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Abstract

Within the framework of shifted-Laplace preconditioners [Erlangga,
Vuik, Oosterlee, Appl. Numer. Math., 50(2004), pp.409–425] for the
Helmholtz equation, different methods for the approximation of the in-
verse of a complex-valued Helmholtz operator are discussed. The perfor-
mance of the preconditioner for Helmholtz problems at high wavenumbers
in heterogeneous media is evaluated. Comparison with other precondition-
ers from the literature is also presented.
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1 Introduction

Consider the Helmholtz equation for a wave problem in an inhomogeneous
medium

−∂xxφ − ∂yyφ − k2(x, y)φ = g(x, y) in Ω ⊂ R
2, (1)

satisfying the first order radiation boundary condition

∂φ

∂η
− ĵk(x, y)φ = 0 on Γ = ∂Ω, (2)

with η the outward direction normal to the boundaries, and ĵ =
√
−1 the

complex identity. In (1) and (2) k = k(x, y) ∈ R is the wavenumber, g is the
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source function and φ = φ(x, y), the solution, usually represents a pressure
wave. In many practical applications, e.g. in geophysics, k can be very large.

We approximate the Laplacian in (1) with the second order accurate 5-point
finite difference stencil:

Lh
∧
=

1

h2




1
1 −4 1

1




h

, (3)

(in stencil notation) and central differencing for (2). Using this stencil, a linear
system of the form

Ap = b, A ∈ C
N×N , p, b ∈ C

N , (4)

is obtained where N = NxNy is the number of unknowns in the computational
domain Ωh, and Nx and Ny are the number of grid points in the x- and y-
directions, respectively. The matrix A ∈ C because of boundary condition (2).
A is in general symmetric, indefinite, non-Hermitian and, because of accuracy
requirements, also large. However, A is sparse; its sparsity pattern depends on
the discretization method used.

To solve (4), iterative methods based on the Krylov subspace are of our
interest. The methods are cheap to be implemented and are able to exploit the
sparsity of A. There are some difficulties for these methods when applied to
the Helmholtz equation. First of all, A is typically extremely ill-conditioned.
For an ill-conditioned system the convergence of a Krylov subspace method can
be unacceptably slow. Secondly, for large wavenumbers k matrix A is highly
indefinite. Because for an indefinite linear system the eigenvalues are distributed
in the negative and positive half plane, some eigenvalues may lie very close to
the origin. This type of spectrum is not favorable for fast convergence of Krylov
subspace methods.

To improve their performance, one usually uses a properly chosen precondi-
tioner so that the preconditioned system is better conditioned. Given a matrix
M = M1M2 ∈ CN×N , by preconditioning one solves the equivalent linear sys-
tem

M−1

1
AM−1

2
p̂ = M−1

1
b, p̂ = M2p. (5)

Since the paper of Bayliss, Turkel, and Goldstein in 1980 [1] much effort has
been put in the search for a powerful preconditioner for (4). Without being
exhaustive, we refer to [5, 8, 11, 13] for some of these preconditioners.

In general, there are two classes of preconditioners for the Helmholtz equa-
tion. The first one is classified as “matrix-based” preconditioners. For this
class, M−1 is based on an approximation of the inverse of A. Examples in this
class are an incomplete LU (or ILU) or an approximate inverse of A. As ILU
factors are relatively easily computed, the work in one iteration is cheap. ILU
preconditioners, however, may require extra storage due to fill-in and this re-
quirement may exceed that for storing A. Furthermore, ILU factorization may
not be stable if A is not an M-matrix.
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The second class is the “operator-based” preconditioning. In this class the
preconditioner is built based on an operator for which the spectrum of precondi-
tioned system M−1A is favorably clustered. This operator does not have to be
a representation of the inverse of the Helmholtz operator. We refer the reader
to [12] for a general discussion on this class of preconditioners. Placed within
this class are the Analytic ILU (or AILU) [5], the Separation-of-Variables [13]
and the Laplace preconditioner [1].

Preconditioning with the Laplace operator [1] for (4) has been enhanced
in [9] by adding a positive zero-th order real term with the same Helmholtz
constant k2. In [3] we propose a further generalization and arrive, after some
analysis, at a positive imaginary shift of the zero-th order term for an improved
convergence rate. The class of preconditioners where a zero-th order term has
been added to the Laplace operator is called “Shifted-Laplace Preconditioners”.

From the formal formulation of preconditioners (5), matrix M should be
inverted exactly, e.g., by a direct method. Instead of having M−1 exactly, one
can construct ILU factors of M and perform only one ILU forward-backward
substitution to approximate M−1. Another way to approximate M−1 is by
using a multigrid iteration.

This paper gives some analysis on the convergence of Krylov subspace meth-
ods to solve the Helmholtz equation preconditioned by the shifted-Laplace pre-
conditioner. We show that, based on the GMRES convergence theory, the bound
of the convergence rate can be obtained if radiation condition (2) is used. Fi-
nally, we compare the overall performance of the shifted-Laplace preconditioner
with other preconditioners (i.e. Separation-of-Variables [13] and incomplete fac-
torization [11]).

The paper is organized as follows. In Section 2, preconditioned Krylov sub-
space methods are briefly discussed, alongside with some preconditioners for
the Helmholtz equation. Section 3 deals with convergence analysis of Krylov
subspace methods for solving the Helmholtz equation preconditioned by the
complex shifted-Laplace preconditioner. Multigrid for approximately inverting
the shifted-Laplace operator is detailed in Section 4. Numerical examples are
presented in Section 5.

