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ALGEBRAIC MULTIGRID SOLVERS FOR COMPLEX-VALUED
MATRICES∗

SCOTT P. MACLACHLAN†AND CORNELIS W. OOSTERLEE†

Abstract. In the mathematical modeling of real-life applications, systems of equations with
complex coefficients often arise. While many techniques of numerical linear algebra, e.g., Krylov-
subspace methods, extend directly to the case of complex-valued matrices, some of the most effective
preconditioning techniques and linear solvers are limited to the real-valued case. Here, we consider
the extension of the popular algebraic multigrid method to such complex-valued systems. The choices
for this generalization are motivated by classical multigrid considerations, evaluated with the tools
of Local Fourier Analysis, and verified on a selection of problems related to real-life applications.

1. Introduction. Many real-world physical systems may be modeled mathe-
matically using the tools of partial differential equations. For many such models, the
degrees of freedom are naturally real-valued, for example, displacements in an elas-
tic body or velocities of a fluid. For some models, however, complex-valued degrees
of freedom also arise naturally, as in frequency-domain modeling of electro-magnetic
waves or other phenomena. Because of the many interesting real-valued models, devel-
opment of the numerical linear algebra tools needed for the solution of discrete linear
systems has focused on the real-valued case. While some of these techniques may
be easily extended to the complex-valued case (e.g., GMRES and BiCGStab for gen-
eral matrices, or conjugate gradients for complex Hermitian matrices), many require
special consideration to generalize the appropriate principles to the complex-valued
case. Here, we consider the generalization of the algebraic multigrid method [6, 21],
an effective solver (or preconditioner) for many linear systems that arise from the
discretization of elliptic or parabolic differential equations.

The complex-valued linear systems considered here arise from different physical
applications, for example, in modeling electromagnetic waves. Under the assumption
of time-harmonic variation in the material parameters, Maxwell’s equations may be
reduced into a scalar Helmholtz equation with a complex shift (see, e.g., [15]). Sim-
ilarly, when the acoustic (or elastic) wave equation is considered in the frequency
domain, Sommerfeld boundary conditions and attenuation both introduce a complex
component in the resulting Helmholtz equation; multigrid solvers for these (indefinite)
matrices were considered in [14]. In the field of lattice quantum chromodynamics
(QCD), a model of the interactions of fermions (or quarks) on a lattice is given in
terms of a complex-valued gauge field that directly leads to a complex-valued linear
system of equations [7, 22].

Multigrid methods are a family of techniques known to provide optimal (or near-
optimal) solution of the linear systems that arise in many real-world applications.
Through the careful coupling of a relaxation scheme (to reduce high-frequency errors)
and a coarse-grid correction process (to reduce low-frequency errors), geometric multi-
grid techniques are among the most efficient solvers available for models with slowly
varying coefficients [24]. For problems with significant heterogeneity, either in the co-
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efficients of the continuous model or the geometry on which it is discretized, algebraic
multigrid (AMG) techniques often perform as well as geometric techniques do for ho-
mogeneous models. Although first proposed in the 1980’s [6,21], there has been much
recent interest in AMG because of its potential to handle large-scale models with real-
istic material properties and geometries, particularly in parallel environments [7, 15].

While there has been much development of AMG for real-valued matrices, less
investigation has occurred for complex-valued matrices. Lahaye et al. consider AMG
for the Helmholtz equation with a complex shift and apply AMG to the real part of
the matrix in order to define the coarse grids and interpolation operators [15]. For
these models, the dominant part of the operator (corresponding to the second-order
derivative terms) is entirely real, while the imaginary part represents only a mass
matrix term, and, so, coarsening the complex-valued problem based on its real part
is quite effective. Generalizing this approach, Reitzinger et al. propose using any
real-valued auxiliary matrix to define the AMG hierarchy [19]. Such an approach is
again appropriate when it is known that the dominant part of the operator may be
represented by a real matrix. Both of these approaches, however, require knowing
how to split the given matrix in such a way as to define a real-valued auxiliary prob-
lem. Such an approach is, then, less general than the AMG approach for real-valued
systems, which is based only on the entries in the linear system.

An alternate approach is to consider the equivalent real form of the complex
system, splitting A ∈ Cn×n into its real and complex parts, A = A(R) + ıA(I), and
rewriting Au = b as [

A(R) −A(I)

A(I) A(R)

] [
u(R)

u(I)

]
=
[

b(R)

b(I)

]
.

Day and Heroux consider several possible orderings of the equivalent real form, and
show that ILU preconditioners applied to the equivalent real forms may be as effective
as those applied to the complex formulation [12]. Adams uses an approach based on
applying smoothed aggregation multigrid [26] to the equivalent real form [1]; such an
approach was first considered in a two-level setting in [25]. The smoothed aggregation
framework bases the multigrid interpolation operator on a specified set of so-called
rigid body modes for the stiffness matrix (i.e., the dominant differential operator)
and, so, these modes may be easily extended to match those of the equivalent real
form. The adaptive smoothed aggregation multigrid method [9] is also applied to the
equivalent real form of a system from QCD in [7].

While it is conceptually easy to apply an algebraic preconditioner, such as AMG,
to the equivalent real form of a complex matrix, the additional costs may be significant.
Matrix-vector multiplication with the equivalent real form can be as much as twice as
expensive as with the complex form. Furthermore, the AMG coarsening stage would
also be applied to a matrix of twice the dimension, requiring extra setup operations.
Instead, we consider the application of AMG directly to the complex system.

In Section 2, we give an introduction into the classical algebraic multigrid method,
as it applies to symmetric real-valued matrices. Then, in Section 3, we consider
the extension of this algorithm to complex-valued matrices. These options are then
analyzed using Local Fourier Analysis in Section 4. Finally, based on the choices
recommended by the analysis in Sections 3 and 4, a complex AMG algorithm is
tested for several realistic models in Section 5.

2. AMG for symmetric real-valued matrices. Just as in all multigrid meth-
ods, the key to achieving efficiency in algebraic multigrid is an effective partitioning
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of the space of errors. In geometric multigrid, this partitioning is based on the ideas
of smooth and oscillatory errors; those that appear smooth (relative to the underlying
grid) are given to the coarse grid for resolution, while oscillatory errors must be ap-
propriately attenuated by the chosen relaxation scheme. In algebraic multigrid, these
roles are reversed; the subspace of errors that are effectively reduced by relaxation is
taken to be fixed, and all complementary errors (the so-called algebraically smooth
errors) must be reduced by an appropriate coarse-grid correction.

An important step in designing an effective AMG approach is, then, to character-
ize the errors that are slow to be attenuated by the chosen relaxation process. AMG
was originally proposed as an extension of the successful geometric multigrid meth-
ods for finite-difference discretizations of Poisson’s equation on irregular meshes [6];
as such, it is easily motivated by considering the performance of a simple relaxation
scheme, such as the Jacobi iteration, for the class of M-matrices. A positive-definite
(real-valued) matrix, A, is said to be an M-matrix if ai,j ≤ 0 for i 6= j. Further-
more, for an M-matrix, A, unknown i is said to strongly depend on unknown j if
−aij ≥ θmaxk 6=i{−aik} for some θ ∈ (0, 1]. Following these definitions, Jacobi and
Gauss-Seidel relaxation can be shown to be slow to reduce errors that vary slowly
between strongly connected nodes in the M-matrix, A, and that yield small residuals,
b−Au, compared to the errors in u [4].

Consider, then, defining interpolation to a fine-grid node, i, for such an alge-
braically smooth error. Using the small-residual property, localized to node i, we
write

(Ae)i =
∑
j

aijej = aiiei +
∑
j∈Fi

aijej +
∑
k∈Ci

aikek ≈ 0, (2.1)

where adj(i) = {j : aij 6= 0} is split into the two sets, Ci and Fi, where Ci is the set
of all coarse-grid points on which i strongly depends and Fi = adj(i) \ Ci. Rewriting
(2.1) as

aiiei = −
∑
j∈Fi

aijej −
∑
k∈Ci

aikek, (2.2)

so that, if the sum over Fi were not present, (2.2) could be used to directly define an
interpolation stencil for node i in terms of its coarse-grid neighbors, k ∈ Ci. Thus,
the task of defining interpolation is one of eliminating the connections to j ∈ Fi from
Equation (2.2).

