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Chapter 1

Introduction

Options are popularly traded in today’s financial market. They are often
connected to some item, such as a listed stock, an exchange index, futures
contracts, or real estate. In this thesis, the stock option is discussed. There
are two basic types of options, the European and American. A European
option is an option contract that can only be exercised on the expiration
date. Futures contracts (i.e., options on commodities) are generally Euro-
pean style options. An American option is an option contract that can be
exercised at any time between the date of purchase and the expiration date.
Most exchange-traded options are American-Style. Stock options are typi-
cally American style.

The famous Black-Scholes model is a fast and effective way to calculate
the option price. An analytical solution for European options exist, how-
ever, for the stock options which are American style, a numerical approach is
necessary. In real markets, many companies pay dividends to the stock hold-
ers not to the option holders. Whereas, the classical Black-Scholes model
cannot deal with the dividend payment, so we use Wilmott’s model which is
an improvement of the Black-Scholes model to include the discrete dividend.

Sometimes, the announcement of the amount of dividend payment and the
ex-dividend date cannot be obtained by the investors. At this time, the
dividend is implied. To calculate the implied dividend as well as the implied
volatility, two calibration methods are applied with the fixed risk-free inter-
est rate. The data set is collected from the ING Group from Jan 2005 till
Jun 2006.

In this thesis, the following issues are discussed. In chapter 2, the defi-
nitions and properties of European options are discussed; the Black-Scholes
equation is derived and some simple dividend payment models are intro-
duced. In chapter 3, the properties of American options are discussed. In
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chapter 4, some finite difference approximation methods for computing both
of the European and American styles option prices are introduced. In chap-
ter 5, we illustrate how the option pricing parameters needed in the B-S
model influence the option price. In chapter 6, two basic optimization ap-
proaches for computing implied parameters are introduced and the results
of the thesis are presented.
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Chapter 2

Black-Scholes Analysis with
European Options

2.1 Black-Scholes model without dividend

With European Options: the holder of the option has the right, not the
obligation to buy (call) or to sell (put), at a fixed date (expiry date) for a
fixed price (exercise price) an asset (share, goods, derivative).

The value V (premium) of an option (C for a call, P for a put) will de-
pend on the following parameters:

• present value of the asset S

• time t till expiry T

• volatility of asset

• the risk-free interest rate r

• the exercising price E

The Black-Scholes model is valid under the following assumptions:

• the asset price S follows a lognormal random walk

• the risk free interest rate r and the volatility σ of the assets are as-
sumed constant for the entire life time of the option

• no transaction costs for portfolio-hedging are included

• no dividends are paid on the asset during the option contract
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• there are no arbitrage possibilities

• trading with the underlying asset can be done continuously

• short selling is permitted, and the asset can be divided arbitrarily

The asset price S is assumed to follow a lognormal random walk, a simple
mathematical formula for S is

dS

S
= µdt + σdX (2.1)

Where µ is known as the drift, usually µ is constant and it represents the
average rate of growth of the asset price. σ is defined as the volatility, which
measures the standard deviation of the return. Here both µ and σ are as-
sumed to be constant. dX is a Wiener process, a normal distribution with
mean 0 and variance dt, which describes the randomness of the asset price.

If f(S, t) is a smooth function in both S and t, discarding the stochastic
moment of S and t, expand f(S, t) by the Taylor series up to second order
terms, given

df =
∂f

∂S
dS +

∂f

∂t
dt +

1
2
(
∂2f

∂S2
dS2 + 2

∂2f

∂S∂t
dSdt +

∂2f

∂t2
dt2) + . . . (2.2)

dS is given by (2.1), so

dS2 = σ2S2dX2 + 2σµS2dtdX + µ2S2dt2 (2.3)

where dX2 = dt, and the other terms are of lower order. So that

df = σS
df

dS
dX + (µS

df

dS
+

1
2
σ2S2 d2f

dS2
dS2 +

∂f

∂t
)dt (2.4)

Eq. (2.4) is called Ito’s lemma.

We suppose the option price V (S, t) satisfies Ito’s lemma defined by (2.4),
so

dV (S, t) = σS
∂V

∂S
dX + (µS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2
+

∂V

∂t
)dt (2.5)

To eliminate the stochastic part dX, we construct a portfolio consisting one
option and −∆ assets. The value of this portfolio is

Π = V −∆S (2.6)

The change in portfolio dΠ reads:

dΠ = dV −∆dS (2.7)
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Here ∆ is constant for dt, and Π then follows the random walk

dΠ = σS(
∂V

∂S
−∆)dX + (µS

∂V

∂S
+

1
2
σ2S2 ∂2V

∂S2
+

∂V

∂t
− µ∆S)dt (2.8)

Choosing ∆ = ∂V
∂S the randomness can be eliminated to some extent, so

that a deterministic portfolio is obtained. Due to the absence of arbitrage,
the return of the portfolio in dt must equal that of the risk-free bank account:

rΠdt = dΠ (2.9)

This leads to the famous Black-Scholes equation!

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (2.10)

Remarks:

• A derivative satisfying the above assumptions and which only depends
on the present value S and t can be described by the Black-Scholes
equation

• The value of an option is independent of the drift parameter µ

• The (linear) Black-Scholes operator

LBS =
∂

∂t
+

1
2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
− r (2.11)

has a financial interpretation as the difference between the hedged
portfolio and the return of a bank deposit.

2.2 Boundary and Initial conditions for European
option

The Black-Scholes equation needs a final condition and boundary conditions
to derive the unique solution of the partial differential equation. For the Eu-
ropean call, one can define a vanilla option value by C(S, t), with exercise
price E and expiry date T .

The final condition at t = T , the value of call option is known to be the
payoff

C(S, T ) = max(S − E, 0) (2.12)

When S = 0, then dS = 0, so that the asset price doesn’t change during dt,
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and at expiry the payoff is zero. We have

C(0, t) = 0 (2.13)

When S → ∞, the option will be exercised and the magnitude of exercise
price is less important. So the option value becomes the asset value at this
time:

C(S, t) ∼ S −Ee−r(T−t) as S →∞ (2.14)

For a European call option, it is not possible to exercise early, (2.10) and
(2.12)-(2.14) can be solved to give the Black-Scholes analytical solution of
the call option.

For a put option, with value P (S, t), the final condition is the payoff

P (S, T ) = max(E − S, 0) (2.15)

Similar to the European call case, as S = 0, the final payoff of European
put is certainly E.P (0, t) is the present value of E received at T . Assuming
the risk-free interest rate is r, then

P (0, t) = Ee−r(T−t) (2.16)

As S ∼ ∞, the option is unlikely to be exercised, then

P (S, t) → 0 as S →∞ (2.17)

2.3 Derive the Black-Scholes Formula

A European call C(S, t) price given by the Black-Scholes equation can be
written as:

∂C

∂t
+

1
2
σ2S2 ∂2C

∂S2
+ rS

∂C

∂S
− rC = 0 (2.18)

with
C(0, t) = 0, C(S, t)− Ee−r(T−t) ∼ S at S →∞

and
C(S, T ) = max(S − E, 0)

In order to transform (2.18) to a diffusion equation

∂u

∂τ
=

∂2u

∂x2
(2.19)
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we need to set

S = Eex, t = T − τ/
1
2
σ2, C = Ev(x, τ) (2.20)

Then we get
∂v

∂τ
=

∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv (2.21)

where k = r/1
2σ2, and the initial condition for v is

v(x, 0) = max(ex − 1, 0)

Then let
v(x, τ) = eαx+βτu(x, τ) (2.22)

The two unknowns α and β needs to be solved, so put (2.22) to (2.21), and
differentiate it, then

βu +
∂u

∂τ
= α2u + 2α

∂u

∂x
+

∂2v

∂x2
+ (k − 1)(αu +

∂u

∂x
)− ku

To eliminate the terms of u and ∂u/∂x, we have

β = α2 + (k − 1)α− k, 0 = 2α + (k − 1)

then α and β are calculated as:

α = −1
2
(k − 1), β = −1

4
(k + 1)2

After these transformations, we finally substitute (2.18) into (2.19), where

v = e−
1
2
(k−1)x− 1

4
(k+1)2τu(x, τ)

with the initial condition

u(x, 0) = u0(x) = max(e
1
2
(k+1)x − e

1
2
(k−1)x, 0)

so that we obtain the diffusion equation:

∂u

∂τ
=

∂2u

∂x2
for −∞ < x < ∞, τ > 0

The solution of the diffusion equation is

u(x, τ) =
1

2
√

πτ

∫ ∞

−∞
u0(S)e−(x−s)2/4τds (2.23)
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To evaluate the integral in (2.23), make the transformation x′ = (s−x)/
√

2τ ,
we get

u(x, τ) =
1

2
√

π

∫ ∞

−∞
u0(x′

√
2τ + x)e−

1
2
x′2dx′

=
1

2
√

π

∫ ∞

−x/
√

2τ
e

1
2
(k+1)(x+x′

√
2τ)e−

1
2
x′2dx′

− 1
2
√

π

∫ ∞

−x/
√

2τ
e

1
2
(k−1)(x+x′

√
2τ)e−

1
2
x′2dx′

= I1 − I2

To evaluate I1 by completing the square in the component to get a standard
integral:

I1 =
1

2
√

π

∫ ∞

−x/
√

2τ
e

1
2
(k+1)(x+x′

√
2τ)e−

1
2
x′2dx′

=
e

1
2
(k+1)x

√
2π

∫ ∞

−x/
√

2τ
e

1
4
(k+1)2τe−

1
2
(x′− 1

2
(k+1)

√
2τ)2dx′

=
e

1
2
(k+1)x+ 1

4
(k+1)2τ

√
2π

∫ ∞

−x/
√

2τ− 1
2
(k+1)

√
2τ

e−
1
2
η2

dη

= e
1
2
(k+1)x+ 1

4
(k+1)2τN(d1),

where
d1 =

x√
2τ

+
1
2
(k + 1)

√
2τ

and

N(d1) =
1√
2π

∫ d1

−∞
e−

1
2
s2

ds

The computation of I2 is similar to the approach of I1 except replacing
(k + 1) by (k − 1). Recall that

v(x, τ) = e−
1
2
(k−1)x− 1

4
(k+1)2τu(x, τ) (2.24)

and x = log(S/E), τ = 1
2σ2(T −t) so for a European call option the solution

of the BS equation reads

CE(S, t) = SN(d1)−Ee−r(T−t)N(d2) (2.25)

With N(x), the cumulative normal distribution function, and

d1 =
log(S/E) + (r + 1

2σ2)(T − t)
σ
√

T − t
(2.26)

d2 =
log(S/E) + (r − 1

2σ2)(T − t)
σ
√

T − t
(2.27)
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2.4 Put-Call Parity

The Put-Call parity is a relationship, first identified by Stoll (1969), that
exists between the prices of European put and call options that both have
the same underlying, strike price and expiration date. The relationship is
derived using arbitrage arguments. Consider two portfolios consisting of:

1.The call option and an amount of cash equal to the present value of the
strike price.

2.The put option and the underlying.

Comparing the expiration value for these two portfolios, with E representing
the common strike price, we find the following:

A portfolio comprising a call option and an amount x of cash equal to the
present value of the option’s strike price has the same expiration value as a
portfolio comprising the corresponding put option and the underlying. For
European options, early exercise is not possible. If the expiration values of
the two portfolios are the same, then their present values must also be the
same. This equivalence is the so-called Put-Call parity.

If the two portfolios are going to have the same value at expiration, then
they must have the same value today. Otherwise, an investor can make an
arbitrage profit by purchasing the less expensive portfolio, selling the more
expensive one and holding the long-short position to expiration. Accord-
ingly, we have the price equality:

c + Ee−r(T−t) = p + S (2.28)

Where c is the price of European call option, p is the price of European
put option, S is the asset price and r is the risk-free interest rate given the
option’s lifetime T and the time right now t.

Note that, the Put-Call parity applies only to European options, since a
possibility of early exercise can cause a divergence in the present values of
the two portfolios.

