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Abstract. In this paper we present a Krylov acceleration technique for nonlinear PDEs. As a ‘preconditioner’
we use nonlinear multigrid schemes such as the Full Approximation Scheme (FAS) [1]. The benefits of nonlinear
multigrid used in combination with the new accelerator are illustrated by difficult nonlinear elliptic scalar problems,
such as the Bratu problem, and for systems of nonlinear equations, such as the Navier-Stokes equations.
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1. Introduction. It is well known that multigrid solution methods are optimal O(N)
solvers, when all components in a method are chosen correctly. For difficult problems, such
as some systems of nonlinear equations, it is far from trivial to choose these optimal com-
ponents. The influence on the multigrid convergence of combinations of complicated fac-
tors, like convection-dominance, anisotropies, nonlinearities or non M-matrix properties (the
Bratu problem), is often hard to predict. Problems might then occur with the choice of the
best under-relaxation parameter in the smoother, with the choice of the coarse grid correc-
tion, or with the transfer operators. It was already found in [9] that, for scalar linear model
test problems, many of the eigenvalues of a multigrid iteration matrix are clustered around
the origin. In some cases there are some isolated large eigenvalues which limit the multi-
grid convergence, but are well captured by a Krylov acceleration technique. In this paper
we concentrate on nonlinear problems, and aim to construct a nonlinear acceleration scheme
analogous to GMRES for linear problems.

Another better known research direction is to construct efficient nonlinear solution meth-
ods on the basis of a global Newton linearization. The resulting linear system is then solved
with a linear multigrid method [5], or with Krylov-type methods (Newton-Krylov methods).
A disadvantage of these methods is that in every linearization step a matrix of Jacobians must
be evaluated and stored. Since the basis of our method is nonlinear multigrid, Jacobians are
only evaluated locally (point- or line-wise) in the smoother on every grid level. The nonlinear
Krylov acceleration is performed on the finest grid level, and can be seen as an outer iteration
for the multigrid preconditioner. Therefore it is very easy to implement it in already existing
codes with a nonlinear multigrid variant as a solver, such as Navier-Stokes or Euler codes.
The Krylov acceleration method and its algorithmic descriptions are presented in Section 2.2.
Another advantage of the nonlinear acceleration scheme presented is the computational ef-
ficiency of our method, with respect to the multigrid preconditioner. The (nonlinear) search
directions are constructed from available intermediate solution vectors. Jacobians are approx-
imated by the residual vectors for the intermediate solutions, so that they are not recomputed
explicitly in our Krylov acceleration technique. In this sense the method is suited very well
to the nonlinear multigrid method.

Numerical results with this approach are presented in Section 3 for nonlinear elliptic
scalar PDEs, such as the Bratu problem, where the convergence difficulty in obtaining the
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second solution for certain parameters with FAS is nicely improved by the Krylov accelera-
tion technique. Also results are presented for systems of the incompressible Navier-Stokes
and Euler equations, where the discretization is based on the primitive variables.

2. The Krylov acceleration techniques.

2.1. The Krylov acceleration for linear multigrid methods. In this section, we con-
sider why a Krylov acceleration technique is useful for improving the convergence of linear
multigrid cycles in difficult problems. Here ‘a Krylov acceleration technique’ means applying
the multigrid cycle as a preconditioner for a Krylov subspace method. In [9], the convergence
behavior of the preconditioned GMRES([11]) with multigrid preconditioners was analyzed. It
was shown that GMRES helps remove error components corresponding to isolated eigenval-
ues far away from 1 from the preconditioned matrix. Here, we derive a minimization problem
of the residual, which is mathematically equivalent to the minimization problem treated by
GMRES, in order to extend the idea of the acceleration technique to the nonlinear cases.