2 Preconditioned Krylov Subspace Method

Iterative methods for linear system (4) within the class of Krylov subspace
methods are based on the construction of iterants in the subspace

Kj(A, r0) = span{r0, Ar0, A
2r0, . . . , A

j−1r0}, (6)

where Kj(A, r0) is the j-th Krylov subspace associated with A and r0; r0 =
b − Ap0 is the initial residual. There are many ways to construct the Krylov
subspace, which lead to different algorithms. For a survey, see [15].

Since we are interested in a solution method that is not stringent in the
choice of preconditioner, we use a Krylov subspace method for unsymmetric
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matrices. Bi-CGSTAB [18], despite requiring two matrix-vector multiplications,
can preserve a constant amount of work and storage per iteration.

In [3] GMRES [14] is used to solve the Helmholtz equation and is compared
with Bi-CGSTAB. Bi-CGSTAB is preferred since the convergence for hetero-
geneous high wavenumber Helmholtz problems is typically faster than that of
GMRES.

In the following subsections, we will shortly discuss some preconditioners for
the Helmholtz equation, namely the shifted-Laplace preconditioner (our method
of choice), the incomplete factorization of a “modified” Helmholtz operator [11]
and the Separation-of-Variables preconditioner [13] (with which we compare our
numerical results).

2.1 Shifted-Laplace Preconditioner

The shifted-Laplace (SL) preconditioner is based on the operator

MSL := −∂xx − ∂yy + αk2(x, y), α ∈ C. (7)

We consider a particular case where Re(α), Im(α) ≥ 0.

For Re(α), Im(α) > 0 we find that central differencing of (7) leads to a CSPD
matrix MSL. A ∈ CN×N is a complex symmetric, positive definite (CSPD)
matrix if both Re(A) and Im(A) are SPD.

We have shown in [3] that for α 6= 0, M−1

SLA has the following properties:

(i) Its eigenvalues are clustered around the origin with
∣∣λmax(M

−1

SLA)
∣∣ ≤ 1,

(ii) The smallest eigenvalues lie close to the origin at a distance O( 1

k ).

(iii) The minimal condition number κmin in this context is obtained if α =
ĵ, where ĵ =

√
−1. For CGNR [15] an immediate conclusion is that

choosing α = ĵ gives the best CGNR convergence within this class of
preconditioners.

We call the version with α = ĵ the “complex shifted-Laplace” (CSL) pre-
conditioner. For CSL, the operator (7) now reads

MCSL := −∂xx − ∂yy + ĵk2(x, y). (8)

Even though the analysis in [3] is only given for constant wavenumber
Helmholtz problems in connection with CGNR, numerical results presented
show that the analysis results hold for more general Helmholtz problems and
other Krylov subspace methods, like GMRES or Bi-CGSTAB.

In Section 4 we detail the analysis of the convergence properties of the
Helmholtz equation, preconditioned by (8).

Since MCSL is CSPD, in relation with a CSPD matrix the following lemma
is useful. To prove this lemma we recall the bilinear form of any real symmetric
matrix A, i.e. for any x, y ∈ R, xT Ay = yT Ax.
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Lemma 1. Let A be any CSPD matrix and let λA ∈ C be an eigenvalue.
Then Re(λA), Im(λA) > 0.

Proof. Consider the eigenvalue problem Av = λAv with v the corresponding
eigenvector. Thus, v∗Av = λAv∗v. Using A = Re(A) + ĵIm(A) and v =
Re(v) + ĵIm(v) we have

λAv∗v = Re(v)T Re(A)Re(v) + Im(v)T Re(A)Im(v)

+ ĵ
{
Re(v)T Re(A)Im(v) − Im(v)T Re(A)Re(v)

}

+ ĵ
{
Re(v)T Im(A)Re(v) + Im(v)T Im(A)Im(v)

}

+ Im(v)T Im(A)Re(v) − Re(v)T Im(A)Im(v).

By using the definition of CSPD, the bilinear form and the definition of an SPD
matrix, we find that

Re(λA) = (Re(v)T Re(A)Re(v) + Im(v)T Re(A)Im(v))/v∗v > 0,

Im(λA) = (Re(v)T Im(A)Re(v) + Im(v)T Im(A)Im(v))/v∗v > 0,

which completes the proof.

2.2 Incomplete Factorization-Based Preconditioner [11]

An ILU factorization may not be stable if A is not an M-matrix, which is the case
for the discrete Helmholtz equation. In [11] approximations of A are proposed so
that ILU factorizations can be constructed safely. For the approximation of A−1,
denoted by M−1

I , a constraint is set so that the preconditioned system AM−1

I is
definite or “less indefinite”. Since the term “indefiniteness” is related to the real
part of spectrum of the given linear system, one demands that Re

(
σ(AM−1

I )
)

>

0 (or Re
(
σ(AM−1

I )
)

< 0).

For A ∈ C, a matrix Ã can be extracted from A where the real part of Ã is
a non-singular symmetric M-matrix [17]. In our situation (i.e. the Helmholtz
equation discretized by (3)), by introducing a parameter γ ≥ 1 and defining

Re(ãij) =

{
Re(aij) if i 6= j,

Re(aij) − γ min{0, Re((Ae)i)} if i = j,

it can be proved that Re(Ã) is a non-singular symmetric M-matrix [11]. Then,
Re(Ã) can be considered as a real perturbation of Re(A). Since Re(Ã) is a sym-
metric M-matrix, the ILU algorithm can be applied safely. For the imaginary
part, one simply sets

Im(ãij) = Im(aij), ∀i, j.

