if m > 2, (33)

| is the identity matrix and the matric€s:= [c,;,]j{j:l andD := [dij]ﬁjzl are given by

—ko?/2h? + k(r —o?/2—Ag)/2h fi=j—1 2<i<n-—1,

o = L ko?/ R+ (r + M)k ifi=j,2<i<n-—1,
Y —ko?/2h? —k(r —o?/2—Ag)/2h fi=j+1 2<i<n-—1,
0 otherwise;
—khrfij/2 if2<i<n—1landj=1n,
dij =\ —kh\f;; f2<i<n—land2<j<n-—1,
0 otherwise.
Finally, the right sidéd™ := (b1, by, ..., b,_1, b,)T is given component-wise by
bi = k)»é‘(‘[m, xi,x*) + a)lu;"*l + a)zul"'lfz, fori=2,...n—1, (34)
where
1 ifm=1,
“’1—{2 it m > 2. (35)
0 ifm=1,
@2 = { ~1/2 iftm=2, (36)

and from the boundary conditions
b1 =0, b, = a)o(ex* — Ke_”’").

5. Variational formulation and discretization

In this section we borrow some of the ideas and notation from [25]. The method in [25] consists of the
following three steps: Firstly, a problem similar to (18) is transformed into another with a homogeneous



A. Almendral, C.W. Oosterlee / Applied Numerical Mathematics 53 (2005) 1-18 9

initial condition. Secondly, the resulting equation is localized on a finite inteyak= (—x*, x*) and
zero boundary conditions at both boundary points are imposed. Finally, a Galerkin discretization in space
together with &-method in time are proposed.

Our description will differ from the above in that we choose a two-step backward differentiation
formula (BDF2), rather than &-method. BDF2 is a second order, A-stable scheme with a smoothing
effect for the error.

Problem (22) may be written as

u, + Lu =0, Y(r,x) € (0, T] x R,
uO,x)=gx), VxeR,

wherel :=D + 7, with

(37)

1 2 1 2
(D) (x) =—50 x (X) — r—50 —M)%(X)-i-w(X),

(TO)(x) = —2 / [o(t.x +y) — o] £ (3 d.

R

Remark 5.1.As pointed out in [25], we may assume= 0. The reason is the following: if is a solution

of (837) withr =0, thenii(z, x) = e ""u(z, x +rrt) fulfills the same equation and boundary condition with
r # 0. We may see this by looking at the asymptotic behaviar, dfat is,ii(t, x) —> e " (""" — K) =

e* — Ke " asx — +o0.

Once we have simplified our problem to the case 0, the solution for each > 0 asymptotically
tends towards the payoff. Hence, as in [25], the change of variables- u — g reduces (37) into the
following:

u,+Lu=-°Lg, VY(t,x)e (0, T]xR,
{ 1(0,x) =0, Vx e R, (38)
u(r,x)— 0, asx — oo, forallr € (0, T].
In Merton’s model [26] we find that the right sige= —Lg is given by

2
_ o .
g(x)= K?S{InK} —[AC¢ +De* — KA]Lyzmnk

2_InK —InK
FAd <x+0’—>ex+“3/2—u(<p(x ) (39)

oy gy

with @ as in (27) and, is the Dirac’s delta concentrated at the paint
For Kou's model we have the expression

_ o? Kip
gx) = K?5{InK} +

Kiq
1 exp[az(ln K — x)]ll{x>|n K}-

exp[al(x —1In K)]Il{xgan} + o
2

o1 — 1
The bilinear formsD andJ, from H(R) x H*(R) into R, associated wittD and .7, respectively, are
given by

2

2
D(p, x) = %/w’(X)X’(X)dx + <M + %) /@’(X)X(X)dx, (40)
R R
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J(fp,x)z—/\//[fp(ery)—co(X)]x(x)f(y)dxdy- (41)
R R

Let k denote the time step,, :== m — Dk, form =1,...,q and setu™ (x) ~ i(t,, x). The backward
differentiation formula may be written as:

it (T, X) X k™ woit™ — it ™t — wpit™ 2], (42)

with w; (i =0,1,2) as in (33), (35) and (36). Now, setting:= D + J, we may write the following
sequence of spatial problems associated to (38):

m—1

a)o(ﬁm, X) +kL(I/_tm, X) = (,om, X) forall x € HX(R), (43)
where
o™ =kg + wiit™ "t 4 woit™ 2, (44)

the inner product on the right side is in the sefde x) := A(x) and(-, -) denotes the inner product in
L?(R).