Suppose that the linear system treated is described by

Au = b ,(2.1)

and the multigrid cycle is described by means of the following matrix splitting :

Mui + (A−M)ui−1 = b .(2.2)

Here, M−1 corresponds to the mapping from the right-hand vector to the solution after one
cycle of multigrid with a zero initial estimate. Let r0(= b − Au0) be the residual for the
initial guess u0. Then we have three different representations of the Krylov subspace K i as
follows :

LEMMA 2.1.

Ki(AM−1, r0) := span[r0, AM
−1r0, . . . , (AM

−1)i−1r0]

= M · span[u1 − u0, u2 − u1, . . . , ui − ui−1]

= M · span[u0 − ui, u1 − ui, . . . , ui−1 − ui] .

Proof. From (2.2), we have

u1 − u0 = M−1r0 ,

uk+1 − uk = (I −M−1A)(uk − uk−1) .

By induction and using these relations, we obtain

span[M−1r0,M
−1AM−1r0, . . . , (M

−1A)i−1M−1r0] = span[u1 − u0, . . . , ui − ui−1] .

Hence the equivalence of the first and second subspace is obtained. The equivalence of the
second and third subspace is trivial. Let ũi be an element in the subspace ui + span[u0 −
ui, u1 − ui, . . . , ui−1 − ui] which minimizes the L2-norm of the residual. From Lemma 2.1
any element u in ui + span[u0 − ui, u1 − ui, . . . , ui−1 − ui] can be represented by

u = u0 +M−1(α1r0 + α2AM
−1r0 + · · ·+ αi(AM

−1)i−1r0) .(2.3)

By substituting (2.3) to the residual equation we obtain :

r = b−Au
= r0 − α1AM

−1r0 − α2(AM−1)2r0 − · · · − (AM−1)ir0

= Pi(AM
−1)r0 .
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Here, Pi is the i-th order polynomial defined by Pi(x) = 1−∑i
k=1 αkx

k. As a consequence,
the L2-norm of the residual r̃i of ũi satisfies the following minimization property :

‖r̃i‖2 = min{‖Pi(AM−1)r0‖2 | Pi : i-th order polynomial with Pi(0) = 1} .(2.4)

The residual from ui, obtained from the multigrid iteration, can be represented as :

ri = b−Aui = (I −AM−1)ir0 .(2.5)

Hence ‖ri‖2 gives one of the upper bounds of ‖r̃i‖2. For ‘easy’ problems for multigrid
solution methods, such as nice elliptic problems, all eigenvalues of AM−1 are close to 1 so
that the residual is efficiently reduced by the multiplication of I − AM−1. However, it was
found in [9] that there are some eigenvalues isolated from 1 for certain difficult problems,
which make the multigrid convergence slow. Of course, in practice one will not compute
these eigenvalues, but it is interesting to consider what an acceleration technique does in
case isolated eigenvalues exist. Let λ1, . . . , λl be these isolated eigenvalues. We then can
construct the following polynomial Pi (i > l) in order to estimate ‖r̃i‖2 from (2.4):

Pi(x) = (1− x)i−l
λ1 − x
λ1

· · · λl − x
λl

.(2.6)

The operator (λjI − AM−1)/λj removes the problematic component corresponding to
the isolated eigenvalue λj , whereas components corresponding to eigenvalues close to 1
are reduced by the operator (I − AM−1)i−l. The existence of an upper bound like
‖Pi(AM−1)r0‖2 for ‖r̃i‖2 ensures that the search for an optimal solution in the space
ui + span[u0 − ui, . . . , ui−1 − ui] is meaningful. We can also define this space in non-
linear cases. If ui is close to the solution and the nonlinear operator can be approximated
well by a linearized operator around ui, then the use of this subspace gives efficiency similar
to the linear case.