In [11] several possible settings for this preconditioner are proposed. Here,
we only evaluate one of them, namely

MI ≡ Ã = A0 + ĵIm(A), A0 = Re(A) + Q, (9)
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with

qii = −min{0, Re((Ae)i)}, (γ = 1). (10)

2.3 Separation-of-Variables Preconditioner [13]

It is well known that a separation of variables technique can be used to analyt-
ically solve the Laplace equation with special boundary conditions. The zeroth
order term k2(x, y)u prevents the use of this technique for the Helmholtz oper-
ator. An approximation can, however, be made in the separation of variables
context. This approximation can be used as a preconditioner for the Helmholtz
equation.

For k2(x, y) an arbitrary twice integrable function, the following decompo-
sition can be made,

k2(x, y) = k2

x(x) + k2

y(y) + k̃2(x, y), in Ω = [xa, xb] × [ya, yb], (11)

satisfying the conditions

∫ xb

xa

k̃2(x, y)dx = 0, ∀y,

∫ yb

ya

k̃2(x, y)dy = 0, ∀x.

It can be proved that the decomposition (11) is unique [13]. Denoting by K,
a matrix representation of the zero-th order term, and L∆, the Laplace term,
matrix A can be written as

A = L∆ − K2 = X + Y − K2, (12)

where

X = Iy ⊗ Ax, Y = Ay ⊗ Ix, and K2 = Iy ⊗ K2

x + K2

y ⊗ Ix + K̃2,

with ⊗ the Kronecker product, Ix, Iy identity matrices and K2
x, K2

y , K̃2 diagonal
matrices related to (11).

It is k̃ in (11) which prevents a complete decomposition of A. If we neglect
this term, K2 can be decomposed in the same way as L∆. This results in the
following separated variables formulation

Â := X + Y − K̂2 = Iy ⊗ (Ax − K2

x) + (Ay − K2

y) ⊗ Ix, (13)

where Â approximates A up to the term K̃2. If wavenumber k is constant then
decomposition (11) is exact. As Â can be further decomposed into a block

tridiagonal matrix, it is motivating to use Â as a preconditioner for A. We
denote this preconditioner throughout this paper by MSV := Â.

The construction of a block tridiagonal decomposition of MSV involves the
singular value decomposition in one direction, e.g. in the x-direction. We refer
to [13] for more details.
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3 Analysis of Shifted-Laplace Preconditioner

In this section we give some convergence analysis for the discrete Helmholtz
equation, preconditioned by the complex shifted-Laplace preconditioner. We
first provide the spectral properties of a Helmholtz problem with Dirichlet
boundary conditions (called “closed-off problem”). In Section 3.2, we use the re-
sults to obtain a bound for the convergence rate of GMRES for Helmholtz prob-
lems with radiation condition (2). In the analysis, we need to set wavenumber
k constant.

3.1 Closed-off Problem

The “closed-off” Helmholtz problem analyzed is defined as follows:

−∂2φ

∂x2
− ∂2φ

∂y2
− k2φ = 0, in Ω = (0, 1)2, (14)

φ(0, y) = φ(1, y) = 0, φ(x, 0) = φ(x, 1) = 0. (15)

The eigenvalue problem related to (14)-(15) reads

(
− ∂2

∂x2
− ∂2

∂y2
− k2

)
vm,n = λmnvm,n, m, n ∈ Z (16)

vm,n(0, y) = vm,n(1, y) = 0, (17)

vm,n(x, 0) = vm,n(y, 1) = 0, (18)

where vm,n and λmn are the eigenfunctions and eigenvalues, respectively. The
eigenfunctions

vm,n = sin(mπx) sin(nπy), for m, n ∈ Z. (19)

satisfy (16)-(18). Substituting these eigenfunctions in (16) yields

λmn = k2

m + k2

n − k2, km = mπ, kn = nπ. (20)

In this case km, kn are the natural frequencies. Resonance occurs if the wavenum-
ber (or reduced frequency), k, is equal to kmn :=

√
k2

m + k2
n. It resembles the

condition λmn = 0.
Now, the complex shifted-Laplace preconditioner (8) is used to speed up the

convergence. Using the boundary conditions (15), we can write the precondi-
tioned eigenvalue problem as

−
(

∂2

∂x2
+

∂2

∂y2
+ k2

)
vm,n = λp

mn

(
− ∂2

∂x2
− ∂2

∂y2
+ ĵk2

)
vm,n. (21)

With a solution of the form (19), one can show that the eigenvalues are now
distributed according to

λp
mn =

k2
m + k2

n − k2

k2
m + k2

n + ĵk2
, km = mπ, kn = nπ, n, m ∈ Z. (22)
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This means that the preconditioned system is still indefinite as there is a possi-
bility that k2

m + k2
n − k2 changes sign, but now with a clustered spectrum.

Let us identify the complex plane with the usual Cartesian plane. In this
Cartesian plane, we identify Re(λp) and Im(λp) as two variables x and y, re-
spectively. Adding up Re(λp) and Im(λp) we find that

Re(λp
mn) + Im(λp

mn) = (k2

mn − k2)2/(k4

mn + k4). (23)

Assume that resonance does not occur. We can conclude that Re(λp)+Im(λp) >
0. This analysis gives the following result.