If aij is small, relative to other coefficients in row i of A, then ej does not con-
tribute much to this balance. To define “small”, we return to the definition of strong
connections; let

Si =
{
j : −aij ≥ θmax

k 6=i
{−aik}

}
.

Rather than completely removing connections to Fwi = Fi \Si from the balance, they
are added to the diagonal, by making the approximation that ej ≈ ei. Note that this
is a relatively safe choice; if point j has been wrongly classified as a weak connection,
then ej ≈ ei, since algebraically smooth errors vary slowly along strong connections.
Thus, defining F si = Fi ∩ Si and Fwi = Fi \ F si , (2.2) is transformed intoaii +

∑
j∈Fw

i

aij

 ei = −
∑
j∈F s

i

aijej −
∑
k∈Ci

aikek. (2.3)
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In the AMG coarse-grid selection process, each strongly connected fine-grid neigh-
bor, j, of point i, is ensured to also be strongly connected to at least one point in Ci.
Then, the value of ej in Equation (2.3) may be approximated by a weighted average of
j’s strongly connected neighbors in Ci. However, since a weak connection between j
and k ∈ Ci is reflected by a small coefficient, ajk, it is safe to take a simpler approach
and approximate ej by a weighted average of all of its neighbors in Ci,

ej ≈

(∑
k∈Ci

ajkek

)
/

(∑
k∈Ci

ajk

)
. (2.4)

Substituting this into Equation (2.3), we arrive at the AMG interpolation formula for
the fine-grid point, i, as

ei = −
∑
k∈Ci

aik +
∑
j∈F s

i

aijajkP
l∈Ci

ajl

aii +
∑
j∈Fw

i
aij

 ek. (2.5)

With this definition of interpolation, the goals of the AMG coarse-grid selection
process are clear. Each fine-grid point, i, should be strongly connected to (at least)
one coarse-grid point, k, in order to take advantage of the property that ei ≈ ek.
Further, the requirement that each strongly connected fine-grid neighbor of i be itself
strongly connected to some strongly connected coarse-grid neighbor of i must also
be enforced. Finally, as with all multigrid schemes, there is the desire to make the
coarse grid as small as possible, such that a good correction to the troublesome error
components on the fine grid is still available. An initial coarse grid is selected as a
maximal independent subset of the graph of strong connections [21]; thus, each fine-
grid point must be strongly connected to at least one coarse-grid point, but the coarse
set does not contain any pairs of strongly connected nodes. Then, a second pass of
coarsening is performed, adding points to the tentative coarse grid from the first pass,
ensuring that the necessary strong connections exist.

Finally, now that we have specified how to choose a coarse grid and interpolation
from it, it remains to be seen how to restrict residuals to that grid, and how to define
an operator on the coarse grid. Both of these questions are answered by making
use of the fact that the symmetric and positive-definite matrix, A, defines an inner-
product and norm. Defining the A-inner product as 〈u,v〉A = vTAu and the A-norm
as ‖u‖2A = uTAu, the coarse-grid correction, Pec that minimizes the A-norm of the
corrected error satisfies PTAPec = PT (b−Ax). Thus, consistent with this variational
principle, restriction is taken to be PT , where P is the AMG interpolation operator,
and the coarse-grid operator is chosen to be PTAP .

3. AMG for complex-valued matrices. Here, we consider the needed gener-
alizations of the AMG components in the extension to the complex-valued case. In
making these choices, we would like to design an algorithm that is consistent with
the algorithm from in Section 2 for the case of a real-valued symmetric operator, and
that makes sense for the special cases of a complex-valued symmetric or Hermitian
operator. In this section, we analyze these choices from an operator point of view.

3.1. Relaxation. In generalizing the AMG algorithm to complex-valued ma-
trices, we must ensure that relaxation performs as expected. In particular, that
(weighted) Jacobi and Gauss-Seidel relaxation are convergent for a reasonable class
of problems, and that they act as appropriate smoothers. Smoothing properties are
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discussed in detail in Section 4. Just as classical AMG was originally proposed for M-
matrices, for which the convergence of Jacobi and Gauss-Seidel is well understood [29,
§4.5], we consider here H-matrices, the complex generalization of M-matrices.

Definition 3.1. Let A ∈ Cn×n be such that its comparison matrix,

(M(A))ij =
{
|aii| if i = j
−|aij | if i 6= j

,

is an M-matrix. Then, A is called an H-matrix.
For this class of matrices, the convergence of both weighted Jacobi and Gauss-

Seidel relaxation is given in [27].
Theorem 3.2 (Theorem 1 from [27]). For any nonsingular H-matrix, A ∈ Cn×n,

let D be the diagonal of A and −L be the strictly lower triangular part of A (so that
A − (D − L) = U is strictly upper triangular). Taking Jω(A) = I − ωD−1A to be
the error propagation operator for the weighted Jacobi iteration with weight ω, and
Gω(A) = I − ω(D − ωL)−1A to be the error propagation operator for the weighted
Gauss-Seidel (SOR) iteration with weight ω,

• ρ(J1(A)) ≤ ρ(J1(M(A))) < 1,
• for any ω ∈

(
0, 2

1+ρ(J1(A))

)
, ρ(Jω(A)) ≤ ωρ(J1(A)) + |1− ω| < 1, and

• for any ω ∈
(
0, 2

1+ρ(J1(M(A)))

)
, ρ(Gω(A)) ≤ ωρ(J1(A)) + |1− ω| < 1,

where ρ(B) denotes the spectral radius of matrix B.
Note, in particular, that the first point of the theorem, convergence of the un-

weighted Jacobi iteration for both A and M(A), guarantees convergence of the under-
relaxed weighted Jacobi iteration (ω ∈ (0, 1)) as is often used in multigrid. Similarly,
the convergence of the (unweighted) Gauss-Seidel iteration is also guaranteed.

Obviously, the class of H-matrices is not the only class of complex-valued matrices
for which Jacobi and Gauss-Seidel are convergent. However, as we are primarily
interested in the performance of these schemes as smoothers, we would like to know
more about the spectra of the Jacobi and Gauss-Seidel iteration matrices than simple
bounds like those in Theorem 3.2 can give. As these spectra depend strongly on that
of A, we will use Local Fourier Analysis to gain more insight into smoothing in Section
4.

3.2. Coarse-Grid Correction. The definition of a good AMG coarse-grid cor-
rection scheme depends, of course, on the properties of the relaxation that it comple-
ments. While these properties are highly problem dependent, there are still certain
broad principles that can guide AMG development. Central among these is that er-
rors that are slow to be reduced by relaxation must lie in (or near to) the range of
interpolation, and that their residuals must be accurately restricted to the coarse grid.
Here, we consider the components of the coarse-grid correction process independently
and the principles that guide their selection.

Interpolation. Within the multigrid coarse-grid correction process, fine-grid er-
rors are updated by the calculation,

enew = (I − PB−1
c RA)eold,

where B−1
c represents the approximate (or exact) inversion of the true coarse-grid

operator, Ac. Such a correction only affects the parts of eold that are in the range of
P . Thus, the first principle for AMG coarse-grid correction does not change from the
real-valued case; algebraically smooth errors must be in the range of P .
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To accomplish this, standard AMG principles should be applied. For Hermitian
and positive-definite matrices, the small-residual assumption (residuals of errors that
are slow to be reduced by relaxation are small) again holds for Jacobi and Gauss-
Seidel (see, for instance [21, §4.4]). Similarly, for Hermitian and positive-definite
H-matrices, errors that are slow to be reduced by these relaxation schemes must
vary slowly over connections where aij is large within row i of A. Thus, with a
similar definition of strong connections, we can define interpolation for complex-valued
matrices using Equation (2.5), just as in the real-valued case. As for real-valued
matrices, these requirements amount to assumptions on the class of matrices to which
the complex AMG algorithm will be applied. If these assumptions are violated by
the given problem, alternate techniques (such as the adaptive AMG algorithm [10])
should be used to define interpolation, see Section 5.3.

