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Introduction

In April 1973 derivatives started to be o¢ cially traded on the Chicago Board Options Exchange.
In that same year Fischer Black and Myron Scholes published the �rst model based on no
arbitrage arguments for pricing options (Black and Scholes, 1973). This model still forms the
foundation for modern �nance. Certain underlying assumptions are questionable however, e.g.
assets are assumed to follow a continuous process and no transaction costs are considered. But
most importantly, a drawback is that in the Black-Scholes world the volatility is assumed to be
constant. The invalidity of this assumption becomes clear when considering so-called implied
volatilities. The implied volatility is that volatility for which the Black-Scholes price equals the
market price. Nowadays, the market shows that the implied volatility is dependent on the strike
and the maturity of the option.

Since 1973 many other models have been introduced, including stochastic volatility models,
jump models and local volatility models. All these models try to capture the �aws of the Black-
Scholes model. Some of them have become quite popular and will be discussed in this thesis.
These di¤erent models also give rise to new problems, e.g. which model is the best or what is
the risk of the choice of model? The �rst problem is di¢ cult, because it is dependent on the
users preference (each user prefers a di¤erent model). The second problem, on the other hand,
can be treated more easily. This is because model risk can be quanti�ed.

This thesis will cover two di¤erent problems in �nance. Firstly, a fast and accurate pricing
methodology for callable, i.e. early exercise, options will be developed. This methodology speeds
up the quadrature pricing technique of Andricopoulos, Widdicks, Duck and Newton (2003),
Andricopoulos, Widdicks, Duck and Newton (2004) and O�Sullivan (2004). Furthermore, we
will extend the quadrature pricing technique to Heston�s two dimensional stochastic volatility
model. The development of these techniques is done with a view on quantifying model risk.
These techniques can easily be used to price discrete barrier options and an adapted method is
applicable for cliquets.

Secondly, model risk for pricing various exotic options will be considered. When talking about
model risk, we have to distinguish between intra- and inter-model risk. We de�ne intra-model
risk for a certain contract as the maximum price di¤erence within one model, given that the
model is adequately calibrated to the initial market prices. These di¤erences can arise due to
di¤erent starting values for parameters or di¤erent objective functions in a calibration. Inter-
model risk is the traditional model risk, i.e. the maximum price di¤erence over various (ideally
all) option pricing models, given that the models are adequately calibrated to initial market
prices. Inter-model risk for equity derivatives is touched upon to some extent in, for example,
Hull and Suo (2002) and Madan (2005), whereas intra-model risk is, as far as we are aware, only
considered in Detlefsen and Härdle (2006). This document will cover both types of model risk.

vi



CHAPTER 0. INTRODUCTION vii

For the pricing of exotic options several quantitative techniques are available. The pricing of
purely callable exotics can be done with the quadrature technique as presented in this thesis. For
the pricing of path-dependent options we will choose quadrature techniques and Monte Carlo
based simulation techniques, depending on the model and the type of payo¤.

The outline of this thesis is as follows. Chapter 1 discusses several models for pricing op-
tions. A fast and accurate pricing technique for callable options will be discussed in Chapter 2.
This technique is compared to a technique of solving a Partial (Integro-) Di¤erential Equation
(P(I)DE) numerically and with the Monte Carlo simulation, treated in Chapters 3 and 4, respec-
tively. Results and conclusions of this comparison can be found in Chapters 5 and 6. The exotics,
for which the model risk will be determined, and their pricing methodologies are discussed in
Chapter 7. Chapter 8 will give a short description of the calibration method used within this
thesis. Results of all calibrated model parameters can be found in this chapter as well as the
quanti�cation of the model risk for the various exotic options.

0.1 Notation and Remarks

Throughout this thesis several variables and some loose notation is used. They are introduced
in this section.

Variable Description
S (t) Price of the underlying asset at time t
S0, ST Price of the underlying asset at time t0 and T
K The strike price
x (t) = logS (t) The logarithm of the asset price at time t
x0, xT The logarithm of the asset price at time t0 and T
t0 Today�s date
T Maturity date
� = T � t Time between t and T
r Risk-free interest rate
N (�) The standard normal distribution function
W (t) A Brownian motion

' =

�
�1 , for a put option
1 , for a call option

A useful parameter for de�ning puts and calls

x+ = max (x; 0) The maximum between x and zero

Table 0.1.1: Notation

Some Remarks:

� The logarithm of the underlying asset price has proven to be more useful than the asset
price itself. Therefore, most of the formulas are based on the logarithm of the asset price,
x (t).

� In this thesis expectations of some stochastic variable X are written as Et [X], while this is
actually the expectation under some risk neutral measure Q and given some �ltration Ft.
So,

Et [X] = EQ [Xj Ft] :
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� Many de�nitions of discrete Fourier transforms (DFT) exist. In this thesis the DFT bf =h bf1 � � � bfN iT
of some vector f =

�
f1 � � � fN

�T
is de�ned as

bfk = NX
n=1

fne
� 2�i

N (n�1)(k�1): (0.1.1)

The inverse transform then reads

fk =
1

N

NX
n=1

bfne 2�iN (n�1)(k�1): (0.1.2)
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Chapter 1

Model Descriptions

This section presents the dynamics and some characteristics of the various models used in this
thesis. Most of the characteristics are described, and not derived, because they already appear
in the literature, see e.g. Cont and Tankov (2004), Dupire (1994) and Heston (1993).

1.1 Black-Scholes Model

The Black-Scholes model, introduced for option pricing, still forms the foundation for modern
�nance. Black and Scholes assume that the stock price follows a geometric Brownian motion.
The dynamics of the logarithmic stock price are

dx (t) =

�
�� 1

2
�2
�
dt+ �dW (t) ; (1.1.1)

where � is the drift and � the volatility. The price of a European option can be calculated by
the Black-Scholes formula:

V = '
�
S0� ('d1)� e�r(T�t0)K� ('d2)

�
; (1.1.2)

where the parameters d1 and d2 are de�ned as

d1 =
log
�
S0
K

�
+
�
r + 1

2�
2
�
(T � t0)

�
p
T � t0

;

d2 = d1 � �
p
T � t0

and � is the cumulative normal distribution function. For a complete derivation of this formula
we refer to Black and Scholes (1973).

For the pricing of di¤erent kinds of options, e.g. American options, it may be useful to solve
the relevant partial di¤erential equation numerically. In the Black-Scholes world the option price
V satis�es the following equation:

@V

@�
=
1

2
�2
@2V

@x2
+

�
r � 1

2
�2
�
@V

@x
� rV: (1.1.3)

The initial and boundary conditions di¤er for di¤erent payo¤s. A detailed derivation can be
found in Wilmott (1998).

2



CHAPTER 1. MODEL DESCRIPTIONS 3

Finally, the characteristic function reads

�T (!) = Et0
�
ei!xT

�
= Et0

h
ei!((r�

1
2�

2)T+�W (T ))
i

= ei!(r�
1
2�

2)T� 1
2�

2!2T : (1.1.4)

1.2 Heston�s Stochastic Volatility Model

Heston�s stochastic volatility model (or Heston�s model for short) allows the volatility to satisfy
a SDE. The idea to model volatility as a random variable comes from market data that indicates
the highly variable and unpredictable nature of volatility. Moreover, return distributions under
stochastic volatility models typically have fatter tails than their lognormal counterparts, hereby
being more realistic. The most cited argument to allow volatility to be random is that such
models introduce a volatility smile. In other words, it captures the problem of the implied
volatilities as described before to a large extent.

One of the most popular stochastic volatility models was introduced by Heston (1993). In
Heston�s model we consider two stochastic di¤erential equations, one for the logarithmic asset
price x (t) and one for the (local) variance v (t) of x (t):

dx (t) =

�
�� 1

2
v (t)

�
dt+

p
v (t)dW1 (t) ;

dv (t) = �� (v (t)� v) dt+ �
p
v (t)dW2 (t) : (1.2.1)

Here � � 0, v � 0 and � � 0 are called the speed of mean reversion, the mean level of variance and
the volatility of volatility, respectively. Furthermore, the Brownian motions W1 (t) and W2 (t)
are assumed to be correlated with correlation coe¢ cient �. The SDE for the variance can be
recognized as a mean-reverting square root process, as originally proposed by Cox, Ingersoll and
Ross (1985) to model the spot interest rate. One can easily deduce the name "mean-reverting":
if v (t) exceeds its mean v, the term �� (v (t)� v) dt drives the variance back to the mean. The
same holds if v (t) is below its mean.

The two dimensional pricing PDE for the Heston model can be deduced from hedging argu-
ments. In case of a one-dimensional model a self-�nancing portfolio is constructed via an option
and �� units of stocks. Whereas for Heston�s two dimensional model the risk associated with
the random volatility needs to be hedged as well. Hence, the self-�nancing portfolio � consists of
an option with value V (S; v; t), �� units of the underlying asset and, in order to hedge the risk
associated with the random volatility, ��1 units of another option with the same underlying
and value V1 (S; v; t):

� = V ��S ��1V1: (1.2.2)

Using Itô�s lemma and arbitrage arguments the following two dimensional pricing PDE is derived:

@V

@�
=
1

2
v
@2V

@x2
+ ��v

@2V

@x@v
+
1

2
v�2

@2V

@v2
+

�
r � 1

2
v

�
@V

@x
� (� (v � v)� �v) @V

@v
� rV: (1.2.3)

Here � is known as the market price of risk. The market price of risk will be handled by the
other parameters, because the model is calibrated to the market. So, � can be chosen to equal
zero:

@V

@�
=
1

2
v
@2V

@x2
+ ��v

@2V

@x@v
+
1

2
v�2

@2V

@v2
+

�
r � 1

2
v

�
@V

@x
� � (v � v) @V

@v
� rV: (1.2.4)
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The characteristic function reads:

�T (!) = e
i!rT+

v0
�2

�
1�e�DT

1�Ge�DT

�
(����i!�D)+�v

�2

�
T (����i!�D)�2 log

�
1�Ge�DT

1�G

��
; (1.2.5)

where

D =

q
(�� ��i!)2 + (!2 + i!) �2;

G =
�� ��i! �D
�� ��i! +D:

The characteristic function can be seen as an (imaginary) claim which must therefore satisfy
(1.2.4). This is the key insight for the derivation of the characteristic function. For both (1.2.4)
and (1.2.5) an elaborate derivation is presented in Heston (1993).

1.3 Bates Model

Bates (1996) extended the Heston model by considering jumps in the stock price process:

dx (t) =

�
�� 1

2
v (t)

�
dt+

p
v (t)dW1 (t) + jN(t)dN (t) ;

dv (t) = �� (v (t)� v) dt+ �
p
v (t)dW2 (t) : (1.3.1)

Here N (t) is a Poisson process with intensity � and jN(t) are normally distributed jump sizes with
expectation �j and variance �

2
j , jN(t) � N

�
�j ; �

2
j

�
. The Poisson process N (t) is independent of

the Brownian motions and the jump sizes.

Under the martingale measure the characteristic function of Bates model reads, see e.g. Cont
and Tankov (2004),

�T (!) = e
i!(r���)T+ v0

�2

�
1�e�DT

1�Ge�DT

�
(����i!�D)+�v

�2

�
T (����i!�D)�2 log

�
1�Ge�DT

1�G

��

� e
�T

�
e
i!�j�

1
2
�2j!

2
�1
�

(1.3.2)

where � = E
�
ejN(t) � 1

�
.

The Bates model has eight parameters while the Heston model has only �ve parameters for
calibration. Because of these three extra parameters the Bates model can better �t the observed
volatility surface, but stability over the parameters over time is more di¢ cult to achieve.

1.4 Variance Gamma Model

The Variance Gamma (VG) process was �rst introduced in �nancial modelling by Madan and
Seneta (1990) to cope with the shortcomings of the Black-Scholes model. The VG process is
obtained by evaluating a drifted Brownian motion at random times given by a gamma process.
The three parameters determining the VG process X (t;�; �; �) are: the volatility � of the Brown-
ian motion, the variance � of the gamma distributed time and the drift � of the time-changed
Brownian motion with drift. The dynamics of the process are

dx (t) = �e�dt+ dX (t;�; �; �) ; (1.4.1)



CHAPTER 1. MODEL DESCRIPTIONS 5

where �e� is the drift of the logarithmic price of the asset and the VG process X (t;�; �; �) is
de�ned as

X (t;�; �; �) = �
 (t; 1; �) + �W (
 (t; 1; �)) : (1.4.2)

Here 
 (t; 1; �) denotes a gamma process with mean 1 and variance �. The gamma process has
the important property that increments are gamma distributed:


 (t+ s; 1; �)� 
 (s; 1; �) � G (t; �) :

From Cont and Tankov (2004) and Almendral and Oosterlee (2006) it is known that the
pricing PIDE and the characteristic function are

@V

@�
= r

@V

@x
� rV +

1R
�1

�
V (x+ y)� V (x)� (ey � 1) @V

@x

�
k (y) dy (1.4.3)

and
�T (!) = ei!(r+

1
� log(1����

1
2�

2�))(T�t0)� 1
� log(1�i!��+

1
2!

2�2�)(T�t0); (1.4.4)

respectively. In (1.4.3) k (x) is known as the Lévy density and has the form

k (x) =

(
1
�
e��+jxj

jxj if x > 0
1
�
e���jxj

jxj if x < 0
;

where the positive parameters �� are given by

��1� =

s
�2�2

4
+
�2�

2
� ��

2
:

The parameters �+ and �� are the maximum and minimum allowed moments, respectively. So,

Et0
h
S (t)

�
i
<1, if and only if �� < � < �+:

For any sensible model we must at least have that the forward, Et0 [S (t)], exists, therefore we
must have �+ > 1.

1.5 The Local Volatility Model

The previous models discussed so far try to capture the �aws of the Black-Scholes model by
adding a stochastic process, i.e. Heston assumes the volatility to be stochastic, Bates has a
stochastic volatility and a stochastic jump process, and the VG model has a stochastic time.
This section discusses a model, which was �rstly presented in Dupire (1994), that deals with the
volatility skew by introducing a deterministic volatility function. By this we mean that no extra
random variables are involved. The dynamics of this model are

dx (t) =
�
�� 1

2� (x (t) ; t)
2
�
dt+ � (x (t) ; t) dW (t) ; (1.5.1)

where � (x (t) ; t) is a deterministic function of the logarithm of the underlying and the time and
is known as the local volatility function. The local volatility function equals

� (x; t)
2
= 2

@
@T C (x; x; t) + �

@
@kC (x; x; t) + (r � �)C (x; x; t)

@2

@k2C (x; x; t)�
@
@kC (x; x; t)

(1.5.2)
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A detailed derivation is presented in Appendix A. In Dupire (1994) a local volatility function as
a function of the spot price, instead of the logarithm of the spot price, is derived.

The pricing PDE of the local volatility model is equivalent to the Black-Scholes PDE and
reads

@V

@�
= 1

2� (x; �)
2 @

2V

@x2
+
�
r � 1

2� (x; �)
2
� @V
@x

� rV: (1.5.3)
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Chapter 2

Fourier Pricing Techniques

This section provides a detailed description of a novel technique for obtaining option prices based
on Fourier transformations. Using Fourier transforms for the pricing of options is a relatively new
approach in �nance. Although it is already extensively described in literature, see e.g. Heston
(1993), Carr and Madan (1999) and Bakshi and Madan (2000). The ability to solve options
with early exercise opportunities is very recent. The idea for the algorithm described in this
thesis originates from Lord (2005). Part of the research on this new approach is provided in this
chapter. In section 2.1 we discuss the novel technique for one-dimensional models. This idea
can be extended to multi-dimensional models. This is described for the Heston model in section
2.2. During the implementation several computational problems occurred. A discussion on the
computational aspects can be found in section 2.3. Finally, an extrapolation technique to price
American options in presented in section 2.4.

2.1 Pricing with Fourier Transforms for One-Dimensional
Models

2.1.1 European Options

As discussed in Cox and Ross (1976), a perfect hedge can be formed by a European option and
its underlying stock. The option can be valued by determining the discounted expected value of
its payo¤ assuming risk neutrality. The European price is then

V (x; T ) = e�r(T�t0)Et0
h
(' (exT �K))+

i
: (2.1.1)

This equation can be written as an integral:

V (x; T ) = e�r(T�t0)
1R
�1

g (xT ) f (xT jx) dxT ; (2.1.2)

where g (xT ) = (' (exT �K))+ and f (xT jx) is the transition probability density from x at t0
to xT at T , such that xT � x can be interpreted as the logarithmic return from time t0 to T .
The models for which the routine as described here can be devised, satisfy

f (xT jx) = f (z) ;

where z = xT � x. Examples of such models are the one-dimensional exponential Lévy models.
The key insight to fast pricing is the notion that, apart from the discounting, (2.1.2) represents

8
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a correlation of g with the density function f . Premultiplying (2.1.2) by the factor e�x, ensuring
that the Fourier transform exists, and taking its Fourier transform gives

er(T�t0) bV (! � i�) = er(T�t0)
1R
�1

ei(!�i�)xV (x; t0) dx

=
1R
�1

ei(!�i�)x
1R
�1

g (xT ) f (xT jx) dxT dx

=
1R
�1

1R
�1

ei(!�i�)xg (xT ) f (z) dzdx

=
1R
�1

1R
�1

ei(!�i�)xT g (xT ) e
�i(!�i�)zf (z) dzdxT

=
1R
�1

ei(!�i�)xT g (xT ) dxT
1R
�1

e�i(!�i�)zf (z) dz

= bg (! � i�) bf (� (! � i�)) : (2.1.3)

Note that bf (�) is the characteristic function, bf (�) = �T (�) and bg (�) is the Fourier transform
of g (xT ). The characteristic function is known explicitly. The other integral bg (! � i�) can be
calculated with any kind of numerical integration method, which is based on uniform grids. With
non-uniform grid based numerical integration methods, e.g. Gaussian quadrature, we loose the
applicability of the DFT. The computation of the continuous Fourier integral is described in
detail is section 2.3.1. Finally, the option price V (x; T ) can be found by inverting the Fourier
transformed option price:

V (x; T ) =
e��xe�r(T�t0)

2�

1R
�1

e�i!xbg (! � i�) bf (� (! � i�)) d!: (2.1.4)

Because the integrals are evaluated numerically we end up with a vector of option prices. The
option price for some spot value S0 = ex0 can be found by any interpolation method, e.g. by
cubic splines, or by choosing the grid such that x0 is a grid point.