Lemma 2. Let the 2D Helmholtz equation (14) with boundary conditions
(15) be preconditioned by (8), giving a corresponding spectrum. If resonance
does not occur, then for all k2 6= k2

mn the convex hull of the spectrum does
not intersect the line Re(z) + Im(z) = 0. More specifically, the spectrum then
completely lies above this line.

This lemma suggests a rotation of the spectrum so that, based on this line,
the eigenvalues become “definite” (all eigenvalues are translated to the left/right
complex half plane). From Lemma 2 it is also known that this line is at an angle
θ = π

4
with the imaginary axis (Figure 1). We define the zθ-plane by using the

transformation

λp
θ = λp exp(ĵθ) (24)

and (22) obtain, after some arithmetics,

Re(λp
θ,mn) =

(
k2

mn − k2

k4
mn + k4

) (
k2

mn cos θ + k2 sin θ
)
, (25)

Im(λp
θ,mn) =

(
k2

mn − k2

k4
mn + k4

) (
k2

mn sin θ − k2 cos θ
)
, (26)

where k4
mn = (k2

m + k2
n)2.

The condition sign(Re(λp
θ,mn)) > 0 for all kmn and k is satisfied only if

θ = −π/4, yielding

Re(λp
− π

4
,mn) =

1

2

√
2
(k2

mn − k2)2

k4
mn + k4

> 0, ∀kmn, k (27)

Im(λp
− π

4
,mn) = −1

2

√
2
k4

mn − k4

k4
mn + k4

. (28)

With a (θ = −π/4)-rotation one finds that the imaginary part of eigenvalue
after rotation, Im(λ−π

4
,mn), is positive if k4

mn < k4.
Eliminating kmn from both equations yields

(Re(λp
− π

4
,mn) − 1

2

√
2)2 + Im(λp

−π

4
,mn)2 =

1

2
, (29)
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Figure 1: Rotation of the z-plane.

or
∣∣∣∣λ

p
−π

4
,mn − 1

2

√
2

∣∣∣∣ =
1

2

√
2, (30)

which leads to the following lemma.

Lemma 3. Let the 2D Helmholtz problem (14) with boundary conditions (15)
be preconditioned by (8) and assume that resonance does not occur. Further-
more, let a rotation matrix of the form (24) be introduced. For θ = −π/4, the
spectrum satisfies the following properties:

(i) All eigenvalues lie on a circle with center zc,−π

4
= 1

2

√
2 and radius r =

1

2

√
2. The circle contains the origin but the eigenvalues do not lie exactly

at the origin.

(ii) This circle is independent of wavenumber k.

Figure 2 illustrates the results from Lemma 3. As seen, the eigenvalues lie on
the circle |zθ − 1

2

√
2|2 = 1

2

√
2 for any value of k (the right figure). The grid size

affects the position of the small eigenvalues, which asymptotically move closer
to the origin. As the circle contains the origin, the classical bound for GMRES
can not be used to estimate the convergence. Furthermore, this result requires a
closer look at the eigenvalues in the vicinity of the origin if one wants to estimate
the convergence. On the other hand, it also implies that if an eigenvalue close
to the origin is well approximated by a Ritz value, the convergence of GMRES
becomes superlinear [20], which is observed in previous numerical experiments
(see [3]).

From Lemma 3, we get the following corollary.

Corollary 4. Let the 2D Helmholtz problem (14) with boundary condi-
tions (15) be preconditioned by (8). Then, the spectrum lies on the circle
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|z − zc| = 1

2

√
2, with zc = 1

2
(1 + ĵ) the center of circle. This circle touches the

origin.

Proof. The proof can be obtained by back transformation of the result in Lemma
3 by using the rotation matrix (25) with θ = π/4.

Remark 5. The introduction of rotation (24) is equivalent to solving the system
PM−1

CSLAx = PM−1

CSLb with P = 1

2

√
2diag(1 + ĵ). The addition of the rotation

is not necessary if Krylov subspace algorithms like GMRES or Bi-CGSTAB are
used. These methods are able to handle this type of spectrum automatically.
Under rotation (25) the condition number κ remains the same, so the GMRES
or Bi-CGSTAB convergence does not change.
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(λ
)
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−1

−0.5

0

0.5

1

Real(λπ/4
)

Im
ag

(λ
π/

4)

Figure 2: Spectrum of the 2D Helmholtz problem preconditioned with the
complex shifted-Laplace preconditioner before (left) and after (right) rotation,
Dirichlet boundary conditions, k = 10. Grid points: 10(◦), 20(4), 30(+).

3.2 Analysis for Radiation Boundary Conditions

We consider again the Helmholtz equation (14) preconditioned by (8), but now
with the radiation boundary condition (2), and discretize with central differ-
ences. One can show that the discretization of the Laplacian and the boundary
conditions results in a CSPD matrix L∆ ∈ C for all kh > 0. We introduce the
splitting

A = L∆ − K2 ⇐⇒ C := K−1L∆K−1 = K−1AK−1 + I, (31)

where K = kI, k > 0. For L∆ a CSPD matrix we also have that C =
K−1L∆K−1 = (kI)−1L∆(kI)−1 = k−2L∆, is a CSPD matrix. From Lemma 1,
if λC is an eigenvalue of C, then Re(λC), Im(λC) > 0.

We now consider a similar splitting: MCSL := L∆ + ĵK2, with boundary
condition (2) included in the discretization. For the preconditioned system we
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have

M−1

CSLAv = λM−1

CSL
Av.