Here, we use a simple extension of the classical AMG strong-connection measure,
Si = {j : |aij | ≥ θmaxk 6=i |aik|}. This choice is justifiable for H-matrices, A, where∑
j aij ≈ 0 for each i, similarly to the real case, where it is justifiable for M-matrices

that satisfy the same conditions [21]. Under this assumption, it must also be the
case that algebraically smooth errors vary slowly between strongly connected points.
Once this definition is made, AMG coarse grids may be selected using a maximal
independent set algorithm, as in classical AMG [21]. Choice of strong connections,
and AMG coarsening in general, is still an area of active research [5, 8, 17].

It is interesting to note the relationship between multigrid approaches for non-
symmetric real matrices and the equivalent real form of a complex matrix. Writing
A ∈ Cn×n as A = A(R) + ıA(C) for A(R), A(C) ∈ Rn×n, the complex system, Au = b,
can be expressed in terms of its real parts as[

A(R) −A(I)

A(I) A(R)

] [
u(R)

u(I)

]
=
[

b(R)

b(I)

]
,

where u = u(R) + ıu(C) and b = b(R) + ıb(C).
Dendy [13] suggests that for (non-symmetric) matrices, interpolation should be

built based on the symmetric part of the operator. This is motivated by considering
convection-diffusion problems, where numerical experiments show that bilinear inter-
polation works well (when the second-order term is the constant-coefficient Laplacian),
even when the convective term dominates. For a Hermitian operator, the equivalent
real form is symmetric (as A(C)

ij = −A(C)
ji ) and, so, applying this principle results

in no loss of generality. For a complex symmetric operator, on the other hand, the
symmetric part of the equivalent real form is a block-diagonal matrix, and this prin-
ciple suggests determining information based only on the real-part of A. Indeed, this
approach has been investigated for complex matrices several times, cf. [15, 19].

We could consider generalizing this choice here, for example, by using the Her-
mitian part of the operator (which is the real part of a complex-symmetric matrix);
however, such a choice would prejudice our algorithm towards the case where the dif-
ferentially dominant operator occurs in the real part. In particular, consider a matrix
arising in the discretization of −∆u + ık2u = f . Multiplying this equation by the
complex unity, ı, gives −k2u − ı∆u = ıf . Since the discrete Laplacian is symmetric
(and not Hermitian), the Hermitian part of this operator corresponds only to the
mass matrix and any information about the diffusion term would be lost in interpo-
lation. In principle, it seems wise to base interpolation on the differentially dominant
term, if this is easily identified and extracted from the rest of the operator, but such a
choice would not be consistent with the algebraic setting of the multigrid operator. In
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Sections 4 and 5, we investigate these choices more thoroughly; however, because of
examples such as that above, it appears that using only part of the matrix to generate
interpolation is too restrictive to be applicable in all interesting cases as a black-box
solver.

Restriction. Choosing restriction operators for the non-Hermitian definite case
is more complicated, as no variational principle may be applied. One consideration
for this choice is that the result of applying the rule to Hermitian-definite operators
reduces to a variational approach when appropriate. Here, we propose several tech-
niques for choosing restriction operators, motivated primarily by AMG considerations.

A common assumption in algebraic multigrid is that the residual vector after
relaxation is small (close to zero), particularly at gridpoints associated only with
the fine grid (the so-called F -points). This arises from a reduction-based multigrid
(MGR) viewpoint [16, 20]. In MGR (or AMGr), relaxation is assumed to have an
error propagation operator of the form I −

[
A−1

ff 0

0 0

]
A. After such a relaxation, the

residual is exactly zero at the F -points. Furthermore, if the same scheme is used for
post-relaxation, the role of coarse-grid correction is to approximate the true solution
at the C-points only, as the F -points will be resolved accordingly. While this choice
is rarely used, it is typical in AMG algorithms to order the pre-relaxation so that
F -points are relaxed last (although not exactly), to ensure that residuals there are as
small as possible.

As the role of restriction is to transfer the residual from the fine-grid to the
coarse grid, this reduction-based analysis suggests the choice of simple injection for
restriction. If the residual is zero at the F -points, then no effort should be expended
to transfer these zero values to the coarse grid. Making this choice, however, is based
on a rather extreme assumption, that residuals at F -points are so small that they can
be neglected entirely in the coarse-grid problem. In practice, while small, capturing
the residual correctly for the coarse-grid problem is important in achieving acceptable
multigrid efficiency. Furthermore, the choice of restriction as injection is rarely used in
AMG, particularly in the cases of Hermitian-definite or complex-symmetric operators,
where the use of injection in the Galerkin product may lead to poor convergence.

Dendy suggests that restriction should be determined as the adjoint of interpo-
lation for the adjoint of A [13]. This idea may be justified by considering a two-level
(non-symmetric) multigrid iteration with error-propagation operator,

T = (I −M−1
2 A)(I − PB−1

c RA)(I −M−1
1 A), (3.1)

where M1 and M2 represent the approximate inverses used in the (stationary) pre-
and post-relaxation steps, and Bc represents the action of the coarse-grid solve process
for some coarse-grid matrix, Ac. For a matrix, A, that is not Hermitian definite, the
usual variational conditions (that result in non-zero restriction weighting from the
F -points) provide explicit guidance. In the general case, A itself cannot be used to
define an appropriate norm, but the normal form, A?A, does. Considering, then, the
A?A inner product and norm, we see that the adjoint of T in the A?A inner product
is (A?A)−1T ?(A?A) and, so,

‖T‖A?A = ‖(A?A)−1T ?(A?A)‖A?A.
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Following Equation (3.1), we can write

T ? =
(
I −A?(M−1

1 )
?
)(

I −A?R?(B−1
c )

?
P ?
)(

I −A?(M−1
2 )

?
)

= A?
(
I − (M−1

1 )
?
A?
)(

I −R?(B−1
c )

?
P ?A?

)(
I − (M−1

2 )
?
A?
)
A?−1

= A?T (A?)−1,

where T takes the form of a two-grid cycle on A?, with the roles of R and P inter-
changed with their Hermitian transposes. Putting these together, we have that

‖T‖2A?A = max
v

〈
(A?A)−1T ?(A?A)v, T ?(A?A)v

〉
〈(A?A)v,v〉

= max
v

〈
((A?)−1T ?A?)Av, ((A?)−1T ?A?)Av

〉
〈Av, Av〉

= max
w

〈Tw, Tw〉
〈w,w〉

= ‖T‖2.

Thus, the multigrid cycle given by T can be an effective cycle for A (measured in
the A?A-norm) if and only if T is an effective cycle for A? (measured in the `2-norm).
But, to design an effective cycle for A?, we should apply the same principles to the
choice of interpolation for this cycle (now R?) as we would for the cycle for A. In
particular, the principle that R? accurately represents the algebraically smooth errors
of A? should be enforced. In other words, R? should be constructed as we would
construct AMG interpolation for A?; R should be the adjoint of interpolation for the
adjoint of A, just as was proposed for the real case in [13].

When A is also symmetric or Hermitian, this argument is consistent with typical
multigrid approaches. If A is Hermitian, then A? = A, and this approach says that
restriction should be the adjoint of AMG interpolation for A, R = P ?. This is,
of course, consistent with the variational conditions that typically guide multigrid
development in the Hermitian-definite case. For complex-symmetric A = A(R)+ıA(C),
A? = A(R)− ıA(C). If the rule for creating the AMG-style interpolation preserves this
conjugation, then P ?(A?) = PT (A). In other words, the choice of R(A) = P ?(A?)
results in R(A) = PT (A) if A is complex symmetric and if

<
(
P (A(R) + ıA(C))

)
= <

(
P (A(R) − ıA(C))

)
and =

(
P (A(R) + ıA(C))

)
= −=

(
P (A(R) − ıA(C))

)
,

where <(M) denotes the matrix whose (i, j)th entry is the real part of mij , and =(M)
is defined similarly for the imaginary part. In practice, this means that if the rule
for determining interpolation only involves basic arithmetic operations (over which
complex conjugation can be distributed) and the same points are selected as strong
and weak connections for A and A?, then this rule results in a restriction operator
that is the (non-Hermitian) transpose of interpolation.