The Put-Call parity offers a simple test of option pricing models. Any
option pricing model that produces put and call prices that do not satisfy
put-call parity must be rejected as unsound. Such a model will suggest
trading opportunities where none exist.
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2.5 Some option pricing models with discrete div-
idend

During the life time of the option we have a single dividend payment D at
td. Due to the absence of arbitrage:

S(t+d ) = S(t−d )−D (2.29)

where t+d and t−d are the instants immediately before and after the ex-
dividend date. The value V of the option must be smooth as a function
of time over the time of payment

V (S(t+d ), t+d ) = V (S(t−d ), t−d ) (2.30)

We distinguish the following approaches to include a discrete dividend.

a. Wilmott’s method: This method is derived directly from (5.7) and
(5.8), which follows the following steps:
-solve BS differential equation backwards from expiry T to t+d
-incorporate jump condition (5.7) and (5.8) to find value for t−d
-solve BS differential equation backwards with this value as final condition
from t−d to t

Cd(S, t) = C(S, t, E), t+d ≤ t ≤ T

Cd(S, t−d ) = Cd(S −D, t+d ) = C(S −D, t+d , E)

C(S −D, t, E) is still a solution for all t ≤ t−d .

b. Back to Basics’s method [1]:
In the ”Back to Basics” article, the extreme situation has been considered
for paying dividend. For instance, the company want to pay S (liquidator)
or 0 (survivor) for the dividend. Actually, we usually assume S, so today’s
price of a European call option can be calculated by the following integral:

CE(S, 0, D, td) = e−rtd

∫ ∞

D
CBS(S −D, td)φ(S0, S, td)dS (2.31)

c. Volatility adjusted model
Based on the solution of BS equation, Merton (1973) used S − e−rtdD in-
stead of S, which means the asset price is replaced by the difference of asset
price minus the discounted dividend D:

CE(S, 0, D, td) = (S − e−rtdD)N(d1)−Ee−rT N(d2) (2.32)

Because there is some jump in S, the volatility of the asset price will change
after the dividend payment. To keep the volatility constant, there are some
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methods to adjust it. From an adjusted S, one can derive the adjusted σ
directly:

σ(S, t,D) =

{
σc

S−e−rtdD
S (t ∈ [0, td])

σc (t ∈ [td, T ])
(2.33)

σ(S, t,D) =

{
σc (t ∈ [0, td])
σc

S+e−rtdD
S (t ∈ [td, T ])

(2.34)

In some situations, like the Japanese market, the interest rate is close to 0.
The adjustment can be simplified to:

σ(S, t, D) =

{
σc

S−D
S (t ∈ [0, td])

σc (t ∈ [td, T ])

σ(S, t, D) =

{
σc (t ∈ [0, td])
σc

S+D
S (t ∈ [td, T ])

In this situation, the option price produced by Wilmott’s method changes by
time, which is contrary to the real world, because the option price should be
independent of tD when r = 0. Applying the volatility adjusted approach,
(2.33) or (2.34), we can get the unchanged option price C in the option’s
lifetime independent of tD.

When r 6= 0, each of the method performs well, whereas the option price
given by (2.34) is a bit higher than that by (2.33) for the volatility generated
by (2.34) is a bit larger than that by (2.33). There is also a drawback in our
model. For an American option, the price should be higher than its equiva-
lent of a European option without dividend payment. But in the volatility
adjusted model, the European option is more expensive than the American
option when dividend payment is close to the expiry date.
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Chapter 3

Black-Scholes Analysis for
American Options

3.1 Basic idea of American Options

An American Option is an option that can be exercised anytime during its
life time. The majority of exchange-traded options are American in the real
market.

In fact, the American option holders have greater flexibility than the Eu-
ropean counterpart, because of their right to exercise early. Therefore the
American options have typically higher values than the European equiva-
lents. For the American call option,

C(S, t) ≥ max(S − E, 0)

and for the American put option,

P (S, t) ≥ max(E − S, 0)

In this case, during the life of the option there will be some values of S for
which it is optimal for the holders to exercise the American option. Unlike
the European option, one may be interested in determining the value of
Sf (t), for which it is optimal to exercise.

If there is no dividend paid during the option’s life time, the American
call option is equal to the European call option, which means that it is not
optimal to exercise the American call option prematurely if the asset is non-
dividend payment. And if there is some dividend paid, it may be optimal to
exercise the American call option early. See Fig.(3.1) and (3.2), the Ameri-
can call will never cross the payoff unlike its European equivalent, in the case
of dividend. If the American call price is below the payoff function, there is
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Figure 3.1: European call option with strike price E = 22, implied volatility
σ = 0.25, risk-free interest rate r = 0.02, dividend payment D = 1 ex-
dividend date td = 0.5T
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Figure 3.2: American call option with strike price E = 22, implied volatility
σ = 0.25, risk-free interest rate r = 0.02, dividend payment D = 1 ex-
dividend date td = 0.5T
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Figure 3.3: European put option with strike price E = 22, implied volatility
σ = 0.25, risk-free interest rate r = 0.02, non-dividend payment

an arbitrage opportunity to make instant profit by buying the option and
exercise it immediately.

In contrast, for the American put option, it is always optimal to exercise
prematurely, compared to the European put option with the same parame-
ters. Fig.(3.3) and (3.4) show that for the non-dividend American put it is
even optimal to exercise early. If some dividend payment exists, the Amer-
ican put will be optimal to exercise right after the ex-dividend date, which
will be discussed later.

3.2 American put option as free boundary prob-
lems

The valuation of American options is known as solving a free boundary
problem. Typically at each time t there is a value of S, which marks the
boundary between two regions: to one side one should hold the option and
to the other side one should exercise it. Define the optimal exercise price
by Sf (t). Unfortunately, we don’t know Sf (t) analytically, so we call the
unknown boundary the free boundary.

For the Delta-hedged portfolio Π the change in value over time dt is dΠ.
Arbitrage considerations show that it is impossible to have dΠ > rΠdt be-
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Figure 3.4: American put option with strike price E = 22, implied volatility
σ = 0.25, risk-free interest rate r = 0.02, non-dividend payment

cause an investor can borrow money at the risk-free rate and invest in the
risk-free portfolio Π to make a risk-free profit. However, if dΠ < rΠdt the
equivalent strategy (short the portfolio and earn the risk-free rate on the
money) is not always possible in the presence of early exercise. While in the
case of a European option the return on the option in a risk-neutral world
must be equal to the risk-free rate, in the case of the American option the
following inequality holds:

dΠ =
∂V

∂t
dt +

1
2
σ2S2 ∂2V

∂S2
dt ≤ rΠdt = r(V − ∂V

∂S
S)dt

So that,
∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ r

∂V

∂S
S − rV ≤ 0 (3.1)

For American call option without dividend, (3.1) indicates the equation,
which is the same as the European counterpart, because the optimal exercise
strategy. For an American put option, it is a free boundary problem, as

P = E − S,
∂P

∂t
+

1
2
σ2S2 ∂2P

∂S2
+ r

∂P

∂S
S − rP < 0

P > E − S,
∂P

∂t
+

1
2
σ2S2 ∂2P

∂S2
+ r

∂P

∂S
S − rP = 0

(3.2)

The boundary conditions at S = Sf (t) are that P and its slope are contin-
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uous:
P (Sf (t), t) = max(E − Sf (t), 0),

∂P

∂S
(Sf (t), t) = −1 (3.3)

The first equation of (3.3) is to determine the option price at the free bound-
ary, and the second one is to determine the location of the free boundary.

The American option pricing usually implemented as a Linear Complemen-
tary Problem. Firstly, transform the original (S, t) variables to (x, τ) as
(2.20), while there is an optimal exercise boundary S = Sf (t), which can be
rewritten as x = xf (τ). The payoff function max(E − S, 0) now reads

g(x, τ) = e
1
2
(k+1)2τmax(e

1
2
(k−1)x − e

1
2
(k+1)x, 0) (3.4)

Then we obtain

∂u

∂τ
=

∂2u

∂x2
for x > xf (τ)

u(x, τ) = g(x, τ) for x ≤ xf (τ)
(3.5)

with the initial condition

u(x, 0) = g(x, 0) = max(e
1
2
(k−1)x − e

1
2
(k+1)x, 0) (3.6)

and the boundary conditions read

u(x+, τ) = 0, u(−x−, τ) = g(−x−, τ) (3.7)

where x+ and x− are large numbers. Then linear complementary problem
for the American option transforms into

(
∂u

∂τ
− ∂2u

∂x2
)(u(x, τ)− g(x, τ)) = 0

(
∂u

∂τ
− ∂2u

∂x2
) ≥ 0, (u(x, τ)− g(x, τ)) ≥ 0

(3.8)

with the initial condition (3.6) and boundary conditions (3.7). And both
u(x, τ) and ∂u

∂x(x, τ) are continuous. The same transformation to the lin-
ear complementary formulation can be done for the original option pricing
formulation with the Black-Scholes operator.

3.3 American options with discrete dividend

When the asset pays discrete dividends, the asset price will decrease by the
same amount as the dividend right after the dividend date if there are no
other factors affecting the income.

Early exercise policies for American call options are as following:
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First consider an American call option on an asset which pays one dividend
D at time td. And let S−d (S+

d ) denote the asset price right before (after)
the discrete dividend payment at time t−d (t+d ). If the option is exercised
at time td, then the option price will be Sd − E, otherwise, the asset price
will go down to S+

d = S−d − D immediately after the dividend payment.
In the period of t+d → T , the American call will be equal to its European
counterpart. At time td, the option price is

V (Sd, td) = max(S−d − E,S+
d − Ee−r(T−t+

d
))

which compares the option price of being optimal to exercise the option right
before td and the option price of being optimal to hold the option right after
td. The situation that

S−d −E ≤ S+
d − Ee−r(T−td) = (S−d −D)− Ee−r(T−td) (3.9)

is not optimal to exercise the option the American call because the call is
worth more when it is held than exercised for all S−d . Here

D ≤ E(1− e−r(T−td)) (3.10)

When D > E(1−e−r(T−td)), it may be optimal to exercise the American call
if the asset price S−d is larger than some Sf . Given the continuity property
of the option price across the ex-dividend date,

CBS(S+
d , T − t−d ) = CBS(S−d −D, T − t+d ) (3.11)

where CBS(S−d −D,T − t+d ) is the option price derived by the Black-Scholes
equation with asset price S−d −D and time to maturity T − t−d . When D is
large enough, there will be a Sf satisfying:

CBS(Sf −D, T − td) = Sf −E (3.12)

Sf in (3.12) is a critical point that, if S−d < Sf it is never optimal to ex-
ercise the American call prematurely. Actually, the holder of an American
call option with discrete dividend would only exercise the option immedi-
ately before the ex-dividend date provided both D > E(1 − e−r(T−td)) and
S−d ≥ Sf .

Early exercise policies for American put options
The holder of American put which pays single or multiple dividends tend to
hold the option until the ex-dividend date in order to benefit from the de-
cline of the asset price. From the date of the last ex-dividend, the American
put will behave like a European put.

For the one-dividend American put option, let the ex-dividend date be td,
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the expiry date T and the dividend amount D. Before the ex-dividend date,
to exercise the option before td or not depends on the strike price E and D.
The interest rate income from t to td is E(er(td−t) − 1), where r is the risk-
free interest rate. If E(er(td−t) − 1) < D, then it is not optimal to exercise
the option before td. In this case, the holder will gain more benefit from the
decline of the asset price than the interest income.

Observing that the interest rate income E(er(td−t) − 1) depends on td − t.
So there is a critical value ts so that

E(er(td−ts) − 1) = D (3.13)

Solve the equation,

ts = td − 1
r
ln(1 +

D

E
) (3.14)

When t < ts, we have E(er(td−t) − 1) > D, and under such condition, early
exercise may become optimal if the asset price is below a critical value.

Let τ = T − t, the optimal exercise boundary Sf (τ) of an American put
option with single dividend follows the criteria:

1. Sf (τ) is a continuous decreasing function of τ with Sf (0) = E when
τ ∈ [0, T − td)

2. at T − td, Sf (τ) jumps to zero and remains to be zero till T − ts

3. after T − ts, Sf (τ) increases smoothly from zero to a peak value then
decreases smoothly to a certain value at a higher value of τ
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Chapter 4

Finite-difference methods for
pricing options

In this chapter we report the basics of the finite difference methods in space
and time. Finite-difference methods are elementary approaches to approxi-
mate partial differential equations and linear complementarity problems. To
simplify the approach to price the options, diffusion equation

∂u

∂τ
=

∂2u

∂x2

would be solved firstly, then the solution transformed back to the Black-
Scholes variables

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

with τ = 1
2σ2(T − t), k = r/1

2σ2, similar to (2.20), the option price is

V = E
1
2
(1+k)S

1
2
(1−k)e

1
4
(1+k)2τu(log(S/E), τ)

4.1 Difference Approximations

The basic idea of finite-difference methods is based on Taylor series expan-
sions, such as

∂u

∂τ
(x, τ) =

u(x, τ + ∆τ)− u(x, τ)
∆τ

+ O(∆τ) (4.1)

which is a finite-difference approximation of ∂u/∂τ . (2.1) is called forward
difference, because differencing is in the forward τ direction.

Similar to the forward difference, the backward difference is

∂u

∂τ
(x, τ) =

u(x, τ)− u(x, τ −∆τ)
∆τ

+ O(∆τ) (4.2)
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The second partial derivative ∂2u/∂x2 can be approximated by symmetric
central-difference approximation.

∂2u

∂x2
(x, τ) =

u(x + ∆x, τ)− 2u(x, τ) + u(x−∆x, τ)
(∆x)2

+ O((∆x)2) (4.3)

4.2 Explicit Method

Apply forward difference (4.1) for ∂u/∂τ and symmetric central differences
(4.3) for ∂2u/∂x2, discarding the error term leads to

um+1
n − um

n

∆τ
=

um
n+1 − 2um

n + um
n−1

(∆x)2
(4.4)

Rearrange (4.4), we obtain

um+1
n = λum

n+1 + (1− 2λ)um
n + λum

n−1 (4.5)

where
λ =

∆τ

(∆x)2
(4.6)

At timestep m, if um
n for all n are known, then um+1

n can be calculated ex-
plicitly.

For u(m) = (um
N−+1, ...u

m
N+−1)

tr, where −N− and N+ are large positive
numbers, it is possible to implement the method. Define A as

A :=




1− 2λ λ 0 . . . 0

λ 1− 2λ
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . λ

0 . . . 0 λ
. . .