It is easy to show that

λM−1

CSL
A =

λC − 1

λC + ĵ
. (32)

With this result, we obtain the following theorem.

Theorem 6. Let λM−1A be an eigenvalue of M−1

CSLA, obtained from (8) with

boundary condition (2). Let |z − zc| = 1

2

√
2 with zc = 1

2
(1 + ĵ) be the circle

corresponding to all eigenvalues of the “closed-off” problem (as described in
Corollary 4). Then, λM−1A is enclosed by this circle.

Proof. By using (32) and Corollary 4 we have that

λM−1A − zc =
λC − 1

λC + ĵ
− 1

2
(1 + ĵ)

=
1

2

λC − 1 − ĵ(λC + 1)

λC + ĵ

=
1

2

(λC − 1 − ĵ(λC + 1))(λC − ĵ)

(λC + ĵ)(λC − ĵ)
.

With |λM−1A − zc|2 = (λM−1A − zc)(λM−1A − zc), we find that

|λM−1A − zc| =
1

2

√
2

√
λC − ĵ

λC − ĵ
· λC + ĵ

λC + ĵ

=
1

2

√
2

√
λCλC − 2Im(λC) + 1

λCλC + 2Im(λC) + 1
<

1

2

√
2

for every λC because of Lemma 1. Therefore, the eigenvalue λM−1A lies inside
the circle. This completes the proof.

Figure 3 shows eigenvalues before and after a rotation for k = 10 and various
grid sizes. For all cases, the eigenvalues are enclosed by the circle. The eigen-
values tend to be more clustered for h increasing. In Figure 4 the eigenvalues
are shown for different values of k. With increasing k the smallest eigenvalues
move closer to the origin.

In terms of convergence analysis, the result with the radiation boundary
conditions is stronger than that with the Dirichlet conditions. If rotation (24)
is now applied in the context of Theorem 6, we can estimate the convergence
bound of GMRES [14].
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Figure 3: Spectrum of the 2D Helmholtz problem (k = 10) with radiation
boundary conditions, preconditioned by the complex shifted-Laplace precondi-
tioner before (left) and after (right) rotation. Number of grid points: 10(◦),
20(4), 30(+).
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Figure 4: Spectrum of the 2D Helmholtz problem (202 grid points) with ra-
diation boundary conditions, preconditioned by the complex shifted-Laplace
preconditioner before (left) and after (right) rotation, k = 5(◦), k = 10(4),
k = 15(+).

By λ̃
−π/4

M−1A = max
∣∣∣λ−π/4

M−1

CSL
A
− 1

2

√
2
∣∣∣ we denote the eigenvalue of M−1A

farthest from the center of the circle after rotation. The circle with center
|z − 1/2| = (λ̃

−π/4

M−1A)
1

2 encloses the remaining eigenvalues but does not contain
the origin. From [14] the norm of the residual at the j-th GMRES iteration is

then bounded by: ‖rj‖2 ≤
(

R
C

)j ‖r0‖2, with κ(X) = 1 (we take the eigenvectors

of M−1

CSLA to determine X). Because of Theorem 6, the rate of convergence of
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GMRES can now be bounded by

0 <
R

C
=

(λ̃
−π/4

M−1A)
1

2

1

2

√
2

< 1. (33)

The convergence bound (33) guarantees that GMRES always converges if
applied to M−1

CSLA with radiation conditions.

4 Solution of Preconditioner

We approximate M−1, the CSL preconditioner (8) by iteration so that the ap-
proximation can be obtained cheaply. In particular incomplete LU factorizations
and multigrid are evaluated.

4.1 ILU for Shifted-Laplace Operator

An incomplete LU (ILU) factorization can be obtained by computing a sparse
lower triangular matrix L and upper triangular matrix U from which the resid-
ual matrix R = LU −A satisfies certain constraints. The construction of L and
U depends on the Gauss elimination. Since a Gauss elimination always intro-
duces fill-in, the pattern of allowable fill-in determines the accuracy of the LU
factors. It is therefore possible that building LU factors may become expensive
in storage. Once the LU factors are obtained, the solution can be obtained by
forward-backward substitution.

The simplest form of ILU factorization is ILU without fill-in, denoted by
ILU(0), where L and U have the same zero pattern as the lower and the upper
triangular part of A. ILU(nlev) is obtained if nlev extra fill-in diagonals are
allowed in both factors. For this class of ILU factorization, a fast algorithm
suitable for matrices with a regular structure stemming, e.g., from finite differ-
encing can be developed. The algorithm is based on some recurrence process
and necessitates a minimal extra storage for some entries of the LU factors. For
ILU(0), for example, only diagonal components of the lower triangular matrix
must be stored. Reference [15] presents a detailed discussion on this subject. In
our numerical examples, only ILU(0) and ILU(1) are used.

4.2 Multigrid for Shifted-Laplace Operator

Multigrid is a powerful method for solving an SPD system. It has the nice prop-
erty that the convergence is independent of the grid size. The use of multigrid
in our application becomes attractive since the CSL preconditioner belongs to
the class of CSPD matrices. Applications of algebraic multigrid for a CSPD
system are already presented, e.g., in [10]. Because of its simplicity, we choose
geometric multigrid and incorporate it inside the Bi-CGSTAB algorithm.

A multigrid method is developed based on two basic principles [16]. First of
all, many iterative methods have a strong error smoothing effect if appropriately

13



applied to discrete elliptic problems. Secondly, a smooth error term is well
represented on a coarser grid where its approximation is less expensive than on
the finer grid.