2.1.2 Bermudan Options

A Bermudan option is an option which can be exercised on some prespeci�ed exercise dates.
Denote the set of exercise dates as T = ft1; :::; tMg, tk < tk+1. With g (x; tk) the exercise payo¤
at tk 2 T , just like the previous section, C (x; tk) the continuation value at this date and V (x; tk)
the option value, we have, with C (x; tM ) = 0,

V (x; tk) = max (g (x; tk) ; C (x; tk)) , k = 1; :::;M; (2.1.5)

C (x; tk) = e�r(tk+1�tk)E [V (x; tk+1)] , k = 1; :::;M: (2.1.6)

Notice that (2.1.6) can be approximated with the method described in the previous section. The
price of the Bermudan is found by solving (2.1.5) and (2.1.6) M times.

An American option can be exercised at any time before maturity. In other words, it is a
Bermudan option with an in�nite amount of exercise dates. So, when choosing M very large an
approximation for the American price is obtained. Alternatively, an extrapolation method exists
to keep the number of time steps limited. This method is known as Richardson extrapolation
and is discussed in section 2.4.
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2.2 Pricing with Fourier Transforms for Heston�s Model

For the Heston model the pricing with characteristic functions becomes more complicated than
for one-dimensional models. In case of European options it can be treated similarly to the Black-
Scholes model, however the pricing of callable options, e.g. Bermudans or Americans, is more
di¢ cult.

2.2.1 European Options

Recall that the price of a European option can be calculated as (see equation (2.1.1))

V (x0; v0; T ) = e�r(T�t0)Et0 [g (xT )] ; (2.2.1)

where g (xT ) presents the exercise payo¤. The main di¤erence between Heston�s model and
Black and Scholes�model in case of European options is that the transition density as described
in section 2.1.1 is not only conditioned on the initial logarithmic stock price, but also on the
initial variance. So, equation (2.2.1) in integral form reads

V (x0; v0; T ) = e�r(T�t0)
1R
�1

g (xT ) f (xT jx0; v0) dxT : (2.2.2)

Obviously, the same methodology as in section 2.1.1 applies to calculate expression (2.2.2).

2.2.2 Bermudan Options

The pricing of Bermudan options, or any other callable option, tends to be more complicated.
This is because the exercise payo¤ at any time before maturity is dependent on the variance
at that particular time. This section discusses this problem and presents a method to price
Bermudans under the Heston model.

Now, consider a European style option with its payo¤ dependent on the underlying and the
variance at maturity. With g (xT ; vT ) the payo¤ function, the forward value of the option can
be computed as

F (x0; v0) = Et0 [g (xT ; vT )]

=
1R
�1

1R
�1

g (xT ; vT ) p (x0 ! xT ; v0 ! vT ) dxT dvT ; (2.2.3)

with p (x0 ! xT ; v0 ! vT ) being the transition probability density from x0 and v0 at t0 to xT
and vT at T , and where x0, v0, xT and vT represent the logarithm of the initial stock price, initial
variance, the logarithm of the stock price at maturity and the variance at maturity, respectively.
In the two-dimensional case the transition density cannot be written in terms of the changes in
the logarithmic stock price and the variance. So, the identity p (x0 ! xT ; v0 ! vT ) = p (zx; zv),
with zx = xT � x0 and zv = vT � v0, does not hold in general. Instead, we use the following
lemma.

Lemma 1 The transition density for Heston�s model (1.2.1) can be written in terms of the
change in the logarithmic stock price and the variance at maturity, given today�s variance:

p (x0 ! xT ; v0 ! vT ) = p (zx; vT j v0) ; (2.2.4)

where zx = xT � x0.
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Proof. We use the Gil-Pelaez inversion formula on the conditional characteristic function. For
the derivation of the two-dimensional conditional characteristic function of the Heston model,
we need to refer to advanced results from Du¢ e, Pan and Singleton (2000), which indicates that
for a¢ ne di¤usion processes the characteristic function of xT equals

Et0
�
ei!xT+i�vT

�
= eA(!;�;�)+B(!;�;�)xt0+C(!;�;�)vt0 ; (2.2.5)

where � = T � t0 and A, B, C constants to be determined. Obviously, at � = 0 we have

ET
�
ei!xT+i�vT

�
= ei!xT+i�vT = eA(!;�;0)+B(!;�;0)xT+C(!;�;0)vT ; (2.2.6)

leading to the following boundary conditions:

A (!; �; 0) = 0; (2.2.7)

B (!; �; 0) = i! (2.2.8)

and

C (!; �; 0) = i�: (2.2.9)

Since x (t) does not appear in the SDE for v (t), in neither the drift nor the volatility, it can be
shown that B (!; �; �) = i!. Using the Gil-Pelaez inversion formula, we then �nd the following
expression for the transition density:

p (x0 ! xT ; v0 ! vT ) =
1

2�

1R
�1

1R
�1

Re
�
eA(!;�;�)+i!xt0+C(!;�;�)vt0 e�i!xT�i�vT

�
d!d�

=
1

2�

1R
�1

1R
�1

Re
�
eA(!;�;�)�i!zx+C(!;�;�)vt0�i�vT

�
d!d�;

which clearly depends on zx, vt0 and vT . The fact that the characteristic function is conditioned
on time t0 completes the proof.

With Lemma 1, (2.2.3) can now be written as

F (x0; v0) =
1R
�1

1R
�1

g (xT ; vT ) p (zx; vT j v0) dzxdvT ; (2.2.10)

which equals

F (x0; v0) =
1R
�1

1R
�1

g (xT ; vT ) p (zxj vT ; v0) pv (vT j v0) dzxdvT : (2.2.11)

Here pv (vT j v0) is the transition density of the variance. Feller (1951) has shown that the density
of vT conditioned on v0 reads

pv (vT j v0) = ce�b�x
�x
b

� (a�1)
2

Ia�1

�
2
p
bx
�
; (2.2.12)

where c = 2�=
��
1� e��T

�
�2
�
, b = cv0e

��T , x = cvT and a = 2�v=�2. Here Ia (x) is the
modi�ed Bessel function of the �rst kind, see e.g. Abramowitz and Stegun (1972). Premultiplying
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(2.2.11) by e�x0 , and taking the Fourier transform, we �nd

bF (! � i�; v0) =
1R
�1

ei(!�i�)x0
1R
�1

1R
�1

g (xT ; vT ) p (zxj vT ; v0) pv (vT j v0) dzxdvT dx0

=
1R
�1

1R
�1

1R
�1

ei(!�i�)x0g (xT ; vT ) p (zxj vT ; v0) pv (vT j v0) dzxdvT dx0

=
1R
�1

1R
�1

1R
�1

ei(!�i�)xT g (xT ; vT )

e�i(!�i�)zxp (zxj vT ; v0) pv (vT j v0) dzxdvT dxT

=
1R
�1

1R
�1

ei(!�i�)xT g (xT ; vT ) dxT

�
1R
�1

e�i(!�i�)zxp (zxj vT ; v0) dzx � pv (vT j v0) dvT

=
1R
�1

bg (! � i�; vT ) � bp (� (! � i�)) � pv (vT j v0) dvT ; (2.2.13)

where bp (!) is the characteristic function of the logarithm of the stock given v0 and given vT ,
which is known analytically:

bp (!) = ei![r(T�t0)+
�
� (vT�v0��v(T�t0))]�

�
!

�
��

�
� 1
2

�
+
1

2
i!2

�
1� �2

��
; (2.2.14)

with � (a) the characteristic function of
TR
t0

v (s) ds given v0 and given vT . In Broadie and Kaya

(2004) it has been shown that

� (a) =

 (a) e�

1
2 (
(a)��)(T�t0)

�
1� e��(T�t0)

�
�
�
1� e�
(a)(T�t0)

�
� e

v0+vT
�2

"
�(1+e��(T�t0))
1�e��(T�t0)

�

(a)(1+e�
(a)(T�t0))

1�e�
(a)(T�t0)

#

�
I 1
2d�1

�
p
v0vT

4
(a)e�
1
2

(a)(T�t0)

�2(1�e�
(a)(T�t0))

�
I 1
2d�1

�
p
v0vT

4�e�
1
2
�(T�t0)

�2(1�e��(T�t0))

� ; (2.2.15)

where 
 (a) =
p
�2 � 2�2ia, d = 4v�=�2 and I� (x) is the modi�ed Bessel function of the �rst

kind. A derivation of (2.2.14) is presented in Appendix B.

Notice that for a Bermudan option, we need to de�ne a grid in both the log-stock direction
and the variance direction (as both are not known for future exercise dates). In other words,
for every time step and "initial" variance we need to calculate (2.2.13) to determine the price of
a Bermudan. The integral in (2.2.13) can be calculated by any numerical integration method,
e.g. by the trapezoidal rule. Denote the number of grid points in log-stock direction by N and
the number of grid points in variance direction by J , then the computational complexity of the
Fourier transform bg (! � i�; vT ) is O (N logN). The numerical integration method is O (J). So,
the complete computational cost of equation (2.2.13) is O (JN logN). This computation needs
to be done for each exercise date and "initial" variance, resulting in a total computational cost
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for a Bermudan of O
�
MJ2N logN

�
. The number of grid points in variance direction, J , may be

kept small by using Gaussian quadrature and non-linear grids. More on this topic can be found
in section (2.3.4).

2.3 Computational Aspects

This section details on some computational aspects of the implementation of the methodology
described in the previous sections. Firstly, the computation of the continuous Fourier integral
will be treated. Then we discuss the computation of a complex logarithm and we end with a
suggestion on how to compute integral (2.2.13) e¢ ciently.

2.3.1 Computing the Continuous Fourier Transform

This section discusses two numerical techniques to approximate the continuous Fourier transform.
Both are based on uniform grids and use the FFT algorithm to increase the e¢ ciency. Recall
that the Fourier transform of h (x) is de�ned as

bh (!) = 1R
�1

ei!xh (x) dx (2.3.1)

Newton-Cotes

The Newton-Cotes method is a collective name for a number of quadrature methods, e.g. the
trapezoidal rule or Simpson�s rule. In a general form the Newton-Cotes method for the continuous
Fourier integral can be written as

bh (!) = NX
n=1

ei!xnh (xn) bn�x+O
�
hj
�
; (2.3.2)

were xn = L+(n� 1)�x for n = 1; ::; N , �x = U�L
N�1 and bn is used for the boundary correction.

Note that with these settings the integral is truncated at L and U . Both bn and j depend on

the type of Newton-Cotes method, e.g. for the trapezoidal rule bn =
�

1
2 , for n = 1; N
1 , otherwise

and

j = 2. In order to apply the DFT, ! needs to be discretized conform the following equality:

!m = !1 + (m� 1)�! for m = 1; :::; N; (2.3.3)

where �! = 2�
N�x . This gives

bh (!m) =
NX
n=1

ei!mxnh (xn) bn�x+O
�
hj
�

=
NX
n=1

ei(!1+(m�1)�!)(L+(n�1)�x)h (xn) bn�x+O
�
hj
�

=

NX
n=1

ei(m�1)(n�1)
2�
N +L(m�1)�!+!1xnh (xn) bn�x+O

�
hj
�

= eL(m�1)�!�x
NX
n=1

ei(m�1)(n�1)
2�
N e!1xnh (xn) bn +O

�
hj
�
: (2.3.4)
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Usually the grid is chosen to be symmetric and so !1 = �N�1
2 �!. Notice that the �rst part of

the sum looks like the inverse DFT as de�ned in (0.1.2), which can be computed by the FFT.
So, bh (!m) = eL(m�1)�!�x �N � i¤t (e!1xh (x)b)m +O

�
hj
�
: (2.3.5)

Here we de�ne

e!1x =

264 e!1x1

...
e!1xN

375 , h (x) =
264 h (x1)

...
h (xN )

375 , b =
264 b1

...
bN

375 ;
i¤t(�)m is the m-th element of the inverse Fourier transform and all vector multiplications are
pointwise.

Kernel Functions

Not uncommonly, the calculation of accurate numerical values for the Fourier integral is quite
di¢ cult. The reason for this is that these integrands may be highly oscillatory as pointed out in
the following example.

Example 1 Consider the integrand of (2.3.1), where h (x) is the standard normal probability
density. The real part of this integrand has the form cos (!x)h (x) and the imaginary part
sin (!x)h (x). In general h (x) is not oscillatory, which results in an oscillatory nature for both
the real and imaginary part. This can be seen in the following plot:
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Figure 2.3.1: The oscillatory nature of the Fourier integrand

Approximating such an integral by any kind of Newton-Cotes formula may be inaccurate,
because Newton-Cotes formulas only evaluate the integrand at �xed grid points. Increasing the
number of grid points results in a �ner mesh in the real domain, however in Fourier space the
step size remains equal and the grid size increases. In other words, the integrand needs to be
evaluated for higher values of !, which gives rise to an even more oscillatory integrand. Here
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we will present an accurate method, which overcomes this problem (Press, Teukolsky, Vetterling
and Flannery, 1992).

Let us �rst truncate the integral at L and U . Divide the interval [L;U ] into (N � 1) subin-
tervals, where N is the number of grid points, and de�ne

�x =
U � L
N � 1 , xn = L+ (n� 1)�x, hn = h (xn) and n = 1; :::; N:

Given the sample points hn we can approximate the function h (x) everywhere in the interval
[L;U ] by interpolation from nearby points n, e.g. by linear interpolation. The formulas for
such interpolation schemes are (piecewise) polynomials in the independent variable x, but with
coe¢ cients that are linear in the function values hn. Interpolation can be viewed as a technique
to approximate a function by a sum of kernel functions times sample values. Let us write

h (x) �
NX
n=1

hn 

�
x� xn
�x

�
+

X
n=endpoints

hn'n

�
x� xn
�x

�
; (2.3.6)

where for linear interpolation we have

 (s) =

8<: 1 + s , for � 1 � s � 0
1� s , for 0 < s � 1
0 , otherwise

and

'1 (s) =

�
�1� s , for � 1 � s < 0
0 , otherwise

, 'N (s) =
�
s� 1 , for 0 < s � 1
0 , otherwise

:

Notice that in the �rst sum of (2.3.6) we have included all the points, so the 'n�s are actually
di¤erences between true endpoint kernels and the interior kernel  . Application of the Fourier
transformation to (2.3.6) gives

UR
L

ei!xh (x) dx �
UR
L

ei!x
NX
n=1

hn 

�
x� xn
�x

�
dx+

UR
L

ei!x
X

n=endpoints

hn'n

�
x� xn
�x

�
dx

�
NX
n=1

hn
UR
L

ei!x 

�
x� xn
�x

�
dx+

X
n=endpoints

hn
UR
L

ei!x'n

�
x� xn
�x

�
dx

� �xei!L

24W (!�x)

NX
n=1

ei(n�1)!�xhn +
X

n=endpoints

hn�n (!�x)

35 : (2.3.7)
Here W (!�x) and �n (!�x) are de�ned by

W (!�x) =
1R
�1

ei!�xs (s) ds; (2.3.8)

�n (!�x) =
1R
�1

ei!�xs'j (s� n+ 1) ds: (2.3.9)
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The key point is that (2.3.8) and (2.3.9) can be evaluated analytically for any given interpolation
scheme. For the linear interpolation scheme we have

W (!�x) =
2 (1� cos (!�x))

(!�x)
2 ;

�1 (!�x) =
i (!�x� sin (!�x)) + cos (!�x)� 1

(!�x)
2 ;

�N (!�x) = e2i!x
�
�1 (!�x) ;

where �0 is the complex conjugate of �0. It is any easy exercise to �nd these results. For higher
order interpolation schemes we refer to Press et al. (1992).

Now, the sum
PN

n=1 e
i(n�1)!�xhn remains to be calculated. For the discrete Fourier transform

to exist, we satisfy

�! =
2�

N�x
;

and we de�ne a grid as follows:

!m = !1 + (m� 1)�!, for m = 1; :::; N

This gives
NX
n=1

ei(n�1)!�xhn =

NX
n=1

ei(n�1)(m�1)
2�
N ei(n�1)!1hn: (2.3.10)

Notice the similarity to the de�nition of the inverse discrete Fourier transform (0.1.2). Equation
(2.3.10) can therefore be evaluated e¢ ciently by the FFT algorithm. For linear interpolation we
can now write (2.3.7) in its �nal form as

bh (!m) dx � �xei!mL nW �N � ifft
�
h1 e

i!1h2 ::: e
i(N�1)!1hN

�
m
+ h1�1 + hN�N

o
;

whereW = [W (!1�x) ::: W (!N�x)]
T and �n = [�n (!1�x) ::: �n (!N�x)]

T for n = 1; N .