In practice, we restrict the bilinear fori(-, -) to functions inHol(Q*), where2, = (—x*, x*). By
doing this, we get an approximate problem which may be solved by Galerkin’s method. Let the interval
[—x*, x*] be divided inton — 1 equal parts-x* =x1 <x2 < --- < x,_1 < x, =x* andletS, C Hol(.(z*)
be the space of piece-wise linear functions with b§gjs. . ., ¢,_1}, whereg; (x;) are piece-wise linear
functions that are equal to 1if= j, and O otherwise.

The sequence of truncated spatial problems reads

a)o(ﬁ;’f, Xh) +kL(ﬁZ’, Xh) = (pm, Xh) forall x, € S,,. (45)
The functions:}! are to be found for altz. This formulation translates into the systems

(woM +kL)U" =b", m=1,...,q. (46)
Here, M := [(ga,»,w,-)]?jiz is the mass matrixL := [L((pi,goj)]z;iz is the stiffness matrix, the un-

known 0" is the vector of coefficients ai!" in the basis{g;}/—,, and the right side vector " :=

(b, ..., b,_1)T, whereb; := (p™, ¢;).

In practice, we comput®(¢;, ¢;) and the mass matrix by the Gauss—Legendre quadrature rule with
weights(1, 1) at the pointst1/+/3. This rule is exact for polynomials of degree at most 3. However, for
the integral part, it suffices to evaluate at the central point to keep second order accuracy in space.

6. Iterative methods based on regular splittings

The purpose in this section is to present an iterative method to solve the systems (32) and (46). We
give conditions for which the iterative method for the finite element system (46) converges. To achieve
this, it is sufficient to apply the classical theory of convergence for regular splittings, as explained in [32].
Observe that in genera), is a dense matrix, with the property that its entries tend to zero as we move
away from the diagonal.

A representation of the matrik in the form

A=Q—R, 47)
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is said to be a regular splitting @ is a monotone matrix@—* > 0) andR > 0.
To every splitting (47), there exists an associated iterative method:

VT =Q 'RV +Q b, I=0,..., =0 (48)

lteration (48) converges(Q~1R) < 1) iff A is monotone [32].
Denote byA* the adjoint matrix ofA. A positive stable matrix is by a definition a matrix whose
eigenvalues have positive real part. We need the following two statements:

(1) A sufficient condition for a matriX to be positive stable is th@t + A* is positive definite [19].
(2) A positive stable matrix with non-positive off-diagonal entries is a monotone matrix [19].

Let A = woM + kL, from the finite element discretization (46). We claim tAat positive stable. Since
the mass matri¥ is S.P.D., it is sufficient to verify thadt is positive stable.

Denote byv, the vector of coefficients af € H3(£2,) in the basisg;}'—;. Let B be some bilinear
form and define the adjoint bilinear for®* asB*(¢, x) := B(x, ¢). Then we have

v} (B+B*)v, = (B + B*) (¢, x), (49)

whereB := [B(¢;, goj)]j’jiz andB* is the adjoint matrix oB.

Repeating the argument in [25], the following identity holds

=+ I (@ 1) = 2 /f [0 +3) — o] [x x4+ 3) — x]F G dy. forall g, x € HAR,).
R R

It follows that

v (I+J%)v, > 0. (50)
On the other hand, it is straightforward to check that
V, (D +D*)v, = (D + D*)(¢.¢) > 0. (51)

Inequalities (50) and (51) give the positive stabilitylaf
We now propose two splittings:

(1) JacobiA = Q1 — Ry, whereQ, is the diagonal of\.
(2) Tridiagonal:A = Q. — R, whereQ, is made by extracting the main three diagonals of

We have the following result:
Proposition 6.1.1f the following conditions are satisfied

(i) —(k/h)o?/2—k(Ae +02/2)/2+ h(wg+ 1k)/6 <0,
(i) —(k/h)o?/2+ k(A +02/2)/24 h(wo+ Ak)/6 <0,

then splittingsl and 2 are regular. Moreover
p(Q;'R2) < p(Q1'Ry) < 1. (52)
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Proof. By conditions (i) and (ii) the off-diagonal elementsAvfire non-positive. Observe that the entries
corresponding to the integral term in (22) are non-positive, so they are not taken into account in (i)—(ii).
A is therefore anv-matrix (a monotone matrix with non-positive off-diagonal entries; see statement 2.
above), which in particular implies that the diagonal entrieé @fre positive. IfA is an M-matrix, then

any splittingA = Q — R, whereQ is formed fromA by replacing some of the off-diagonal element#\of

by zero, is a regular splitting; see [32]. Inequality (52) follows from the same theorem®BircdR;. O

Remark 6.1.In the finite difference situation, we indicate that from a practical point of view, the follow-
ing two conditions:

(i) —(k/h)o?/2—k(r +0%/2)/2<0,
(iv) —(k/h)o?/2+k(rs +02/2)/2<0,

are sufficient for an accurate stable solution, since in both the FEM and FD approach we compute an
approximation of the integral term. Note that conditions (i)—(iv) are due to the choice of a central scheme
for the convection term.