2.2. The Krylov acceleration for nonlinear multigrid methods. A nonlinear system
treated here is described by

F (u) = 0 .(2.7)

We have a solution method M :

unew = M(F, uold) ,(2.8)

which gives an updated solution unew from uold. In our case, M represents one nonlinear
multigrid cycle, like FAS [1]. Our technique for accelerating the convergence of the solution
method (2.8) consists of three steps and is explained as follows :
Assume we have intermediate solution vectors umax{0,k−m}, ..., uk−1 and their residual vec-
tors F (umax{0,k−m}), ..., F (uk−1). Here, m is the upper bound for the numbers of recent
intermediate solution and residual vectors to be stored.
Step 1: Compute a new solution uM by

uM = M(F, uk−1) .(2.9)

Step 2: Find a more optimal solution in the space uM+span[umax{0,k−m}−uM , . . . , uk−1−
uM ] as in the linear case. For simplicity, we assume k ≥ m. In case k < m, we may
substitute k instead of m in the following consideration. The search for a new candidate
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for the solution is based on the following linear approximation of the nonlinear operator F
around uM on the space uM + span[uk−m − uM , . . . , uk−1 − uM ]:

F (uM +
∑

1≤i≤m
αi(uk−m−1+i − uM )) ' F (uM ) +

∑

1≤i≤m
αi

(
∂F

∂u

)

uM
(uk−m−1+i − uM )

' F (uM ) +
∑

1≤i≤m
αi(F (uk−m−1+i)− F (uM )) .(2.10)

We search for a combination of the parameters α1, . . . , αm which minimizes the L2-norm of
the right-hand side in (2.10). With this combination we define a new candidate uA from

uA = uM +
∑

1≤i≤m
αi(uk−m−1+i − uM ) .(2.11)

Note that the above minimization problem is equivalent to the minimization for the L2-norm
of

αF (uM ) +
∑

1≤i≤m
αiF (uk−m−1+i) ,(2.12)

with the restriction :

α+
∑

1≤i≤m
αi = 1 .(2.13)

Step 3: Since (2.10) may not be a reasonable approximation or some of the intermediate
solutions may be far away from the desired solution, criteria are needed for selecting uk from
uM and uA.

2.2.1. Conditions for preventing stagnation. As criteria to select the accelerated solu-
tion uA as uk, the following conditions can be considered:
Criterion A The residual norm of uA is not too large compared to those of uM and the

intermediate solutions :

‖F (uA)‖2 < γA min(‖F (uM )‖2, ‖F (uk−1)‖2, . . . , ‖F (uk−m)‖2) .(2.14)

Criterion B uA is not too close to any of the intermediate solutions unless a considerable
decrease of the residual norm is achieved :

εB‖uA − uM‖2 < min(‖uA − uk−1‖2, . . . , ‖uA − uk−m‖2)

or

‖F (uA)‖2 < δB min(‖F (uM )‖2, ‖F (uk−1)‖2, . . . , ‖F (uk−m)‖2) .(2.15)

There are some parameters in the above criteria. Regarding γA in Criterion A, it seems rea-
sonable to take γA smaller than 1. This means that we select uA only when we observe a
decrease of the residual norm from the minimal residual norm of the intermediate solutions.
However, in the numerical experiments we will find that taking γA larger than 1, for example
γA = 2, brings much more reliable convergence for problems that are difficult for the multi-
grid preconditioner used. Criterion B is necessary to prevent stagnation in the convergence.
In the multigrid process it is a possible that ‖F (uM )‖2 becomes significantly larger than the
minimum of the residual norms of the intermediate solutions, even though the multigrid pro-
cess leads towards the desired solution. In such a case, as can be imagined from (2.12), a
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small weight α will be chosen and the weight of the minimal intermediate residual may be
close to 1, so that the acceleration process forces the solution back to one of the previous
intermediate solutions. In order to prevent this phenomenon, one should carefully take the
distances between the solutions and the reduction of the residual norm into account, as is done
in Criterion B. We fix the parameters in Criterion B throughout our numerical experiments in
Section 3 as follows:

εB = 0.1 , δB = 0.9 .(2.16)

In some of the numerical experiments, we justified the criterion by removing it and observing
the resulting stagnation.