2.3.2 The Logarithm of a Complex Variable

The calculation of the characteristic function for Heston�s model includes the calculation of the
logarithm of a complex variable. Let us �rst consider the characteristic function conditioned on
v0 (for European options):

�T (!) = exp

�
i!rT +

v0
�2

�
1� e�DT
1�Ge�DT

�
(�� ��i! �D)

+
�v

�2

�
T (�� ��i! �D)� 2 log

�
1�Ge�DT
1�G

���
; (2.3.11)

where

D =

q
(�� ��i!)2 + (!2 + i!) �2;

G =
�� ��i! �D
�� ��i! +D:



CHAPTER 2. FOURIER PRICING TECHNIQUES 17

Notice that (2.3.11) contains the logarithm of a complex-valued variable:

log

�
1�Ge�DT
1�G

�
:

The logarithm of a complex number is a multivalued function. Consider a complex variable
z = a + ib = rei(t+2�n) with t 2 (��; �] the principal argument and n 2 Z, then the logarithm
of a complex variable equals

log (z) = log jrj+ i (t+ 2�n) : (2.3.12)

A problem may occur during the implementation as most programming languages assume that
(t+ 2�n) 2 (��; �]. This will give rise to discontinuities in the complex logarithm, shown in the
following example.

Example 2 Consider a complex variable z = a + ib = rei'. For ' = 3
2�, Matlab considers

n = �1 in (2.3.12) and calculates

log (z) = log jrj � 1
2
�i;

whereas it actually should equal to

log (z) = log jrj+ 3
2
�i:

If we look at the graph of the imaginary part of log (z), for ' 2 [0; 10�], we notice the following
di¤erence between the red line, the correct solution, and the blue (zigzagged) line, i.e. the solution
of Matlab.
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Figure 2.3.2: The logarithm of a complex variable

Lord and Kahl (2006) have shown that in formulation (2.3.11) the logarithm remains in its
principal branch. In other words, we do not need to bother about it. In the Bermudan case,
however, we do need to bother about it. Consider the characteristic function conditioned on v0
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and vT (B.0.6). This function requires the calculation of modi�ed Bessel functions of the �rst
kind. The modi�ed Bessel function of the �rst kind is de�ned by

I� (z) =

�
1

2
z

�� 1X
k=0

�
1
4z
2
�k

k!� (� + k + 1)
; (2.3.13)

where � (a) is the gamma function. If z is complex-valued it is necessary to calculate the logarithm
of a complex variable, because�

1

2
z

��
=

�
1

2

��
z� =

�
1

2

��
e� log z:

Recall that in the case of (B.0.6), we have

z =
p
v0vT

4
 (a) e�
1
2
(a)(T�t0)

�2
�
1� e�
(a)(T�t0)

� :
From Lord and Kahl (2006) we know that if we evaluate f (a) := 
(a)e�

1
2

(a)(T�t0)

(1�e�
(a)(T�t0))
as

ln (f (a)) = g (a)� Im (g (i � Im (a))) + Im (ln (f (i � Im (a))))

where
g (a) = ln (
 (a))� 1

2

 (a) (T � t0)� ln

�
1� e�
(a)(T�t0)

�
;

then the logarithm is kept continuous. Here the complex logarithm is restricted to its principal
branch. For details we refer to Lord and Kahl (2006).

2.3.3 The Approximation of Almost Zero

In order to apply the fast Fourier Transform algorithm for the computation of a continuous
Fourier transform it is required that the step size in Fourier domain is constrained by

�! =
2�

N�x
:

Here �x = U�L
N�1 , which gives

�! =
2� (N � 1)
N (U � L) :

Obviously, the step size in Fourier space is increasing with the number of grid points. Therefore,
when the number of grid points is increasing the size of the grid in Fourier space is increasing
too. As a result, values of ! can get very large. Now, consider the characteristic function of
TR
t0

v (s) ds given v0 and given vT :

� (a) =

 (a) e�

1
2 (
(a)��)(T�t0)

�
1� e��(T�t0)

�
�
�
1� e�
(a)(T�t0)

�
� e

v0+vT
�2

"
�(1+e��(T�t0))
1�e��(T�t0)

�

(a)(1+e�
(a)(T�t0))

1�e��(a)(T�t0)

#

�
I 1
2d�1

�
p
v0vT

4
(a)e�
1
2

(a)(T�t0)

�2(1�e�
(a)(T�t0))

�
I 1
2d�1

�
p
v0vT

4�e�
1
2
�(T�t0)

�2(1�e��(T�t0))

� ;
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where 
 (a) =
p
�2 � 2�2ia, a = !

�
��
� �

1
2

�
+ 1

2 i!
2
�
1� �2

�
and d = 4v�=�2. Notice that a

and 
 (a) become large for large !, resulting in a value z =
p
v0vT

4
(a)e�
1
2

(a)(T�t0)

�2(1�e�
(a)(T�t0))
which is

approximately zero. In most of the programming languages z will be smaller than the smallest
positive value and it will be set equal to zero. On the other hand, � = 1

2d� 1 will most likely be
negative and during the computation of the modi�ed Bessel function the quantity z� = r�e�it

needs to be calculated. As � is negative and r is set to zero, r� is unde�ned. Whenever this
occurs r should be approximated by the smallest positive value in a programming language, e.g.
in Matlab this value is known to be "realmin".

2.3.4 Computing the Integral

As stated, the pricing of Bermudan options is of O
�
MJ2N logN

�
, where M is the number of

exercise dates, J the number of grid points in variance direction and N the number of grid points
in the log-spot direction. Obviously, J contributes signi�cantly to the total computational costs,
therefore we wish to keep this parameter as small as possible. In order to remain a high accuracy
the integral must be computed e¢ ciently.

Firstly, it is advisable to use Gaussian quadrature rules to evaluate the integral numerically.
With a limited number of grid points it is more accurate than for example the trapezoidal rule
or Simpson�s rule. The Gaussian quadrature is described in Burden and Faires (2001). Secondly,
more accuracy is gained by stretching the grid. Consider that the following integral needs to be
computed numerically:

I =

bZ
a

f (x) dx: (2.3.14)

A grid stretching function g (x) gives the stretched grid: y = g (x). Applying this stretching
function gives

I =

g(b)Z
g(a)

f
�
g�1 (y)

� 1

g0 (g�1 (y))
dy: (2.3.15)

Numerical testing showed that g (x) = x
1
5 provides good results for equation (2.2.13), in which

case I equals

I = 5

b
1
5Z

0

f
�
y5
�
y4dy: (2.3.16)
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2.4 American Options with Richardson Extrapolation

Numerically, the value of an American option can be approximated either by a Bermudan option
with many early exercise dates or by Richardson extrapolation on a series of Bermudan options
with increasing early exercise dates. In an important contribution, Geske and Johnson (1984)
showed that it was possible to value an American style option by using a series of Bermudan
options. Chang, Chung and Stapleton (2002) improved their ideas by introducing the repeated
Richardson extrapolation algorithm, which will be explained in this section.

Richardson extrapolation is a technique to generate accurate results within a limited amount
of time. It is especially applicable to situations where the error depends on a parameter, e.g.
the time step �t. To illustrate the procedure assume we have an approximation q (�t) to some
quantity Q. Furthermore, assume that the error of the approximation is O (�t) and smooth,
then Q is expended as follows:

Q = q (�t) +K1�t+K2�t
2 +K3�t

3 + � � � (2.4.1)

where the Ki�s are known constants. Now, if we halve the time step to �t
2 we will obtain a twice

as accurate result:

Q = q

�
�t

2

�
+K1

�t

2
+K2

�t2

4
+K3

�t3

8
+ � � � : (2.4.2)

Richardson extrapolation combines (2.4.1) and (2.4.2) to obtain a higher order of accuracy. By
multiplying (2.4.2) by 2 and subtracting (2.4.1) one obtains

Q = q

�
�t

2

�
+

�
q

�
�t

2

�
� q (�t)

�
+K2

�
�t2

2
��t2

�
+K3

�
�t3

4
��t3

�
+ � � � : (2.4.3)

In this way, the new approximation, q
�
�t
2

�
+
�
q
�
�t
2

�
� q (�t)

�
, is O

�
�t2

�
accurate. This idea

is repeated in the repeated Richardson extrapolation algorithm. Let us denote

q1 (�t) = q (�t) (2.4.4)

and

q2 (�t) = q1

�
�t

2

�
+

�
q1

�
�t

2

�
� q1 (�t)

�
: (2.4.5)

Then we have

Q = q2 (�t)�
K2

2
�t2 � 3K3

4
�t3 + � � � : (2.4.6)

Halving the step size gives

Q = q2

�
�t

2

�
� K2

8
�t2 � 3K3

32
�t3 + � � � : (2.4.7)

Subtracting (2.4.6) from 4 times (2.4.7) the O
�
�t2

�
term is eliminated:

Q = q2

�
�t

2

�
+
q2
�
�t
2

�
� q2 (�t)
3

+
3K3

8
�t3 + � � � : (2.4.8)

Now, if we denote q3 (�t) = q2
�
�t
2

�
+

q2(�t2 )�q2(�t)
3 we could apply the same idea and so on. In

summary, the repeated Richardson extrapolation reads

qj (�t) = qj�1

�
�t

2

�
+
qj�1

�
�t
2

�
� qj�1 (�t)

2j�1 � 1 (2.4.9)



CHAPTER 2. FOURIER PRICING TECHNIQUES 21

and the error is
Q� qj (�t) = O

�
�tj

�
: (2.4.10)

The valuation of American options by Richardson extrapolation on a series of Bermudan
options with increasing early exercise dates is done with the following algorithm:

Algorithm 1 Denote P (M) as the price of a Bermudan option with M exercise dates, then for

j = 1; 2; 3; :::; k, set Aj;0 = P
�fM � 2j�1

�
, and compute for m = 1; 2; :::; k � 1:

Aj;m = Aj+1;m�1 +
Aj+1;m�1 �Aj;m�1

2m � 1 (2.4.11)

Example 2 In this example the algorithm is shown for k = 3 and fM = 1 in Table 2.4.1.

A1;0 = P (1) A1;1 = 2A2;0 �A1;0 A1;2 =
4A2;1�A1;1

3
A2;0 = P (2) A2;1 = 2A3;0 �A2;0
A3;0 = P (4)

Table 2.4.1: Approximation of an American option price with 3 Bermudan options



Chapter 3

Numerical Solutions of P(I)DEs

3.1 Numerical Solution of Black-Scholes�PDE

Next to the quadrate methods described in the previous section, standard numerical techniques
can also be used to approximate the option price V . The techniques used in this thesis for
equation (1.1.3) are known asO

�
h2
�
central di¤erences for the derivatives in the spatial directions

and the Crank-Nicolson method for the time derivative. Details on these methods can be found
in any textbook on �nite di¤erences, e.g. Burden and Faires (2001). De�ne by h = U�L

N�1 the
step size in spatial direction, with N the number of points, and k = T�t0

M ; with M the number
of time steps, then

@2V

@x2
=

Vi�1 � 2Vi + Vi+1
h2

+O
�
h2
�
;

@V

@x
=

Vi+1 � Vi�1
2h

+O
�
h2
�
;

where Vi = V (xi; �), with xi = L+ (i� 1)h for i = 1; :::; N . Note that (1.1.3) can be simpli�ed
as @V

@� = g (x; �), where g (x; �) is the right-hand side of the equation. The Crank-Nicolson
method approximates (1.1.3) as

V m+1i � V mi
k

=
1

2
(g (x; �m+1) + g (x; �m)) +O

�
h2
�
;

where V mi = V (xi; �m), with �m = (m� 1) k for m = 1; :::;M . This results in the following
system of equations:

AVm+1 = bm; (3.1.1)

with

A =

266666664

1 0 0 � � � 0

� � 

. . .

...

0
. . .

. . .
. . . 0

...
. . . � � 


0 � � � 0 0 1

377777775
, Vm =

266666664

V m1
...
...
...
V mN

377777775
22
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and

bm=

266666664

l

V m2 + 1
2k
�
�2

Vm
1 �2Vm

2 +Vm
3

2h2 +
�
r � 1

2�
2
� Vm

3 �Vm
1

2h � rV m2
�

...

V mN�1 +
1
2k
�
�2

Vm
N�2�2V

m
N�1+V

m
N

2h2 +
�
r � 1

2�
2
� Vm

N �Vm
N�2

2h � rV mN�1
�

u

377777775
:

Here � = (r� 1
2�

2)kh��2k
4h2 , � = 1 + �2k+rkh2

2h2 and 
 =
�(r� 1

2�
2)kh��2k
4h2 . l and u denote the lower

and upper boundary condition, respectively. For example, l = Ee�r�m and u = 0 for a European
put option. The initial condition V1 represents the payo¤.

Solving system (3.1.1) M times gives the value of a European option. To price an American
option one can use the projected SOR iterative algorithm as described in Wilmott (1998). This
algorithm evaluates for each element of Vm+1 whether the solution is below the payo¤, e.g. for
an American put option V m+1i > max (K � exi ; 0). If this is not the case V m+1i is projected, i.e.
is set equal to the payo¤.

3.2 Numerical Solution of Heston�s PDE

The PDE for the Heston�s model is somewhat more complicated than the PDE in the Black-
Scholes world. This is because it contains the variance, v. The Heston PDE is discretized by the
same discretization rules as the Black-Scholes PDE, i.e. O

�
h2
�
central di¤erences in spatial and

volatility directions and Crank-Nicolson in time direction. So,

@2V

@x2
=
Vi�1;j � 2Vi;j + Vi+1;j

�x2
+O

�
�x2

�
;

@2V

@v2
=
Vi;j�1 � 2Vi;j + Vi;j+1

�v2
+O

�
�v2

�
;

@V

@x
=
Vi+1;j � Vi�1;j

2�x
+O

�
�x2

�
;

@V

@v
=
Vi;j+1 � Vi;j�1

2�v
+O

�
�v2

�
;

@2V

@x@v
=
Vi+1;j+1 � Vi+1;j�1 � Vi�1;j+1 + Vi�1;j�1

4�x�v
+O

�
�x2

�
+O

�
�v2

�
;

where �x = U�L
N�1 , with N the number of points in x-direction, �v = v�

L�1 , with L the number
of points in v-direction, and Vi;j = V (xi; vj ; �), with xi = L + (i� 1)�x for i = 1; :::; N and
vj = (j � 1)�v for j = 1; :::; L. Using Crank-Nicolson, as described in section 3.1, this results
in the following system of equations:

AVm+1 = bm; (3.2.1)

where A a block tridiagonal matrix of the form

A =

266666664

I 0 0 � � � 0

L2 D2 U2
. . .

...

0
. . .

. . .
. . . 0

...
. . . LL�1 DL�1 UL�1

0 � � � 0 0 I

377777775
;
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where I is the identity matrix and the other blocks read

Dj =

266666664

1 0 0 � � � 0

�j �j 
j
. . .

...

0
. . .

. . .
. . . 0

...
. . . �j �j 
j

0 � � � 0 0 1

377777775
, for j = 2; :::; L� 1;

with �j =
r�x�(1+ 1

2�x)vj
4(�x)2

�t, �j = 1 +
�

vj
2(�x)2

+
vj�

2

2(�v)2
+ 1

2r
�
�t, 
j =

( 12�x�1)vj�r�x
4(�x)2

�t, and

Uj =

266666664

0 0 0 � � � 0

�j "j ��j
. . .

...

0
. . .

. . .
. . . 0

...
. . . �j "j ��j

0 � � � 0 0 0

377777775
, Lj =

266666664

0 0 0 � � � 0

��j �j �j
. . .

...

0
. . .

. . .
. . . 0

...
. . . ��j �j �j

0 � � � 0 0 0

377777775
, for j = 2; :::; L� 1;

where �j =
��vj
8�x�v�t, "j =

(��v��2)vj��v�v
4(�v)2

�t and �j =
�v�v�(�2+��v)vj

4(�v)2
�t. Each block is

of size N � N . Notice that each �rst and last row of a block-row contains only a one on the
diagonal. This is because of the non-eliminated boundary conditions.

The vector Vm is de�ned by Vm =
�
V m1;1 � � � V mN;1 � � � � � � V m1;M � � � V mN;M

�T
and bm equals bm=

�
B1 B2 � � � BL�1 BL

�T
, where B1, BL form the lower and up-

per boundary condition of the volatility, respectively. Further, for j = 2; :::; L � 1 we have
Bj =

�
l �m2;j �mN�1;j u

�T
, with

�mi:j = V mi;j +
�t
2

�
1
2vj

Vm
i�1;j�2V

m
i;j+V

m
i+1;j

(�x)2
+ ��vj

Vm
i+1;j+1�V

m
i+1;j�1�V

m
i�1;j+1+V

m
i�1;j�1

4�x�v

+ 1
2vj�

2 V
m
i;j�1�2V

m
i;j+V

m
i;j+1

(�v)2
+
�
r � 1

2vj
� Vm

i+1;j�V
m
i�1;j

2�x � � (vj � v)
Vm
i;j+1�V

m
i;j�1

2�v � rV mi;j
�
:

The elements l and u are the boundary conditions for x = L and x = U , respectively. For exam-
ple, for a European call option we have: l = 0, u = ex

��K, B1 =
�
(ex1 �K)+ � � � (exN �K)+

�T
and BM =

�
ex1 � � � exN

�T
.