The performance of a multigrid method depends on its components. Var-
ious multigrid components are discussed in [16] and are used for real-valued
linear systems. We implement the same multigrid components for our complex
symmetric, positive definite preconditioners and investigate their performance.

As the smoother we use Gauss-Seidel with red-black ordering, denoted by
GS-RB. It is, of course, able to handle a complex diagonal element as a natural
generalization. For the prolongation operator Ih

H : GH → Gh, we investigate
the matrix-dependent (MD) interpolation proposed by de Zeeuw in [21]. For
the restriction operator IH

h : Gh → GH , the full weighting operator (FW) is
proposed. The coarse grid approximation is done by the Galerkin coarse grid
(GCC) approximation, namely MH = IH

h MhIh
H , with Mh and MH , the matrices

corresponding to the fine and coarse grid, respectively. Here we have dropped
the subscript “CSL” from the notation MCSL to simplify the notation and to
allow the use of subscripts “h” and “H” (that denote the fine and the coarse
grid, respectively). Thus, Mh and MH should be understood as the fine and
the coarse grid matrix representation of MCSL. With the transfer operators
chosen, the coarse grid matrix is represented by a compact, nine-point stencil.
Furthermore, the fine and coarse grid matrices are symmetric.

4.2.1 Two-grid Convergence Analysis

In this section we provide analysis of multigrid convergence for the discrete pre-
conditioning operator MCSL. There are several approaches to analyze multigrid
convergence. For example, Hackbusch [6] gives analysis of multigrid based on
the approximation and smoothing properties of a multigrid method. This ap-
proach gives, though important, qualitative results. On the other hand, we are
interested in quantitative estimates of the multigrid convergence. The two-grid
Rigorous Fourier Analysis (RFA) [16] is the primary tool in our multigrid anal-
ysis. For a symmetric operator like (8) with homogeneous Dirichlet boundary
conditions and constant k, we can use the discrete sine-eigenfunctions vm,n (15),
m, n = 1, . . . ,

√
N − 1 as the basis for RFA. For two-grid analysis one considers

the two-grid operator

T H
h = Sν1

h CH
h Sν2

h , with CH
h = Ih − Ih

HM−1

H IH
h Mh. (34)

Sh is the smoothing operator on the fine grid, applied ν1 times before and ν2

times after the coarse grid correction.
The sine-eigenfunctions are not eigenfunctions of the RB-GS smoother and

the two-grid operator T H
h . The harmonics

Em,n
h =

[
vm,n, v

√
N−m,

√
N−n,−v

√
N−m,n,−vm,

√
N−n

]
for m, n = 1, . . .

√
N/2 (35)

are, however, invariant under this operator. T H
h can therefore be represented

14



by a block-diagonal matrix, T̃ H
h , namely

T H
h

∧
=

[
T̂ H

h (m, n)
]

m,n=1,...,
√

N/2

=: T̃ H
h . (36)

The blocks T̂ H
h (m, n) are 4×4 matrices if m, n <

√
N/2, 2×2 matrices if either

m =
√

N/2 or n =
√

N/2, and 1 × 1 matrices if m = n =
√

N/2. The two-grid
convergence factor is defined as

ρ2g := max
1≤m,n≤

√

N

2

ρ
(
T̂ H

h (m, n)
)

. (37)

One requires to determine the spectral radii of at most 4×4 matrices T̂ H
h (m, n),

and their maximum with respect to m and n.
Table 1 shows RFA results for the preconditioning operator (8) for a con-

stant wave number k = 100, Ω = (0, 1)2 and a 2562 equidistant grid. In the
table we show the two-grid convergence factor ρ2g, and the numerical multi-
grid convergence, ρh. In addition, we compute the two-grid operator norm

‖T H
h ‖S =

√
ρ(T H

h (T H
h )∗), to quantify an upper bound for the error reduction

in only one multigrid iteration. This latter quantity is interesting since the
method is used as a preconditioner and only one multigrid iteration is applied
each Krylov subspace iteration.

The multigrid V-cycle is used with the GS-RB smoother, and with the MD-
FW transfer operators. The matrix-dependent prolongation operator may be
particularly important if a heterogeneity is present in the medium. For con-
stant k the multigrid convergence resembles that of the bilinear interpolation
prolongation operator. The V(1,0)-cycle is compared to V(1,1), where in the
brackets the number of pre- and post-smoothing steps are indicated. From RFA,
the asymptotic two-grid convergence factor for the V(1,1)-cycle is about 0.06,
which is in a good agreement with the numerical convergence. Furthermore,
the norm of the two-grid operator is well below 0.2. Multigrid for the complex
Helmholtz operator (8) behaves very similarly as for the definite real version of
the Helmholtz operator (and for the Laplace operator).

Table 1: Asymptotic two-grid and numerical convergence, ρ2g and ρh for the
preconditioning operator (8), GS-RB smoother. ‖T H

h ‖S is the spectral norm,
N = 2562.

Cycle k ‖T H
h ‖S ρ2g ρh

V(1,0) 100 0.56 0.25 0.235
V(1,1) 100 0.14 0.063 0.055

One remark should be made here. Starting with the 5-point stencil (3) on
the finest grid, the Galerkin coarse grid correction based on matrix-dependent
(or bilinear) interpolation and full-weighting restriction results in 9-point coarse
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grid stencils. The work on the coarse grids can be substantially reduced if the
coarse grid stencil is based on a 5-point stencil. A 5-point coarse grid stencil
can be recovered if full-weighting is replaced by half (or full) injection [16]. The
RFA results and the actual experiments, however, show that this combination
leads to a diverging multigrid method for (8), although the method is suitable
for the Laplace operator [16].