Restarting: Next we consider the truncation parameter m. In linear cases, taking a larger
m brings faster convergence, since the expansion in (2.10) is exact. However, in nonlinear
cases, this is not true, since the accuracy of the approximation of (2.10) may decrease as m
increases. On the other hand, taking a small m does not bring any improvement for problems
with several (10 or more, for example) isolated eigenvalues even though it is desired from
the restriction of storage capacity. In order to handle this difficulty, first we determine m
from the limitation of the storage capacity and we restart the acceleration process as soon as
the approximation of (2.10) is judged inaccurate or as soon as the searched subspace for the
acceleration is judged inappropriate. We restart the accelerating process as soon as one of the
following conditions is found in ‘two consecutive iterations’:

Condition C

‖F (uA)‖2 ≥ γC min(‖F (uM )‖2, ‖F (uk−1)‖2, . . . , ‖F (uk−m)‖2) .(2.17)

Condition D

εB‖uA − uM‖2 ≥ min(‖uA − uk−1‖2, . . . , ‖uA − uk−m‖2)

and

‖F (uA)‖2 ≥ δB min(‖F (uM )‖2, ‖F (uk−1)‖2, . . . , ‖F (uk−m)‖2) .(2.18)

These conditions are just the opposite of those used in the criteria to select uA. However, the
parameter γC in Condition C should be always larger than 1. In the numerical experiments,
we use

γC = max(2, γA) .(2.19)

In Criterion B and Condition D, the same parameters are used. In order to see the benefits of
applying this restarting strategy, we compare the convergence with and without it in the first
numerical experiment in Section 3.

2.2.2. The Minimization Problem. Here we will describe and estimate the work for
solving the minimization problem from (2.10). The minimization of

‖F (uM ) +
∑

1≤i≤m
αi(F (uk−m−1+i)− F (uM ))‖2(2.20)
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with respect to the parameters α1, . . . , αm is simply reduced to the solution of the following
linear system :

H(m)




α1

α2

...
αm


 =




β1

β2

...
βm


 .(2.21)

Here, H(m) = (hij) is defined by

hij =(F (uk−m−1+i), F (uk−m−1+j))− (F (uM ), F (uk−m−1+i))

− (F (uM ), F (uk−m−1+j)) + (F (uM ), F (uM )) ,(2.22)

and β1, . . . , βm are defined by

βi = (F (uM ), F (uM ))− (F (uM ), F (uk−m−1+i)) .(2.23)

If {F (uk−m)−F (uM ), . . . , F (uk−1)−F (uM )} are linearly dependent vectors, thenH(m)
is singular, so the solution of (2.21) is not unique. In principle, this is not a problem. We could
choose just one solution. However, since we are using a direct solver, which is not suited for
solving singular systems, we show that adding a small multiple of the identity, which results
in a nonsingular system, does not spoil the solution αi. So, in order to handle the singular
case with the direct solver at hand, we compute α1, . . . , αm as the solution of

(H(m) + δI)




α1

α2

...
αm


 =




β1

β2

...
βm


 .(2.24)

Here, δ is small positive number defined by

δ = ε ·max{h11, . . . , hmm}(2.25)

with a small positive ε determined according to the arithmetic accuracy. In our case, we
choose ε = 10−16. The modification in (2.24) makes it easier to compute α1, . . . , αm, when
H(m) is ill-conditioned. The following lemma confirms that this modification produces only
negligible errors to one of the solutions of (2.21) when the smallest nonzero eigenvalue of
H(m) is much larger than δ.