To visualize the present material we consider a simple example.
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Example 1 Assume M = 4, N = 4 and V is the price of a European call option. The matrix
A, the unknown vector Vm+1 and the right hand side bm will have the form

A =

2666666666666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
��2 �2 �2 0 �2 �2 
2 0 �j "2 ��2 0 0 0 0 0
0 ��2 �2 �2 0 �2 �2 
2 0 �2 "2 ��2 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 ��3 �3 �3 0 �3 �3 
3 0 �3 "3 ��3 0
0 0 0 0 0 ��3 �3 �3 0 �3 �3 
3 0 �3 "3 ��3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3777777777777777777777777775

;

Vm+1 =

266666666666666666666666666664

V m+11;1

V m+12;1

V m+13;1

V m+14;1

V m+11;2

V m+12;2

V m+13;2

V m+14;2

V m+11;3

V m+12;3

V m+13;3

V m+14;3

V m+11;4

V m+12;4

V m+13;4

V m+14;4

377777777777777777777777777775

and bm =

26666666666666666666666666664

�
e�x

� �K
�+

(ex2 �K)+

(ex3 �K)+�
ex

� �K
�+

0
�2;2
�3;2

ex
� �K
0
�2;3
�3;3

ex
� �K
e�x

�

ex2

ex3

ex
�

37777777777777777777777777775

:

3.3 Numerical Solution of the Variance Gamma PIDE

The method described in this section originates from Almendral and Oosterlee (2006). The
challenge of solving this PIDE numerically lies in the integral, which is unde�ned at x = 0.
Recall that the PIDE reads

@V

@�
� LV = 0;

where

L' = r'x � r'+
1R
�1

[' (x+ y)� ' (x)� (ey � 1)'x] k (y) dy:

The idea of the method is to consider one part of the integral term implicitly and the remaining
parts explicitly.
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Consider a computational domain of the form [0; T ]� [L;U ]. Let the time interval be divided
into M equal parts: 0 = t0 < t1 < � � � < tM = T , with tm = mk, m = 0; 1; :::;M and k = T

M .
The spatial interval [L;U ] contains the point lnK, and L = x1 < x2 < � � � < xN = U , with
xn = L+ (n� 1)h, n = 1; :::; N , and h is such that h = U�L

N�1 .
We split the operator L into a sum of two operators A and B:

A' := (r + ! (h))'x � r'+
R

jyj�h
[' (x+ y)� ' (x)� (ey � 1)'x] k (y) dy

with
! (h) =

R
jyj�h

(1� ey) k (y) dy

and
B' :=

R
jyj�h

[' (x+ y)� ' (x)] k (y) dy:

In order to have a method that is second order accurate in time, the well-known BDF2 scheme
is proposed. The second order timestepping method reads

3
2V

m+1 � 2V m + 1
2V

m�1

k
�AV m+1 � BV m = 0: (3.3.1)

3.3.1 Spatial Discretization of A
The idea is here to approximate all the integrals to O

�
h2
�
, in the presence of the singular density:

k (y) = O
�
1
y

�
, y ! 0: (3.3.2)

Let us �rst look at the positive part of the integral:

hR
0

[' (x+ y)� ' (x)� (ey � 1)'x] k (y) dy

=
hR
0

[' (x+ y)� ' (x)� y'x (x)� (ey � 1� y)'x] k (y) dy

=
hR
0

(' (x+ y)� ' (x)� y'x (x)) k (y) dy � 'x
hR
0

(ey � 1� y) k (y) dy: (3.3.3)

Recall from Taylor that
ey � 1� y = 1

2y
2 +O

�
y3
�

and
' (x+ y)� ' (x)� y'x (x) = 1

2y
2'xx (x) +O

�
y3
�
:

Therefore, the trapezoidal rule and equation (3.3.2) applied to (3.3.3) gives

hR
0

[' (x+ y)� ' (x)� (ey � 1)'x] k (y) dy

=
'xx
2

hR
0

�
y2 +O

�
y3
��
k (y) dy � 'x

2

hR
0

�
y2 +O

�
y3
��
k (y) dy

=
'xx
2

hR
0

y +O
�
y2
�
dy � 'x

2

hR
0

y +O
�
y2
�
dy

=
'xx
4
h2 � 'x

4
h2 +O

�
h3
�
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Similar to the positive part of the integral, the negative part can be written as

0R
�h
[' (x+ y)� ' (x)� (ey � 1)'x] k (y) dy

= �'xx
4
h2 +

'x
4
h2 +O

�
h3
�

So, the sum of the positive and negative parts is of O
�
h2
�
. Therefore, dropping the termR

jyj�h
[' (x+ y)� ' (x)� (ey � 1)'x] k (y) dy

does not a¤ect the accuracy of the scheme. The remaining integral of A, ! (h), is discretized by
the trapezoidal rule and the partial derivatives by second order accurate central di¤erences.

3.3.2 Spatial Discretization of B
Away from the origin, the integral term in B may be split into a sum of two terms:R

jyj�h
[' (x+ y)� ' (x)] k (y) dy = J (x)� ' (x)� (h) ; (3.3.4)

with

J (x) =
R

jyj�h
' (x+ y) k (y) dy; (3.3.5)

� (h) =
R

jyj�h
k (y) dy: (3.3.6)

Both integrals are discretized by the trapezoidal rule to obtain second order accuracy. Firstly
consider integral � (h):

� (h) � h
NX
l=1

k (yl) �l; (3.3.7)

where yl = xl, �l =
1
2 at the boundaries and �l = 1 for the remaining l, and k (0) is rede�ned

as 0. Notice that the integrals � (h) and ! (h) can be approximated by any integration rule, e.g.
the Gaussian quadrature routine, because the integrand is known analytically.
The other integral, J (x), is more di¢ cult to approximate. This is because the integrand is

only known at �xed grid-points as speci�ed in section 3.3. For a particular grid-point xn we have

J (xn) =
R

jyj�h
' (xn + y) k (y) dy:

Applying the trapezoidal rule results in

J (xn) � h
NX
l=1

' (xn + yl) k (yl) �l: (3.3.8)

In case xn + yl � L or xn + yl � U something special needs to be done. A European call
option, for example, approaches ex�Ke�r(T�t) for x large, and 0 for x large negative, ' is then
approximated by ' (x) = ex � Ke�r(T�t) if x � U and by ' (x) = 0 if x � L. Notice that
J =

�
J (x1) � � � J (xN )

�T
can be written as a matrix product:

J = h�k; (3.3.9)
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where

� =

264 ' (x1 + y1) � � � ' (x1 + yN )
...

...
' (xN + y1) � � � ' (xN + yN )

375 and k =

264 k (y1) �1
...

k (yN ) �N

375 :
In general the calculation of such a product costs O

�
N2
�
operations. For this particular exam-

ple, the computational cost can be reduced to O (N logN) by using the FFT algorithm. This
algorithm is applicable if the matrix is a Toeplitz matrix. A Toeplitz matrix is a matrix which
is constant along its diagonals. The next section will present the application of FFT to Toeplitz
matrices. We transform the matrix � into a Toeplitz matrix, which can be done by a simple
transformation:

J = he�ek; (3.3.10)

where

e� =
264 ' (x1 + yN ) � � � ' (x1 + y1)

...
...

' (xN + yN ) � � � ' (xN + y1)

375 and ek =
264 k (yN ) �N

...
k (y1) �1

375 :
Lemma 1 The matrix e� in (3.3.10) is a Toeplitz matrix.

Proof. A Toeplitz matrix is constant along its diagonals. In other words, for an arbitrary
element e�i;j of e� with i; j = 1; :::; N � 1 it must hold that e�i;j = e�i+1;j+1:

e�i;j = '
�
xi + yN�(j�1)

�
= ' (L+ (i� 1)h+ L+ (N � (j � 1)� 1)h)
= ' (2L+ (i� 1)h+ (N � j)h)
= ' (2L+ (N + i� j � 1)h)
= ' (2L+ (N + (i+ 1)� (j + 1)� 1)h)
= ' (L+ ((i+ 1)� 1)h+ L+ (N � j � 1)h)
= ' (xi+1 + yN�j) = e�i+1;j+1:

3.3.3 Application of FFT to Toeplitz Matrices

This section describes the way the FFT algorithm can be applied to Toeplitz matrices, see e.g.
Almendral and Oosterlee (2005). The FFT algorithm cannot be applied to Toeplitz matrices
directly. Firstly, the Toeplitz matrix needs to be embedded into a circulant matrix, and the
product of a circulant matrix and a vector may be e¢ ciently computed by applying the FFT
algorithm. Each row in a circulant matrix is by de�nition a circular shift of the previous row.
For example, the following matrix is a circulant 3� 3 matrix:24 a1 a2 a3

a3 a1 a2
a2 a3 a1

35 : (3.3.11)
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Now, consider the following Toeplitz matrix:

T =

266664
a0 a1 � � � an

a2n
. . .

. . .
...

...
. . .

. . . a1
an+1 � � � a2n a0

377775 : (3.3.12)

This matrix can be embedded in a circulant matrix of size 2n+ 1:

C =

266666666666664

a0 a1 � � � an an+1 � � � a2n

a2n a0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . an+1

an+1
. . .

. . .
. . . an

an
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . a0 a1

a1 � � � an an+1 � � � a2n a0

377777777777775
: (3.3.13)

If we de�ne the vectors d =
�
d0 � � � dn

�T
and f =

�
d0 � � � dn 0 � � � 0

�T
, then the

product Td is the vector consisting of the �rst (n+ 1) elements of the product Cf . Thus, as
soon Cf is calculated the last n elements need to be deleted. The i-th element of the resulting
vector can be written as

(Cf)i =
2nX
j=0

aj�idj ; (3.3.14)

which is equal to the de�nition of a convolution, Cf = a � f . An important application of
the Fourier transform is in convolutions. Convolutions can be evaluated by component-wise
multiplications in Fourier space. So, cCf = ba � bf ;
where bx is the Fourier transform of an arbitrary vector x and the multiplication is done component-
wise. Thus, the multiplication of the Toeplitz matrix T and the vector d is given by the �rst
(n+ 1) elements of the inverse Fourier transform of cCf .



Chapter 4

Monte Carlo Simulation

Monte Carlo methods are applicable to a wide range of problems. In this chapter we focus on
derivative pricing. Boyle (1977) was the �rst to use these methods for the valuation of options.
The method can roughly be described as follows. Firstly, many paths of the underlying are
simulated. Then the payo¤ can be determined for each simulation and the price of the option
is the discounted average of the simulated payo¤s. The Monte Carlo method is applicable to
many payo¤s. It can especially handle path dependent options very well, which is the main
advantage of the method, together with the ability to solve high-dimensional problems. The
method is less suited for callable derivatives. Though, with the celebrated Longsta¤-Schwartz
algorithm, see (Longsta¤ and Schwartz, 2001), callable features can be handled if necessary. This
section discusses the Monte Carlo technique and presents methods to simulate paths. Also a brief
description of a variance reduction technique called antithetic variates is found in this chapter.

Consider a payo¤function g, which is dependent on the path of the underlying asset (xt)t0�t�T ,
then today�s value of the derivative with payo¤ g at maturity reads

V = e�r(T�t0)Et0
h
g
�
(xt)t0�t�T

�i
: (4.0.1)

The Monte Carlo method to solve this can be summarized as follows:

1. Establish a procedure to simulate a path given the dynamics of the underlying model.

2. Simulate a path
�
yit
�
t0�t�T

.

3. Compute the payo¤ g
��
yit
�
t0�t�T

�
and store the result.

4. Repeat step 2 and 3 for i = 1; :::; N and compute the average:

�
��
y1t
�
t0�t�T

; � � � ;
�
yNt
�
t0�t�T

�
=
1

N

NX
i=1

g
��
yit
�
t0�t�T

�
: (4.0.2)

Here � is known as the Monte Carlo estimate.

5. Calculate the option value as
V = e�r(T�t0)�: (4.0.3)

The way these paths can be simulated is presented in the following sections.

30
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4.1 Antithetic Variates

Antithetic Variates (AV) represents a very simple, and widely used, variance reduction technique
for a Monte Carlo simulation. The variance reduction is obtained by drawing antithetic pairs
fz;�zg from the Gaussian probability distribution. Notice that if Z is normally distributed, so is
�Z. As a result, N2 antithetic pairs are more regularly distributed than N independent Gaussian
variables, e.g. the mean is always zero, which almost surely does not hold for the latter. This
may lead to a reduction in variance, see e.g. Buitelaar (2006). We replace our estimate � in
equation (4.0.2) and (4.0.3) by

�AV

��
y1t
�
t0�t�T

; � � � ;
�
y
N
2
t

�
t0�t�T

;
�
y�1t

�
t0�t�T

; � � � ;
�
y
�N

2
t

�
t0�t�T

�
=
�+ + ��

2
; (4.1.1)

where �+ = �

��
y1t
�
t0�t�T

; � � � ;
�
y
N
2
t

�
t0�t�T

�
and �� = �

��
y�1t

�
t0�t�T

; � � � ;
�
y
�N

2
t

�
t0�t�T

�
.

Here
�
yit
�
t0�t�T

, for i = 1; :::; N2 , are the paths based on Z and
�
y�it
�
t0�t�T

, for i = 1; :::; N2 , are
the paths based on �Z.

4.2 The Brownian Motion with Drift

The stochastic di¤erential equation of a Brownian motion with drift is de�ned as

dx (t) = � (x (t) ; t) dt+ � (x (t) ; t) dW (t) ; (4.2.1)

x (t0) = x0:

Notice that the Black-Scholes dynamics and the local volatility dynamics are special cases of
(4.2.1). The solution of (4.2.1) reads

x (T ) = x0 +
TR
t0

� (x (t) ; t) dt+
TR
t0

� (x (t) ; t) dW (t) (4.2.2)

In some models analytic solutions are available. In its general form, (4.2.2), an explicit solution
cannot be derived. This is because the functions � (x (t) ; t) and � (x (t) ; t) are not known explic-
itly. So, integrals need to be solved numerically. Numerical integration methods for stochastic
integrals are discussed in the following sections.

Consider an equidistant grid in time direction with tm = t0 + m�t for m = 0; :::;M , and
�t = tm � tm�1 = T�t0

M . Then for arbitrary m 2 f1; :::;Mg one has

xm = xm�1 +
tmR
tm�1

� (x (t) ; t) dt+
tmR
tm�1

� (x (t) ; t) dW (t)

where xm = x (tm). This follows from Itô�s lemma and the Markov property of (4.2.1). So, we
can de�ne the following algorithm.

Algorithm 1

1. x0 is known

2. xm = xm�1 +
tmR
tm�1

� (x (t) ; t) dt+
tmR
tm�1

� (x (t) ; t) dW (t), for m = 1; :::;M
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Numerical integration schemes are used to approximate the integrals in algorithm 1. The
order of convergence of such a scheme is de�ned as follows:

De�nition 2 (Strong Convergence) Denote y�t (T ) as the approximation for x (T ), where �t
is the step size. Then y�t (T ) converges strongly to x (T ) with order 
 > 0 if

E
��y�t (T )� x (T )�� = O ((�t)
) .

De�nition 3 (Weak Convergence) For some function g, y�t (T ) converges weakly to x (T ) with
respect to g with order � > 0 if��E �g �y�t (T )��� E [g (x (T ))]�� = O �(�t)�� :
In words we could say that a numerical integration method converges strongly if the whole

path converges, whereas weak convergence only implies a convergent approximation of the prob-
ability distribution of x (T ).

4.2.1 Stochastic Euler and Milstein Scheme

Stochastic Euler, or Euler-Maruyama, is a numerical integration method for stochastic integrals.
This integration method is de�ned as follows:

y�tm = y�tm�1 +
tmR
tm�1

�
�
y�tm�1; tm�1

�
dt+

tmR
tm�1

�
�
y�tm�1; tm�1

�
dW (t) ;

= y�tm�1 + �
�
y�tm�1; tm�1

� tmR
tm�1

dt+ �
�
y�tm�1; tm�1

� tmR
tm�1

dW (t) ;

= y�tm�1 + �
�
y�tm�1; tm�1

�
�t+ �

�
y�tm�1; tm�1

�
W (�t) : (4.2.3)

where y�tm denotes the approximation of xm and y�t0 = x0. W (�t) is normally distributed with
mean zero and variance �t, W (�t) � N (0;�t). An outcome w�t from this distribution is
obtained by computing w�t = z

p
�t, where z is drawn from a standard normal distribution.

The Euler-Maruyama scheme converges strongly with order 1=2 and weakly with order 1 under
some naturally ful�lled conditions for the Black-Scholes model and the local volatility model.
For a complete proof we refer to Kloeden and Platen (1992), Chapter 10 and Chapter 14.

In case of deterministic di¤erential equations one can use Taylor expansions to obtain a higher
order of convergence. For stochastic di¤erential equations a similar approach exists, which uses
the stochastic Taylor expansion, or Itô-Taylor expansion. The stochastic Euler approximation
only uses the �rst 2 terms of this expansion. The Milstein scheme is obtained by adding a third
term:

y�tm = y�tm�1 + �
�
y�tm�1; tm�1

�
�t+ �

�
y�tm�1; tm�1

�
W (�t)

+ 1
2�
�
y�tm�1; tm�1

� @�
@x

�
y�tm�1; tm�1

� �
W (�t)

2 ��t
�
; (4.2.4)

y�t0 = x0:

For the Black-Scholes and the local volatility model this scheme converges both strongly
as weakly with order 1. For a proof we refer to Chapter 10 and Chapter 14 of Kloeden and
Platen (1992). The application of the Millstein scheme to multi-dimensional models is not
straightforward at all. More on this can be found in Kloeden and Platen (1992), but we suggest
not to use it at all for multi-dimensional models.
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4.3 A Simulation Scheme for Heston�s Model

In this section we provide a method to simulate logarithmic stock prices under the Heston model.
The method originates from Lord, Koekkoek and van Dijk (2006), in which several methodologies
are compared. Their best performing method is presented here. For reasons of clarity, we repeat
equation (1.2.1) in a way, that speci�es the dynamics of logarithmic stock prices and the variance
process in the Heston model under the risk neutral probability measure:

dx (t) =

�
r � 1

2
v (t)

�
dt+ �

p
v (t)dW1 (t) +

p
1� �2

p
v (t)dW2 (t) ; (4.3.1)

dv (t) = �� (v (t)� v) dt+ �
p
v (t)dW1 (t) : (4.3.2)

With the Euler discretization to simulate the variance one encounters into the problem that,
whereas the mean-reverting variance process is guaranteed to be non-negative, the Euler dis-
cretization is not. This can easily be veri�ed as follows. As the mean-reverting variance process
is continuous, in order for it to become negative it must reach zero as well. Notice that equation
(4.3.2) is completely deterministic for v (t) = 0. So, as soon the variance reaches zero it will
directly be positive afterwards. In contrast the Euler discretization is not continuous. In other
words, the discretized form can become immediately negative. In order to prevent the volatility
to cross over the imaginary axis, we have to decide what to do with negative variance. The
so-called full truncation scheme �xes this problem here.