A subspace decomposition point of view suggests a third approach for choosing
restriction. When A is Hermitian and definite, a natural partition arises for Rn, into
the range of P and its A-orthogonal complement. In a two-level multigrid cycle, the
coarse-grid correction stage exactly eliminates errors that lie in the range of P , while
errors that are A-orthogonal to this space must be adequately reduced by relaxation
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on the fine-grid. Let P̂ be the `2-projection onto the range of the full-rank operator,
P , and A be Hermitian and definite. Then 〈P̂v,w〉A = 〈v, A−1P̂ ?Aw〉A. Thus,
by the fundamental theorem of linear algebra, the space, Rn, may be partitioned
as Rn = R(P̂ ) ⊕A N (A−1P̂ ?A). But, since P̂ is a projection onto the range of P ,
R(P̂ ) = R(P ). Furthermore, because P̂ is an `2-projection, it is Hermitian, and since
P has full rank, N (A−1P̂ ?A) = N (P ?A). Thus, we have that Rn = R(P )⊕AN (P ?A).

Analyzing the error within the multigrid iteration using this subspace decompo-
sition, we can identify those errors within the range of P as being the algebraically
smooth errors. Thus, errors that are quickly attenuated by relaxation must lie in the
null-space of P ?A. Within the multigrid error propagation operator (as in Equation
(3.1)), we can then identify the role of the residual projection (application of P ?A
or, in the non-Hermitian case, RA) as being to filter out those errors that can be
easily treated through relaxation alone. As in this non-Hermitian case, A no longer
defines a proper inner product, we can only consider the `2-adjoint of RA, A?R?

to use this analysis. Requiring that N (RA) includes all errors that are effectively
reduced by relaxation is then equivalent to requiring that R(A?R?) includes the al-
gebraically smooth errors. Thus, if only algebraically smooth errors are to be in the
range of A?R?, then the small-residual assumption implies that R(A(A?R?)) is small
on fine-grid points. But, R(A(A?R?)) = R((AA?)R?), suggesting that R? must be
accurate for algebraically smooth errors of the normal equations, AA?. This leads to
another possible rule for defining restriction, as the Hermitian conjugate of an AMG
interpolation for the normal operator, AA?.

Such a choice, while motivated by typical AMG considerations, is not as attractive
from a cost perspective as those discussed previously. The costs of forming AA? in
order to form restriction are obviously significant, and would almost certainly lead to
an increase in complexity of the AMG coarse-grid operators if applied within Equation
(2.5). On the other hand, if the basic AMG interpolation scheme is adapted to such
complications, then this approach can be quite effective. Investigation of a similar
approach within smoothed aggregation multigrid is currently underway [11].

Forming the Coarse-Grid Operator. In many cases, physical intuition may
be used to define an appropriate coarse-grid operator that complements the given
choices of interpolation and restriction, but this is difficult to use consistently in the
algebraic setting considered here. Instead, we choose the obvious generalization of the
Galerkin condition from the symmetric or Hermitian definite case, and define Ac =
RAP . In particular, this can be viewed as a restriction of the fine-grid operator, A,
to exactly those components identified as needing correction from the coarse grid (the
algebraically smooth errors). Multiplication on the right serves to restrict the domain
of A to the range of P that, by assumption, contains these errors. Multiplication on
the left by R restricts the range of A to that of R, which may be chosen, as described
above, based on an understanding of the action of A on algebraically smooth errors.
While it is possible to make separate choices of restriction and interpolation for use
in the Galerkin product and in the multigrid cycle, in this paper we choose the same
R and P for both roles.

4. Local Fourier Analysis. Since the early days of multigrid, Fourier smooth-
ing and two-grid analyses have been used to make quantitative estimates of the
smoothing properties of basic iterative methods and for quantitative evaluation of
the other multigrid components in a two-grid method, see, for example [3, 23, 24].
Local Fourier analysis (LFA) (called local mode analysis in [3]) is the main multigrid
analysis option for problems that do not lead to Hermitian and positive-definite ma-
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trices, such as the complex-valued problems of interest here. Three-grid local Fourier
analysis [28] is a generalization of the classical analysis that allows more detailed
analysis of the coarse-grid-correction components of the multigrid cycle. For exam-
ple, if a large difference is observed between the two-grid and three-grid LFA factors,
this indicates a problematic coarse-grid correction process. As we are interested in
the definition of the coarse-grid correction components, such as the complex-valued
transfer and Galerkin operators discussed above, smoothing analysis alone is not suf-
ficient. Especially in this complex-valued setting, increased insight into the quality of
the transfer-operator-dependent Galerkin operator is of value.

LFA is based on discrete PDEs described in a stencil notation. Furthermore,
typical assumptions made when working with Fourier analysis are those of linear
problems, constant problem coefficients, and an infinite grid (i.e., disregarding bound-
ary conditions). This seems far from the algebraic setting considered here; however,
the construction of the complex-valued smoothing and coarse-grid correction compo-
nents can still be guided by the LFA results. In particular, the algorithm should also
converge well for structured-grid problems, under the usual LFA restrictions. In this
sense, LFA results serve as a first indication of the quality of the coarse-grid correction
proposed.

Here, three-grid analysis is briefly outlined for 2D problems with standard coars-
ening. We consider a discrete problem, Ahuh = fh, where uh represents the ex-
act discrete solution on a regular grid with meshsize h. The main idea in the
Fourier analysis is to formally extend all multigrid components to an infinite grid,
Gh := {x = (kxh, kyh) : kx, ky ∈ Z}. On Gh, we have a unitary basis of grid func-
tions called the Fourier components,

ϕh(θ,x) := exp (ıθ · x/h) = exp (ık · θ) (4.1)

with x ∈ Gh, k = (kx, ky), and Fourier frequencies, θ = (θx, θy) ∈ R2. These
components are eigenfunctions of any discrete, real- or complex-valued operator, Ah,
on Gh with constant coefficients.

Recall that the error, emh = umh −uh, after iterationm is transformed by a two-grid
operator as

em+1
h = T 2h

h emh with
(4.2)

T 2h
h = Sν2h K

2h
h Sν1h and K2h

h = Ih − Ph2h(A2h)−1R2h
h Ah,

and, after a three-grid cycle, is given by

em+1
h = T 4h

h emh with
(4.3)

T 4h
h = Sν2h K

4h
h Sν1h and K4h

h = Ih − Ph2h(I2h − (T 4h
2h )γ)(A2h)−1R2h

h Ah.

Here, T 4h
2h defined by (4.2) reads T 4h

2h = Sν22h(I2h − P 2h
4h (A4h)−1R2h

4h)S
ν1
2h. Ah, A2h, and

A4h correspond to discretizations on the h-, 2h-, and 4h-grids, although A2h and A4h

may also be based on Galerkin principles, as described above. Sh and S2h are the
smoothing operators on the fine and the first coarse grid, and νi (i = 1, 2) represents
the number of pre- and post-smoothing steps. R2h

h , R4h
2h and Ph2h, P

2h
4h denote restric-

tion and prolongation operators, respectively, between the different grids. Ih and I2h
are the identity operators with respect to the h- and the 2h-grids.