LEMMA 2.2. Assume that H is an m×m nonzero and nonnegative symmetric matrix, λ
is its smallest positive eigenvalue, and β is in the range of H . Assume also that ᾱ satisfies

Hᾱ = β ,(2.26)

‖ᾱ‖2 = min{‖α‖2 | Hα = β} ,(2.27)

and α satisfies

(H + δI)α = β(2.28)

for a positive number δ. Then

‖α− ᾱ‖2 ≤
δ

λ+ δ
‖ᾱ‖2 .(2.29)
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Proof. Without loss of generality, we can assume H is a diagonal matrix with diagonal
components λ1, . . . , λm. For i with λi > 0,

|αi − ᾱi| = |(
1

λi + δ
− 1

λi
)βi|

=
δ

λi + δ
|ᾱi|

≤ δ

λ+ δ
|ᾱi| .

For i with λi = 0, βi is zero from the assumption. Hence, ᾱi and αi are also zero. Therefore,
inequality (2.29) holds.

2.2.3. The Algorithm. An algorithmic description of the accelerating process is given
below. Here, u̇0, . . . , u̇m−1 and ṙ0, . . . , ṙm−1 are used to store the intermediate solution and
residual vectors of the most recent m iteration steps, namely, u̇mod(k,m) and u̇mod(k,m) are
updated to uk and F (uk) at the end of the k-th iteration in the acceleration process. The
parameter tol is a convergence tolerance with respect to the L2-norm of the residual.
NLKRYm(u, F , M , tol) {

r := F (u); η := (r, r); u̇0 := u; ṙ0 := r;
] q11 := η;

for k = 1, 2, . . . {
/? Computation of uM ?/
u := M(F, u); r := F (u); η := (r, r);

if (
√
η ≤ tol) return;

/? Computation of uA ?/
l := min(k,m);
for i = 1, . . . , l { ξi := (r, ṙi−1); βi := η − ξi; }
for i = 1, . . . , l { for j = 1, . . . , l { hij := qij − ξi − ξj + η; } }
δ := ε ·max(h11, . . . , hll);

Solve




h11 + δ · · · h1l

...
. . .

...
h1l · · · hll + δ







α1

...
αl


 =




β1

...
βl


 ;

uA := (1−∑1≤i≤l αi)u;

for i = 1, . . . , l { uA := uA + αiu̇i−1; }
rA := F (uA); ηA := (rA, rA);

/? Selection of the solution ?/
Select u or uA as the solution ;
if (uA is selected) { u := uA; r := rA; η := ηA }

/? Preparation of the next iteration ?/
if (
√
η ≤ tol) return;

Decide to take the restarting or not ;
if ( the restarting )

goto ] ;
else {

j := mod(k,m);
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for i = 1, . . . , l { qj+1,i := (r, ṙi); qi,j+1 := qj+1,i; }
}

}
Compared to the case where the solution method M is simply applied iteratively, the

main overhead of the above algorithm is composed of the underlined operations. Here we
assumed that the truncation number m is much smaller than the dimension of the discretized
system so that the work to solve the l× l linear system (l ≤ m) is negligible. This assumption
seems very natural.

At each iteration, the main overhead is 2l+2 inner products, l vector updates, evaluation
of F (uM ) and F (uA), examination of the selecting criteria and restarting condition. If the
solution method M is a nonlinear multigrid cycle and the truncation number m is 10 or
20, then the total work of these operations is still much less than the solution method itself
because the GMRES(m) process is much cheaper than a multigrid preconditioner in linear
cases. In Figure 2.1, the combination of a multigrid V-cycle with the Krylov acceleration is
shown, for convenience. Note that the solution and the residual vectors only on the finest grid
are handled in the Krylov acceleration process.

initial guess

= smoothing

= Krylov acceleration

= coarse grid smoothing

FIG. 2.1. The structure of a Krylov accelerated multigrid V-cycle.