The solution to the two dimensional SDE, (4.3.1) and (4.3.2), reads

x (T ) = x (t0) +

TZ
t0

�
r � 1

2
v (t)

�
dt+ �

TZ
t0

p
v (t)dW1 (t) +

p
1� �2

TZ
t0

p
v (t)dW2 (t) ;(4.3.3)

v (T ) = v (t0)� �
TZ
t0

(v (t)� v) dt+ �
TZ
t0

p
v (t)dW1 (t) : (4.3.4)

Now, if we consider an equidistant grid in time direction with tm = t0 +m�t for m = 0; :::;M ,
and �t = tm � tm�1 = T�t0

M , then we can employ the following algorithm to simulate a path.

Algorithm 1

1. x0 and v0 are known

2. xm = xm�1 +
tmR

tm�1

�
r � 1

2v (t)
�
dt+ �

tmR
tm�1

p
v (t)dW1 (t) +

p
1� �2

tmR
tm�1

p
v (t)dW2 (t), for

m = 1; :::;M

3. vm = vm�1 � �
tmR

tm�1

(v (t)� v) dt+ �
tmR

tm�1

p
v (t)dW1 (t), for m = 1; :::;M

Here xm = x (tm) and vm = v (tm). The full truncation scheme now approximates the integrals
in algorithm 1. It is de�ned as follows:

y�tm = y�tm�1 +

�
r � 1

2

�
v�tm�1

�+�
�t+ �

q�
v�tm�1

�+
W1 (�t) +

q
(1� �2) �

�
v�tm�1

�+
W2 (�t) ;

v�tm = v�tm�1 � �
��
v�tm�1

�+ � v��t+ �q�v�tm�1�+W1 (�t) ; (4.3.5)
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with initial conditions y�t0 = x (t0) and v�t0 = v (t0), and
�
v�tm�1

�+
= max

�
v�tm�1; 0

�
. Here y�tm is

the approximation of xm and v�tm is the approximation of vm.

4.4 The VG Model

The SDE of the VG process can be solved analytically. Recall that the dynamics of the VG
process are

dx (t) = �e�dt+ dX (t;�; �; �) ; (4.4.1)

where �e� is the drift of the logarithmic price of the asset and the VG process X (t;�; �; �) is
de�ned as

X (t;�; �; �) = �
 (t; 1; �) + �W (
 (t; 1; �)) : (4.4.2)

Here 
 (t; 1; �) denotes a gamma process with mean 1 and variance �. The analytic solution of
(4.4.1) reads

x (T ) = x (t0)� e� (T � t0) +X (T ;�; �; �)�X (t0;�; �; �)
= x (t0)� e� (T � t0) + � [
 (T ; 1; �)� 
 (t0; 1; �)] + �W (
 (T ; 1; �)� 
 (t0; 1; �))
= x (t0)� e� (T � t0) + �G (T � t0; �) + �W (G (T � t0; �)) : (4.4.3)

Here G (T � t0; �) is gamma distributed with mean T � t0 and variance �.

In the case we have to deal with path dependent options time is again discretized and we
follow the same methodology as described above. So, if we consider an equidistant grid with
tm = t0 +m�t for m = 0; :::;M , and �t = tm � tm�1 =

T�t0
M , then a path can be simulated as

follows.

1. x0 is known

2. xm = xm�1 � ��t+ �G (�t; �) + �W (G (�t; �))

4.5 The Bates Model

In the Bates model we have a Poisson process that determines the jump times of the underlying
asset. Whenever a jump occurs, the size of the jump is determined with a normally distributed
random variable. In this section we describe an algorithm from Cont and Tankov (2004), which
describes a way to simulate these jumps.

The Poisson jump process is described as follows:

dY (t) = jN(t)dN (t) ; (4.5.1)

where N (t) is a Poisson process with intensity �, and jN(t) is the normally distributed jump size
with mean �J and variance �

2
J . The algorithm uses the fact that the number of jumps N (T ) of

the Poisson process on the interval [0; T ] is a Poisson random variable with parameter �T . And,
because of the memoryless property of the Poisson process, given the number of jumps N (T ),
the exact moments of jumps on this interval are uniformly distributed, rearranged in increasing
order.
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The algorithm is described as

1. Simulate N � poisson (�T ).

2. Simulate N independent random variables, Uk � U [0; T ]

3. Rearrange Uk in increasing order.

4. Simulate jk � N
�
�J ; �

2
J

�
The trajectory is given by

Y (t) =
NX
i=1

IUi<t � ji.



Chapter 5

Results of the Valuation Techniques

This chapter discusses the numerical results of the di¤erent pricing methodologies. Firstly, we
focus on pricing of Bermudan and American options under the 1-D VG model and American
options under the 2-D Heston model. For these derivatives the Fourier transform method and
the P(I)DE method are considered. Secondly, we present the convergence of the Monte Carlo
method for the pricing of European options. For this purpose we use the VG model, because
paths can be simulated analytically with this model. Most computations in this chapter are
done on a Intel(R) Pentium(R) 4, CPU 2.80 GHz. and 0.99 GB of RAM with Windows XP as
operating system (for the Heston model we have used a di¤erent computer. The reason for this
is clari�ed in that particular section).

5.1 Implementation Details

In this section we give some details on the implementation of the Fourier transform method. For
implementation details of the PIDE for the variance gamma process we refer to Almendral and
Oosterlee (2006) and of the PDE for the Heston model we refer to Ito and Toivanen (2006).

In the description of the Fourier transform method some variables were introduced, but need
to be de�ned for the computations. Firstly, the damping factor � is introduced to ensure that
the Fourier transform exists. Numerical testing showed that the impact of the damping factor is
not signi�cant. Therefore, we choose � = 0. Other values of � may lead to a better convergence,
but we do not have a good method to choose a available.

Secondly, the gridsize (or truncation bounds) need to be speci�ed. We have considered
gridsizes of [�2; 2] and [�8; 8]. Research is done on choosing the truncation bounds, but a
general description has not yet been found.

Furthermore, we mention that integrals are computed with the trapezoidal rule. Numerical
tests showed that the performance of other numerical integration techniques, based on uniform
grids, were less good. The use of kernel function does give slightly more accuracy, but the
computational time is larger for this method. Nevertheless, the performance of both methods
was approximately comparable.

Finally, reference values are calculated with the Fourier transform method on a grid [�16; 16]
with much more gridpoints than the highest amount of points in the particular tables.

36
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5.2 Bermudan Options under VG

In this section a ten times exercisable Bermudan put option is priced. The reference value is:
9:040646114. The parameters for the VG model are chosen as:

S0 = 100; K = 110; T = 1; r = 0:1; � = 0:12; � = �0:14; � = 0:2

For the results of the PIDE method the code of Ariel Almendral, as described in Almendral
and Oosterlee (2006), is used with a small adjustment for pricing Bermudans. Tables 5.2.1 and
5.2.3 present the results of the Fourier transform method described in section 2.1 to price the
Bermudan option. The computational domain varies in these two tables. Results of the PDE
approach can be found in the Tables 5.2.2 and 5.2.4.

N Value Error CPU (sec.)
256 9.018266257 2.24E-02 0.01
512 9.038861805 1.78E-03 0.02
1024 9.042435904 1.79E-03 0.03
2048 9.041109546 4.63E-04 0.06
4096 9.040705950 5.98E-05 0.12
8192 9.040689325 4.32E-05 0.23
16384 9.040635923 1.02E-05 0.46
32768 9.040645035 1.08E-06 1.00

Table 5.2.1: A Bermudan option with the Fourier Transform Method: domain = [-8, 8]

The results in Table 5.2.1 are computed on a grid with boundaries x1 = �8 and xN = 8,
where xi = log

�
Si
K

�
. So, for the above settings the underlyings range from 110 � e�8 � 0:0369

to 110 � e8 � 327905. If we compare the results with the results in Table 5.2.3, we notice that
a higher accuracy is obtained on a smaller domain, x1 = �2 and xN = 2 (i.e. S1 = 14:89 and
SN = 812:80). In other words, a domain size of [�8; 8] is too large. Higher accuracy is obtained,
because with an equal amount of gridpoints the step size will be smaller.

N M Value Error CPU (sec.)
800 20 9.149501370 1.09E-01 0.62
1600 40 9.089208381 4.86E-02 0.78
3200 80 9.060377702 1.97E-02 1.94
6400 160 9.048742499 8.10E-03 3.46
12800 320 9.044333473 3.69E-03 10.67
25600 640 9.042408713 1.76E-03 73.26

Table 5.2.2: A Bermudan option with the PIDE: domain = [-8, 8]

In Table 5.2.2 we computed the option prices with the PIDE approach. The grid size is equal
to the grid size used in Table 5.2.1, which enables us to compare accuracy and computational time.
Obviously, the performance of the PIDE approach is worse than the Fourier transform method.
A drawback of the PIDE approach for pricing Bermudans is that convergence is dependent on
the number of time steps, while this is not the case for the Fourier transform method. In the
case of the Fourier transform method the number of time steps is equal to the number of exercise
moments, which is 10 in this example.
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N Value Error CPU (sec.)
256 9.042457644 1.81E-03 0.01
512 9.041103800 4.58E-04 0.02
1024 9.040702137 5.60E-05 0.03
2048 9.040689764 4.36E-05 0.06
4096 9.040635250 1.09E-05 0.11
8192 9.040644853 1.26E-06 0.23
16384 9.040646509 3.95E-07 0.46
32768 9.040646216 1.02E-07 1.00

Table 5.2.3: A Bermudan option with the Fourier Transform Method: domain = [-2, 2]

Table 5.2.4 presents the results of the PIDE approach where the domain is truncated at x1 = �2
and xN = 2. Notice that the values are exactly the same as in case of the PIDE approach with
the larger domain, see Table 5.2.2. This is because the step sizes remained the same. Again we
can conclude that truncation at x1 = �2 and xN = 2 is su¢ cient.

N M Value Error CPU (sec.)
200 20 9.149501370 1.09E-01 0.56
400 40 9.089208381 4.86E-02 0.60
800 80 9.060377702 1.97E-02 0.74
1600 160 9.048742499 8.10E-03 1.23
3200 320 9.044333473 3.69E-03 5.65
6400 640 9.042408713 1.76E-03 12.46

Table 5.2.4: A Bermudan option with the PIDE: domain = [-2, 2]

5.3 American Options under VG

In this section we price an American put option with the following VG parameters:

S0 = 100; K = 90; T = 1; r = 0:1; � = 0:12; � = �0:14; � = 0:2

The reference value is: 0:800820959. Again, for the PIDE method the code from Almendral and
Oosterlee (2006) is used. In this section we compare the results of the Fourier transform method
with and without Richardson extrapolation, and the results of the PIDE method. Results of the
Fourier transform method without Richardson extrapolation are presented in Tables 5.3.1 and
5.3.2. Notice that for American options we need to increase the number of time steps to get
convergence. This is because American options can be exercised continuously. With Richardson
extrapolation, however, the number of time steps remains limited. The results of the Fourier
transform method with Richardson extrapolation are presented in Table 5.3.3. Table 5.3.4 shows
the results of the PIDE approach. In these tables M is the number of time steps.
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N M value error CPU (sec.)
64 32 0.732801710 6.80E-02 0.01
128 64 0.943302862 1.42E-01 0.03
256 128 0.782298062 1.85E-02 0.09
512 256 0.815902589 1.51E-02 0.32
1024 512 0.800462640 3.58E-04 1.26
2048 1024 0.802368170 1.55E-03 5.30
4096 2048 0.801084859 2.64E-04 21.55

Table 5.3.1: An American option with the Fourier Transform Method without Richardson
extrapolation: domain = [-8, 8]

Contrary to the Bermudan option results, the results from Table 5.3.1 show that the convergence
of the American options is not smooth. This is because the solution converges from below in
time direction and from above in space direction, see Figure 5.3.1. For a particular set of mesh
and time steps, N and M , the solution may be very accurate because the error due to the time
discretization cancels out by the error due to the space discretization.
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Figure 5.3.1: Left �gure shows convergence in time direction, right �gure convergence in space
direction

In Table 5.3.2 we present results of the Fourier transform method on a smaller grid and with
more gridpoints. As a result, the error of the time discretization is the leading error and we
therefore observe smooth convergence.
In order to improve the performance of the Fourier transform method we apply Richardson

extrapolation for the approximation of the American option prices. This technique enables us
to keep the number of time steps low. Results are presented in Table 5.3.3. Notice that this
method performs signi�cantly better than the previously discussed methods. For the Richardson
extrapolation, we used equation (2.4.11) with k = 3, which means that the American option is
approximated by an fM times exercisable Bermudan, a 2fM times exercisable Bermudan and a
4fM times exercisable Bermudan. Notice that at a certain point, for N = 2048, the error remains
constant. This is because the error is due to the time discretization, i.e. due to the extrapolation.
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N M value error CPU (sec.)
128 16 0.782367490 1.85E-02 0.01
256 32 0.786466343 1.44E-02 0.03
512 64 0.794954313 5.87E-03 0.09
1024 128 0.797418445 3.40E-03 0.32
2048 256 0.799174044 1.65E-03 1.25
4096 512 0.800011172 8.10E-04 5.27
8192 1024 0.800408156 4.13E-04 21.45

Table 5.3.2: An American option with the Fourier Transform Method without Richardson
extrapolation: domain = [-2, 2]

N fM value error CPU (sec.)
128 16 0.828339573 2.75E-02 0.05
256 16 0.800898955 7.80E-05 0.09
512 16 0.802828594 2.01E-03 0.17
1024 16 0.800549352 2.72E-04 0.31
2048 16 0.800806096 1.49E-05 0.66
4096 16 0.800803620 1.73E-05 1.29
8192 16 0.800800229 2.07E-05 2.61

Table 5.3.3: An American option with the Fourier Transform Method with Richardson extra-
polation: domain = [-2, 2]

Finally, we present the results of the PIDE approach for American options under the VG model in
Table 5.3.4. Notice that the Fourier transform method outperforms the PIDE approach, though,
the di¤erences are not as large as in case of the Bermudan options.

N M Value Error CPU (sec.)
200 40 0.765903160 3.49E-02 0.57
400 80 0.800444986 3.76E-04 0.61
800 160 0.806035551 5.21E-03 0.86
1600 320 0.804953525 4.13E-03 1.75
3200 640 0.803292323 2.47E-03 10.61
6400 1280 0.802161616 1.34E-03 24.27

Table 5.3.4: An American option with the PIDE: domain = [-2, 2]

5.4 American Options under Heston

The valuation of derivatives under the Heston model is more complicated than for one-dimensional
models, such as the VG model. Not only the theory becomes more complicated, but also the
computational time to price an option increases signi�cantly. This section compares the already
extensively studied PDE approach to the novel Fourier transform technique, described in Chapter
2. For the PDE results we have used the fast and accurate implementation of Ito and Toivanen
(2006). Their code is written in Fortran 90, which is not supported by the computer used for
all other computations. Therefore, the computations in this section are done on a di¤erent com-
puter, namely an Intel(R) Pentium(R) 4, CPU 3.00 GHz. and 2 GB of RAM in a Linux (kernel
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2.6.16.7) environment. Tables 5.4.1 and 5.4.2 present these results. The results are obtained
with the following settings:

S0 = 10; K = 10; T = 0:25; r = 0:1; � = 5; � = 0:9; v = 0:16; v0 = 0:25; � = 0:1

N J fM Value Error CPU (sec.)
16 10 1 26.085209768 2.53E+01 1.02
32 20 1 0.859509201 6.35E-02 4.58
64 30 1 0.791900915 4.08E-03 13.68
128 40 1 0.794983081 9.94E-04 34.22
256 50 1 0.795989393 1.24E-05 85.16

Table 5.4.1: An American option with the Fourier transform method: x-domain = [-2, 2] and
v-domain = [0,2]

For the Fourier transform method we have used the repeated Richardson extrapolation with
k = 4 in equation (2.4.11). In other words, the American option is approximated by fM , 2fM ,
4fM and 8fM exercisable Bermudan options.

N J M Value Error CPU (sec.)
17 9 8 0.788562383 7.41E-03 0.00
33 17 16 0.794060919 1.92E-03 0.02
65 33 32 0.795587537 3.89E-04 0.17
129 65 64 0.795937587 3.94E-05 1.87
257 129 128 0.795963450 1.36E-05 17.70

Table 5.4.2: An American option with the PIDE: S-domain = [0, 20] and v-domain = [0, 1]

If we compare the results of the Fourier transform method with Richardson extrapolation
to the results of the two-dimensional PDE approach, we may conclude that under this model
the Fourier transform method does not perform best. However, the implementations are done
in di¤erent programming languages. The Fourier transform method is implemented in Matlab
and the PDE is implemented in Fortran 90. We compared the speed of both languages by
implementing a program computing the trapezoidal rule in both languages and ran it a thousand
times. It turned out that for this particular example the Fortran 90 implementation was more
than 10 times faster than Matlab. We therefore realize that a true comparison cannot be made
in this way. What we can infer from the results is that the novel Fourier transform method
converges to the correct solution.