(4.7)

In order to calculate the option price, the non-dimensional time is divided
into M equal time steps

∆τ =
1
2
σ2T/M

So that we solve the partial differential equation for N− < n < N+ and
0 < m ≤ M , and the boundary conditions are

um
N− ≈ u−∞(N−∆x,m∆τ), 0 < m ≤ M (4.8)
um

N+ ≈ u∞(N+∆x,m∆τ), 0 < m ≤ M (4.9)

And the initial condition is

u0
n = u0(n∆x), N− ≤ n ≤ N+ (4.10)
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Now the explicit method can be given in the matrix notation:

u(m+1) = Au(m) (4.11)

Investigating the truncated error of the numerical solution and the theoret-
ical solution of (4.11)

e(m) = ū(m) − u(m)

where the ū is the theoretical solution. Obviously, there is a relation such
as

Ae(m) = Aū(m) −Au(m) = ū(m+1) − u(m+1) = e(m+1)

then apply it repeatedly, we get

e(m) = Ame(0)

For the method to be stable, previous errors must be damped, which
leads to Ame(0) → 0 for m → ∞. It can be easily proved that the stability
criterion is

0 <
∆τ

(∆x)2
≤ 0

4.3 Implicit Method

The fully-implicit finite-difference method uses the backward-difference ap-
proximation (4.2) for ∂u/∂τ and symmetric central difference (4.3) for ∂2u/∂x2,
which leads to

um
n − um−1

n

∆τ
=

um
n+1 − 2um

n + um
n−1

(∆x)2
(4.12)

which yields the alternative to (4.5)

−λum
n−1 + (1 + 2λ)um

n − λum
n+1 = um−1

n (4.13)

In (4.13), only the right-hand side value um−1
n is known, whereas the three

unknown values of u on the left-hand side wait to be calculated. Similar to
the explicit counterpart, define A as

A :=




2λ + 1 −λ 0 . . . 0

−λ 2λ + 1 −λ
. . . 0

0 −λ
. . . . . .

...
. . . . . . −λ

0 0 −λ 1 + 2λ




(4.14)
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To be more specific, write (4.13) as



2λ + 1 −λ 0 . . . 0

−λ 2λ + 1 −λ
. . . 0

0 −λ
. . . . . .

...
. . . . . . −λ

0 0 −λ 1 + 2λ







um
N−+1

...
um

0
...

um
N+−1




=




um−1
N−+1

...
um−1

0
...

um−1
N+−1




+ λ




um
N−
0
...
0

um
N+




=




bm
N−+1

...
bm
0
...

bm
N+−1




Then the compact form of the matrix notation is

Au(m) = b(m) (4.15)

Here b(m) = u(m−1) + λ(um
N− , 0, ...0, um

N+). So in principle, the u(m) can be
solved by the inverse of A and b(m), such as

u(m) = A−1b(m) (4.16)

For A is symmetric and tridiagonal, both LU and SOR algorithms are usu-
ally applied to solve (4.15).

The LU Method The LU decomposition is trying to find a lower triangular
matrix L and a upper triangular matrix U to make A = LU .




2λ + 1 −λ 0 . . . 0

−λ 2λ + 1 −λ
. . . 0

0 −λ
. . . . . .

...
. . . . . . −λ

0 0 −λ 1 + 2λ




=




1 0 0 . . . 0

lN−+1 1
. . .

...

0
. . . . . . . . . 0

...
. . . . . . 0

0 . . . 0 lN+−2 1







yN−+1 zN−+1 0 . . . 0

0 yN−+2
. . .

...

0
. . . . . . . . . 0

...
. . . . . . zN+−2

0 . . . 0 0 yN+−1




After simple multiplication, the ln, yn and zn can be given as follows:

yN−+1 = 1 + 2λ
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yn = (1 + 2λ)− λ2/yn−1, n = N− + 2, ..., N+ − 1

zn = −λ, ln = −λ/yn, n = N− + 1, ..., N+ − 2

So we only need to calculate yn, n = N− + 1, ..., N+ − 1. Given A = LU ,
rewrite Au(m) = b(m) as

Lq(m) = b(m), Uu(m) = q(m)

q(m) is an intermediate vector. Using yn to eliminate ln and zn, we get



1 0 0 . . . 0

− λ
yN−+1

1 0
...

0 − λ
yN−+2

. . . . . . 0
...

. . . . . . 0
0 . . . 0 − λ

yN+−2
1







qm
N−+1

qm
N−+2

...
qm
N+−2

qm
N+−1




=




bm
N−+1

bm
N−+2

...
bm
N+−2

bm
N+−1




and



yN−+1 −λ 0 . . . 0

0 yN−+2 −λ
...

0 0
. . . . . . 0

...
. . . yN+−2 0

0 . . . 0 0 yN+−1







um
N−+1

um
N−+2

...
um

N+−2

um
N+−1




=




qm
N−+1

qm
N−+2

...
qm
N+−2

qm
N+−1




Then the intermediate qm
n can be solved as

qm
N−+1 = bm

N−+1, qm
n = bm

n +
λqm

n−1

yn−1
, n = N− + 2, ..., N+ − 1

Similar for all the um
n ,

um
N+−1 =

qm
N+−1

ym
N+−1

, um
n =

qm
n + λum

n+1

yn
, n = N+ − 2, ..., N− + 1

The LU method is a direct method which aims to find the unknowns without
iteration. This kind of methods is fast. And one of the drawback is that
they cannot include easily the transaction costs in the calculation.

The SOR Method SOR is short for Successive Over Relaxation, which
is an algorithm of iterative method. The basic idea of SOR is to search
the approximated solution near the exact solution by iteration. Rearrange
(4.13)

um
n =

1
1 + 2λ

(bm
n + λ(um

n−1 + um
n−1)) (4.17)
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The SOR method is a refinement of the Gauss-Seidel method and, the Gauss-
Seidel method is a development of the Jacobi method. The basic idea of the
Jacobi method is to derive some a guess um

n by some initial guess of u which
is substituted into the right-hand side of (4.17). Generally, the value of
previous step is a sound one, such as

um,k+1
n =

1
1 + 2λ

(bm
n + λ(um,k

n−1 + um,k
n−1)) (4.18)

Where um,k+1 is the k + 1-th iteration of um
n . One expects that um,k

n → um
n

as k →∞. Set a small number ε, as long as the measure
∑
n

(um,k+1
n − um,k

n )2 < ε

then stop the iteration and let um
n = um,k+1

n .

For the Gauss-Seidel method, one replaces um,k
n−1 by um,k+1

n−1 in (4.18). So
that

um,k+1
n =

1
1 + 2λ

(bm
n + λ(um,k+1

n−1 + um,k
n−1)) (4.19)

The Gauss-Seidel method is more efficient than the Jacobi method, because
the Gauss-Seidel method uses the most recent guess of um

n .

The SOR method is based on the Gauss-Seidel method, while the SOR
method is a little bit complex. Write um,k+1

n as following:

um,k+1
n = um,k

n + (um,k+1
n − um,k

n )

where (um,k+1
n −um,k

n ) can be thought as an error term or a correction term.
Put

ym,k+1
n =

1
1 + 2λ

(bm
n + λ(um,k+1

n−1 + um,k
n+1))

um,k+1
n = um,k

n + ω(ym,k+1
n − um,k

n )
(4.20)

When ω > 1, it is called the over relaxation parameter. Here ym,k+1
n is

derived by the Gauss-Seidel method, and um,k+1
n can be obtained by the

correction of (ym,k+1
n − um,k

n ). The SOR method can be proved to converge
when 0 < ω < 2, while 0 < ω < 1 is called under relaxation. It is also can
be shown that there is one optimal value of ω when 1 < ω < 2, which makes
the convergence most rapidly. Actually, in the numerical implementation,
one can change ω each iteration to accelerate the SOR approach.

The implicit method is stable for all λ, so one can apply larger time step to
compensate the heavier task in each iteration.
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4.4 The Crank-Nicolson Method

Both the explict method and the implicit method produce the order ∆τ
accurate approximation to ∂u

∂τ . One expects a higher order ∆τ2 accuracy of
the time discretization of ∂u

∂τ with the unconditional stability. Crank and
Nicolson adviced the average of the forward difference and the backward
difference. Then firstly apply the forward difference to derive the explicit
scheme

um+1
n − um

n

∆τ
=

um
n+1 − 2um

n + um
n−1

(∆x)2

then apply the backward difference to derive the implicit scheme

um
n − um−1

n

∆τ
=

um+1
n+1 − 2um+1

n + um+1
n−1

(∆x)2

Take the average of the two equations, gives

um
n − um−1

n

∆τ
=

1
2
(
um

n+1 − 2um
n + um

n−1

(∆x)2
+

um
n+1 − 2um

n + um
n−1

(∆x)2
) (4.21)

Rearrange (4.21), the Crank-Nicolson method can be written as:

um+1
n − 1

2
λ(um+1

n+1 − 2um+1
n + um+1

n−1 ) = um
n +

1
2
λ(um

n+1− 2um
n + um

n−1) (4.22)

Where um
n−1, um

n and um
n+1 are known, which are used to calculate um+1

n−1 ,
um+1

n and um+1
n+1 . λ here is still ∆τ/(∆x)2. Because the right-hand side of

(4.22) can be solved explicitly, we perform the Crank-Nicolson method in
two steps, firstly calculate

Zm
n = (1− λ)um

n +
1
2
λ(um

n−1 + um
n+1) (4.23)

and then calculate

(1 + λ)um+1
n − 1

2
λ(um+1

n−1 + um+1
n+1 ) = Zm

n (4.24)

Write (4.23) and (4.24) in matrix notation,

Au(m) = Bu(m+1) (4.25)

where

A =




1− λ λ
2 0

λ
2

. . . . . .

. . . . . . . . .
. . . . . . . . .

0
. . . . . .




, B =




1 + λ −λ
2 0

−λ
2

. . . . . .

. . . . . . . . .
. . . . . . . . .

0
. . . . . .




28



Similar to the implicit method, define b(m)

b(m) =




Zm
N−+1

...
Zm

0
...

Zm
N+−1




+
1
2
λ




um+1
N−
0
...
0

um+1
N+




(4.26)

Then we get
Bu(m+1) = b(m) (4.27)

It is obvious that the only difference between the Crank-Nicolson method
and the fully implicit method is that λ in the fully implicit method is the
substitution of 1

2λ in the Crank-Nicolson method.

So the left-hand side of (4.25) can be solved explicitly similar to the for-
ward difference scheme, while the right-hand side of (4.25) can be derived
similar to the backward difference scheme using either LU method or SOR
method given the boundary conditions and the initial condition described
in (4.8), (4.9) and (4.10).

4.5 Discretization of the general form of the PDE

In our code, a general form of a parabolic partial differential equation with
non-constant coefficients, Dirichlet boundary conditions and an initial con-
dition, reads

∂u

∂t
= α(x)

∂2u

∂x2
+ β(x)

∂u

∂x
+ γ(x)u(x, t) + f(x, t) (4.28)

u(a, t) = L(t) (4.29)

u(b, t) = R(t) (4.30)

u(x, 0) = φ(x) (4.31)

These equations are solved on a grid with N points on interval [a, b]. Let
xi = a + ih, where h = (b− a)/N . Rewrite (4.28) in matrix form:

du

dt
= Au + b(t) + f(t) (4.32)
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4.5.1 Fourth order accuracy

Apply Taylor’s expansion with the neighbor points, we can obtain the fourth
order accurate discretization of (4.28). Write ∆x = h for ease, in the points
xi±1,

u(xi±1) = u(xi)± h
∂u

∂x
|xi +

1
2
h2 ∂2u

∂x2
|xi ±

1
6
h3 ∂3u

∂x3
|xi

+
1
24

h4 ∂4u

∂x4
|xi ±

1
120

h5 ∂5u

∂x5
|xi + O(h6)

(4.33)

And in the points xi±2,

u(xi±2) = u(xi)± 2h
∂u

∂x
|xi + 2h2 ∂2u

∂x2
|xi ±

4
3
h3 ∂3u

∂x3
|xi

+
2
3
h4 ∂4u

∂x4
|xi ±

4
15

h5 ∂5u

∂x5
|xi + O(h6)

(4.34)

With (4.33) and (4.34) and assuming that all derivatives exist, the fourth
order approximations of the derivatives are

∂2u

∂x2
|xi + O(h4) =

1
12h2

(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2) (4.35)

∂u

∂x
|xi + O(h4) =

1
12h

(−ui+2 + 8ui+1 − 8ui−1 + ui−2) (4.36)

Combine (4.35) and (4.36), we obtain

∂ui

∂t
=

1
12h2

(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2)

+
1

12h
(−ui+2 + 8ui+1 − 8ui−1 + ui−2) + γiui + fi(t)

(4.37)

In the fourth order scheme, points x1 and x2 need special treatment on
the left boundary and xN−1 and xN−2 need special treatment on the right
boundary. The equation of the system at point x2 is:

∂u2

∂t
=

1
12h2

α2(−u4 + 16u3 − 30u2 + 16u1 − u0)

+
1

12h
β2(−u4 + 8u3 − 8u1 + u0) + γ2u2 + f2(t)

(4.38)

and at point x1:

∂u1

∂t
=

1
12h2

α2(−u3 + 16u2 − 30u1 + 16u0 − u−1)

+
1

12h
β2(−u3 + 8u2 − 8u0 + u−1) + γ1u1 + f1(t)

(4.39)

The fourth order ghost value u−1 can be derived by extrapolation:

u−1 = 4u0 − 6u1 + 4u2 − u3 + O(h4) (4.40)
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The situation for the points xN−2 and xN−1 on the right boundary is similar
as the points on the left boundary.