Instead of inverting A2h, as is done in (4.2), the 2h-equations are solved approxi-
mately in a three-grid cycle (4.3) by performing γ two-grid iterations, T 4h

2h , with zero
10



initial approximation. This is reflected by the replacement of (A2h)−1 from (4.2) by
the expression (I2h − (T 4h

2h )γ)(A2h)−1.
In two-grid Fourier analysis, we distinguish between low and high frequencies,

Θ2g
low = (−π/2, π/2]2 and Θ2g

high = (−π, π]2 \Θ2g
low,

in such a way that the low-frequency components are “visible” on both grids Gh and
G2h. Each low-frequency component is coupled with three related high-frequency
components that alias on G2h, leading to a splitting of the Fourier space into four-
dimensional sub-spaces, the spaces of 2h−harmonics:

span{ϕ(θα,x); α = (αx, αy), αx, αy ∈ {0, 1}} with

θ = θ00 ∈ Θ2g
low and θαxαy := (θx − αssign(θx)π, θy − αysign(θy)π).

T 2h
h is unitarily equivalent to a block diagonal matrix consisting of 4× 4 blocks.

This simple representation is then used to calculate the corresponding spectral radius
and, thus, the LFA two-grid convergence factor, ρ2g. The smoothing factor, µ, which
measures the reduction of high frequency error components by relaxation is defined
based on a coarse-grid correction operator in (4.2) that annihilates the low-frequency
error components. K2h

h is, thus, replaced in (4.2) by a projection, Q2h
h , onto the space

of high frequencies.
Similarly to the two-grid case, in three-grid LFA, we distinguish between low and

high frequencies, but now with respect to three grids, Gh, G2h, and G4h. It is then
appropriate to divide the Fourier space into a direct sum of 16-dimensional subspaces,
the so-called 4h-harmonics [28]. As a consequence, T 4h

h is unitarily equivalent to a
block diagonal matrix with at most 16 × 16 blocks. We obtain the LFA three-grid
convergence factor, ρ3g, as the supremum of the spectral radii of the block matrices.
For more details, see [28]. Three-grid Fourier analysis software is freely available, see
http://www.mgnet.org/mgnet-codes-wienands.html. LFA results agree especially
well with actual multigrid convergence factors for discrete elliptic PDEs, where the
influence of boundary handling is often negligible.

4.1. LFA Results. We first explain the choice of transfer operators in the LFA
experiments presented here. The natural structured-grid variant of AMG interpo-
lation is that used in Dendy’s Black-Box Multigrid (BMG) [2, 13]. Originally, this
prolongation was defined based on the symmetric part of a real-valued matrix, A. As
discussed above, this can lead to discarding important information in the choice of
interpolation. Therefore, instead of the Hermitian part of A, the interpolation weights
are here based on A itself, just as in real-valued AMG. The BMG interpolation weights
are described in some more detail in Appendix A.

The choice of restriction is guided by a homogeneous model version of the covari-
ant difference operators considered in Section 5.3,

A
∧=

 − exp (ıt1) − exp (ıt2) − exp (ıt3)
− exp (ıt4) 8 − exp (−ıt4)

− exp (−ıt3) − exp (−ıt2) − exp (−ıt1)

 .

Here ti, for i = 1, 4, are phase factors that may be chosen independently, defining a
complex Hermitian nine-point stencil. For a Hermitian matrix, choosing R = P ?(A)
corresponds to a variational condition; however, for many simpler stencils, the choice
of R = PT (A) also works well. These two options for restriction have been compared
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Table 4.1
LFA two- and three-grid convergence factors for a Laplacian with complex entries.

BL - FW BL-INJ BMG-BMG BMG-INJ

ρ2g 0.217 0.299 0.188 0.158

ρV
3g 0.217 0.310 0.188 0.158

in LFA for a variety of choice of {ti}4i=1, with clearly better performance when R =
P ?(A); the cycle based on PT (A) often leads to divergence.

Thus, for restriction, our operator of choice is

R2h
h = [Ph2h]

?
(A?) (4.4)

In words, restriction is defined as the adjoint of a prolongation operator based on the
adjoint of A, as discussed in §3.2. Next to this choice of restriction, we also include the
straight injection operator in our evaluation. The third option discussed in Section
3.2, with restriction based on AA? is not considered here due to the expense needed
to calculate it.

We start the LFA experiments with a Laplacian-type operator,

A
∧=

 −1
ı 4 ı

−1

 .

We fix two red-black Jacobi relaxation sweeps as the smoother with ω = 0.9 (as
discussed below), and compare the performance of the simple real-valued transfer
operators of full-weighting restriction (FW) and bilinear interpolation (BL) to the
complex-valued Black-Box Multigrid (BMG) interpolation and restriction, based on
(4.4) and on injection (INJ). Table 4.1 gives the LFA two- and three-grid convergence
factors. The LFA smoothing factor for this red-black relaxation is µ2 = 0.217.

We see in Table 4.1 that the complex-valued transfer operators perform satisfac-
torily, slightly better than the real-valued transfer operators. Injection also performs
well on this problem, giving superior results with BMG interpolation, even in com-
bination with red-black relaxation and five point stencils. Similar behavior is seen
when the red-black Jacobi relaxation is replaced by a forward/backward Gauss-Seidel
relaxation.

We next consider a definite Helmholtz operator, −∆u+αu, discretized either by
standard finite differences or by bilinear finite elements on a uniform mesh, leading
to the well-known O(h2) discretization stencils,

AFD
∧=

1
h2

 −1
−1 4 + α −1

−1

 . (4.5)

AFE
∧=

1
3h2

 −1 −1 −1
−1 8 −1
−1 −1 −1

+
α

36

 1 4 1
4 16 4
1 4 1

 . (4.6)

Figure 4.1 displays smoothing factors for this problem, with α = k2 (real) and α = k2ı
(complex), and their dependence on the relaxation parameter ω (commonly used in
multigrid smoothers). Three smoothers are compared: point-wise damped Jacobi,
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(a) Point-wise Jacobi (b) Red-Black Jacobi (c) Forward-Backward GS

Fig. 4.1. Dependence of LFA smoothing factors (ν = 2) on the relaxation parameter, ω, for
Jacobi, Red-Black Jacobi and forward/backward Gauss-Seidel smoothers.

Table 4.2
LFA smoothing, two- and three-grid factors for the FE discrete complex Helmholtz operator.

ω-JAC ω-JAC-RB GS-FWBW

ω = 0.9 ω = 0.9 ω = 1.0

µ2 0.12 0.12 0.18

ρ2g 0.14 0.15 0.17

ρW
3g 0.19 0.17 0.17

ρV
3g 0.35 0.29 0.17

damped Red-Black Jacobi (which is identical to Red-Black Gauss-Seidel for 5-point
stencils) and lexicographical Gauss-Seidel (a forward sweep followed by a backward
sweep), with ν = 2 smoothing steps. One forward-backward pair of Gauss-Seidel
sweeps is considered as two smoothing steps.

We compare in each subfigure the finite difference (4.5) and finite element (4.6)
stencils for problems with positive real- or complex-valued Helmholtz terms, α = k2 or
α = k2ı. Parameters are set as h = 1/64, k2 = 1600. From Figure 4.1, several insights
can be gained. We see, for example, that the smoothing properties for the complex-
valued case are very similar to those of the real-valued case. Further, the sensitivity
to the relaxation parameter is most significant for the FD discretization with Jacobi
relaxation. For the FE discretization, or for the other iterative methods, we observe
small smoothing factors for a range of damping parameters. For these problems, the
smoothing factors are very satisfactory, both for the real- and the complex-valued
case, with optimal relaxation parameters usually close to 1.

Table 4.2 presents two- and three-grid LFA convergence factors for the FE dis-
cretization of the complex-valued Helmholtz operator with complex-valued transfer
operators. In three-grid analysis, we can evaluate both V - and W -cycles; these three-
grid factors are distinguished by a superscript in the table. The LFA three-grid V -cycle
factors show degradation for standard and red-black Jacobi relaxation, which is an in-
dication that the coarse-grid problems are not defined optimally for these smoothers.
A closer look at the Galerkin coarse-grid operators built with these transfer operators
shows that on the third grid, operators with only positive elements arise.