3. Numerical experiments. As already mentioned in the introduction, many problems
can be solved efficiently with multigrid as a solver. Here, we will concentrate on ‘difficult’
problems for nonlinear multigrid methods. Four problems are presented, all of which contain
certain problem parameters. For certain values of these parameters (c in the Bratu experiment,
ε in the convection-diffusion example, the Reynolds number in the incompressible Navier-
Stokes problem and the Mach number in the Euler test case), the FAS solution method is
an excellent solver. However, for other values the convergence of the standard nonlinear
multigrid solvers slows down or even diverges. One could then invest more research in an
optimal multigrid method that is special for these problem parameters. However we prefer
instead to investigate for these cases the effect of our nonlinear Krylov acceleration, with the
aim of increased robustness of the standard multigrid method.

3.1. The Bratu problem. The first example treated here is the Bratu problem :

−∆u− ceu = 0 in Ω = {(x, y) : 0 < x, y < 1} ,
u = 0 on ∂Ω .

(3.1)

It is known, cf.[4], that there exists a critical value c∗ ∼ 6.808 for which for 0 < c < c∗

there are two solutions and for c > c∗ there is no solution. The two solutions for 0 < c < c∗

approach each other as c approaches c∗.
We would like to mention that, for the whole range of possible c values, the first solution

is easily obtained. Here, Krylov acceleration is not necessary for c < 6.5. To find the
second solution solely with multigrid, with FAS [1] or with NLMG [6], is very difficult for
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small c or c close to the critical value c∗. However, all three Krylov acceleration methods
described above give satisfactory convergence for the two solutions with c close to c∗. The
difference between the methods is more pronounced when finding the second solution for
small c. Hence we test the Bratu problem (3.1) here with c = 0.2 and c = 0.1. The profiles
of the second solutions obtained on the 1292 grid at y = 0.5 are depicted in Figure 3.1. The
ratios of ceu to 4/h2 at the maximum of the numerical solution u on the finest 129 × 129
grid are approximately 0.121 for c = 0.1 and 0.0581 for c = 0.2 (0.0107 for c = 1). These
numbers show the loss of diagonal dominance of the Jacobians. In particular, the ratio is
already quite large for c = 0.1 even on the finest grid. In [5], difficulties in handling linear
indefinite problems with multigrid are discussed. For the nonlinear Bratu problem, we cannot
find numerical second solutions for c = 0.1 ∼ 0.2 on the 52 grid. On the other hand, on the
92 ∼ 332 grids, all the “numerical” second solutions we found lost smoothness at their peak.
Moreover, we also find solutions which do not have their peak at the center of the domain.
There are, however, no such wrong solutions on the 1292 grid. Therefore, the exact coarse
grid correction for this problem is not so helpful as in the usual cases. These facts indicate
the difficulty of handling the case c = 0.1 ∼ 0.2 with the multigrid solution method.

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

u

x

c=0.05
c=0.1
c=0.2

c=1
c=6.808

FIG. 3.1. The profiles of the second solutions at y = 0.5.

We use, as in [6], the damped Jacobi Newton smoother (ω = 0.7) in the nonlinear
multigrid cycle. In this smoother, the unknown u is relaxed (by the damped Jacobi iterations)
in the discretized linearized equation obtained from

−∆u− ceũu = g + c(1− ũ)eũ ,(3.2)

where ũ is the old solution of the Newton iteration. The Jacobi iteration, however, can easily
cause divergence when diagonal dominance is significantly lost in the discretization of the
operator−∆−ceũ. This situation frequently occurs when the second solution for a small c is
computed on the coarse grids, since sup{u} approaches∞ as c approaches zero. In order to
handle this difficulty, we restart the nonlinear Newton iterations with another linear smoother,
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if the following condition is detected during the nonlinear iterations:

ceumax/(4/h2) > 0.1 .(3.3)