5.5 Convergence of the Monte Carlo Method

As stated above, the Monte Carlo simulation method is applicable for many di¤erent payo¤
functions and di¤erent pricing models. However, we do not recommend to use this Monte Carlo
simulation if another method is available for a speci�c option and asset price model. This is be-
cause the convergence of this method is extremely slow and not smooth. Therefore, Monte Carlo
simulation techniques are only useful for highly path-dependent options or multi-dimensional
models. Figure 5.5.1 presents the convergence of a European option with the Monte Carlo
method as a function of CPU-time. This plot shows the non-smoothness of the convergence, but
most importantly it gives an indication of the large variance even after two seconds.
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Figure 5.5.1: Convergence of a European option with the Monte Carlo method

The large variance can be reduced with variance reduction techniques, e.g. antithetic variates.
Though, it will never perform as well as the Fourier transform method. By, comparing the Monte
Carlo method with the Fourier transform method, presented in Figure 5.5.2, we notice that the
Fourier transfrom method convergences smoothly and about 1; 000; 000 times faster. Therefore,
we recommend to use the Monte Carlo method only if other methods cannot be used, i.e. for
highly path-dependent payo¤s or multi-dimensional models.
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Chapter 6

Conclusions and Recommendations for
the Valuation Techniques

In Part II of this thesis we have presented various valuation techniques for pricing callable
(early exercise) products under di¤erent models. Here we concentrated on comparing a novel
quadrature technique based on the FFT with the already extensively studied P(I)DE approach.
This novel quadrature techniques is based on the fact that for one-dimensional exponential Lévy
models the probability density is not dependent on the current state of the underlying, but only
on the change of the underlying. It turns out that due to this fact the quadrature formula can
be recognized as a convolution. The methodology was extended for the Heston model, which
is two-dimensional. The fact that the probability density is not dependent on the current state
of the underlying, but only on the change of the underlying, does not hold for the variance
dimension. This introduced an extra integral for the computation of early exercise options.
In Chapter 5 we have investigated the performance of the quadrature technique by comparing

it to implementations of P(I)DEs. Firstly, we compared the valuation of Bermudan options. In
this setting we have chosen to use the one-dimensional variance gamma model. The quadrature
technique outperformed the PIDE method. Next, we studied the valuation of American options
under the variance gamma model. For the American options the quadrate method also per-
forms signi�cantly better than the PIDE method. From these results we can conclude that the
quadrature technique is better suited to value callable options under one-dimensional models.
However, a drawback of the quadrature approach is that it is not applicable to models for which
the characteristic function is not known, e.g. the local volatility model. A drawbacks of the
PIDE approach is that we have to deal with a time direction, which means that much more time
steps are necessary than the number of exercise moments.
Secondly, we compared the valuation of American options under the two-dimensional Heston

model. It turned out that we cannot conclude whether the PDE or the quadrate technique
performs best, because the codes were written in di¤erent programming languages. We can
conclude that the novel quadrature approach for the Heston model converges to the correct
solution and is also promising of this model.
Finally, we showed that the Monte Carlo method should only be used if other methods are

not applicable. This is because of the non-smooth and slow convergence of the Monte Carlo
method.

We �nalize this chapter with some suggestions for further research:

� The comparison of the quadrature technique and the PDE in the Heston model is done in
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di¤erent programming languages. As a result, we cannot conclude which method performs
best. We suggest to investigate the performance of both methods in the same programming
language.

� Numerical testing showed that the Richardson extrapolation technique is a very satisfactory
method for obtaining high accuracy for the valuation of American options with a limited
number of exercise moments. Richardson extrapolation is applicable to almost any kind
of numerical approximation. Therefore, we expect promising results when applying this
technique to the variance discretization in the Heston model.

� Especially for one-dimensional models the quadrature method has proven to be very ac-
curate and fast. Though, we are not yet really able to say anything in advance about the
error. In case of P(I)DEs more research is done to this aspect and it is interesting to get a
grip on resulting errors for the quadrature method as well.

� In this thesis we considered the valuation of early exercise options. Adapted Fourier trans-
form techniques are also applicable to other payo¤s. We suggest to study the performs of
this method for these di¤erent payo¤s as well.

� Finally, we suggest to study on a way to determine the truncation bounds of the integral
in the quadrature method. We noticed that for our example L = �2 and U = 2 was large
enough, but we are not able to give exact bounds for any kind of option.



Part III

Model Risk
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Chapter 7

Exotic Options

European and American options are commonly traded on several markets in the world. There-
fore, market prices are available for European and American options. Options that are not
traded on o¢ cial markets are known as exotic options. Usually they are traded between banks,
insurance companies, etc or used as bonusses for the managing moard. Market prices are there-
fore typically not known for these products. This section describes the features of some popular
exotic derivatives and ends with the description of two recent trades by Rabobank International.

7.1 Vanilla Arithmetic Cliquets

A cliquet is a product which is dependent on the returns between two observation dates. The
return Gi of an underlying S (t) is de�ned as

Gi =
Si � Si�1
Si�1

; (7.1.1)

where Si is the closing price of the underlying at the i-th observation date. The returns of a
cliquet, Ui, are bounded by a local �oor (Fi) for the losses and a local cap (Ci) for the gains:

Ui = min (max (Fi; Gi) ; Ci) : (7.1.2)

The �nal payo¤ of the arithmetic cliquet, subject to a global �oor (F ), and cap (C), reads

V (T ) = N �min
 
max

 X
i

Ui; F

!
; C

!
; (7.1.3)

where N is the notional. The notional is the amount that is invested in the product.

Many variants of these cliquets exist, such as reverse cliquets, cancellable cliquets, swing
cliquets, cliquets with lock-ins and combinations of these. They are not treated in this thesis.

Example 1 Consider a 3 year arithmetic cliquet with monthly observations given by the end
dates of the month and a notional amount of 100. The periodic returns are locally �oored at
�10% and capped at 15%. Subject to a global �oor of �2:5 and a global cap of 4:5 the arithmetic
cliquet pays at maturity:

V (T ) = 100 �min
 
max

 
36X
i=1

Ui;�2:5
!
; 4:5

!
;

where Ui = min (max (�10%; Gi) ; 15%).
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7.1.1 A Fourier Pricing Methodology

An adapted Fourier pricing methodology is applicable for the pricing of arithmetic cliquets. This
methodology is described in this section and applies to all models for which the characteristic
function is known. The method originates from Den Iseger and Oldenkamp (2005). Only for the
local volatility model the Monte Carlo pricing technique must be used.

The price of a cliquet is calculated as the discounted expected payo¤. The payo¤ of a cliquet
reads

V (T ) = N min (max (Z;F ) ; C) ; (7.1.4)

where Z =
nP
i�1
min (max (Fi; Ri � 1) ; Ci), with Ri = Si

Si�1
. If the density of Z is known, denoted

by p (x), then the price of a cliquet equals

V (t0) = e�r(T�t0)Et0 [N min (max (Z;F ) ; C)]

= e�r(T�t0)N

0@ CZ
F

xp (x) dx+ F

FZ
�1

p (x) dx+ C

1Z
C

p (x) dx

1A : (7.1.5)

A standard numerical integration technique, e.g. the trapezoidal rule, is used to evaluate the
integrals. The problem in (7.1.5) is that for most models the density of Z is not known analyt-
ically. However, we know the characteristic function of the logarithmic returns and the inverse
Fourier transform is used to obtain the density of the logarithmic returns:

p (z) =
1

2�

1Z
�1

Re
�
e�i!zbp (!)� d!:

Here the integral is calculated numerically, as described in Section 2.3.1. If we denote by fzi ,
i = 1; :::;M , the density of the logarithmic return at time ti, Ui = min (max (Fi; Ri � 1) ; Ci) and
fUi as the density of Ui, then the following identities hold:

fUi (x) = 0; for x < Fi
P (Ui = Fi) = Fzi (log (Fi + 1)) ;

fUi (x) =
fzi (log(x+1))

x+1 ; for Fi < x < Ci
P (Ui = Ci) = 1� Fzi (log (Ci + 1)) ;
fUi (x) = 0; for Ci < x.

(7.1.6)

Hence, the Fourier transform is given by

bfUi (!) = ei!FiFzi (log (Fi + 1)) +

CiZ
Fi

ei!x
fzi (log (x+ 1))

x+ 1
dx+ ei!Ci (1� Fzi (log (Ci + 1))) :

(7.1.7)
Now, the characteristic function of Z can be found as follows:

bg (!) = E �ei!Z� = E"ei! nP
i�1

Ui

#
= E

�
ei!U1

�
� � �E

�
ei!Un

�
= bfU1 (!) � � � bfUn (!) : (7.1.8)
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Finally, the inverse Fourier transform is used to obtain the density of Z:

g (x) =
1

2�

1Z
�1

Re
�
e�i!xbg (!)� d!: (7.1.9)

Again, this integral is approximated by the methodology described in Section 2.3.1.

7.2 Discrete Knock-out Barrier Options

The second exotic option we consider is a so-called discrete knock-out barrier option. This is a
regular European option with strike price K and maturity T , which ceases to exist if the asset
price reaches a certain barrier level, H, at one of the prespeci�ed observation dates, ti. When the
barrier is greater than the initial asset price, the option is referred to as an up-and-out option;
when the barrier is less than the initial asset price, it is referred to as a down-and-out option.
If the barrier is hit the options pays some rebate Rb at the option�s maturity. So, the payo¤ at
maturity of a discrete knock-out barrier option reads

� Up-and-out:

V (T ) = (max (' (S (T )�K) ; 0)�Rb) I[maxi S(ti)<H] +Rb (7.2.1)

� Down-and-out:

V (T ) = (max (' (S (T )�K) ; 0)�Rb) I[mini S(ti)>H] +Rb (7.2.2)

where IA is the indicator function de�ned as IA (x) =
�
1 x 2 A
0 x =2 A and ' is de�ned in

Section 0.1.

Example 1 Consider a discrete up-and-out call option with strike price 100, maturity in 1 year,
a barrier level of 140 and monthly observations. If the option ceases to exist no rebate is paid.
Then the payo¤ at maturity equals:

max (S (T )� 100; 0) I[max1�i�12 S(ti)<140]

7.2.1 Pricing Methodology

The pricing of discrete barrier options is similar to pricing Bermudan options. As described
in Section 2.1.2, a Bermudan option equals its payo¤ if the corresponding European price is
lower than the payo¤ at the prespeci�ed exercise dates. For a discrete barrier option, the price
equals the discounted rebate if the underlying is above (up-and-out) or below (down-and-out)
the barrier level.

Denote the set of observation dates as T = ft0; :::; tMg, t0 < t1 < � � � < tM�1 < tM = T .
If we denote C (x; tk) as the continuation value at tk 2 T and U (x; tk) the up-and-out option
value, then we have for k = 0; :::;M , with C (x; tM ) = g (x) the exercise payo¤,

U (x; tk) =

�
e�r(T�tk)Rb , for x � log

�
H
K

�
C (x; tk) , for x < log

�
H
K

� ; (7.2.3)

C (x; tk) = e�r(tk+1�tk)E [U (x; tk+1)] : (7.2.4)
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Here x = log
�
S
K

�
the logarithmic stock price.

Similarly, if we denote by D (x; tk) the down-and-out option value at time tk 2 T , we have
for k = 0; :::;M

D (x; tk) =

�
e�r(T�tk)Rb , for x � log

�
H
K

�
C (x; tk) , for x > log

�
H
K

� ; (7.2.5)

C (x; tk) = e�r(tk+1�tk)E [U (x; tk+1)] : (7.2.6)

Obviously, the payo¤ of a barrier option has a discontinuity at the (logarithmic) barrier level.
This causes some numerical troubles, which are undesirable. Firstly, the solution approaches the
true solution in a sawtooth fashion. Secondly, the price converges very slowly as the number of
grid points increases.

Smooth convergence can be obtained by placing one of the grid points on the logarithmic
barrier level. We use a computationl grid as follows:

xi = �
N

2
�x+ h+ (i� 1)�x: (7.2.7)

At xN
2 +1

= h the option value equals the rebate, e.g. Rb = 0. However, including this in the
algorithm gives us an option value that is consequently underestimated. This is because the
surface below the option value between xN

2
and h is not taken into account in the integration,

which causes slow convergence. Similarly, choosing this value equal to the European price means
that the price is overestimated. To enhance the speed of convergence we set the option value
at h as the interpolation between the surrounding grid points. Linear interpolation increases
the speed of convergence signi�cantly, but testing shows that cubic interpolation performs even
better. The idea of this interpolation technique was already applied in trees by Derman, Kani,
Ergener and Bardhan (1995).

For the LV model we employ the Monte Carlo simulation approach. For all other models, the
Fourier transform method is applicable. We may treat the barrier option as a set ofM European
options, each with maturity �t and a payo¤ described by (7.2.3) for an up-and-out and (7.2.5)
for a down-and-out barrier option. Notice that the option prices should be resolved iteratively,
because these payo¤s are not known in advance.

7.3 Napoleon Options

The important factors in the payo¤ of a Napoleon option are a known �xed coupon and the worst
returns of an index or an equity over speci�ed time periods. A general Napoleon option has
multiple payo¤ coupons and each of the coupons consist of multiple so-called performances. The
performances can be capped or �oored as well as the coupons. Adding a �oor to a performance or
a coupon will rease the price of a Napoleon option, and the e¤ect of adding a cap to a performance
or a coupon will bring the opposite. By adjusting the caps and the �oors an investor can balance
between the price and the amount of risk he is willing to take. The performance P (without a
cap or a �oor) is calculated as

P = r0 + r �min (Gi) ; (7.3.1)
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where r0 is a �xed coupon, r is a scaling factor and Gi is as in (7.1.1). Suppose a coupon consists
of M performances Pm, m = 1; :::;M . Then a coupon C (without a cap or a �oor) is de�ned as

C =
MX
m=1

Pm: (7.3.2)

The cash �ow amount equals the notional times the coupon: N � C.

Example 1 Consider a 4 year Napoleon option with annual coupons, semi-annual performances
and monthly returns. The notional equals 100, the Napoleon has a �xed rate of 10%, there is no
scaling and the product is without any caps or �oors. Each coupon is then calculated as

Ck = P k1 + P
k
2 ; k = 1; 2; 3; 4

where the performances P k1 and P
k
2 are calculated as

P k1 = 10% + min
i=1;::;6

�
Gki
�
; P k2 = 10% + min

i=7;::;12

�
Gki
�
:

Here Gki is the return of the i-th month of the k-th year.

The payo¤ of a Napoleon option is too di¢ cult to �t into the PDE or FTM framework.
Therefore, this option is priced with the Monte Carlo method.

7.4 Rabo Top Europe Note and Rabo Deep Autocall Cer-
ti�cate

The Rabo Top Europe Note is a recently issued structured product by Rabobank International.
The underlying index of this product is the Dow Jones EUROSTOXX 50 Index. The note may
be seen as a combination of a lookback option and a barrier option. A detailed overview of the
characteristics of this product are presented in Appendix C. The option is priced by the Monte
Carlo method.

Another structured product which is recently issued by Rabobank International is the Rabo
Deep Autocall Certi�cate. This product guarantees a �xed redemption if the underlying reaches
a certain barrier at one of the prespeci�ed observation dates. In that case, the product ceases to
exist. Otherwise, redemption is determined using the performance of the underlying. A detailed
overview of the characteristics of this product are presented in Appendix D. The option is priced
by the Monte Carlo method.

7.5 A Monte Carlo Pricing Methodology

The Monte Carlo Pricing Methodology can be applied to all models. The main drawback of
Monte Carlo techniques is its slow convergence, see section 5.5. Therefore, this technique will
only be applied in case of the Local Volatility (LV) model, for which the characteristic function
is not known, or when the product cannot be priced in another framework. Consider a uniform
time discretization t0 < t1 < � � � < tN = T , where t0 is the current date and T the maturity of
the contract. Furthermore, consider the observation times tobs1 < tobs2 < � � � < tobsM � T , where
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M is the number of observation dates. In general M is much smaller than N , M � N . In order
to calculate the returns we need to store the previous observation date, e.g. to calculate the
k-th return the (k � 1)-th observation value needs to be stored. As soon as the k-th observation
date is known, the return can be calculated and the k-th observation date becomes the previous
observation date. Observation dates can be between two time points, e.g. ti < tobsk < ti+1. In
this case, the underlying value is calculated with linear interpolation.



Chapter 8

Calibration

So far, we have presented pricing methodologies for models with various parameters and exotic
options with sometimes complicated payo¤s. The pricing methods assume that the model pa-
rameters are known. The way in which these parameters are usually calculated is presented in
this section. The idea is to �nd those parameters for which the di¤erence between the vanilla
option model prices and market prices is minimized. This process is known as the calibration
process. Calibration of the local volatility model is done di¤erent from the other models and will
be treated separately. The models are calibrated to the Dow Jones EUROSTOXX 50 volatility
surface of 30 May 2006.

In order to obtain satisfactory results for inter-model risk, we calibrate a benchmark model
to the market and all other models to the benchmark model. This is because the calibrated
benchmark model, by de�nition, will have a smooth volatility surface. This will lead to small
calibration errors for all other models. This procedure is common in the �nancial industry. Our
benchmark model will be Bates model, because it is most likely to �t the market data best, as
it contains the largest number of parameters to calibate.

8.1 The Non-Local Volatility Models

The calibration process appears to be at �rst sight a straightforward process of minimizing an
objective function, which measures the di¤erence between market prices and model prices. In
practice this process is not as straightforward as expected. Firstly, di¤erent objective functions
result in di¤erent optimal values for the parameters. Secondly, the objective functions have
several local minima. To �nd the global minimum one should apply stochastic optimization
techniques, e.g. genetic algorithms. This does not �t in the scope of this thesis. Here, we choose
to use a heuristic technique of choosing smart starting parameters and apply local optimization
techniques for calibration. With respect to the objective function, Ng (2005) concluded that the
so called Average Absolute Error (AAE) is the best objective function to use:

AAE =
1

N

NX
i=1

��Cimodel (�)� Cimarket�� ; (8.1.1)

where � denotes the set of model parameters and Ci represents the call prices. Therefore, we
also use this objective function in the following chapters.
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For the calibration of the Bates model we �nd several local minima with the minima close to
each other. These parameters are presented in Table 8.1.1.