The h-ellipticity measures, indicating the suitability of these stencils for point-wise
smoothing [24], are 0.57 and 0.62, meaning that it should be possible to define a satis-
factory point-wise smoothing method. While the convergence with Jacobi relaxation
degrades, Gauss-Seidel relaxation is not influenced by these coarse-grid discretizations
and performs satisfactorily. Finally, we mention that the use of injection as the re-
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striction operator for this Helmholtz operator did not lead to satisfactory LFA factors.
The two- and three-grid factors increase to at least 0.56 for different smoothers and
interpolation operators, indicating the advantages of non-trivial restriction.

Remark 1. The need for complex-valued interpolation.
The LFA assumptions of full coarsening and constant stencils are more restrictive

than our expectations for AMG. While LFA does provide useful insight into several
properties of multigrid for complex systems, our analysis cannot distinguish between
the benefits of real-valued and complex-valued interpolation operators. Instead, we
provide a simple example (a special case of the operators considered in Section 5.3)
to demonstrate the benefits of a “fully complex” AMG approach.

Consider the Hermitian matrix, A, defined over a two-dimensional mesh by

4ui,j − e−iφi−1,jui−1,j − eiφi,jui+1,j − e−iψi,j−1ui,j−1 − eiψi,jui,j+1 = fi,j ,

where the fields, {φi,j} and {ψi,j}, are chosen randomly. Applying the AMG strength-
of-connection test to this stencil suggests that all neighboring points are strongly
connected, as all off-diagonal entries are of the same size. As a result, AMG naturally
chooses a structured red-black coarsening pattern. In this setting, two-level AMG
with complex interpolation operators is an exact solver; partitioning A =

[
Aff Afc

A?
fc Acc

]
,

Aff is diagonal, and AMG naturally chooses the complex interpolation operator,

P =
[
−A−1

ff Afc

I

]
. By contrast, choosing a real-valued interpolation operator, say

P =
[
A−1

ff |Afc|
I

]
, where |M | denotes the matrix with entries |mij |, leads to a two-

level convergence factor of 0.585. This discrepancy remains in 3-level and multi-level
convergence factors (0.155 with complex interpolation, 0.589 with real interpolation).
LFA based on red-black coarsening may give further insight into this choice and is a
question for future research.

5. Numerical Results. All numerical experiments are run on a 64bit AMD
Athlon 3700+ system, running at 2.2 GHz, with 3 GB of RAM. We use the standard
gnu compiler collection (gcc) C-compiler with appropriate optimization options en-
abled for these machines. This compiler supports the C99 complex standard and, so,
we use the native complex arithmetic functions to implement the algorithms described
above.

5.1. Simple problems. First, we consider variants of several simple problems
for which standard multigrid and AMG performance are well understood, in order to
demonstrate that the generalization to complex arithmetic maintains these properties.
Additionally, this provides a benchmark for comparison of the costs of AMG in real
arithmetic versus complex arithmetic.

Table 5.1 shows the performance of real-valued AMG for bilinear finite element
discretizations of the positive-definite Poisson equation, with and without a positive-
definite shift, −∆u = f and −∆u + k2u = f , with k = 0.625/h. We use Gauss-
Seidel as a smoother in a V(1,1) AMG cycle, with P chosen as in standard AMG
[21]. The coarse-grid selection is based on a strong-connection definition of either
−aij ≥ θmaxk 6=i{−aik} (standard) or |aij | ≥ θmaxk 6=i{|aik|} (modulus-based) for
θ = 0.25 and, here, we take R = PT and Ac = PTAP . Shown in Table 5.1 are
the maximum convergence factor observed over (up to) 200 iterations, as well as the
iteration count and total time needed to reduce the `2 norm of the residual by a
relative factor of 109 for each problem.
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−∆u −∆u+ k2u
standard Si modulus Si standard Si modulus Si

512× 512
ρMG 0.116 0.116 0.041 0.041

# Iters. 7 7 6 6
tsolve 2.6 2.6 2.6 2.4

1024× 1024
ρMG 0.136 0.136 0.041 0.041

# Iters. 7 7 6 6
tsolve 10.4 10.4 10.4 9.8

Table 5.1
Real-valued AMG performance for finite-element Poisson, with and without a definite shift.

−∆u −ı∆u −∆u+ k2u −∆u+ ık2u
# Iters. 7 7 6 11

512× 512
ρMG 0.116 0.116 0.041 0.171

# Iters. 7 7 6 11
tsolve 4.0 4.0 3.8 5.3

1024× 1024
ρMG 0.136 0.136 0.041 0.172

# Iters. 7 7 6 12
tsolve 17.5 16.6 15.4 22.5

Table 5.2
Complex-valued AMG performance for simple problems

For the unshifted Poisson problem, there is no difference in the results using the
standard or modulus-based definition of strong connections, due to the M-matrix
structure of the finite-element operators on these regular meshes. This is preserved
on coarse meshes, so that the standard and modulus-based definitions coincide, and
the performance of the two approaches is identical. The same is not true for the
shifted problem, where the coarsening of the mass matrix induces positive off-diagonal
entries in the coarse-grid operators. As a result, the cost of a multigrid V(1,1) cycle
is slightly lower for the modulus-based measure of strength of connection, leading to
slightly faster times for that approach.

Table 5.2 details the performance of the complex-valued AMG algorithm for these
problems, along with two simple complex generalizations. For the real-valued prob-
lems, we see that the complex AMG solver performs the same as the real-valued AMG
solver does (cf. Table 5.1) when measured in terms of convergence factors, ρMG or
iteration counts. In terms of CPU time, however, we see that there is a premium to
be paid for doing complex arithmetic; however, the cost is only 50-70% greater than
that of the real-valued AMG algorithm. For the complex Poisson operator, −ı∆u,
performance of complex AMG essentially matches that of both the real and complex
AMG algorithms applied to the usual Poisson operator. Different results are seen for
the complex-shifted Helmholtz operator, −∆u+ ık2u, where the convergence factors
(while still bounded nicely away from 1.0) increase somewhat. Comparing to Figure
4.1, we see that the solver performance for the complex-shifted problem is quite close
to that predicted by LFA with lexicographic relaxation order, while the performance
for the real shift is much better. Using lexicographic-ordered Gauss-Seidel relaxation
for the positive shift leads to performance similar to that predicted by LFA. For this
problem, however, an unsymmetric ordering of relaxation offers a significant improve-
ment over lexicographic ordering.
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Fig. 5.1. Mesh geometry for induction motor [15]

5.2. Unstructured Grid Application. In this section, we consider the effect
of unstructured grids on the performance of the complex-valued AMG algorithm.
The discrete problems arise from a linear finite element discretization of a Helmholtz
problem with complex shift that arises from a reduction of Maxwell’s equations [15].
As a result, the discrete problem is complex symmetric; thus, we consider complex
AMG with the choice of R = PT as discussed above, along with preconditioning of
BiCGStab (as CG is no longer a suitable choice).

In the special case of a time-harmonic source current, Maxwell’s equations may
be reduced to a frequency-domain Helmholtz equation for the z-component of the
Fourier transform of a vector potential, A. Details of this reduction can be found, for
example, in [15], resulting the equation for Âz,

−∇ ·
(

1
µ
∇Âz

)
+ ıωσÂz = Ĵs,z.

We consider only half of an annular domain, as depicted in Figure 5.1, discretized using
standard linear finite elements. Lahaye et al. solve these systems using a real-valued
AMG algorithm (based on the real part of the system matrix) as a preconditioner for
BiCGStab [15].

We consider 5 different resolutions on the half-annulus geometry of Figure 5.1.
The triangulation on the coarsest mesh has 1028 nodes, while subsequent meshes
are refinements of this initial triangulation. The finest mesh has 75,951 nodes and
approximately 530,000 non-zero entries in the system matrix. For each mesh, we
consider the performance of ILU-preconditioned BiCGStab, AMG based on the real-
part of the matrix and based on the complete, complex matrix, both as a standalone
solver and as a preconditioner for BiCGStab.