Table 2 presents the number of multigrid iterations to solve (8) with varying
k, and the CPU time for k = 100. The transfer operators are MD and FW.
The results are presented for a V-cycle with different numbers of pre- and post-
smoothing. By increasing the number of pre- and post-smoothing iterations,
the number of multigrid iterations to converge can be reduced, but, of course,
the CPU time for one cycle increases.

Table 2: Number of multigrid V-cycles to solve the preconditioner (8), with MD
and FW as the transfer operators. The CPU time is presented for k = 100.

k time
(ν1, ν2) 20 40 60 80 100 (sec)
(1,0) 9 9 9 9 9 1.01
(1,1) 7 8 6 8 8 1.07
(2,1) 4 6 8 5 6 1.16
(1,2) 4 4 7 4 5 0.97

Since we use multigrid as a method to approximately invert the precondi-
tioner M in the Bi-CGSTAB algorithm, we only consider V(1,0) and V(1,1) in
our numerical experiments in Section 5.

5 Numerical Experiments

Numerical tests are performed on three cases which mimic geophysical problems.
We start with a relatively simple problem with constant k and increase the
difficulty of the problem to a heterogeneous medium, the so-called Marmousi
problem.

Bi-CGSTAB with right preconditioning is implemented. For the precondi-
tioner solves, two scenarios are implemented: incomplete LU factorization and
multigrid. The iteration is terminated at the qth iteration if the residual satisfies
condition ‖rq‖2/‖b‖2 < 10−6.

All computations are performed on an Intel Pentium 4, 2.6 GHz processor
with 512 Mb of RAM. The code is compiled with FORTRAN g77 on LINUX. We
use the following notation to indicate the different preconditioners implemented.

(1) ILU(A,nlev) : nlev level ILU applied to the original matrix A,

(2) ILU(MI ,nlev) : nlev level ILU applied to MI (equations (9) and (10)),

(3) ILU(MCSL,nlev) : nlev level ILU applied to MCSL from (8),
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(4) MG(V,ν1,ν2) : multigrid applied to MCSL with V-cycle, ν1 pre-smoothing
and ν2 post-smoothing steps,

(5) MSV : Separation-of-Variables preconditioner (13).

Case 1: Constant k. We consider a square domain Ω = (0, 1)2 with a homo-
geneous medium. The boundaries satisfy the Sommerfeld conditions. A point
source is located in the center of the domain. The numerical performance of the
different preconditioners for Bi-CGSTAB is shown in Table 3 for increasing k.

All preconditioners accelerate the convergence compared to the unprecondi-
tioned case. Using ILU as the preconditioner based on A, MI , and MCSL results
in a comparable performance here. Further convergence acceleration w.r.t. the
number of iterations is achieved by multigrid, especially for k increasing. For
example, in case of k = 100, the number of iterations is reduced by factor of
4 compared to ILU(1). MG(V(1,0)) improves the CPU time by factor of 2 as
compared to ILU(0), but not much gain in CPU time is observed in comparison
with ILU(1).

Table 3: Numerical results for a constant k Helmholtz problem. Number of
iterations and (between parentheses) CPU time in sec. are shown for various k.

k 10 20 30 40 50 100
grid 322 642 962 1282 1922 3842

No-Prec 150(0.03) 846(0.9) 1577(5.5) 1857(15.3) 3054(59) 6283(483)
ILU(A,0) 75(0.04) 221(0.5) 354(2.3) 474(6.2) 634(19) 1340(159)
ILU(A,1) 35(0.02) 113(0.3) 198(1.5) 238(3.5) 295(10) 563(77)
ILU(MI ,0) 79(0.04) 221(0.5) 394(2.4) 475(6.0) 763(22) 1352(152)
ILU(MI ,1) 42(0.03) 132(0.4) 212(1.4) 238(3.3) 351(11) 577(73)
ILU(MCSL,0) 60(0.03) 188(0.5) 334(2.1) 421(5.5) 684(20) 1293(153)
ILU(MCSL,1) 36(0.02) 100(0.3) 148(1.1) 206(3.0) 301(10) 536(72)
MG(V(1,0)) 18(0.02) 36(0.2) 53(0.8) 63(2.9) 71(7) 133(65)
MG(V(1,1)) 16(0.02) 33(0.2) 49(0.9) 60(3.7) 70(9) 133(89)

Case 2: Wedge model. A problem of intermediate difficulty, the wedge
model, is used to evaluate the behavior of the preconditioners for a simple
heterogeneous medium (see Figure 5). The problem is adopted from [13] so that
we can include the numerical results obtained from the Separation-of-Variables
preconditioner. The domain is defined as a rectangle of dimension 600×1000 m2.
The Sommerfeld boundary conditions are set, and a point source is located at the
center of the upper surface (which is assigned to be y = 0) with frequency, f =
kc/(2π), varying from 10 to 50 Hz (with c is the speed of sound). The presence
of the heterogeneity brings a variation in c due to different local properties of
the medium. The convergence results are presented in Table 4 and an example
of the solution for k = 20 Hz is in Figure 5.