The smoother for (3.2) in case of (3.3) is a minimization of the L2-norm of the residual for
the search direction determined by the residual vector. The algorithmic description of the
smoother is given as follows :
SMOOTHER(uh, c, gh, ν, ω, µ) {

wh := uh;
for in = 1, . . . , ν {

bh := gh + c(1− uh)euh ; ũh := uh;
if ( c · eumax/(4/h2) < 0.1 )

for il = 1, . . . , µ {
rh := bh − Jh(ũh)uh;

uh := uh + ω diag(Jh(ũh))
−1
rh; }

else
goto ];

}
return;

] uh := wh;
for in = 1, . . . , ν {

bh := gh + c(1− uh)euh ; ũh := uh;
for il = 1, . . . , µ {

rh := bh − Jh(ũh)uh; sh := Jh(ũh)rh;
α := (rh, sh)/(sh, sh);
uh := uh + αrh; }

}
}

Here, ν is the number of the Newton (nonlinear) iterative steps and µ is the number of
the linear iterative steps inside the nonlinear step. Jh(u) is the linear mapping obtained from
the discretization of −∆− c · eu on grid Gh.

Remark: We have examined also red-black Gauss-Seidel relaxation and nonlinear red-black
Gauss-Seidel relaxation (without global Newton linearization on each grid). We observed that
red-black Gauss-Seidel relaxation provided more or less similar convergence to the Jacobi
relaxation in the case of finding the second solutions for small c. With nonlinear Gauss-
Seidel relaxation, it was very hard to obtain the second solutions: in most of cases, the iterates
converged to the first solution. These phenomena are caused by the dramatic loss of diagonal
dominance of the Jacobians on the coarse grids.

In the Bratu experiment, we choose 129× 129 as the finest grid size and 5 as the number
of the grid levels, so that the coarsest grid size is 9× 9. The FAS W(2,2)-cycle is employed,
where the numbers in the brackets correspond to the number of the nonlinear smoothing steps
(ν) for pre- and post-smoothing. In each nonlinear smoothing step, only one linear iteration
is performed (µ = 1). On the coarsest grid, 10 nonlinear steps are performed. In case of
computing the second solution for small c, there is no second solution on the 52 grid and many
numerical second solutions exist on the coarse grids (finer than the 52 grid) due to the great
loss of diagonal dominance, as mentioned before. Although the numerical solutions satisfy
the discretized equations on the coarse grids, there are no analytic solutions corresponding to
them. Therefore, we stop coarsening at 9× 9 and perform only 10 iterations of the relaxation
there, otherwise the solution on the coarsest grid might converge to one of the undesirable
second solutions or to the first solution.
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Before starting the acceleration process, one iteration of the FAS cycle is performed.
Namely, the starting solution vector u0 of the acceleration process is given from

u0 := FAS(F, uinit) .

Here we test the following three different acceleration methods in order to see the influ-
ence of the selection strategy and the restarting strategy on the speed of convergence and on
robustness:
Method M1 Criterion A is adopted for the selection of the solution. The restarting strategy

is not adopted.
Method M2 Criteria A and B are adopted for the selection of the solution. The restarting

strategy is not adopted.
Method M3 Criteria A and B are adopted for the selection of the solution. The acceleration

process is restarted when Condition C or D is detected in two consecutive iterations.
Tables 3.1 and 3.2 depict the numbers of iterations needed for the convergence criterion

‖F (ui)‖ < 10−6 to be fulfilled. Here norm ‖ · ‖ is defined, so that the scaling is independent
of the grid size (n is the number of the grid points):

‖r‖ :=

√∑
i,j r

2
i,j

n
.