The elements in matrix A of (4.32) read:

aii = − 15
4h2

αi + γi

aii+1 =
4

3h2
αi +

4
h

βi

aii−1 =
4

3h2
αi − 4

h
βi

aii+2 = − 1
12h2

αi − 1
12h

βi

aii−2 = − 1
12h2

αi +
1

12h
βi

(4.41)

Correct the first and last row from (4.41)

a11 = − 2
h2

α(a + h)− 1
2h

β(a + h) + γ(a + h)

a12 =
1
h2

α(a + h) +
1
h

β(a + h)

a13 = − 1
6h

β(a + h)

aN−1,N−1 = − 2
h2

α(b− h) +
1
2h

β(b− h) + γ(b− h)

aN−1,N−2 =
1
h2

α(b− h)− 1
h

β(b− h)

aN−1,N−3 =
1
6h

β(b− h)

(4.42)

Apply (4.40), we obtain the vector b in (4.32):

bi =





(
α(a + h)

h2
− β(a + h)

3h
)L(t) i = 1

(−α(a + 2h)
12h2

+
β(a + 2h)

12h
)L(t) i = 2

0 3 ≤ i ≤ N − 3

(−α(b− 2h)
12h2

− β(b− 2h)
12h

)R(t) i = N − 2

(
α(b− h)

h2
+

β(b− h)
3h

)R(t) i = N − 1

(4.43)

4.5.2 Coordinate transformation with stretching

The finite difference methods are based on the derivatives provided by the
Taylor expansion, however, in option pricing the final conditions are typi-
cally not differentiable. A local grid refinement around the non-differentiable
payoff condition can improve the accuracy. The basic idea of the refinement
is using more points near the non-differentiable condition. A coordinate
transformation with stretching will be applied. After an analytic coordinate
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transformation, the original differential equation changes. An equidistant
grid is then used in the discretization in (4.28), while this discretization can
also be used after the transformation, as only the coefficients of the deriva-
tives change.

Make a coordinate transformation y = ψ(x), with the inverse x = ϕ(y) =
ψ−1(y), by the chain rule we obtain the first order derivative:

du

dx
=

du

dy

dy

dx
=

1
ϕ′(y)

du

dy
(4.44)

and the second order derivative reads:

d2u

dx2
=

1
(ϕ′(y))2

d2u

dy2
− ϕ′′(y)

(ϕ′(y))3
du

dy
(4.45)

Put (4.44) and (4.45) into (4.28), the transformation of the coefficients α, β
and γ will be:

α̂(y) =
αϕ(y)

(ϕ′(y))2

β̂(y) =
βϕ(y)
ϕ′(y)

− α(ϕ(y))
ϕ′′(y)

(ϕ′(y))3
γ̂(y) = γ(ϕ(y))

(4.46)

The left and right boundaries are transformed to ψ(a) and ψ(b). Then the
new step of the transformed equation is ĥ = ((ψ(b) − ψ(a)))/N . In option
pricing, the transformation

y = ψ(S) = sinh−1(S − E) + sinh−1E (4.47)

is used here, where ψ is a monotonically increasing function. In this case, a
specific point can be focused on by the grid refinement, for instance at the
strike price E. The transformation applied in this thesis is

y = ψ(S) = sinh−1(µ(S − E)) + sinh−1(µE) (4.48)

where µ is the rate of stretching.

ϕ(y) and its derivatives can be derived as following:

ϕ(y) =
1
µ

sinh(y − sinh−1(µS0)) + S0 (4.49)

ϕ′(y) =
1
µ

cosh(y − sinh−1(µS0)) (4.50)

ϕ′′(y) =
1
µ

sinh(y − sinh−1(µS0)) (4.51)
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The time grid can also be generated by the fourth order discretization
method. Apply a transformation of the equation which is backward in time
into an equation forward in time, we get

(
25
12

I − kL)um+1 = 4um − 3um−1 +
4
3
um−2 +

1
4
um−3 (4.52)

with the time step k, the identity matrix I. And L here represents the
discrete version of

L =
1
2
σ2S2 ∂2

∂S2
+ rS

∂

∂S
− r

With the fourth order approximation, the result can be obtained accurately.
The detail of the fourth order Crank-Nicolson method is omitted for its
similarity of the second order scheme.

4.6 Methods for American Options

The situation of calculating American options is not as straightforward as
their European counterparts. Since there can be early exercised, which give
rise to a free boundary problem. To simplify the free boundary problem, we
try to transform the original problem to a fixed boundary problem, and deal
with the free boundary afterwards. Recall Chapter 3, the American option
pricing problem can be given as the linear complementary from:

(
∂u

∂τ
− ∂2u

∂x2
)(u(x, τ)− g(x, τ)) = 0

(
∂u

∂τ
− ∂2u

∂x2
) ≥ 0, (u(x, τ)− g(x, τ)) ≥ 0

(4.53)

where the transformed payoff function g(x, τ) is given by

g(x, τ) = e
1
2
(k+1)2τmax(e

1
2
(k−1)x − e

1
2
(k+1)x, 0) (4.54)

for the American put option, and the payoff function for the American call
option is similar,

g(x, τ) = e
1
2
(k+1)2τmax(e

1
2
(k+1)x − e

1
2
(k−1)x, 0) (4.55)

The initial and fixed boundary conditions are

u(x, 0) = g(x, 0),
u(x, τ) is continuous,

∂u

∂x
(x, τ) is as continuous as g(x, τ),

lim
x→±∞u(x, τ) = lim

x→±∞ g(x, τ)

(4.56)
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The linear complementary formulation (4.53) does not treat the free bound-
ary explicitly. If one solves (4.53), then one can find the free boundary
x = xf (τ) by the following conditions:

u(xf (τ), τ) = g(xf (τ), τ), but for x > xf (τ), u(x, τ) > g(x, τ)

for the American put option, and

u(xf (τ), τ) = g(xf (τ), τ), but for x > xf (τ), u(x, τ) < g(x, τ)

for the American call option.

The procedure to solve the linear complementary problem is as follows.

Divide the (x, τ)-plane into a regular finite grid as usual. Then apply the
Crank-Nicolson method to the inequality of

(
∂u

∂τ
− ∂2u

∂x2
) ≥ 0

then

um+1
n − um

n

∆τ
≥ 1

2
(
um+1

n+1 − 2um+1
n + um+1

n−1

(∆x)2
+

um
n+1 − 2um

n + um
n−1

(∆x)2
) (4.57)

rearrange (4.57),

um+1
n − 1

2
λ(um+1

n+1 − 2um+1
n + um+1

n−1 ) ≥ um
n +

1
2
λ(um

n+1− 2um
n + um

n−1) (4.58)

where λ = ∆τ/(∆)2. Then define

gm
n = g(n∆x, m∆τ) (4.59)

Discretise the condition u(x, τ) ≥ g(x, τ) as

um
n ≥ gm

n for m ≥ 1 (4.60)

And the initial and boundary conditions are

um
N− = gm

N− , um
N+ = gm

N+ , u0
n = g0

n (4.61)

where −N− and N+ are both large numbers satisfiying

N−∆x ≤ x = n∆x ≤ N+∆x

Define
Zm

n = (1− λ)um
n +

1
2
λ(um

n−1 + um
n+1) (4.62)
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Then (4.58) becomes

(1 + λ)um+1
n − 1

2
λ(um+1

n−1 + um+1
n+1 ) ≥ Zm

n (4.63)

At time-step (m + 1)∆τ , one can find Zm
n explicitly, for one has already

knows um
n . Equation

(
∂u

∂τ
− ∂2u

∂x2
)(u(x, τ)− g(x, τ)) = 0 (4.64)

can be approximated by

((1 + λ)um+1
n − 1

2
λ(um+1

n−1 + um+1
n+1 )− Zm

n )(um+1
n − gm+1

n ) = 0 (4.65)

Now we give the matrix notation of the

um =




um
N−+1

...
um

N+−1


 , gm =




gm
N−+1

...
gm
N+−1


 (4.66)

Discarding the boundary values um
N− and um

N+ as they can be determined
by the boundary conditions. Let bm defined by

bm =




bm
N−+1

...
bm
0
...

bm
N+−1




=




Zm
N−+1

...
Zm

0
...

Zm
N+−1




+
1
2
λ




gm+1
N−
0
...
0

bm+1
N+




(4.67)

If one introduces the (N+−N−−1), with the symmetric tridiagonal matrix

C =




1 + λ −λ
2 0

−λ
2

. . . . . .

. . . . . . . . .
. . . . . . . . .

0
. . . . . .




(4.68)

then the linear complementary problem (4.53) can be given by the matrix
notation:

(u(m+1) − g(m+1))(Cu(m+1) − b(m)) = 0
Cu(m+1) ≥ b(m), u(m+1) ≥ g(m+1) (4.69)

The time-stepping is inherent in the approach. Similar to the SOR method,
one can use the projected SOR method which is a modification of SOR to
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solve (4.69).

Apply in the Crank-Nicolson method the SOR algorithm we obtain

ym+1,k+1
n =

1
1 + λ

(bm
n +

1
2
λ(um+1,k+1

n−1 + um+1,k
n+1 ))

um+1,k+1
n = um+1,k

n + ω(ym+1,k+1
n − um+1,k

n )
(4.70)

To satisfy the constraint u(m+1) ≥ g(m+1), rewrite the second equation of
(4.70),

ym+1,k+1
n =

1
1 + λ

(bm
n +

1
2
λ(um+1,k+1

n−1 + um+1,k
n+1 ))

um+1,k+1
n = max(um+1,k

n + ω(ym+1,k+1
n − um+1,k

n ), gm+1
n )

(4.71)

Where um+1,k+1
n is used immediately to calculate um+1,k+1

n+1 . And put um+1 =
um+1,k+1 when ‖ um+1,k+1 − um+1,k ‖< ε, where ε is a small number.
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Chapter 5

Parameter Study based on
Black-Scholes Equation

There are several factors influencing the option price, such as volatility,
dividend, time to maturity, strike price and risk-free interest rate. In this
chapter, only dividend amount and interest rate will be discussed for the
American options.

5.1 Effect of single dividend and interest rate

With one discrete dividend D, the solution of the European call can be
written as

CE(S, t) = (S −De−r(td−t))N(d1)− Ee−r(T−t)N(d2) (5.1)

where td is the ex-dividend date. And the solution to the European put is

PE(S, t) = Ee−r(T−t)N(−d2)− (S −De−r(td−t))N(−d1) (5.2)

In order to examine the behavior of the option price provided the change
of dividend amount D and interest rate r, put the parameters needed by
the Black-Scholes equation as strike price E = 22, time to maturity T = 1,
ex-dividend date td = 0.5 and implied volatility σ = 0.25.

For the American put, when the dividend amount D is fixed, the option
prices decrease as interest rate r increases, see Table (5.1). Since the dis-
counted strike price Ee−r(T−t) and the discounted dividend amount De−r(td−t)

becomes smaller when r goes up, the American put price given by (5.2) goes
down.

Secondly, we fix the interest rate r. As the dividend amount D goes up, the
American put price P also goes up, see Table (5.2). That is because when
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Grid 20 by 20 40 by 40 80 by 80
r=0.015 P=2.5513 P=2.5563 P=2.5568
r=0.020 P=2.5009 P=2.5046 P=2.5052
r=0.025 P=2.4513 P=2.4544 P=2.4522
r=0.015 C=1.9621 C=1.9621 C=1.9626
r=0.020 C=1.9983 C=1.9990 C=1.9991
r=0.025 C=2.0347 C=2.0362 C=2.0360

Table 5.1: Test for American option for fixed D=1, changing r, where C for
call option price, P for put option price

Grid 20 by 20 40 by 40 80 by 80
D=0.9 P=2.4463 P=2.4498 P=2.4504
D=1.0 P=2.5009 P=2.5046 P=2.5052
D=1.1 P=2.5564 P=2.5601 P=2.5607
D=0.9 C=2.0229 C=2.0251 C=2.0253
D=1.0 C=1.9983 C=1.9990 C=1.9991
D=1.1 C=1.9743 C=1.9744 C=1.9748

Table 5.2: Test for American option for fixed r=0.02, changing D, where C
for call option price, P for put option price

D increases, the put price given by (5.2)increases as the the discounted div-
idend amount De−r(td−t) increases and other parts remain the same.

Contrary to the American put, the American call prices C increase as
the interest rate increases, see Table (5.1). Applying (5.1), as r goes up,
the discounted strike price Ee−r(T−t) and the discounted dividend amount
De−r(td−t) go down, so that the call option prices go up.

When D increases, the American call prices decrease since S becomes smaller,
for the discounted dividend amount De−r(td−t) also gets larger with other
parts unchanged, see Table (5.2).