Remark 6.2.1f we keep the quotient/ i fixed and leth — 0, there exists &g > 0 such that conditions
(h—(iv) are fulfilled for h < hg. In practice we observe that iteration (48) converges even idhmatrix
property is violated, that is, the splitting need not be regular. Note that this assertion is related to the
iterative method and not to the stability of the solution. Note also that conditions arising from explicit
methods are in general worse, since they denmtard(4?); see [6].

Remark 6.3.

The three diagonals i, include some coefficients from the discretization of the integral.
Tridiagonal splittings work extremely well for exponentially decaying kernels.

Matrix A is Toeplitz. Hence, in principle, a fast Toeplitz solver (based, for example, on FFT) is also
applicable.

We aim already at varying: This affects only the main three diagonalsfofind therefore the idea

of using a tridiagonal splitting is to be preferred here.

We have partially solved the storage problem, since any of the two suggested splittings need only store
a few vectors. However, we need to perform a multiplication of the dense nigtitly some vector, for
each step of the iterative method (48). The fast Fourier transform (FFT) may be used in a fast algorithm to
compute this matrix—vector product (for some particular type of matrices), without needing t®store

6.1. Connection with Toeplitz matrices

We verify now that a simple approximation@p := [r,-j]ﬁ;iz becomes a Toeplitz matrix, i.e., a matrix
that is constant along its diagonals. Recall that this matrix results from the discretization of the integral
termin (22). Note that

o L —kA [ [rei(e+ 9)@i0) f(y)dedy  for i — j| > 1, (53)
Y 0 otherwise.
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But

n(x) :=/<pj(X+y)f(y)dy= / @) fz—x)dz~hf(x; —x). (54)
R SUpHy))

Therefore, fori — j| > 1

rij = —kA f n(x)e;(x) dx ~ —kAhn(x;) = —k)»hzf(xj —X;). (55)
supfy;)
Hence,r;; is a function of the differencé — j) provided the spatial mesh size is constant. The ap-

proximated Toeplitz matriR, (denoted here with the same letter) is then completely determined by the
vector:

a= [rz,}’lf]n rZ,nfz’ ccc r2,4’ 0’ 07 ov r4,2a r5,2a cce rnfl,z]' (56)
6.2. Convolutions and the FFT algorithm

The Discrete Fourier Transform (DFT) of a vectbe= [do, do . . ., dg_1]" is defined as:
R-1
Dy= dpe ?™™/F  k=01....R. (57)
n=0
The FFT is an algorithm designed to evaluate the DFT of a vector of leh@thO(R log R) operations.
This is a significant improvement with respect to the direct evaluation, which has a computational cost
of O(R?) operations.
An important application of the DFT is in computing convolutions. Le}} and{y,} be two se-
quences with perio®. The convolution sequenge= x * y is defined component-wise as

R-1
in = me—nym- (58)

m=0
This is a so-called circulant convolution. We now use FFT to compute the vegtor., zzx_1]. The
periodic structure of allows the derivation of the following simple relation:
Zi =Xy Yy, (59)

where X,Y and Z denote the DFT of the sequencesy and z, respectively. Now the vector
[zo, ..., zr_1] Mmay be recovered by means of the Inverse Discrete Fourier Transform (IDFT):

R-1
1 .
= k§_0: Zpe! TRy —0,1,...,R. (60)

It is easy to see that, in the language of matrices and vectors, a circulant convolution may be repre-
sented as the product ofc&culant matrixtimes a vector. Each row in a circulant matrix is by definition
a circular shift of the previous row, a property that reflects the periodicity of the sequence in the convo-
lution.
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The next idea is to embed a Toeplitz matrix into a circulant matrix. As an example, let a Toeplitz
matrix T (a) be determined by the vectar=[a_5, a_1, ag, a1, a»] as follows

apg d—1 a_27]
T@=|a1 ao a-1]. (61)
ar aq ap

The matrix above may be embedded in a circulant m&rof size 5 in the following way:

ap a_1 d_p ar a
ag ap a_1 a_» as
C= ar ay ap a1 a_p |. (62)
a_p as ag ap a_q
a1 d_p ar ag ap

If we define the vectord := [dy, d1, d,]" andd := [do, d1, d», 0, 0]7, then the product (a)d is the vector
consisting of the first three elements of the prod@dt As explained before, a product of a circulant
matrix and a vector may be efficiently done by applying the FFT algorithm.