The performance of the AMG variants for these problems is detailed in Table 5.3.
For each problem and each AMG approach, we measure the complexity of the AMG
solver in terms of the AMG grid complexity, cg, defined as the sum of the number of
grid points on all levels in the AMG hierarchy divided by the number of grid points
on the finest level, and the AMG operator complexity, cA, defined as the sum of the
number of nonzeros in the system matrices defined on all levels of the AMG hierarchy
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Problem Solver cg cA tsetup tsolve # Iters.
real AMG 1.80 2.17 0.0 0.0 19

1028 nodes complex AMG 1.80 2.17 0.0 0.0 20
nnz = 6520 AMG-BiCGStab 1.80 2.17 0.0 0.0 6.5

cAMG-BiCGStab 1.80 2.17 0.0 0.0 6
real AMG 1.85 2.67 0.0 0.1 29

3959 nodes complex AMG 1.85 2.67 0.0 0.1 39
nnz = 26601 AMG-BiCGStab 1.85 2.67 0.0 0.1 8.5

cAMG-BiCGStab 1.85 2.67 0.0 0.1 9
real AMG 1.83 2.86 0.1 0.6 29

15302 nodes complex AMG 1.82 2.85 0.2 0.7 32
nnz = 104926 AMG-BiCGStab 1.83 2.86 0.1 0.4 9

cAMG-BiCGStab 1.82 2.85 0.2 0.3 8
real AMG 1.81 2.91 0.4 1.7 31

34555 nodes complex AMG 1.81 2.91 0.4 1.7 30
nnz = 239661 AMG-BiCGStab 1.81 2.91 0.4 1.0 8.5

cAMG-BiCGStab 1.81 2.91 0.4 1.0 8.5
real AMG 1.77 2.87 1.0 4.5 31

75951 nodes complex AMG 1.77 2.87 1.1 4.2 29
nnz = 529317 AMG-BiCGStab 1.77 2.87 1.0 2.6 8.5

cAMG-BiCGStab 1.77 2.87 1.1 2.5 8
Table 5.3

AMG performance for finite-element models of induction motor

divided by the number of nonzeros in the fine-grid operator. Additionally, we report
setup and solve times (in seconds), as well as the number of iterations needed to reduce
the `2-norm of the residual by a relative factor of 109. Because of the small sizes of
the least refined meshes, some times are below the threshold that can be accurately
measured; such times are reported as 0.0.

Table 5.3 shows that the complex-valued AMG achieves performance similar to
that seen with the real-valued AMG preconditioning investigated in [15]. In particular,
the number of iterations required to reduce the residual from a zero initial guess by
a relative factor of 109 are quite close to those of an AMG algorithm based solely
on the (real) differential part of the operator. In timing these results, we have not
optimized the distribution of real- and complex-valued arithmetic in the real-valued
AMG case. This means that, in practice, preconditioning based solely on the real part
of the operator is more efficient, given the added efficiency possible using real-valued
storage for the interpolation operators.

For comparison, we consider the performance of BiCGStab preconditioned with
ILU(0) for these problems. Note that because of the fixed non-zero structure in
the preconditioner (matching that of A), the effective operator complexity for these
preconditioners is 2, as both the original matrix and its ILU factors must be computed
and stored. Because of the simple calculation of this factorization, setup times for
these preconditioners are negligible. Iteration costs, however, are significant, with
over 6000 iterations needed for the second-largest grid, and stalling convergence on
the largest problem.
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5.3. Gauge Laplacian. While examples such as the problems considered in
the previous subsections are interesting, they do not require the full strength of the
complex AMG algorithm introduced here. In order for a complex-valued approach
to be a necessity, the dynamics of the problem must be somehow inherently complex
valued, whereas for problems such as the complex-shifted Helmholtz equation, the
dominant part of the operator is, in the end, real-valued. In this section, we discuss
model problems from a large class of applications with inherently complex dynamics,
related to the numerical simulation of quantum field theory [22].

The equations of quantum field theory may be obtained by variational principles
(principles of least action). In quantum electrodynamics (QED), the functional to
be minimized (the action) is invariant under transformations of the form ψ̂(x) =
eıqω(x)ψ(x), where ψ(x) is the primary degree of freedom (Dirac spinor), q is the
elementary charge, and ω(x) is any real-valued function [22, §4.1]. While a usual
spatial derivative, ∂µψ, is not invariant under such a scaling, the differential operator
in the QED action is composed of so-called covariant derivatives, Dµ = ∂µ− ıAµq, for
each spatial dimension, µ, where the photon field, Aµ(x), is transformed into Âµ(x) =
Aµ(x)+∂µω(x) under the gauge transformation. These covariant derivatives pass the
gauge transformation of ψ through the differentiation, so that D̂µψ̂ = eıqω(x)Dµψ.
Applying the chain rule, we see that if ∂µω(x) = Aµ(x), then

Dµψ(x) = eıqω(x)∂µ

(
e−ıqω(x)ψ(x)

)
.

Because of the intertwining of the complex-valued scaling, eıqω(x), and the differ-
entiation in the definition of Dµ, equations with covariant derivatives exhibit dynam-
ics that are inherently complex-valued. In this section, we apply our complex-valued
AMG algorithm to matrices associated with covariant differential equations. Such
equations are of significant interest in quantum dynamics, including QED [22] and
quantum chromodynamics (QCD) [7]. Here, we consider the covariant Laplacian (or
gauge Laplacian), the covariant analogue of the usual Poisson operator, −(D2

x+D2
y)ψ.

Preserving the gauge invariance property of the continuous covariant derivatives in a
forward finite-difference discretization leads to the discrete stencil,

Dµψ(x) ≈ 1
h

(
e−ıhGµ(x)ψ(x + hµ̂)− ψ(x)

)
,

where the gauge potential, Gµ(x), is dependent on Aµ(x), and µ̂ is the unit vector
in the µ direction [22, §4.3]. Defining the second derivative stencil as the weighted
difference of this forward difference and a consistent backward difference (to define
the first derivatives at x± h

2 µ̂), we have

−D2
µψ(x) ≈ 1

h2

(
−eıhGµ(x−hµ̂)ψ(x− hµ̂) + 2ψ(x)− e−ıhGµ(x)ψ(x + hµ̂)

)
.

Proper specification of the gauge potential is needed in order to appropriately
model QED or QCD applications. Here, we consider the case of a unit lattice spacing
(h = 1), and take Gµ(x) to be a random variable, of the form Gµ(x) = 2πβθ(x, µ),
where β is a temperature parameter, and θ(x, µ) is chosen independently for each
node, x, and direction, µ, from a normal distribution with mean 0 and variance 1.
We consider doubly-periodic two-dimensional lattices. For β = 0, this recovers the
positive-semidefinite five-point finite-difference Laplacian, for β > 0, the matrices are
positive definite and Hermitian.
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Fig. 5.2. Convergence factors for covariant Laplacian with varying β.

Figure 5.2 shows the convergence factors for 3 variants of multigrid applied to the
discrete covariant Laplacian on a 513× 513 grid, as β increases. The simplest variant
is multigrid based on full coarsening, with bilinear interpolation and full-weighting re-
striction. The method of [15,19] is also considered, where the classical (Ruge-Stüben)
AMG coarsening and interpolation are performed based on the real part of the matrix,
denoted by “real AMG”. Finally, the complex AMG proposed here is also tested. For
β = 0, the matrix is the usual 5-point periodic Laplacian, and all three methods per-
form well. As β increases, however, the performance of geometric multigrid and real
AMG quickly degrade, confirming that important information is lost when the imag-
inary part of A is discarded. Only performance of the fully complex AMG remains
consistently good as β increases. In particular, note that complex AMG converges
roughly twice as fast as real AMG. Thus, even with the performance advantage of
real arithmetic over complex arithmetic, the complex AMG solver proposed here is
more efficient than the use of a real-valued solver for these problems.