The call option price rises when the interest rate rises. That is because
options are priced on a risk-neutral basis, i.e. on a delta-neutral basis. So
a long call would be paired with a short-stock, and a short-stock position
generates interest revenue. That makes the call option worth more. If inter-
est rates go up, the interest revenue from the short stock position increases,
which makes the call worth still more. Note that for put options it works
the opposite way. Dividends also work in the opposite direction.
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grid r D1,2 = 0.5, 0.5 D1,2 = 0.45, 0.55 D1,2 = 0.55, 0.45

20 by 20
r=0.015 2.5436 2.5414 2.5458
r=0.020 2.4869 2.4847 2.4890
r=0.025 2.4309 2.4288 2.4330

40 by 40
r=0.015 2.5457 2.5434 2.5480
r=0.020 2.4890 2.4868 2.4912
r=0.025 2.4336 2.4314 2.4357

80 by 80
r=0.015 2.5462 2.5439 2.5485
r=0.020 2.4896 2.4874 2.4918
r=0.025 2.4342 2.4320 2.4363

Table 5.3: Test for American put price P

So, in an optimization strategy where r and D are parameters to be opti-
mized multiple optimal solutions (r up, D down, or vice versa) are expected.

Table (5.1) and (5.2) show that we obtain stable, converged put and call
prices with 20-80 grid points in space and time. We will use 40 points in
the calibration to follow.

5.2 Effect of two dividends and interest rate

The solution to the two dividends Black-Scholes model is similar to that of
the single dividend model, such as

CE(S, t) = (S−D1e
−r(td1−t)−D2e

−r(td2−t))N(d1)−Ee−r(T−t)N(d2) (5.3)

where td1 and td2 are the ex-dividend dates and D1, D2 are the dividend
amounts. The solution to the European put is

PE(S, t) = Ee−r(T−t)N(−d2)− (S −D1e
−r(td1−t) −D2e

−r(td2−t))N(−d1)
(5.4)

To illustrate how two dividends D1, D2 influence the option price with risk-
free interest rate, we put E = 22, td1 = 0.25, td2 = 0.75, σ = 0.25 and T = 1,
and change D1, D2 simultaneously with different r. Let D = D1 + D2 = 1.
Table (5.3) illustrates that the American put, as r increases, the option prices
decrease no matter how D1, D2 change. As D = D1 + D2 holds constant,
D1 and D2 behave reversely. When td1 and td2 are fixed, the option price
given by D1 > D2 is higher than that given by D1 < D2. When applying
(5.4), put our attention to D1e

−r(td1−t) + D2e
−r(td2−t), we define a function

of D1 as
f(D1) = D1e

−r(td1−t) + (1−D1)e−r(td2−t) (5.5)
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grid r D1,2 = 0.5, 0.5 D1,2 = 0.45, 0.55 D1,2 = 0.55, 0.45

20 by 20
r=0.015 1.9351 1.9212 1.9493
r=0.020 1.9742 1.9601 1.9885
r=0.025 2.0136 1.9993 2.0282

40 by 40
r=0.015 1.9366 1.9225 1.9511
r=0.020 1.9751 1.9605 1.9904
r=0.025 2.0146 2.0000 2.0301

80 by 80
r=0.015 1.9366 1.9226 1.9515
r=0.020 1.9753 1.9610 1.9905
r=0.025 2.0148 2.0003 2.0302

Table 5.4: Test for American call price C

r D1 = 0.4 D1 = 0.5 D1 = 0.6
r=0.015 C=1.9632 C=1.9454 C=1.9304
r=0.020 C=2.0024 C=1.9845 C=1.9687
r=0.025 C=2.0428 C=2.0241 C=2.0074

Table 5.5: Test for American call price for fixed r and D2, changing D1

where e−r(td1−t) and e−r(td2−t) are fixed. As t < td1 < td2, e−r(td1−t) >
e−r(td2−t). Rewrite (5.5)

f(D1) = (e−r(td1−t) − e−r(td2−t))D1 + e−r(td2−t) (5.6)

So f(D1) is an monotonically increasing function, then the put option prices
go up when D1 goes up.

Table (5.4) illustrates that the American call, as r increases, the option
prices increase no matter how D1, D2 change. For the American put, if
there are two dividend payments with a constant sum during the option’s
lifetime, the larger the first amount of the dividend D1, the bigger the option
price is. However, this result is confusing because as D1 goes up, the call
option prices should go down. To illustrate this, we fix D2 = 0.5, In this
case, the call option prices go down when D1 goes up, See Table (5.5).

In the case of American call calculated by the 40 by 40 grid with the param-
eter r = 0.02, D1 = 0.49, D2 = 0.51, we find the option price C = 1.9717.
It is quite close to the case of r = 0.02, D1 = D2 = 0.5, which is C = 1.9751.

In the view of accuracy, the solution given by the fine 80 by 80 grid can
be regarded as the standard result. And the coarse 20 by 20 grid does not
perform as good as the 40 by 40 grid. To save CPU time, the calibration
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Grid 20 by 20 40 by 40 80 by 80
r=0.015; P=2.5006 P=2.5044 P=2.5051
r=0.020; P=2.4490 P=2.4523 P=2.4531
r=0.025; P=2.3992 P=2.4020 P=2.4026
r=0.015; C=1.9035 C=1.9621 C=1.9057
r=0.020; C=1.9411 C=1.9425 C=1.9427
r=0.025; C=1.9789 C=1.9057 C=1.9802

Table 5.6: Test for American option for fixed D=1, changing r with volatility
correction (2.33), where C for call option price, P for put option price

methods introduced in chapter 6 will apply the 40 by 40 grid to balance the
performance and the accuracy.

5.3 Effect of the parameters using volatility ad-
justment

5.3.1 Effect of single dividend and interest rate using volatil-
ity adjustment

During the life time of the option we have a single dividend payment D at
td. Due to the absence of arbitrage:

S(t+d ) = S(t−d )−D (5.7)

where t+d and t−d are the instants immediately before and after the ex-
dividend date. The value V of the option must be smooth as a function
of time over the time of payment

V (S(t+d ), t+d ) = V (S(t−d ), t−d ) (5.8)

We distinguish the following approaches to include a discrete dividend.

The volatility correction (2.33) is volatility correction after td and (2.34)
is volatility correction before td which are both applied in the following re-
sults. The result given by (2.33) see Tables (5.6), (5.7). The result given by
(2.34) see Tables (5.8), (5.9).

Both the volatility correction models behave similarly to the classical
Wilmott’s model. The volatility correction method before td provides the
largest option values while the volatility correction method after td provides
the smallest values, and Wilmott’s model gives the results which are almost
the average of the former two.
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Grid 20 by 20 40 by 40 80 by 80
D=0.9 P=2.3995 P=2.4027 P=2.4036
D=1.0 P=2.4490 P=2.4523 P=2.4531
D=1.1 P=2.4993 P=2.5026 P=2.5034
D=0.9 C=1.9740 C=1.9747 C=1.9753
D=1.0 C=1.9411 C=1.9425 C=1.9427
D=1.1 C=1.9087 C=1.9116 C=1.9120

Table 5.7: Test for American option for fixed r=0.02, changing D with
volatility correction (2.33), where C for call option price, P for put option
price

Grid 20 by 20 40 by 40 80 by 80
r=0.015; P=2.5977 P=2.6015 P=2.6021
r=0.020; P=2.5450 P=2.5490 P=2.5497
r=0.025; P=2.4948 P=2.4980 P=2.4989
r=0.015; C=1.9995 C=2.0002 C=2.0007
r=0.020; C=2.0364 C=2.0367 C=2.0375
r=0.025; C=2.0737 C=2.0747 C=2.0751

Table 5.8: Test for American option for fixed D=1, changing r with volatility
correction (2.34), where C for call option price, P for put option price

Grid 20 by 20 40 by 40 80 by 80
D=0.9 P=2.4861 P=2.4899 P=2.4907
D=1.0 P=2.5450 P=2.5490 P=2.5497
D=1.1 P=2.6046 P=2.6087 P=2.6094
D=0.9 C=2.0593 C=2.0611 C=2.0611
D=1.0 C=2.0364 C=2.0367 C=2.0375
D=1.1 C=2.0141 C=2.0154 C=2.0156

Table 5.9: Test for American option for fixed r=0.02, changing D with
volatility correction (2.34), where C for call option price, P for put option
price
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grid r D1,2 = 0.5, 0.5 D1,2 = 0.45, 0.55 D1,2 = 0.55, 0.45

20 by 20
r=0.015 P=2.5048 P=2.5038 P=2.5058
r=0.020 P=2.4478 P=2.4469 P=2.4488
r=0.025 P=2.3921 P=2.3912 P=2.3930

40 by 40
r=0.015 P=2.5078 P=2.5067 P=2.5088
r=0.020 P=2.4512 P=2.4501 P=2.4522
r=0.025 P=2.3957 P=2.3947 P=2.3966

80 by 80
r=0.015 P=2.5086 P=2.5075 P=2.5096
r=0.020 P=2.4518 P=2.4508 P=2.4529
r=0.025 P=2.3963 P=2.3954 P=2.3973

Table 5.10: Test for American put with volatility correction (2.33)

grid r D1,2 = 0.5, 0.5 D1,2 = 0.45, 0.55 D1,2 = 0.55, 0.45

20 by 20
r=0.015 C=1.8938 C=1.8815 C=1.9087
r=0.020 C=1.9326 C=1.9201 C=1.9477
r=0.025 C=1.9729 C=1.9604 C=1.9871

40 by 40
r=0.015 C=1.8970 C=1.8846 C=1.9110
r=0.020 C=1.9358 C=1.9231 C=1.9499
r=0.025 C=1.9755 C=1.9627 C=1.9896

80 by 80
r=0.015 C=1.8976 C=1.8851 C=1.9112
r=0.020 C=1.9363 C=1.9235 C=1.9503
r=0.025 C=1.9761 C=1.9629 C=1.9902

Table 5.11: Test for American call with volatility correction (2.33)

5.3.2 Effect of two dividends and interest rate using volatil-
ity correction

The situation of two discrete dividends model using volatility correction is
similar to the non-volatility correction model. So we just put the results
here. The result given by (2.33) see Table (5.10) and (5.11). The result
given by (2.34) see Table (5.12) and (5.13).

Although the interest rate and the dividend are not the primary factors
affecting an option’s price, the option trader should still be aware of their
effects. In fact, the primary drawback we have seen in many of the option
analysis tools available is that they use a simple Black Scholes model which
can only give the analytical solution to the European style options. While
in the real market, the options traded are usually American style options.
It is better to derive much accurate tools to model the American options by
checking the possibility of early exercise.
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grid r D1,2 = 0.5, 0.5 D1,2 = 0.45, 0.55 D1,2 = 0.55, 0.45

20 by 20
r=0.015 P=2.5538 P=2.5504 P=2.5571
r=0.020 P=2.4965 P=2.4933 P=2.4998
r=0.025 P=2.4409 P=2.4377 P=2.4441

40 by 40
r=0.015 P=2.5565 P=2.5531 P=2.5599
r=0.020 P=2.4998 P=2.4965 P=2.5031
r=0.025 P=2.4443 P=2.4411 P=2.4475

80 by 80
r=0.015 P=2.5573 P=2.5539 P=2.5607
r=0.020 P=2.5006 P=2.4973 P=2.5039
r=0.025 P=2.4449 P=2.4417 P=2.4482

Table 5.12: Test for American put with volatility correction (2.34)

grid r D1,2 = 0.5, 0.5 D1,2 = 0.45, 0.55 D1,2 = 0.55, 0.45

20 by 20
r=0.015 C=1.9420 C=1.9277 C=1.9591
r=0.020 C=1.9816 C=1.9670 C=1.9979
r=0.025 C=2.0219 C=2.0071 C=2.0370

40 by 40
r=0.015 C=1.9454 C=1.9308 C=1.9614
r=0.020 C=1.9845 C=1.9696 C=2.0001
r=0.025 C=2.0241 C=2.0089 C=2.0400

80 by 80
r=0.015 C=1.9460 C=1.9313 C=1.9617
r=0.020 C=1.9849 C=1.9698 C=2.0008
r=0.025 C=2.0245 C=2.0092 C=2.0406

Table 5.13: Test for American call with volatility correction (2.34)
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Chapter 6

Calibration of the Implied
Variables

We use the data of the ING Groep NV to calibrate the implied interest rate,
implied dividend and implied volatility. And the data from Fortis Bank will
be used to test the calibration approach. The data is in given the form of
the following format for one time point in a specific day:

22.140
Strike price CallBid CallAsk PutBid PutAsk

15.000 7.150 7.250 0.000 0.050
16.000 6.150 6.300 0.000 0.100
17.000 5.200 5.300 0.050 0.100
18.000 4.200 4.300 0.100 0.150
19.000 3.250 3.350 0.150 0.250
20.000 2.400 2.450 0.300 0.400
21.000 1.550 1.650 0.550 0.650
22.000 0.900 0.950 0.950 1.050
23.000 0.450 0.500 1.550 1.650
24.000 0.150 0.250 2.350 2.450
25.000 0.050 0.150 3.250 3.350

Table 6.1: Data of ING on 03-Feb-2005

In Table (6.1), the value 22.140 is the asset closing price at 03-Feb-2005.
The values of the first column from 15.000 to 25.000 are the strike prices.
The second column is the call option price for bid, the third column is the
call option price for ask, the fourth column is the put option price for bid
and the last column is the put option price for ask.
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To do the calibration, we use two approaches supplied by Matlab. One
is fminsearch, the other one is fmincon. Both of these methods will be
discussed in the following sections.