As a summary, following the ideas explained above the product of a Toeplitz matrix and a vector may
be computed fast by “embedding” the Toeplitz matrix into a circulant matrix. The product of a circulant
matrix and a vector is carried out in three FFT operations, namely, two DFT and one IDFT. We already
verified thatR; is a Toeplitz matrix, so we may use the algorithm outlined here to muRplyy a vector
for each step of iteration (48).

Note that the wrap-around effect normally observed when applying the DFT is not present in this
framework, since the matrix—vector product is carried out exactly by embedding the Toeplitz matrix into
a circular matrix. This would not be the case if we had applied DFT only to the Toeplitz matrix. Finally,
for computational efficiency of the FFT algorithm, it is advisable to use a circulant matrix whose size is
a power of 2. For further details on the computation of convolutions by FFT we refer to [31].

We summarize here the computational cost of the algorithm. For each time step we have the linear
iteration (48) coupled with the FFT algorithm outlined in paragraph 6.2. For each iteration we need to
solve a tridiagonal system and apply 3 times the FFT algorithm. The tridiagonal solver requines O
operations and each FFT requiregn@gn). On the other hand, the number of iterations of splitting
(48) is about 10 for the types of Lévy measures considered in this paper and for a toleranc& We.0
conclude that the overall cost of the algorithm i&:@gn) (also supported by the observed CPU times
in Table 4 in the next section). As for the storage, only vectors of s{z¢ @eed to be stored or updated.

7. Numerical experiments

For the numerical experiments in this section we assumé (see Remark 5.1).
Problem (19), fore; = 0 has an analytic solution given by Merton’s formula [26]:

© At )M
wit,9) =3 0 o5, K. 0) (63)
m=0 :

wheretr :=T — ¢, and recalling that = ¢°5/2 — 1, the rest of the parameters are given by
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2 In(1
W=, o2=a?+ M g —p g g MNATO
T
andCpgs denotes the Black—Scholes value of a call:
Ces(t,s,K,r,0) =s®(d1) — Ke """ @ (dy), (64)

where

log($) + (r + 3091
= N d :d - )
G r=d1— 0T

and¢@ is the normal cumulative distribution function (27).

In general, for models where the characteristic function of the Lévy process is known, an analytical
solution of PIDE (22) may be found using Fourier analysis [5,8,24]. In particular, for Kou’s model, we
have the following formula for a call option:

o

w2 = Re[—%/ exp(—izx + T (—2)) dy], (65)
0

72—z

dq

wherez =y + pi, for p > 1, andvy is the Lévy—Khintchine exponent of a double exponential Lévy
process

1 o? o o

(@) =—20%2— (ae+ T Jigaa 22 9122 4q). (66)
2 2 a1 —iz  ap+iz

We have carried out the following four experiments:

(1) Merton’s model, using finite differences with BDF2. The integral is truncated and the non-
homogeneity is kept; see Section 4.

(2) Merton's model, using finite elements with BDF2. Recall that the problem was transformed into a
homogeneous problem; see Section 5.

(3) Kou's model, with finite elements and BDF2.

(4) Kou’'s model, with finite differences and BDF2.

Table 1 and Fig. 1 (first experiment) show that the second order is lost with the FD approximation for the
whole interval, but not locally around the logarithm of the strike price which is most important, of course.
The accuracy is not of @?) near the boundary of the computational domain. From Table 2 (second
experiment) we see by contrast that the convergence is quadratic #f°therm with finite elements.