Set � � v v0 � � �j �j AAE

1 0:108 0:170 0:163 0:024 �1:000 0:345 0:110 0:000 4:395
2 0:147 0:191 0:137 0:026 �0:905 4:329 0:016 0:018 4:831
3 0:142 0:189 0:139 0:026 �0:906 4:329 0:017 0:018 4:747
4 0:153 0:193 0:135 0:026 �0:912 4:425 0:016 0:018 4:964
5 0:143 0:189 0:138 0:026 �0:906 4:329 0:017 0:018 4:765

Table 8.1.1: Di¤erent calibrated Bates parameters with calibration error

The �rst set of parameters in this table has a signi�cantly lower objective function value than
the other sets. However, this set will not be used as our benchmark, because the parameters
are not very realistic. The correlation, �, indicates that the Brownian motion of the stock price
and the Brownian motion of the variance are perfectly negatively correlated, which is unrealistic.
Another issue is that the variance of the jump size gets zero. This means that whenever a jump
occurs it is always a jump of the same size, which is also unrealistic. The impact of the di¤erent
sets of parameters on the exotic option prices is relatively small. This is studied in detail in
Section 8.3. We choose the smallest objective function with a realistic set of parameters, which
is set 3, as our benchmark model.

The Black-Scholes model, the Heston model and the Variance Gamma model are calibrated
to this benchmark set. Again, several local minima are found, and we will use the lowest AAE.
The resulting parameters are presented in Table 8.1.2. Notice that for the BS model as well as
for the VG mdoel the AAE error is still signi�cant.

Black-Scholes
� = 0:214 AAE = 50:653
Heston
� = 0:136, � = 0:190, v = 0:144, v0 = 0:029, � = �0:834 AAE = 0:545
Variance Gamma
� = 5:139, � = �0:116, � = 0:193 AAE = 18:615

Table 8.1.2: Calibration results

8.2 The Local Volatility Model

To calibrate the local volatility model we need to �nd an explicit expression for the local volatility
function. The local volatility function reads, see equation (1.5.2),

� (x; t)
2
= 2

@
@T C (x; x; t) + �

@
@kC (x; x; t) + (r � �)C (x; x; t)

@2

@k2C (x; x; t)�
@
@kC (x; x; t)

: (8.2.1)

So, we need to know the derivatives of the call prices, but we only know these call prices at �xed
points. In order to�nd these derivatives we de�ne an interpolation method to determine the
market prices for a complete price surface. Within Rabobank International the interpolation is
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done on the implied volatilities with a cubic spline interpolation in the strike direction and linear
interpolation in the time direction. With this surface we are able to approximate the derivatives
as follows:

@

@T
C (x; x; t) =

C (x; x; t+�T )� C (x; x; t)
�T

;

@

@k
C (x; x; t) =

C (x; x+�k; t)� C (x; x��k; t)
2�k

;

@2

@k2
C (x; x; t) =

C (x; x+�k; t)� 2C (x; x; t) + C (x; x��k; t)
�k2

:

Further, we assume no dividends in this calibration. Therefore, � = r and (8.2.1) can be simpli�ed
to

� (x; t)
2
= 2

@
@T C (x; x; t) + r

@
@kC (x; x; t)

@2

@k2C (x; x; t)�
@
@kC (x; x; t)

: (8.2.2)

8.3 Results for Model Risk

For several exotic products we compare the value and delta for the di¤erent parameter sets.
For Bates model we will study the intra-model risk. For all other models we only examine the
di¤erences between the models (inter-model risk). The products that are examined are de�ned
in the following tables. In Table 8.3.1 di¤erent cliquets (Section 7.1) are presented. We de�ne
some abbreviations to safe space in the tables:

sa: semi-annually , q: quarterly , Perf: performances,
LF: local �oor , LC: local cap , Mat: Maturity

Name Mat Frequency LF LC Floor Cap
Cliquet1 T = 1 sa Fi= �0:1 Ci= 0:1 F = 0 C = 0:15
Cliquet2 T = 3 sa Fi= �0:1 Ci= 0:1 F = 0 C = 0:5
Cliquet3 T = 1 sa Fi= �0:2 + 0:05i Fi= 0:05i F = 0 C = 1010

Cliquet4 T = 3 sa Fi= �0:2 + 0:05i Fi= 0:05i F = 0 C = 1010

Cliquet5 T = 1 monthly Fi= �109 Ci= 0:03 F = 0 C = 0:3
Cliquet6 T = 3 monthly Fi= �109 Ci= 0:03 F = 0 C = 0:9

Table 8.3.1: Cliquet settings, Notional = 100

In Table 8.3.2 the essential features of the barrier option (Section 7.2) are described.
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Name Strike Mat Frequency C/P Barrier U/D Rebate
UC1 K = S0 T = 1 sa Call H = 1:3 � S0 Up R = 0
UC2 K = 0:9 � S0 T = 1 sa Call H = 1:1 � S0 Up R = 0
UC3 K = S0 T = 1 monthly Call H = 1:3 � S0 Up R = 0
UC4 K = 0:9 � S0 T = 1 monthly Call H = 1:1 � S0 Up R = 0
UC5 K = S0 T = 3 annually Call H = 1:3 � S0 Up R = 5
UC6 K = 0:9 � S0 T = 3 annually Call H = 1:1 � S0 Up R = 5
DP1 K = S0 T = 1 sa Put H = 0:8 � S0 Down R = 0
DP2 K = 1:1 � S0 T = 1 sa Put H = 0:9 � S0 Down R = 0
DP3 K = S0 T = 1 monthly Put H = 0:8 � S0 Down R = 0
DP4 K = 1:1 � S0 T = 1 monthly Put H = 0:9 � S0 Down R = 0
DP5 K = S0 T = 3 annually Put H = 0:8 � S0 Down R = 5
DP6 K = 1:1 � S0 T = 3 annually Put H = 0:9 � S0 Down R = 5

Table 8.3.2: Knock-out barrier settings, S0 = 100

Name Mat Coupons Perf Returns LF LC Floor Cap
Nap1 T = 2 annually sa monthly Fi= 0:02 Ci= 0:1 F = 0 C = 1010

Nap2 T = 4 annually sa monthly Fi= 0:02 Ci= 0:1 F = 0 C = 1010

Nap3 T = 2 annually sa q Fi= 0:02 Ci= 0:1 F = 0 C = 1010

Nap4 T = 2 annually q monthly Fi= 0:02 Ci= 0:1 F = 0 C = 1010

Nap5 T = 2 sa q monthly Fi= 0:02 Ci= 0:1 F = 0 C = 1010

Nap6 T = 2 annually sa monthly Fi= 0:02 Ci= 0:1 F = 0:05 C = 0:15
Nap7 T = 2 annually sa monthly Fi= 0:01i Ci= 0:05i F = 0 C = 1010

Table 8.3.3: Napoleon settings, notional = 100, �xed rate = 8% and scaling =1

And Table 8.3.3 presents several Napoleon options (Section 7.3).
The delta is approximated numerically:

� =
@V

@S
=
V (S + h; T )� V (S � h; T )

2h
; (8.3.1)

where h = 0:1. In the computations we assume a risk-free interest rate of 5%, i.e. r = 0:05. The
maximum di¤erences are calculated as relative di¤erence between the largest and smallest price:

max. di¤. =
max (Vi)�min (Vi)

max (Vi)

8.4 Intra-Model Risk

Intra-model risk is de�ned as the maximum price di¤erence within one model for a certain
derivative. Here the intra model risk for Bates model is approximated by looking at the maximum
price di¤erence between the �ve parameter sets as speci�ed in Table 8.1.1. We will consider the
derivatives that are described in the beginning of this chapter.

For all products we only notice small price di¤erences. Especially the Napoleon option does
not seem to be really dependent on the set of parameters.
The Barrier option is the most sensitive product to the parameter sets. Though, the price

di¤erences are still limited, but the maximum di¤erence in the delta is considerable. If we take
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Set 1 2 3 4 5 max. di¤.
Cliquet1 5:50 5:58 5:57 5:59 5:57 1:61%
Cliquet2 12:27 12:59 12:54 12:62 12:54 2:77%
Cliquet3 4:75 4:83 4:82 4:84 4:82 1:86%
Cliquet4 27:33 27:85 27:83 27:88 27:83 1:97%
Cliquet5 2:53 2:60 2:58 2:60 2:58 2:69%
Cliquet6 2:28 2:32 2:29 2:32 2:29 1:72%

Table 8.4.1: Cliquet option prices under Bates

a closer look at were the di¤erences come from, we notice that for all products the results of the
�rst set di¤ers a lot from the other sets. As discussed before, this set is unrealistic and should
not be used because of that reason. If we only consider the remaining sets all di¤erences in the
prices and deltas are even smaller.

Set 1 2 3 4 5 max. di¤.
V � V � V � V � V � V �

UC1 3:26 0:17 3:20 0:16 3:21 0:16 3:19 0:16 3:21 0:16 2:15% 5:81%
UC2 2:77 0:05 2:67 0:04 2:67 0:04 2:66 0:04 2:67 0:04 3:97% 4:35%
UC3 3:43 0:19 3:34 0:18 3:34 0:18 3:33 0:18 3:34 0:18 2:92% 7:89%
UC4 2:15 �0:06 2:03 �0:06 2:03 �0:06 2:03 �0:06 2:03 �0:06 5:58% 8:06%
UC5 2:50 0:07 2:48 0:06 2:48 0:06 2:48 0:06 2:48 0:06 0:80% 4:55%
UC6 2:60 0:06 2:58 0:06 2:59 0:06 2:58 0:06 2:59 0:06 0:77% 1:59%
DP1 4:37 �0:10 4:42 �0:08 4:40 �0:08 4:42 �0:08 4:40 �0:08 1:13% 24:75%
DP2 3:57 0:14 3:46 0:14 3:45 0:14 3:44 0:14 3:45 0:14 3:64% 1:46%
DP3 3:32 �0:07 3:35 �0:06 3:34 �0:06 3:35 �0:06 3:34 �0:06 0:90% 18:57%
DP4 2:59 0:12 2:48 0:13 2:47 0:13 2:48 0:13 2:47 0:13 4:63% 6:20%
DP5 3:87 �0:04 3:86 �0:04 3:85 �0:04 3:85 �0:04 3:86 �0:04 0:52% 2:78%
DP6 4:07 �0:03 4:06 �0:03 4:05 �0:03 4:05 �0:03 4:05 �0:03 0:49% 3:85%

Table 8.4.2: Barrier option prices and delta�s under Bates

In order to detect which speci�c setting has a greater contribution to the di¤erences, we have
looked at several settings for each product. Though, we do not notice that any speci�c setting
causes a larger risk.

Set 1 2 3 4 5 max. di¤.
Nap1 20:46 20:58 20:55 20:56 20:55 0:58%
Nap2 38:15 38:48 38:37 38:45 38:39 0:86%
Nap3 20:49 20:57 20:52 20:58 20:55 0:44%
Nap4 53:31 53:50 53:45 53:51 53:47 0:37%
Nap5 53:98 54:19 54:11 54:16 54:14 0:39%
Nap6 19:53 19:59 19:59 19:57 19:57 0:31%
Nap7 20:85 21:00 21:00 21:04 21:01 0:90%

Table 8.4.3: Napoleon option prices under Bates
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8.5 Inter-Model Risk

Inter-model risk is de�ned as the maximum price di¤erence between all models for a certain
derivative. Here we approximate this risk by studying the maximum price di¤erence between
the Bates model, the Heston model, the variance gamma model, the Black-Scholes model and
the local volatility model. Furthermore, we value the quality of each model for certain properties
and try to give a foundation for our choices. For all products inter-model risk is much greater
than intra-model risk. In most of the cases the variance gamma model and the Black-Scholes
model give very di¤erent results. Both the variance gamma model and the Black Scholes model
cannot �t the Bates implied volatility surface well, which causes the error.

Bates Heston VG BS LV max. di¤.
Cliquet1 5:57 5:59 8:84 4:51 5:52 48:98%
Cliquet2 12:54 12:62 21:02 8:97 11:61 57:33%
Cliquet3 4:82 4:84 7:76 3:88 4:67 50:00%
Cliquet4 27:83 27:99 27:78 26:59 28:29 6:01%
Cliquet5 2:58 2:61 9:85 1:55 2:86 84:26%
Cliquet6 2:29 2:32 14:28 0:70 3:08 95:10%

Table 8.5.1: Cliquet option prices

If we only consider the remaining three models, then the di¤erences are much smaller. Espe-
cially Bates and Heston prices are almost similar. It is interesting to compare the local volatility
model to the Bates model as the calibration error is zero in that case. The maximum di¤erence
for the cliquets is then 26%, for the discrete knock-out barrier it is 54% and for the Napoleon
options it is 39%.

Bates Heston VG BS LV max. di¤.
V � V � V � V � V � V �

UC1 3:21 0:16 3:20 0:16 9:33 0:69 4:82 0:12 7:01 0:57 65:70% 82:61%
UC2 2:67 0:04 2:64 0:04 2:35 �0:32 2:58 �0:05 2:95 0:29 20:34% 209:40%
UC3 3:34 0:18 3:32 0:17 9:30 0:69 3:93 0:06 6:51 0:55 64:30% 91:30%
UC4 2:03 �0:06 1:99 �0:06 1:85 �0:39 1:44 �0:08 1:75 0:19 29:06% 300:72%
UC5 2:48 0:06 2:48 0:06 4:97 �0:09 4:15 0:04 5:05 0:28 50:89% 131:89%
UC6 2:59 0:06 2:58 0:06 4:07 0:02 3:70 0:04 3:81 0:10 36:61% 80:56%
DP1 4:40 �0:08 4:41 �0:07 0:76 �0:03 2:67 �0:08 2:01 �0:22 82:77% 640:33%
DP2 3:45 0:14 3:40 0:13 1:21 �0:09 2:71 0:01 2:61 �0:31 64:93% 318:29%
DP3 3:34 �0:06 3:33 �0:05 0:62 �0:03 2:06 �0:03 1:58 �0:19 81:44% 530:67%
DP4 2:47 0:13 2:44 0:13 0:97 �0:08 1:61 0:06 1:71 �0:23 60:73% 273:69%
DP5 3:85 �0:04 3:85 �0:04 1:58 �0:03 2:50 �0:06 1:92 �0:08 58:96% 176:67%
DP6 4:05 �0:03 4:05 �0:03 1:90 �0:04 3:02 �0:06 2:46 �0:09 53:09% 210:33%

Table 8.5.2: Barrier option prices and delta�s

If we look at the delta�s for the barrier options, we notice huge di¤erences. These di¤erences
are mostly due to inaccurate approximations in the local volatility model, for which the Monte
Carlo method is used. The delta�s are not yet converged and the memory of the computer could
not handle more simulations.
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Bates Heston VG BS LV max. di¤.
Nap1 20:55 20:72 27:60 10:76 12:62 61:01%
Nap2 38:37 38:77 52:59 20:52 23:35 60:98%
Nap3 20:52 20:71 31:43 18:26 20:07 41:90%
Nap4 53:45 53:67 60:86 32:08 35:39 47:29%
Nap5 54:11 54:39 61:62 32:51 35:84 47:24%
Nap6 19:59 19:66 24:69 11:60 13:23 53:02%
Nap7 21:00 21:14 25:08 11:97 13:52 52:27%

Table 8.5.3: Napoleon option prices

The Rabo Top Europe Note and the Rabo Deep Autocall Certi�cate are both not really model
dependent. The price di¤erences are much smaller than for the other products and if we compare
the Bates model to the local volatility model then the price di¤erences are less than 2% for both
products.

Bates Heston VG BS LV max. di¤.
RTEN 1:18 1:18 1:15 1:25 1:16 8%
RDAC 1:00 1:00 1:00 1:01 1:00 1%

Table 8.5.4: Prices of the Rabo Top Europe Note (RTEN) and the Rabo Deep Autocall Cer-
ti�cate (RDAC)

Finally, in Table 8.5.5 we present a valuation of certain properties within each model. Here
we give marks from 5 for very good to 1 for very poor.

Bates Heston VG BS LV
Empirical features 5 4 3 1 2
Implementable 2 3 4 5 5
Fast pricing routines available 3 3 4 5 2
Intuitively understandable 4 4 1 5 3
Calibration 3 4 2 1 5
Hedgeable 2 4 1 4 5

Table 8.5.5: Valuation of model properties

It is well known that jumps are observed in the market, but a more important feature is the
stochastic volatility. Bates contains both, so gets the highest mark for the empirical features.
Since stochastic volatility is a more important feature than the jumps Heston is the runner up
and variance gamma is third. Both Black-Scholes and local volatility do not have stochastic
volatility or jumps. Though, local volatility takes into account the current volatility structure
and therefore scores higher than the Black-Scholes model.
If we consider the implementability of the models we encounter several problems especially

in case of the stochastic volatility models. That is why they have the lowest scores. The mark
for the Bates model is even lower, because implementing a PIDE for this model would be very
di¢ cult. For Heston only a PDE has to be implemented. Black-Scholes and local volatility are
valued best. This is because their implementation is straightforward and easy to understand.
Handling the integral in the variance gamma model provides the lower score for this model.
Black-Scholes is the best model if we look at the applicability of fast pricing routines. All

methods can be implemented in this framework and simulation can be done analytically, which
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saves a lot of time. Variance gamma follows as second. Its only drawback is the integral in the
PIDE approach. Heston and Bates are third, because the two-dimensional PDE is much more
time consuming, simulations cannot be done analytically and callable options in the quadrature
framework become more problematic as well. The local volatility model obtains the lowest grade,
because quadrature techniques are not available at all. Furthermore simulations can also not be
done analytically.
Black-Scholes is by far the most easy and understandable model. As stochastic volatility

and jumps are observed in the market the model can easily be extended to Heston (stochastic
volatility) and Heston with Poisson distributed jumps. Variance gamma is very di¢ cult to
understand, because in this model stochastic time is introduced to obtain jumps. In this way it
is very di¢ cult to give an intuitive meaning to the parameters. The local volatility model looks
a lot like the Black-Scholes model. Though, the local volatility function is an arti�cial function
to make sure that all vanilla options can be priced back.
Of course the local volatility model is the best when considering the calibration process. It

is easy and the calibration error is zero. Bates is the second model to �t the market data best.
This is because it has more free parameters than e.g. Heston. Though, Heston is rated better for
this certain property. The reason for this is that the calibration in Bates model is very di¢ cult.
Many times an unrealistic solution at the boundaries is obtained. Fourth and �fth are variance
gamma and Black-Scholes, respectively. For these models the calibration error becomes quite
large.
Hedging can easily be done within the Black-Scholes and local volatility framework. The mark

of Black-Scholes is lower, because the hedging parameters are less accurate. Heston has accurate
parameters, but an underlying must be hedged with two options. Bates is fourth, because the
�nite amount of jumps cannot be hedged. Variance gamma is �fth, because hedging an in�nite
amount of jumps is even more problematic.