6.1 Implied volatility and implied dividend

Implied volatility is a theoretical value designed to represent the volatility
of the security underlying an option as determined by the price of the option.
In general, implied volatility decreases when the market is bullish (means
people have an optimistic outlook for the market) and increases when the
market is bearish (means people have a pessimistic outlook for the market).
This is due to the common belief that bearish markets are more risky than
bullish markets. Implied volatilities are often referred to as a ”market con-
sensus”, which is an indication of risk that combines the insights of many
market participants. However, implied volatilities are essentially parame-
ters. They can be biased for some instances. The factors that affect implied
volatility are the exercise price, the risk-free interest rate, the expiry date,
the asset price and the price of the option.

Paying dividend is the one of most important ways of the business to fulfill
the mission of creating profit for the owners. When a company earns a profit,
some of this money is typically reinvested in the business and called retained
earnings, and some of it can be paid to its shareholders as a dividend. The
amount of the dividend is determined every year at the company’s annual
general meeting, and declared as either a cash amount or a percentage of
the company’s profit. When a share is sold shortly before the dividend is to
be paid, the seller rather than the buyer is entitled to the dividend. At the
point at which the buyer is not entitled to the dividend if the share is sold,
the share is said to go ex-dividend. This is usually two business days before
the dividend is to be paid, depending on the rules of the stock exchange.
When a share goes ex-dividend, its price will generally fall by the amount
of the dividend. Implied dividend in this paper is the market expectation
of the dividend, which we want to test if it is close to the dividend having
been announced by the company.

In the option pricing formulas, such as the Black Scholes formula, the only
unknown parameter is the implied volatility of the underlying stock. Our
purpose in option pricing is to find the implied volatility, given the observed
price quoted in the market. For example, given C0, a price of a call option,
the following equation should be solved for the value of σ:

C0 = CBS(S,E, r, σ, T ) (6.1)
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Actually, it is an inverse problem to solve σ in (6.1), and this equation has
no closed form solution, which means the equation need to be numerically
solved.

If there is a dividend payment during the option’s lifetime, we can use an
adjusted form of (6.1):

C0 = CBS(S −D,E, r, σ
S

S −D
,T ) (6.2)

C0 = CBS(S − e−rtdD,E, r, σ
S

S − e−rtdD
,T ) (6.3)

Adjustments (6.2) and (6.3) are similar, and the only difference is that (6.3)
uses a discounted dividend D instead of D itself.

In this case, the unknown variables are both D and σ, and not only σ
mentioned in (6.1), because we assume the dividend payment is also implied
in the real market. So an optimization method has been derived to solve
the two unknown variables problem:

min
(σ,D)

N∑

i=1

|Cmarket − C(S, Ei, T, td, (σimp, Dimp))|2 (6.4)

Formula (6.4) is minimized to find the most suitable (σ,D) in our analytical
model to fit the market option price.

6.2 Calibration Methods

I. fminsearch
fminsearch finds the minimum of a scalar function of several variables, start-
ing at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization. To do this, using x = fminsearch(fun, x0), which
starts at the initial point x0 and finds a local minimum x of the function
described in fun.

fminsearch uses the simplex search method named the Nelder-Mead algo-
rithm [2]. Four scalar parameters must be specified to define a complete
Nelder-Mead method: coefficients of reflection ρ, expansion χ, contraction
γ, and shrinkage σ̃. According to the original Nelder-Mead paper, these
parameters should satisfy

ρ > 0, χ > 1, χ > ρ, 0 < γ < 1 and 0 < σ̃ < 1

At the beginning of the kth iteration, k ≥ 0, a nondegenerate simplex (a
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geometrical figure consisting of N +1 vertices in N dimensions, whereas the
N + 1 vertices span a N -dimensional vector space) ∆k is given, along with
its n + 1 vertices, each of which is a point in Rn. It is always assumed that
iteration k begins by ordering and labelling these vertices as x

(k)
1 , ..., x

(k)
n+1,

such that
f

(k)
1 ≤ f

(k)
2 ≤ ... ≤ f

(k)
n+1

Where f
(k)
i denotes f(x(k)

i ). The kth iteration generates a set of n+1 vertices
that define a different simplex for the next iteration, so that ∆k+1 6= ∆k.
Because we seek to minimize f , we refer to x

(k)
1 as the best point, to x

(k)
n+1

as the worst point. Similarly, we refer to f
(k)
n+1 as the worst function value,

and so on.

One iteration of the Nelder-Mead algorithm:

1. Order. Order the n+1 vertices to satisfy f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1),
using the tie-breaking rules given below.

2. Reflection. Compute the reflection point xr from

xr = x̄ + ρ(x̄− xn + 1) = (1 + ρ)x̄− ρxn+1

where x̄ = (1/n)
∑n

i=1 xi is the centroid of the n best points (all points ex-
cept for xn+1).
Evaluate fr = f(xr), if f1 ≤ fr < fn, accept the reflected point xr and
terminate the iteration.

3. Expand. If fr < f1, calculate the expansion point xe,

xe = x̄ + χ(xr − x̄) = x̄ + ρχ(x̄− xn+1) = (1 + ρχ)x̄− ρχxn+1

and evaluate fe = f(xe). If fe < fr, accept xe and terminate the iteration;
if fe ≥ fr, accept xr and terminate the iteration.

4.Contract. If fr ≥ fn, perform a contraction between x̄ and the bet-
ter of xn+1 and xr.

a.Outside. If fn ≤ fr < fn + 1, perform an outside contraction: calculate

xc = x̄ + γ(xr − x̄) = x̄ + γρ(x̄− xn+1) = (1 + ργ)x̄− ργxn+1

Evaluate fc = f(xc). If fc ≤ fr, accept xc and terminate the iteration;
otherwise, go to step 5.
b.Inside. If fr ≥ fn+1, perform an inside contraction:

xcc = x̄− γ(x̄− xn+1) = (1− γ)x̄ + γxn+1
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Evaluate fcc = f(xcc). If fcc < fn+1, accept xcc and terminate the iteration;
otherwise go to step 5.

5. Perform a shrink step. Evaluate f at the n points vi = x1+σ(xi−x1),
i = 2, 3, ..., n + 1. The (unordered) vertices of the simplex at the next itera-
tion consist of x1, v2, ..., vn + 1.

The limitation is that fminsearch can only give local solutions, and fmin-
search is a quite slow algorithm.

II. fimincon
fmincon attempts to find a constrained minimum of a scalar function of
several variables starting at an initial estimate. This is generally referred
to as constrained nonlinear optimization or nonlinear programming. In
x = fmincon(fun, x0, A, b, Aeq, beq, lb, ub), fun is the objective function,
x0 is the starting point. A, b present the constrained linear inequalities
Ax ≤ b. Aeq, beq present the constrained linear equalities Aeq · x = beq.
And lb, ub give the lower and upper bounds of x, respectively.

In our situation, the medium-scale algorithm of fmincon is used, which uses
the sequential quadratic programming (SQP) method with BFGS method
[3].

The SQP implementation consists of three main stage:

1. Updating the Hessian Matrix
At each major iteration a positive definite quasi-Newton approximation of
the Hessian of the Lagrangian function, H, is calculated using the BFGS
method, where λi(i = 1, ..., m) is an estimate of the Lagrange multipliers.

Hk+1 = Hk +
qkq

T
k

qT
k sk

− HT
k Hk

sT
k Hksk

where

sk = xk+1 − xk

qk = ∇f(xk+1) +
n∑

i=1

λi∇gi(xk+1)− (∇f(xk) +
n∑

i=1

λi∇gi(xk))

2.Quadratic Programming Solution
At each major iteration of the SQP method, a QP problem of the following
form is solved

minimize q(d) =
1
2
dT Hd + cT d

Aid = bi i = 1, ...,me

Aid ≤ bi i = me + 1, ..., m
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3.Line Search and Merit Function
The solution to the QP subproblem produces a vector dk, which is used to
form a new iterate

xk+1 = xk + αkdk

The step length parameter αk is determined in order to produce a sufficient
decrease in a merit function, given by the following implementation.

Ψ(x) = f(x) +
me∑

i=1

rigi(x) +
m∑

i=me+1

rimax(0, gi(x))

In our model, only the upper and lower bounds of the variables are de-
fined, such that implied interest rate 0.01 ≤ r ≤ 1, implied dividend
0.01 ≤ D ≤ S0 and implied volatility 0.01 ≤ σ ≤ 0.5.

6.3 Comparison of fmincon and fminsearch

Compare the results derived by fminsearch and fmincon by taking the ex-
ample of Table (6.1):

fminsearch
r D
0.01886 0.89670
sigma
0.25688 0.21438 0.18943 0.18019 0.17082 0.16451 0.15506 0.15633
error
0.00016

Table 6.2: Test for fminsearch

fmincon
r D
0.01883 0.89621
sigma
0.25650 0.21434 0.18944 0.18018 0.17079 0.16451 0.15507 0.15631
error
0.00016

Table 6.3: Test for fmincon
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The CPU time for the fminsearch is 1442.648s and for fmincon is 232.664s,
and the calibrated results of these two methods are nearly the same. Given
the similar results, fmincon performs much faster than fminsearch. So we
choose fmincon as our main optimization approach.

6.4 Algorithm of the whole approach

The algorithm of the whole approach can be described by the picture below.
Firstly, the program reads the all of the data from the directory; then we
set the initial guess of the parameters which need to be calibrated; after
that we use Black-Scholes equation to calculate the option price given the
initial parameters; finally, fmincon is used to find the optimal solution of the
parameters in such a way that if the value of the objective function (in this
case it is the difference between the calibrated option prices and the market
prices) is larger than a certain constant (in our case it is 10−6), fmincon will
update the initial parameters. The updated parameters will be set as the
initial parameters and put into the algorithm to produce another value of
the objective function and so on.

Figure 6.1: Algorithm of the whole approach
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6.5 Objective Functions

The basic objective function we use is the Sum of Relative Error (SRE):

MSE =
n∑

i=1

[Ci
calib − Ci

market]
2

Ci
market

+
n∑

i=1

[P i
calib − P i

market]
2

P i
market

(6.5)

Where Cmarket = (CallAsk+CallBid)/2 and Pmarket = (PutAsk+PutBid)/2.
Take the third row in Table (6.1) for example, where the strike price E = 20,
and CallBid = 2.600, CallAsk = 2.700, PutBid = 0.850 and PutAsk =
0.950.Traders who make markets routinely quote two prices, one to buy
(bid) and one to sell (ask), where his selling price is always higher than his
buying price. This difference is known as the Bid-Ask spread. Essentially,
the dealer is offering a put to sell to him at his bid price and a call to buy
from him at his ask price. The price he charges for these two options is the
Bid-Ask spread.

According to the bid-ask spread, we add some extra features to the ob-
jective function. In more detail, if the calibrated option price falls into the
interval of [Bid,Ask], we put a weight µ ∈ (0, 1) in front of [Ci

calib−Ci
market]

2

Ci
market

and [P i
calib−P i

market]
2

P i
market

.

This objective function (6.5) does not perform very well when the calibrated
option price may lay outside the interval of [Bid,Ask]. Because it is only us-
ing the average of Ask and Bid, while in the real market, the option price is
sometimes close to Ask and sometimes close to Bid but outside the interval.
An example will be illustrated later. So we derive another objective function
to deal with the situation that the calibrated option prices lay outside the
interval of [Bid,Ask]:

MSE =
n∑

i=1

Ci
MSE +

n∑

i=1

P i
MSE (6.6)

where

Ci
MSE =





[Ci
calib − CallBidi]2

Ci
market

Ci
calib < CallBid

[Ci
calib − CallAski]2

Ci
market

Ci
calib > CallAsk

µ
[Ci

calib − Ci
market]

2

Ci
market

Ci
calib ∈ [CallBid, CallAsk]

(6.7)
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P i
MSE =





[P i
calib − PutBidi]2

P i
market

P i
calib < PutBid

[P i
calib − PutAski]2

P i
market

P i
calib < PutAsk

µ
[P i

calib − P i
market]

2

P i
market

P i
calib ∈ [PutBid, PutAsk]

(6.8)

6.6 Calibration Results

6.6.1 Single dividend from ING

We first examine the single dividend case, and aim to deduce from the data
when the dividend is announced and how the dividend amount of the ING
behaves in 2005. The option data has been collected day by day, starting
from 22-Jan-2005, and in this test the options expire on 17-Jun-2005. The
date string 22-Jan-2005 can be transformed to the number 38373 by Matlab.

As we have already know that the ING Groep pays the dividend twice a
year, in 2005 on 28-Apr-2005 and 12-Aug-2005. The dividend are e0.58 and
e0.49, respectly. The dividend announcement date is 17-Feb-2005.

There are some aims we want to achieve:

• The first implied dividend amount after 17-Feb-2005 should be around
0.58

• The dividend announcement date should be made visible, if the market
had a different guess of the size of the dividend

• The errors in the optimization should be reasonably small

• The calibrated results should be stable over several days

In the first test, all of the parameters are calibrated simultaneously. The re-
sults are in Table (6.4), where Sigma15 is according to the implied volatility
for the strike price 15. The calibrated risk-free interest rate is around 0.02,
while the interest rate given by the European Central Bank is also around
0.02 in the first six months in 2005. To simplify the problem and to avoid
multiple optimal solutions with unstable parameters among r and D, the
risk-free interest rate r will be fixed at 0.02 in later calculations.