Table 3 shows the outcome of experiment 3, where the solutiop atas found by integrating (65) with
Simpson’s rule on the interv@ld, 30] with 512 divisions and witlp = 1.5. Observe that the convergence

is also quadratic. The fourth experiment shows the quadratic convergence using finite differences and
also the total CPU time with the FFT algorithm is incorporated, see Table 4. Note that the number of
space and time steps is doubled each row. Therefore the total CPU time increases with about a factor
of 4. In all experiments the stopping criterion for iteration (48) is given by’thenorm of the difference
between two consecutive iterations, i.e.,

V*H =V <e (67)

where the tolerancewas set to 165.
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Error
0.01 T T T T

A

0.005

3tx) 0

-0.0051

-0.01

-0.015

-0.02

-0.025

~0.03 . . 1 1 . I I

Fig. 1. Finite difference case. The functiéris the difference between the analytical solution and the numerical solution for

Merton’s model. The process parameters are the same as in Table 1. The number of spatial points4sQ2@nd the time
stepisk =0.1.

Table 1

FD and BDF2 results for Merton’s model. Point-wise &l errors at maturityl’ = 1. Truncation
point x* = 4, volatility o = 0.2, variance of the jumps; = 0.5, intensity of the jumpg. = 0.1,
strike priceK = 1 andxg =log(K)

n k T=1
[°° error error atc g
65 0.2 1.9569e-01 0.00442717

129 0.1 1.0011e-01 0.00102551

257 0.05 5.0416e—-02 0.00025366

513 0.025 2.5272e-02 6.32903e-05
1025 0.0125 1.2646e-02 1.58379e-05
Table 2

FE and BDF2 results for Merton’s model. Point-wise @ftierrors at the two maturity times = 1

andT = 2. Truncation poink* = 4, volatility o = 0.2, variance of the jumps; = 0.5, intensity
of the jumpsi = 0.1, strike priceK = 1 andxg = log(K)

n k T=1 T=2
£ error error afx g £%° error error atcg
65 0.2 0.0020020 0.00147182 0.0013240 0.00091851
129 0.1 0.00048586 0.000369525 0.00032835 0.000228408
257 0.05 1.2167e-04 9.24111e-05 8.2418e-05 5.70452e-05
513 0.025 3.0282e-05 2.31407e-05 2.0550e-05 1.42507e-05
1025 0.0125 7.5252e—-06 5.80396e—-06 5.1032e-06 3.55107e-06

Solution atx g

0.094135525

0.136963105
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Table 3

FE and BDF2 results for Kou’s model. Point-wise errors at maturity tifre 0.2. The truncation
point x* = 6 and the parameters of the process are: volatilitg 0.2, o1 = 3, ap = 2, p = 0.5,
A=0.2,K =1andxg =log(K)

n k Num. sol. atcg error atxg
65 0.2 0.0323466 0.0103295

129 0.1 0.0398864 0.0027897

257 0.05 0.0421572 0.0005189

513 0.025 0.0424579 0.0002182

Anal. sol. atrg 0.0426761

Table 4

FD and BDF2 results for Kou’s model. Point-wise errors at maturity time 0.2 and CPU times
on a Pentium IV, 1.70 GHz. The truncation poiit = 6 and the parameters of the process are:
volatility 0 =0.2,09 =3,02=2,p=0.5,1=0.2, K =1 andxg =log(K)

n k Num. sol. atvg error atx g Total CPU-time
65 T/10 0.02438 0.01829 0.29s

129 T120 0.03407 0.00860 0.48s

257 T140 0.04086 0.00181 1.30s

513 T180 0.04240 0.00027 441s

Anal. sol. atxg 0.04267

8. Conclusions

In this paper we investigated the numerical solution of a European option pricing problem in a market
with a finite number of jumps, given that we a-priori know the Lévy—Khintchine representation of the un-
derlying jump process. The option value is in general given as the solution of a partial integro-differential
equation. We concentrated on two models, the classical model by Merton [26] and a more recent model
by Kou [22,23].

Due to the non-locality of the integro-differential operator, the PIDE is numerically challenging if we
discretize it by some fast converging implicit method. We showed that there is no need for “fully” explicit
methods with severe time step constraints to treat the integral part. We found that a finite difference
method combined with BDF2 in time gives second order accuracy close to the strike price while the
homogenized finite element approach with BDF2 in time is second order accurateifi-tierm. Both
FEM and FD are straightforwardly implemented and the resulting matrices differ only slightly due to the
presence of the mass matrix in FEM. When it comes to the computation of the righf EiceFEM,
it is essentially equivalent to the computation of the error functian x, x*) in the FD approach, but
with the advantage that in FEM we have uniform convergence of the numerical solution to the analytical
value.

For exponentially decaying kernels, like the two examples we considered, we observed that the sug-
gested tridiagonal splitting has small spectral radius and that the fast Fourier transform may be used to
speed up the iterative method, provided we have a uniform mesh in space. We have avoided the storage
and inversion of a full matrix this way.
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