A similar convergence behavior as for Case 1 is observed; ILU can improve
the convergence. Multigrid can further accelerate the convergence as compared

17



to ILU(0) and ILU(1) but is in CPU time comparable to ILU(1) and tends to
be as fast as ILU(MCSL,1) for high k. Complex arithmetic operations for the
coarse grid nine-point stencil elements may be the reason for the comparable
CPU time of multigrid and ILU(MCSL,1).

The use of a V-cycle with only a pre-smoothing step for the preconditioner
is the best option w.r.t. multigrid; The combination Bi-CGSTAB and ILU(1)
for MCSL solves the problem fastest among the choices presented. For high
frequencies, the complex shifted-Laplace preconditioner MCSL does not show
any breakdown of the iterations, whereas the SV preconditioner did (CPU time
is not given for SV in [13]). The performance of the complex shifted-Laplace
preconditioner behaves well; the number of iterations increases almost linearly
against f .

Case 3: Marmousi problem. The last example is the Helmholtz equation
in a part of the Marmousi problem which mimics subsurface geology (see Figure
6). The domain is taken to be rectangular with a dimension of 6000× 1600 m2.
The Sommerfeld conditions are imposed at the boundary, and a point source is
placed at the center of the upper surface. The convergence is presented in Table
5 for frequencies ranging from 1 to 30 Hz.

Whereas the iteration with ILU(0) hardly converges, not even for frequency
f = 1 Hz, the complex shifted-Laplace preconditioner accelerates the iteration
effectively. For low frequencies, the SV preconditioner outperforms the complex
shifted-Laplace preconditioner, but the latter is faster as the frequency increases.

Even though multigrid can help reduce the number of iterations, it brings
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Figure 5: Wedge problem, f = 20 Hz. Domain and velocity profile (left), real
part of the solution (middle), real part of difference between the solution from
the wedge problem and constant medium (right). The reflection from the wedge
interface is seen.
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Table 4: Numerical results for the wedge problem. Number of iterations and
(between parentheses) CPU time in sec. are shown for various frequencies f .

f (Hz) 10 20 30 40 50
grid 76 × 126 151 × 251 232 × 386 301 × 501 376 × 626
No-Prec 2379(9.5) 4057(84) 6907(333) 8248(658) >10000
ILU(A,0) 571(3.9) 1339(40) 1917(139) 2443(293) 3287(651)
ILU(A,1) 239(1.8) 563(20) 832(70) 1120(155) 1418(195)
ILU(MI ,0) 529(3.5) 1066(31) 1718(118) 2173(250) 2959(539)
ILU(MI ,1) 235(1.7) 531(17) 787(61) 903(117) 1056(137)
ILU(MCSL,0) 485(3.3) 997(30) 1759(125) 2082(250) 2824(535)
ILU(MCSL,1) 212(1.7) 426(14) 664(55) 859(119) 1005(138)
MG(V(1,0)) 48(0.8) 92(9) 132(33) 182(77) 213(141)
MG(V(1,1)) 44(1.0) 91(12) 128(44) 182(103) 223(198)
MSV 14(–) 45(–) 167(–) 830(–) >2000(–)

only about 20% reduction in the CPU-time compared to ILU(1).

6 Conclusion

In this paper the complex shifted-Laplace preconditioner has been analyzed and
improved. Two methods to approximately invert the complex shifted-Laplace
preconditioner have been discussed, namely incomplete LU factorization and
multigrid. In terms of the number of iterations, multigrid applied to the pre-
conditioner inside Bi-CGSTAB results in a fast and robust method. Incomplete
LU factorization is effective if some fill-in is allowed. With ILU(1) applied to the
complex shifted-Laplace preconditioner a comparable performance to multigrid
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Figure 6: Marmousi problem. Velocity distribution in meter/s (left), real part
of the solution for f = 30 Hz (right).
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Table 5: Numerical results from Case 3 (a part of the Marmousi problem).
Number of iterations and (in parentheses) CPU time in sec. are shown for
various frequencies f .

f (Hz) 1 10 20 30
grid 751 × 201 751 × 201 1501 × 401 2001 × 534
No-Prec 17446(1375) 6623(538) 14687(4572) –
ILU(A,0) 3058(365) 1817(219) 3854(1904) –
ILU(A,1) 715(98) 740(107) 1706(988) 2391(2275)
ILU(MI ,0) 3282(373) 1654(190) 3645(1671) –
ILU(MI ,1) 853(109) 755(98) 1718(860) 2444(2247)
ILU(MCSL,0) 2950(371) 1519(185) 3465(1618) –
ILU(MCSL,1) 715(98) 743(107) 1369(763) 2010(1894)
MG(V(1,0)) 16(9) 177(75) 311(537) 485(1445)
MG(V(1,1)) 13(9) 169(94) 321(728) 498(1891)
MSV 3 114 648 >2000

in terms of CPU time is often obtained.
The extension of multigrid to the complex linear systems under considera-

tion has been done in a natural and straight forward way. With several multi-
grid components tested, we find the nine-point coarse grid stencil gives better
convergence than the five-point coarse grid stencil obtained, for example, with
half injection as the restriction operator. Fourier two-grid analysis confirms
this numerical observation. The nine-point coarse grid stencil, however, leads
to arithmetic work which is about one sixth more expensive than that of the
five-point stencil on the coarse grids.

The CPU time results also suggest that multigrid for solving the precon-
ditioner can be replaced by ILU(1). ILU(1) costs about three extra vectors
to store some additional vectors. On the other hand, a matrix-free multigrid
code can be written. The multigrid components have been chosen such that the
method is well parallelizable.
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