Using the objective function with (6.5), we obtain the results in Table
(6.5). The implied dividend amount, one of the implied volatilities and the
errors are given with the initial date, the expiry date and the fixed risk-free
interest rate. It is obvious that there is a jump in the dividend amount at
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Initial date Expiry date Interest rate Dividend Sigma15 Error
38373 38527 0.021939 0.515946 0.296387 0.000155
38376 38527 0.020103 0.490714 0.307422 0.000364
38377 38527 0.020962 0.493104 0.279730 0.000085
38378 38527 0.021357 0.505352 0.276019 0.000341
38379 38527 0.021553 0.512003 0.305813 0.000197
38380 38527 0.018829 0.439513 0.276437 0.000063
38383 38527 0.025857 0.515767 0.281370 0.000081
38384 38527 0.021164 0.507776 0.318473 0.000496
38385 38527 0.018968 0.499693 0.286197 0.000115
38386 38527 0.023126 0.497379 0.287140 0.000278
38387 38527 0.022551 0.511048 0.292522 0.000377
38390 38527 0.020036 0.511128 0.300797 0.000318
38392 38527 0.021459 0.533613 0.298096 0.000275
38393 38527 0.022667 0.508263 0.298962 0.000456
38394 38527 0.020933 0.487833 0.312863 0.000156
38397 38527 0.022944 0.506561 0.318011 0.000143
38398 38527 0.019561 0.487557 0.322057 0.000221
38399 38527 0.018607 0.467708 0.318818 0.000125
38400 38527 0.020575 0.558542 0.324225 0.000273
38401 38527 0.021078 0.583934 0.322581 0.000381
38404 38527 0.022588 0.574570 0.324551 0.000784
38405 38527 0.021921 0.584837 0.320452 0.000396
38406 38527 0.022080 0.575445 0.320655 0.000303

Table 6.4: ING option with all parameters calibrated

38399 of the initial date, which is 17-Feb-2005. Before 17-Feb-2005, the div-
idend amount is around 0.50 which is the dividend amount paid by ING in
2004, while after 17-Feb-2005, the dividend amount moves around 0.58. The
errors are always less than 0.01, so the calibrated results can be accepted.
And the results can be thought stable in some sense.

Table 6.5: ING option with fixed interest rate

Initial date Expiry date Interest rate Dividend Sigma15 Error
38373 38527 0.02 0.508066 0.294281 0.000132
38376 38527 0.02 0.499899 0.305448 0.000382
38377 38527 0.02 0.493971 0.277986 0.000095
38378 38527 0.02 0.502031 0.274090 0.000332
38379 38527 0.02 0.508028 0.303789 0.000177
38380 38527 0.02 0.509099 0.273610 0.000598
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38383 38527 0.02 0.470633 0.279811 0.000162
38384 38527 0.02 0.507680 0.316680 0.000528
38385 38527 0.02 0.521320 0.284080 0.000209
38386 38527 0.02 0.478650 0.285420 0.000273
38387 38527 0.02 0.499800 0.290870 0.000387
38390 38527 0.02 0.478660 0.299560 0.000310
38392 38527 0.02 0.489680 0.296750 0.000347
38393 38527 0.02 0.471200 0.297490 0.000490
38394 38527 0.02 0.492670 0.310990 0.000156
38397 38527 0.02 0.493430 0.316120 0.000146
38398 38527 0.02 0.504317 0.319456 0.000274
38399 38527 0.02 0.508441 0.316489 0.000440
38400 38527 0.02 0.571386 0.321308 0.000293
38401 38527 0.02 0.551329 0.320453 0.000448
38404 38527 0.02 0.572366 0.322161 0.000994
38405 38527 0.02 0.574956 0.318423 0.000284
38406 38527 0.02 0.579970 0.318630 0.000364
38407 38527 0.02 0.608180 0.318177 0.000734
38408 38527 0.02 0.567505 0.332179 0.000213
38411 38527 0.02 0.602965 0.344433 0.001275
38412 38527 0.02 0.593130 0.350710 0.000454
38413 38527 0.02 0.565210 0.356530 0.000248
38414 38527 0.02 0.573970 0.362660 0.000109
38415 38527 0.02 0.583940 0.370070 0.000672
38418 38527 0.02 0.562920 0.378490 0.001567
38419 38527 0.02 0.562630 0.373690 0.000517
38420 38527 0.02 0.588990 0.375460 0.000518
38421 38527 0.02 0.576980 0.367810 0.000637
38422 38527 0.02 0.543080 0.370860 0.000289
38427 38527 0.02 0.570239 0.371011 0.000258
38428 38527 0.02 0.576388 0.369521 0.000440
38429 38527 0.02 0.586651 0.376288 0.000760
38432 38527 0.02 0.568003 0.383667 0.000534
38433 38527 0.02 0.575822 0.378273 0.000588
38434 38527 0.02 0.578276 0.380609 0.000482
38435 38527 0.02 0.577024 0.393358 0.000748
38436 38527 0.02 0.572623 0.396551 0.000649
38439 38527 0.02 0.564013 0.403160 0.000497
38440 38527 0.02 0.597608 0.404688 0.001470
38441 38527 0.02 0.587600 0.402521 0.000685
38442 38527 0.02 0.607204 0.404909 0.001813
38443 38527 0.02 0.576860 0.405670 0.000442
38446 38527 0.02 0.559460 0.403110 0.000357
38447 38527 0.02 0.573040 0.402880 0.000479
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38448 38527 0.02 0.567140 0.411290 0.000792
38449 38527 0.02 0.584720 0.424580 0.000417
38450 38527 0.02 0.569100 0.423700 0.000373
38454 38527 0.02 0.593440 0.425780 0.001237
38455 38527 0.02 0.596220 0.437540 0.000568
38457 38527 0.02 0.582936 0.432096 0.000464
38460 38527 0.02 0.595361 0.406600 0.001145
38461 38527 0.02 0.606763 0.393427 0.002463
38462 38527 0.02 0.570960 0.395335 0.000653
38463 38527 0.02 0.612593 0.401268 0.000469
38464 38527 0.02 0.588554 0.415965 0.000397
38467 38527 0.02 0.560588 0.436865 0.000728
38469 38527 0.02 0.573752 0.410784 0.001139

However, using the objective function with (6.5), the implied volatility be-
comes larger and larger when the option is close to its maturity, which can
be shown in the Table (6.6).

As we all know that the implied volatility cannot go beyond 1 in the

Initial date Expiry date Interest rate Sigma15 Sigma25 Error
38492 38527 0.02 0.624756 0.239844 0.001750
38495 38527 0.02 0.629482 0.263826 0.001326
38496 38527 0.02 0.623689 0.269366 0.001013
38497 38527 0.02 0.652232 0.262197 0.001044
38498 38527 0.02 0.678379 0.256337 0.001086
38499 38527 0.02 0.695198 0.261571 0.000711
38509 38527 0.02 0.844717 0.327253 0.007731
38510 38527 0.02 0.864703 0.296577 0.008725
38511 38527 0.02 0.893884 0.313207 0.001650
38512 38527 0.02 0.936581 0.316499 0.001880
38513 38527 0.02 0.979555 0.328685 0.010421
38516 38527 0.02 1.080919 0.366025 0.009178
38517 38527 0.02 1.075210 0.374596 0.022102
38518 38527 0.02 1.145459 0.389684 0.028781
38519 38527 0.02 1.240903 0.396630 0.050459
38520 38527 0.02 1.355987 0.414168 0.110484

Table 6.6: ING option close to maturity with the objective function (6.5)

real market, so the calibrated implied volatility is clearly too high. The
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calibrated implied volatility which is according to the strike price 15 is in-
creasing to 1.355987. Take the data of the day 38520 for example, see Table
(6.7):

23.240
Strike price CallBid CallAsk PutBid PutAsk

15.000 8.200 8.300 0.000 0.050
16.000 7.200 7.300 0.000 0.050
17.000 6.200 6.300 0.000 0.050
18.000 5.200 5.250 0.000 0.050
19.000 4.200 4.300 0.000 0.050
20.000 3.200 3.250 0.000 0.050
21.000 2.200 2.250 0.000 0.050
22.000 1.200 1.250 0.000 0.050
23.000 0.200 0.250 0.050 0.050
24.000 0.000 0.050 0.700 0.800
25.000 0.000 0.050 1.700 1.800

Table 6.7: Data of ING on 17-Jun-2005

We can see that when the option is close to its maturity, only as the strike
prices are around the asset price, the option price for bid is not zero. The
reason is simple, the market assumes that the asset price cannot move too
high or too low in a few days, so the option cannot be exercised when the
strike prices are far away from the asset price. When the strike price is 15,
the option put price is close to 0, while the strike price is 22, the option put
price will be close to 0.05. So applying the objective function with (6.5),
we cannot calibrate the option price very well, since it is only calculate the
average of Bid and Ask. To improve the results, the objective function (6.6)
will be used, and the results are presented in Table (6.8):

Using the objective function (6.6), the calibrated implied volatility ac-
cording to the strike price 15 becomes quite stable around 0.4. However,
the calibrated implied volatility according to the strike price 25 is not yet
stable, for sometimes it reaches the lower bound 0.05 of the fmincon opti-
mization method, and at this time, the some errors are larger than 0.01.

To avoid the situation that calibrated parameters reach their lower or up-
per bound, we set the calibrated parameters p0(t) of data(t) as the initial
guess of date(t+1). We set p0(t)− bI as the lower bound for date(t+1) and
p0(t)+bI as the upper bound for date (t), where b is a small value depending
on how the parameters behave and I is the vector with all elements equal
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Initial date Expiry date Interest rate Sigma15 Sigma25 Error
38492 38527 0.02 0.400001 0.160288 0.000042
38495 38527 0.02 0.399997 0.050000 0.010014
38496 38527 0.02 0.400001 0.050000 0.010010
38497 38527 0.02 0.400000 0.050000 0.013651
38498 38527 0.02 0.400004 0.171814 0.000011
38499 38527 0.02 0.399994 0.195138 0.000009
38509 38527 0.02 0.400000 0.050000 0.004256
38510 38527 0.02 0.399999 0.050000 0.010783
38511 38527 0.02 0.400000 0.256493 0.000111
38512 38527 0.02 0.400000 0.050003 0.010064
38513 38527 0.02 0.399999 0.050029 0.010067
38516 38527 0.02 0.399999 0.276694 0.000115
38517 38527 0.02 0.400000 0.282023 0.000120
38518 38527 0.02 0.399999 0.296542 0.000061
38519 38527 0.02 0.400000 0.310489 0.000211
38520 38527 0.02 0.400005 0.330762 0.047473

Table 6.8: ING option close to maturity with the objective function (6.6)

to 1. So the calibrated parameters p0(t + 1) is bounded by a small range
derived by p0(t). With the updated p0, the results become much better,
which can be seen in Table (6.6.1):

Using the objective function (6.6) with the updated p0, the calibrated im-
plied volatility according to the strike price 15 becomes quite stable around
0.41944. The calibrated implied volatility according to the strike price 22
does not reach its lower bound any longer. Also the error remaining after the
optimization with objective function (6.6) and updated p0 performs much
better than the results given by objective function (6.5) as well as objective
function (6.6) without updated p0. The only drawback is that the error of
the last day is larger than 0.01.

With the updated p0, the CPU time can be saved because the difference be-
tween two arbitrary adjacent p0 is small, so fmincon can easily find p0(t+1)
given p0(t). How much CPU time can saved with updated p0 depends on
the initial guess of p0 in a time step. In my case, I put the initial guess
as p0 = [0.4, 0.38, 0.36, ..., 0.2] for each step. While using the updated p0,
the gain in CPU time is 20%-25%. If the initial guess is far away from the
calibrated result, updated p0 can save even more CPU time.

58



The implied volatility can be shown by the pictures as Figure (6.2)-(6.5):

6.6.2 Two dividends from ING

For the ING Groep pays dividend twice in 2005, we calibrate next the sec-
ond dividend amount of the ING stock. All options we used here will expire
on 16-Dec-2005 (38701). Firstly, both of the first dividend and the second
dividend will be calibrated simultaneously, and the results are put in Ta-
ble (6.10). In this table, the dividend announcement date cannot be found
in the column of Dividend 1. And after the dividend announcement date
(38399), the first dividend does not move around 0.58, meanwhile the second
dividend does not move around 0.49, although the error performs well. This
is due to the existence of multiple optimal solutions if both D1 and D2 are
chosen as parameters to be optimized.

Therefore we fix the first dividend amount given by Table (6.5), and we
only calibrate the second dividend amount and the implied volatilities. This
time the amount of the second dividend goes round 0.49 with the error also
performing well. The results are presented in Table (6.11).