As β increases, the effect of the randomness in the definition of the covariant
Laplacian becomes more pronounced. A side-effect of this randomness is that the
matrices become somewhat better conditioned as β increases. Thus, an interesting test
problem arises when the covariant Laplacian appears in combination with a Helmholtz
term, −

∑
µD

2
µψ(x) + αψ(x), where the coefficient, α, is chosen so that the matrices

remain positive definite, but match the conditioning of the usual Laplacian. To do
this, we compute the maximum-magnitude eigenvalue, λ, of the matrix, M , obtained
by taking

∑
µD

2
µ (so that the off-diagonal entries have positive sign) and setting

the diagonal to zero. By Gerschgorin’s theorem, we expect the largest eigenvalue of
−
∑
µD

2
µ to be approximately 4 + λ ≈ 8, while the smallest should be roughly 4− λ,

where 0 ≤ λ ≤ 4. Then, α is chosen so that 8
4−λ+α = 1

h2 , i.e., α = 8h2 − (4− λ). We
then diagonally scale the matrix by 1

4+α , so that it has constant unit diagonal. Such
a shift mimics the behaviour seen in QED and QCD applications, where similar mass
terms may appear in the functionals to be minimized.

Even for large h, the effect of such a shift on AMG performance can be dramatic.
The eigenvector approximation criterion [4, 18] states that, in order for AMG to be
effective, each eigenvector of A must be approximated by something in the range of
interpolation with accuracy proportional to its eigenvalue. For large eigenvalues of A,
the shift by α has little effect on this approximation property. For the smallest eigen-
values, however, the shift by α has a significant effect and these modes may be very

19



β = 0.0 β = 0.25 β = 0.5 β = 0.75 β = 1.0
65× 65 0.104 0.988 0.993 0.993 0.990

129× 129 0.143 0.998 0.997 0.997 0.998
257× 257 0.166 0.9992 0.9996 0.9995 0.9993
513× 513 0.231 0.99986 0.99987 0.99985 0.99988

Table 5.4
Complex AMG convergence factors for the shifted covariant Laplacian, with variation in β and

grid size.

Fig. 5.3. Convergence histories for geometric multigrid, AMG based on the real part of the
matrix, complex AMG and adaptive complex AMG for the 513 × 513 shifted covariant Laplacian
operator with β = 1.0. Solid lines indicate unaccelerated performance, while dashed lines indicate
MG-PCG performance.

slow to be resolved by a simple AMG cycle, as very accurate interpolation is needed
to complement the very slow performance of relaxation on the modes associated with
the smallest eigenvalues of A. Table 5.4 shows some representative AMG convergence
factors.

However, this shift is relatively significant for only a few modes of the matrix
and, thus, the poor AMG performance is easily overcome through the use of a Krylov
subspace accelerator. As A is Hermitian and positive definite (and the AMG cycle
can easily also be made so), we consider here the performance of AMG-preconditioned
conjugate gradients. Figure 5.3 shows the convergence histories of geometric multi-
grid and AMG (both based on the real part and the complex AMG proposed here)
for β = 1.0. For all three methods, slow (and stalling) convergence is seen for the
unaccelerated solvers, while the MG-PCG combinations converge (relatively) quickly.
Notice that the complex-AMG-PCG combination beats the real-AMG-PCG technique
for convergence to any fixed tolerance by a factor of roughly 2.

An alternative to preconditioning to overcome the slowing-down of convergence
for the shifted covariant Laplacian is the use of adaptive multigrid techniques [9, 10].
In adaptive AMG [10], the approximation (2.4) used to collapse a strong connection
between two fine-grid points, i and j, is replaced by one that takes into account
the form of a representative algebraically smooth error exposed by adding an initial
relaxation phase to the AMG setup algorithm. Thus, on each level in the AMG setup,
we first relax on the homogeneous problem, Au = 0, with a random initial guess for
u to expose errors that relaxation is slow to resolve. This prototypical algebraically
smooth error is then used in the definition of interpolation, in place of the AMG
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Fig. 5.4. Algebraically smooth error for the shifted covariant Laplacian with β = 1.0 on a
65× 65 mesh, with the real part shown at left and the imaginary part shown at right.

β = 0.5 β = 0.75 β = 1.0
tsetup ρ tsetup ρ tsetup ρ

65× 65 0.04 s 0.431 0.04 s 0.375 0.03 s 0.454
129× 129 0.2 s 0.341 0.2 s 0.308 0.2 s 0.440
257× 257 0.8 s 0.467 1.1 s 0.463 0.9 s 0.391
513× 513 5.3 s 0.576 3.5 s 0.442 3.6 s 0.457

Table 5.5
Adaptive AMG setup times and convergence factors for the shifted covariant Laplacian.

assumption that such errors vary slowly along strong connections. When this error is
very different from the constant, the improvement in performance of adaptive AMG
over classical AMG may be significant, as the classical AMG algorithm aims to satisfy
the eigenvector approximation criteria for the constant vector only.

Figure 5.4 shows the algebraically smooth error found by performing 200 iterations
of Gauss-Seidel relaxation on Au = 0 (so that the error is well resolved), with a
random initial guess for u, on the shifted covariant Laplacian with β = 1.0 on a
65 × 65 grid. Thus, we expect a significant benefit of using adaptive AMG over the
classical AMG assumption. Indeed, in Figure 5.3, the adaptive AMG convergence,
both with and without PCG acceleration, is significantly better than that of any of the
other methods. Table 5.5 shows adaptive AMG setup times and convergence factors
for several grid sizes and values of β.

The convergence factors in Table 5.5 do not appear to degrade as β increases and
degrade only slightly with increase in problem size. It is not immediately clear if this
degradation is due only to the increase in grid size, or if it is related to the changes in
the random sample taken for the gauge field on each grid. Setup times scale nearly
with problem size, although a slight increase in the work needed (relative to problem
size) for the adaptive AMG setup stage is required for each finer grid. In comparison,
setup time for regular AMG on the 513×513 grid is 3.2s, while approximately 0.36s are
required for a single V(1,1) cycle on that grid. Thus, the added cost of the adaptive
AMG setup phase is roughly that of 1 to 6 V-cycles, much less than the expected
improvement offered in the adaptive AMG solve phase.

6. Conclusions. A natural extension of the algebraic multigrid method for
complex-valued matrices is presented. Unlike previous extensions, our approach is

21



sw s se

nennw

e

D

BA

C

cw

p

rq

Fig. A.1. Left: Nine point stencil with numbering. Right: Coarse grid cell and four fine cells,
(Coarse grid indices designated by capital letters and fine grid indices designated by lower case
letters).

completely algebraic in nature and relies on no special structure of the complex-
valued matrix. Choices for the generalization are motivated by a combination of clas-
sical multigrid considerations and local Fourier analysis. Numerical results confirm
the performance on simple model problems, realistic complex Helmholtz problems
on unstructured meshes and, in combination with Krylov acceleration or adaptive
multigrid ideas, for ill-conditioned matrices based on covariant derivatives.
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ing the covariant Laplacian operators considered in Section 5.3.

Appendix A. Prolongation operator. The prolongation considered in LFA
is an operator-induced interpolation based on Dendy’s Black-Box Multigrid (BMG)
transfer operators [2,13]. The prolongation for matrix Ah is briefly explained for nine-
point stencils. The numbering in a stencil for the explanation of the prolongation is as
shown in Figure A.1 (at left). At right in Figure A.1 shows one coarse- and four fine-
grid cells with indices. The operator-dependent interpolation weights, w, to determine
the fine grid correction quantities eh are derived with the following formulas.

For fine-grid points p in Figure A.1, eh,p = wAeH,A + wBeH,B ., where wA = dw

d ,
and wB = de

d with

dw = −(aswp + awp + anwp ), de = −(asep + aep + anep ), d = (aep + acp + awp ).

Operator element awp , for example, denotes the west element of Ah at grid point p.
For fine-grid points q in Figure A.1, eh,q = wAeH,A+wCeH,C , with wA = ds

d , and
wC = dn

d with

dn = −(anwq + anq + aneq ), ds = −(aswq + asq + aseq ), d = (asq + acq + anq ).

On fine grid points A,B,C and D in Figure A.1 (that are also coarse points),
eh(A) = e2h(A). On fine grid points r, eh(r) is determined so that AhPh2he2h = 0 at
r for the interpolated vector Ph2he2h.
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