Chapter 9

Conclusions and Recommendation for
Model Risk

In the third part of this thesis we focused on the determination of model risk. In the de�nition
of model risk, we distinguished intra- and inter-model risk. We de�ned intra-model risk for
a certain contract as the maximum price di¤erence within one model, given that the model is
adequately calibrated to the initial market prices. These di¤erences arise due to di¤erent starting
parameters or objective functions in a calibration. Inter model risk is the traditional model risk,
i.e. the maximum price di¤erence over various models, given that the models are adequately
calibrated to the initial market prices.
In Chapter 8.3 we started with the evaluation of intra-model risk. For this purpose we valued

several exotic products for di¤erent sets of parameters in the Bates model (stochastic volatility
with Poisson jumps). These sets of parameters were found by a calibration due to di¤erent
starting parameters and multiple local minima. The model was calibrated to the EUROSTOXX
50 volatility surface. It turned out that intra-model risk is not a signi�cant contribution to the
total risk. Especially when considering realistic sets of parameters, intra-model risk is negligible
when comparing it to inter-model risk.
For inter-model risk we compared several exotic option prices under the Bates model, the

Heston model, the variance gamma model, the Black-Scholes model and Dupire�s local volatility
model. All model were calibrated to Bates model, which was itself calibrated to the EUROSTOXX
50 volatility surface. With these calibrated parameters the variance gamma and Black-Scholes
model gave completely di¤erent option prices. However, both models cannot be calibrated well to
the Bates implied volatility surface, which causes a large calibration error. This makes it di¢ cult
to determine whether these di¤erences are due to model risk or to calibration risk. Improved
calibration algorithms for these models with multiple optimal parameter sets requires further
research. This may give better results for e.g. the variance gamma model.
Therefore, in the present �nancial engineering context it was more interesting to evaluate the

remaining three models: Bates, Heston and local volatility. Heston�s model could �t the Bates
implied volatility surface very well. The calibration error was small and the exotic option prices
were almost similar. For the local volatility model the price di¤erences were more signi�cant.
The local volatility model is, by de�nition, calibrated perfectly, i.e. the calibration error is zero.
This means that the di¤erences are only due to the model�s characteristics. The discrete knock-
out barrier option is a model dependent product. Over all considered barriers the maximum
price di¤erence between Bates and local volatility was 54%. Other model dependent products
are the cliquet and the Napoleon option. Though, price di¤erences are less signi�cant. Over
all considered cliquets and Napoleon options the maximum price di¤erences between Bates and
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local volatility were 26% and 39%, respectively.
Finally, we conclude that the Heston model is the best model for pricing exotic options. This

model contains the most important empirical feature, stochastic volatility. The Bates model also
contains this feature and in addition it has jumps, which makes to model even more realistic,
but huge drawbacks are that the calibration process is more di¢ cult and the jumps cannot be
hedged. In case of Heston a perfect hedge can be formed and the calibration process is easier. The
remaining model properties are less important and approximately similar for Bates and Heston.
The remaining models gave large calibration errors (variance gamma and Black-Scholes) or did
not have the important empirical features (Black-Scholes and local volatility).

We end this chapter with some suggestions for further research:

� In this thesis we used a heuristic calibration technique. We suggest to improve the calibra-
tion process by using more advanced optimization techniques, e.g. genetic algorithms or
Krieging. We also suggest to get a grip on the optimization techniques used in standard
programs like Microsoft Excel. These techniques seem to �nd a local minima, but we do
not have a clue on how these methods function.

� Many di¤erent payo¤s exist and probably many of those can be calculated with quadrature
techniques. It would be interesting the study the applicability of quadrature techniques to
more kinds of exotic payo¤s. And it would be interesting to examine the model risk for
those payo¤s.

� We noticed that the variance gamma model could not be calibrated well to the Bates implied
volatility surface. This may be due to the dynamics, but it has also less free parameters
than the Bates model. Another purely jump model is the CGMY model, which has more
free parameters than the variance gamma model. We suggest to consider more di¤erent
models, e.g. the CGMY model, to obtain a better view on which features are important in
a model.
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Appendix A

Derivation of the Local Volatility
Function

In this section we derive the local volatility function. Let us start with the representation of two
important results in �nance, which are necessary for the derivation.

Theorem 1 (Feynman-Kac) Assume that F is a solution to the boundary value problem

@F

@t
+ 1

2� (x; t)
2 @

2F

@x2
+ � (x; t)

@F

@x
� rF = 0; (A.0.1)

F (x; T ) = g (xT ) . (A.0.2)

Assume furthermore that the process � (x (t) ; t) @F@x is in L2, with x de�ned below, then F has
the representation as follows:

F (x; t) = e�r(T�t)Et [g (xT )] ; (A.0.3)

where x satis�es the SDE

dx (s) = � (x (s) ; s) ds+ � (x (s) ; s) dW (s) ; (A.0.4)

x (t) = x: (A.0.5)

Proof. For any twice di¤erentiable function � Itô�s lemma gives

d (� (x (s) ; s)) =

�
@�

@s
+ � (x (s) ; s)

@�

@x
+
1

2
� (x (s) ; s)

2 @
2�

@x2

�
ds+ � (x (s) ; s)

@�

@x
dW (s) :

When choosing � = er(T�s)F (x (s) ; s), with F (x (s) ; s) the solution of (A.0.1), we get

d
�
er(T�s)F (x (s) ; s)

�
= � (x (s) ; s) er(T�s)

@F

@x
dW (s) :

Integrating and taking the expected value proves the theorem:

Et

"
TR
t

d
�
er(T�s)F (x (s) ; s)

�#
= Et

"
TR
t

� (x (s) ; s) er(T�s)
@F

@x
dW (s)

#
;

Et
h
F (x (T ) ; T )� er(T�t)F (x (t) ; t)

i
= 0;

Et [F (x (T ) ; T )]� er(T�t)Et [F (x (t) ; t)] = 0;

Et [F (x (t) ; t)] = e�r(T�t)Et [g (xT )] ;
F (x (t) ; t) = e�r(T�t)Et [g (xT )] :
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Theorem 2 (Kolmogorov forward equation) Assume that x is a solution to the equation

dx (t) = � (x (t) ; t) dt+ � (x (t) ; t) dW (t) ; (A.0.6)

where � (x (t) ; t) and � (x (t) ; t) are bounded functions. Assume further that x has a transition
density p (x (s) ; s;x (t) ; t). Then p satis�es the Kolmogorov forward equation

@p

@t
= 1

2

@2

@x2

h
� (x (t) ; t)

2
p
i
� @

@x
[� (x (t) ; t) p] , (x; t) 2 R� (0; T ) ; (A.0.7)

p (x (s) ; s;x (t) ; t)! �x(s), as t # s, (A.0.8)

where �y is the Dirac delta function.

Proof. Consider a twice di¤erentiable function h (y), with the condition that h (y) = h0 (y) = 0
for y � 0 and lim

y!1
h (y) = lim

y!1
h0 (y) = 0. Itô�s lemma holds for any twice di¤erentiable function.

Therefore we have

dh (x (t)) =

�
� (x (t) ; t)

@h

@x
+ 1

2� (x (t) ; t)
2 @

2h

@x2

�
dt+ � (x (t) ; t)

@h

@x
dW (t) :

So,

h (x (t)) = h (x (s)) +
tR
s

�
� (x (u) ; u)

@h

@x
+ 1

2� (x (u) ; u)
2 @

2h

@x2

�
du+

tR
s

� (x (u) ; u)
@h

@x
dW (u) ;

and

Es [h (x (t))] = h (x (s)) + Es
�
tR
s

�
� (x (u) ; u)

@h

@x
+ 1

2� (x (u) ; u)
2 @

2h

@x2

�
du

�
;

or equivalently,
1R
0

h (x (t)) pdx (t) = h (x (s)) +
tR
s

1R
0

� (x (u) ; u)
@h

@x
pdx (u) du+ 1

2

tR
s

1R
0

� (x (u) ; u)
2 @

2h

@x2
pdx (u) du:

Di¤erentiate with respect to t to get
1R
0

h (x (t))
@p

@t
dx (t) =

1R
0

� (x (t) ; t)
@h

@x
pdx (t) + 1

2
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0

� (x (t) ; t)
2 @
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pdx (t) :

Integrating by parts yields
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0

� (x (t) ; t)
@h

@x
pdx (t) = [h (x (t))� (x (t) ; t) p]

1
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h (x (t))
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and
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=
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h (x (t))
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� (x (t) ; t)
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i�1
x(t)=0| {z }

=0

+
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0

h (x (t))
@2

@x2

h
� (x (t) ; t)

2
p
i
dx (t) :
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Therefore,

1R
0

h (x (t))
@p

@t
dx (t) = �

1R
0

h (x (t))
@

@x
[� (x (t) ; t) p] dx (t)+ 1
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h (x (t))
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p
i
dx (t) ;

or equivalently,
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h (x (t))

�
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@t
+
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[� (x (t) ; t) p]� 1

2

@2

@x2

h
� (x (t) ; t)

2
p
i�
dx (t) = 0:

The last equation holds for every function h that satis�es the conditions described at the begin-
ning of the proof. It implies that
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@t
+
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@x
[� (x (t) ; t) p]� 1

2

@2

@x2

h
� (x (t) ; t)

2
p
i
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Recall that the PDE in the local volatility model reads, see (1.5.3),

@V

@�
= 1

2� (x; �)
2 @

2V

@x2
+
�
r � 1

2� (x; �)
2
� @V
@x

� rV: (A.0.9)

where � = T � t. Denote u (x; t) = V (x; �), then we have

@u

@t
+ 1

2� (x; t)
2 @

2u

@x2
+
�
r � 1

2� (x; t)
2
� @u
@x

� ru = 0; (A.0.10)

with the �nal condition u (x; T ) = g (xT ). According to the Feynman-Kac theorem the option
price u (x; t) can be calculated as

u (x; t) = e�r(T�t)
1R
�1

g (xT ) p (x; t;xT ; T ) dxT : (A.0.11)

In particular, consider the present value of a call option. We have that

C (x; k; t) = e�r(T�t)
1R
k

�
exT � ek

�
p (x; t;xT ; T ) dxT ; (A.0.12)

where k = logK. We would like to di¤erentiate equation (A.0.12). For this we use the following
lemma.

Lemma 3 Consider a function f (x; k), which is continuous in x and di¤erentiable in k. Fur-

thermore, assume that
1R
k

f (x; k) dx <1. Then we have:
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@k
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k

f (x; k) dx =
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k

@f (x; k)

@k
dx� f (k; k) : (A.0.13)
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Proof.

@

@k
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f (x; k) dx = lim
�!0

1R
k+�

f (x; k +�) dx�
1R
k

f (x; k) dx

�

= lim
�!0

1R
k+�

f (x; k +�)� f (x; k) dx�
k+�R
k

f (x; k) dx

�

= lim
�!0

1R
k+�

f (x; k +�)� f (x; k) dx

�
� lim
�!0

k+�R
k

f (x; k) dx

�
:

Since f (x; k) is continuous in x there exists a function F (x; k) such that: @F
@x (x; k) = f (x; k).

Therefore,
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where @F
@k (k; k) is the derivative to the second argument and

@F
@x (k; k) the derivative to the �rst

argument.
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dx� f (k; k)
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dx� f (k; k) :

With this result we can easily calculate the �rst and second derivatives to k of (A.0.12):
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C (x; k; t) = �e�r(T�t)
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k

ekp (x; t;xT ; T ) dxT ; (A.0.14)
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=
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C (x; k; t) + e�r(T�t)ekp (x; t; k; T ) (A.0.15)

Now, from Theorem 2 we know that this transition density must satisfy the Kolmogorov forward
equation. Thus p (x (s) ; s;x (t) ; t) solves
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We multiply this by e�r(T�t)
�
exT � ek

�+
and integrate the comple expression, giving
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The �rst term can be integrated by parts to give
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The second term in (A.0.17) can be integrated by parts to give
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The last term in equation (A.0.17) can be integrated directly giving
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(A.0.20)

So, when substituting (A.0.18), (A.0.19) and (A.0.20) into (A.0.17) we obtain
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1
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Equations (A.0.12), (A.0.14) and (A.0.15) can be used to make a substitution giving
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Re-arranging this gives the local volatility function in terms of k and T :
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After substitution of x for k and t for T , we �nd the appropriate local volatility function:
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Derivation of the CCF of Heston

The derivation of the characteristic function of the logarithm of the stock given the initial variance
and given the variance at maturity is presented is this section. For this derivation we write the
dynamics of the Heston model in a di¤erent manner:

dx (t) =

�
r � 1

2
v (t)

�
dt+ �

p
v (t)dW1 (t) +

p
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p
v (t)dW2 (t) ; (B.0.1)

dv (t) = �� (v (t)� v) dt+ �
p
v (t)dW1 (t) : (B.0.2)

From (B.0.1) and (B.0.2) it follows that
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v (s)dW1 (s) = vT � v0 � �v (T � t0) + �

TR
t0

v (s) ds (B.0.5)

and substitution of (B.0.5) into (B.0.3) gives
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Notice that
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v (s)dW2 (s) is normally distributed with zero expectation and variance equal

to
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v (s) ds. Denote by Z the standard normal cumulative distribution function, then the
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characteristic function bp (!) conditional on v0 and vT reads
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where V :=
TR
t0

v (s) ds. Using the tower property for expectations we obtain
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with � (a) the characteristic function of
TR
t0

v (s) ds given v0 and given vT . In Broadie and Kaya

(2004) it has been shown that
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where 
 (a) =
p
�2 � 2�2ia, d = 4v�=�2 and I� (x) is the modi�ed Bessel function of the �rst

kind.



Appendix C

Rabo Top Europe Note

Underlying index Dow Jones EUROSTOXX 50 Index
Fixing Date 9 June 2006
Launch Date 12 June 2006
Issue/ Payment Date 16 June 2006
Final Valuation Date 9 June 2014
Maturity Date 16 June 2014
Notional EUR 100
Barrier Level 60% of the closing value of the Underlying Index on the

Fixing Date
Redemption per Note in Cash On the Maturity Date there are two possible redemption

scenarios:
1) If Indexfinal � H, the Notes will be redeemed
according to the following formula: N Indexmax

Indexinit

2) If Indexfinal < H, the Notes will be redeemed
according to the following formula: N Indexfinal

Indexinit

where:
- Indexmax: The highest recorded closing value of the
Underlying Index on any of the Monthly Observation Dates
- Indexinit: The closing value of the Underlying Index on the
Fixing Date
- Indexfinal: The closing value of the Underlying Index on the
Final Valuation Date
- N : The Notional Amount
- H: The Barrier Level

Monthly Observation Dates 9th of each Month, with the �rst on the Fixing Date and the
last on the Final Valuation Date: 97 Observations

If a Valuation Date is not a Business Day, the next
Business Day will be the Valuation Date

Table C.0.1: Rabo Top Europe Note
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Appendix D

Rabo Deep Autocall Certi�cate

Underlying index Dow Jones EUROSTOXX 50 Index
Fixing Date/ Payment Date 6 June 2006/ 13 June 2006
Final Valuation Date 9 July 2012
Maturity Date 11 July 2012
Notional EUR 100
Early Redemption in % per Certi�cates will be redeemed early:
certi�cate At 108:45% on DATE1 if INDEX1 � 90% of the INDEXinit

At 116:90% on DATE2 if INDEX2 � 90% of the INDEXinit

At 125:35% on DATE3 if INDEX3 � 90% of the INDEXinit

At 133:80% on DATE4 if INDEX4 � 90% of the INDEXinit

At 142:25% on DATE5 if INDEX5 � 90% of the INDEXinit

where:
- DATE1: 20 June 2007
- DATE2: 18 June 2008
- DATE3: 24 June 2009
- DATE4: 30 June 2010
- DATE5: 6 July 2011
- INDEX1: The closing price of the index on 18 June 2007
- INDEX2: The closing price of the index on 16 June 2008
- INDEX3: The closing price of the index on 22 June 2009
- INDEX4: The closing price of the index on 28 June 2010
- INDEX5: The closing price of the index on 4 July 2011

Final Redemption in % per If the certi�cate does not get called early, the Final
certi�cate Redemption will be as follows:

1) If P � 60%: Redemption is 150:70%
2) If P < 60%: Redemption is P
where:
- P = INDEXfinal

INDEXinitial

- INDEXfinal: The closing price of the Underlying on the Final
Valuation Date
- INDEXinit: The closing price of the Index on the Fixing Date

Table D.0.1: Rabo Deep Autocall Certi�cate
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