Initial date Expiry date Interest rate Sigma15 Sigma25 Error
38492 38527 0.02 0.41944 0.24428 1.67E-05
38495 38527 0.02 0.41944 0.26386 6.98E-06
38496 38527 0.02 0.41944 0.26936 0.000113
38497 38527 0.02 0.41944 0.26215 4.64E-06
38498 38527 0.02 0.41945 0.25653 1.26E-05
38499 38527 0.02 0.41945 0.26158 9.80E-06
38509 38527 0.02 0.41945 0.32742 0.000717
38510 38527 0.02 0.41945 0.29669 0.000693
38511 38527 0.02 0.41945 0.31324 7.31E-06
38512 38527 0.02 0.41945 0.31652 1.23E-05
38513 38527 0.02 0.41945 0.32905 9.85E-05
38516 38527 0.02 0.41945 0.35405 9.70E-05
38517 38527 0.02 0.41945 0.35869 9.25E-05
38518 38527 0.02 0.41945 0.37623 4.38E-05
38519 38527 0.02 0.41945 0.39153 0.000126
38520 38527 0.02 0.41945 0.41505 0.046697

Table 6.9: ING option close to maturity with the objective function (6.6)
and updated p0

59



15 16 17 18 19 20 21 22 23 24 25

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
Implied volatility of 21−Jan−2005

Figure 6.2: Implied volatility of ING on 21-Jan-2005
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Figure 6.3: Implied volatility of ING on 28-Apr-2005
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Figure 6.4: Implied volatility of ING on 29-Apr-2005
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Figure 6.5: Implied volatility of ING on 17-Jun-2005
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Initial date Expiry date Dividend 1 Dividend 2 Error
38373 38701 0.482873 0.480260 0.000017
38376 38701 0.474995 0.484836 0.000161
38377 38701 0.475825 0.516397 0.000136
38378 38701 0.468500 0.488297 0.000505
38379 38701 0.476493 0.515834 0.000431
38380 38701 0.507224 0.497765 0.000441
38383 38701 0.472092 0.476802 0.000236
38384 38701 0.432050 0.534076 0.000059
38385 38701 0.499337 0.500311 0.000168
38386 38701 0.431131 0.522670 0.000264
38387 38701 0.446490 0.508677 0.000227
38390 38701 0.477264 0.481752 0.000277
38392 38701 0.463684 0.496962 0.000281
38393 38701 0.459182 0.484533 0.000442
38394 38701 0.441031 0.541017 0.000059
38397 38701 0.443271 0.527188 0.000318
38398 38701 0.441893 0.546166 0.000263
38399 38701 0.461823 0.525720 0.000221
38400 38701 0.449991 0.610474 0.000182
38401 38701 0.444835 0.598729 0.000220
38404 38701 0.514305 0.564121 0.000214
38405 38701 0.499460 0.571135 0.000270
38406 38701 0.503694 0.573947 0.000252

Table 6.10: ING option with two dividends calibrated simultaneously
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Initial date Expiry date Dividend 1 Dividend 2 Error
38373 38701 0.508066 0.459462 0.000048
38376 38701 0.499899 0.464669 0.000133
38377 38701 0.493971 0.506920 0.000158
38378 38701 0.502031 0.457849 0.000384
38379 38701 0.508028 0.490483 0.000368
38380 38701 0.509099 0.498679 0.000316
38383 38701 0.470633 0.484704 0.000221
38384 38701 0.507680 0.468061 0.000051
38385 38701 0.521320 0.479604 0.000108
38386 38701 0.478650 0.484413 0.000226
38387 38701 0.499800 0.459513 0.000121
38390 38701 0.478660 0.484386 0.000168
38392 38701 0.489680 0.476040 0.000245
38393 38701 0.471200 0.479320 0.000365
38394 38701 0.492670 0.503361 0.000062
38397 38701 0.493430 0.486962 0.000323
38398 38701 0.504317 0.499030 0.000277
38399 38701 0.508441 0.488948 0.000239
38400 38701 0.571386 0.508508 0.000217
38401 38701 0.551329 0.511860 0.000276
38404 38701 0.572366 0.484170 0.000198
38405 38701 0.574956 0.504191 0.000077
38406 38701 0.579970 0.510321 0.000267

Table 6.11: ING option the 2nd dividend is calibrated with the 1st dividend
fixed

The calibration results given in this section are calculated by the objec-
tive function (6.5) without the updated p0. We find that when the option is
far from maturity, the objective function (6.5) performs well. Without the
updated p0, we can investigate how the implied dividend behaves in a much
wider range.

6.6.3 Calibrated parameters for Fortis option

Fortis Bank pays one dividend on 27-May-2005, and the dividend amount
is e1.17 with the dividend announcement date 10-Mar-2005 (38420). The
objective function (6.6) with the updated p0 is applied, the results are shown
in Table (6.13). The risk-free interest rate is fixed to 0.02, which is not shown
in Table (6.13). And the data from Fortis are presented in Table (6.12).
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21.320
Strike price CallBid CallAsk PutBid PutAsk

10.000 11.35 11.45 0.000 0.050
15.000 6.400 6.500 0.050 0.100
16.000 5.400 5.500 0.050 0.100
17.000 4.450 4.550 0.100 0.150
18.000 3.500 3.550 0.200 0.250
19.000 2.550 2.650 0.350 0.450
20.000 1.750 1.800 0.650 0.700
21.000 1.000 1.100 1.100 1.150
22.000 0.500 0.600 1.750 1.850
23.000 0.250 0.300 2.550 2.650
25.000 0.000 0.100 4.400 4.500

Table 6.12: Data of Fortis on 21-Jan-2005

Table 6.13: Fortis option with fixed interest rate

Initial date Expiry date Dividend Sigma10 Sigma25 Error
38373 38527 0.934826 0.479580 0.155082 0.000003
38376 38527 0.933933 0.479580 0.158532 0.000009
38377 38527 0.906764 0.479583 0.147468 0.000005
38378 38527 0.907638 0.479584 0.154727 0.000008
38379 38527 0.922589 0.479584 0.157866 0.000004
38380 38527 0.942229 0.479585 0.157668 0.000005
38383 38527 0.934152 0.479585 0.163426 0.000010
38384 38527 0.934003 0.479586 0.170400 0.000008
38385 38527 0.933845 0.479586 0.164047 0.000011
38386 38527 0.932407 0.479587 0.160272 0.000010
38387 38527 0.922614 0.479587 0.158921 0.000003
38390 38527 0.925925 0.479587 0.160187 0.000004
38392 38527 0.925607 0.479587 0.152542 0.000003
38393 38527 0.912323 0.479588 0.151124 0.000013
38394 38527 0.952026 0.479588 0.142895 0.000005
38397 38527 0.949771 0.479589 0.149649 0.000023
38398 38527 0.958215 0.479596 0.139104 0.000007
38399 38527 0.957089 0.479597 0.141944 0.000013
38400 38527 0.960785 0.479597 0.144045 0.000006
38401 38527 0.927932 0.479599 0.142476 0.000006
38404 38527 0.939053 0.479599 0.149856 0.000001
38405 38527 0.926781 0.479599 0.156725 0.000104
38406 38527 0.927193 0.479599 0.165605 0.000002
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38407 38527 0.926990 0.479599 0.162830 0.000003
38408 38527 0.927654 0.479599 0.162117 0.000009
38411 38527 0.929799 0.479599 0.158942 0.000013
38412 38527 0.930128 0.479599 0.166958 0.000024
38413 38527 0.929641 0.479599 0.167150 0.000002
38414 38527 0.931700 0.479599 0.165220 0.000009
38415 38527 0.964984 0.479599 0.160406 0.000049
38418 38527 0.976377 0.479599 0.159571 0.000004
38419 38527 1.000629 0.479594 0.154133 0.000003
38420 38527 1.011569 0.479594 0.147061 0.000004
38421 38527 1.010606 0.479594 0.152109 0.000005
38422 38527 1.010516 0.479594 0.154522 0.000002
38427 38527 1.009660 0.479594 0.164579 0.000004
38428 38527 1.009484 0.479594 0.164527 0.000010
38429 38527 1.019464 0.479595 0.149867 0.000001
38432 38527 1.033535 0.479594 0.145934 0.000003
38433 38527 1.032625 0.479594 0.146997 0.000005
38434 38527 1.032301 0.479594 0.158290 0.000006
38435 38527 1.030352 0.479593 0.150290 0.000018
38436 38527 1.030852 0.479593 0.151442 0.000004
38439 38527 1.031113 0.479593 0.154709 0.000004
38440 38527 1.081113 0.479591 0.151861 0.000006
38441 38527 1.031113 0.479588 0.165305 0.000050
38442 38527 1.030962 0.479588 0.161890 0.000003
38443 38527 1.030629 0.479588 0.164521 0.000003
38446 38527 1.030070 0.479588 0.177992 0.000002
38447 38527 1.027633 0.479587 0.171208 0.000006
38448 38527 1.021150 0.479586 0.172900 0.000002
38449 38527 1.035994 0.479582 0.168697 0.000002
38450 38527 1.008158 0.479582 0.163340 0.000005
38454 38527 1.008731 0.479581 0.174451 0.000008
38455 38527 1.004585 0.479581 0.170320 0.000003
38456 38527 1.004665 0.479581 0.177057 0.000002
38457 38527 1.005419 0.479581 0.184053 0.000008
38460 38527 1.039402 0.479581 0.213607 0.000011
38461 38527 1.039944 0.479581 0.214393 0.000007
38462 38527 1.039629 0.479581 0.221684 0.000002
38463 38527 1.032678 0.479580 0.225774 0.000002
38464 38527 1.045315 0.479580 0.224126 0.000004
38467 38527 1.062951 0.479580 0.225187 0.000010
38469 38527 1.045876 0.479580 0.241575 0.000005
38470 38527 1.057039 0.479575 0.250408 0.000100
38471 38527 1.057493 0.479575 0.253198 0.000020
38474 38527 1.056956 0.479575 0.247895 0.000012
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38475 38527 1.056514 0.479575 0.248678 0.000005
38476 38527 1.042808 0.479575 0.240271 0.000007
38477 38527 1.042729 0.479575 0.233832 0.000011
38478 38527 1.029811 0.479575 0.234915 0.000004
38481 38527 1.028795 0.479574 0.240241 0.000005
38482 38527 1.023615 0.479574 0.245488 0.000013
38483 38527 1.021258 0.479574 0.255283 0.000007
38484 38527 1.031844 0.479574 0.252362 0.000010
38485 38527 1.029856 0.479574 0.260979 0.000004
38488 38527 1.042315 0.479574 0.268128 0.000020
38489 38527 1.042897 0.479574 0.265446 0.000004
38490 38527 1.040857 0.479574 0.256947 0.000005
38491 38527 1.043940 0.479574 0.243960 0.000010
38492 38527 1.068721 0.479574 0.245937 0.000022
38495 38527 1.062535 0.479574 0.247910 0.000011
38496 38527 1.072398 0.479574 0.250730 0.000031
38497 38527 1.052399 0.479574 0.253154 0.000034
38498 38527 1.050820 0.479574 0.254159 0.000053
38499 38527 0.000000 0.479574 0.246641 0.000010
38509 38527 0.000000 0.479574 0.285461 0.000002
38510 38527 0.000000 0.479548 0.270867 0.000057
38511 38527 0.000000 0.479548 0.280724 0.000033
38512 38527 0.000000 0.479548 0.275813 0.000723
38513 38527 0.000000 0.479548 0.284427 0.000071
38516 38527 0.000000 0.479548 0.307466 0.000005
38517 38527 0.000000 0.479548 0.298895 0.000136
38518 38527 0.000000 0.479548 0.314530 0.000006
38519 38527 0.000000 0.479548 0.320255 0.000109
38520 38527 0.000000 0.479548 0.315301 0.010113

In Table (6.13), the implied dividend moves up to 1 on the date (38419)
which is one day before the dividend announcement. This situation hap-
pening may be resulted from the market having expected that the dividend
of Fortis bank will be announced. And the calibrated implied dividend is
around 1.05 which is a little lower than the announcement. The implied
volatility according to both strike price 15 and 25 both perform quite well.
And most of the errors are smaller than 0.01 except the last one.

The implied volatility of Fortis can be shown by the pictures as Figure
(6.6)-(6.9):
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Figure 6.6: Implied volatility of Fortis on 21-Jan-2005
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Figure 6.7: Implied volatility of Fortis on 26-May-2005
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Figure 6.8: Implied volatility of Fortis on 27-May-2005
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Figure 6.9: Implied volatility of Fortis on 17-Jun-2005
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Chapter 7

Conclusion

The Black-Scholes equation is a useful and fundamental tool to calculate the
option prices. Since the stock options in the real market are all of Ameri-
can type, there is no closed form to solve the Black-Scholes equation. In our
code, the fourth order finite difference method has been applied to discretize
the partial differential equation with stretching. In the Black-Scholes equa-
tion, there are several parameters. The implied volatility and the implied
dividend are unknown, while the risk free-interest rate, the stock price, the
strike price and the lifetime of the option are all known.

Given the market prices of the ING and Fortis options, the two unknown
parameters implied volatility and the implied dividend can be calibrated by
the other known parameters using the Matlab’s optimization functions. It
has been shown that there is no unique solution of the calibration approach,
but we can obtain some useful results and insights:

• The implied dividend amount can be calibrated to a value around the
amount given by the company

• The dividend announcement date can be visualized for ING and for
Fortis

• The errors are sufficiently small except for the data of the last option
day

• The calibrated results are stable

There are some aspects need to be improved in the approach:

• The risk-free interest rate changes a little weekly. To obtain more
accurate results, it is better use the interest rate provided by LIBOR

• Close to the option’s maturity, the implied volatility becomes unstable,
the volatility correction model could be used to handle this problem
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