The initial approximation on the finest grid is given by

uinit(x, y) = uc ·min

(
x

xc
,

1− x
1− xc

)
·min

(
y

yc
,

1− y
1− yc

)
.(3.4)

As the initial condition, uc = 12 is chosen for obtaining the second solutions for c = 0.2 and
c = 0.1. In Tables 3.1 and 3.2, robustness of the three strategies M1, M2 and M3 is tested
by changing the position of the maximum value uc of the initial solution (xc, yc) away from
symmetry. We did not use FMG [1] for obtaining the initial solution on the finest grid, since
we are interested here in the computation of the second solutions for small c and it is not
trivial to prepare a good initial guess on the coarsest grid for these problems, as mentioned
before. In Tables 3.1 and 3.2, the influence of the variation of parameter γA between 0.9 and
2 is evaluated as well. m = 20 is used as truncation number. In Table 3.1, the results for
c = 0.2 are presented; the number of the iterations without acceleration are also described.
For c = 0.1 (Table 3.2), we did not achieve convergence for these initial conditions, so the
numbers without acceleration are not presented. In these tables, the CPU times in seconds for
the execution on SGI Indigo-2 are also included in brackets.

As can be observed from Tables 3.1 and 3.2, c = 0.1 is much more difficult than c = 0.2.
The difficulty and the difference in convergence speed for the acceleration methods is more
pronounced as (xc, yc) moves away from the center. From the results in Tables 3.1 and 3.2,
M3 with γA = 2 is most preferable. For some difficult cases, taking γA = 0.9 requires many
more iterations than γA = 2.

We also observe that restarting is harmless for all cases and it sometimes brings a great
improvement, as in the case of c = 0.1, xc = 0.48, yc = 0.5, where M3 is clearly preferable
over M2. Let us observe this case more closely. In Figure 3.2, the convergence histories
for Method M2 and M3 with m = 5, 8, 10, 20 are depicted (γA = 2). As can be observed
from the convergence histories for M2, there is no guarantee that larger m brings better
convergence. The results show the difficulty in choosing the best m. The convergence is
very sensitive with respect to m in Method M2. We see that these difficulties are very nicely
recovered by adopting the restarting strategy in Method M3. Even for small m, convergence
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TABLE 3.1
The number of iterations until convergence for uc = 12, c = 0.2. Here, “FAS” means no acceleration. The

CPU times in second for the execution on SGI Indigo-2 are written in the brackets.

xc 0.50 0.48 0.46
yc γA 0.9 2 0.9 2 0.9 2

0.50 FAS 91(41.8) 195(90.9) 194(89.0)
M1 16(9.7) 16(9.8) 31(20.1) 22(14.1) 29(19.0) 26(16.9)
M2 16(9.8) 16(9.7) 31(20.2) 22(14.0) 29(18.8) 26(16.9)
M3 16(9.8) 16(9.7) 31(19.9) 22(13.9) 27(15.1) 26(16.7)

0.48 FAS 197(90.0) 203(92.9)
M1 23(14.4) 23(14.7) 38(25.2) 57(38.2)
M2 23(14.5) 23(14.7) 38(25.1) 39(25.8)
M3 23(14.4) 23(14.6) 30(17.7) 39(25.8)

0.46 FAS 222(100.9)
M1 55(37.3) 69(46.7)
M2 55(37.0) 47(31.8)
M3 44(25.3) 41(22.9)

TABLE 3.2
The number of iterations until the convergence for uc = 12, c = 0.1. The CPU times in second for the

execution on SGI Indigo-2 are written in the brackets.

xc 0.50 0.49 0.48
yc γA 0.9 2 0.9 2 0.9 2

0.50 M1 40(29.5) 42(30.6) 35(26.3) 36(27.1) 90(70.5) 78(60.3)
M2 40(29.5) 23(16.5) 35(26.3) 38(28.3) 90(70.6) 67(51.9)
M3 34(22.1) 27(19.3) 35(26.3) 39(27.3) 57(39.2) 28(19.2)

0.49 M1 65(50.3) 54(41.6) 53(40.9) 50(38.3)
M2 65(50.3) 50(38.4) 53(40.9) 53(40.9)
M3 60(43.2) 41(27.5) 50(34.2) 46(31.9)

0.48 M1 92(71.9) 49(37.5)
M2 92(71.9) 53(40.8)
M3 110(73.2) 60(41.4)

is improved, and it is no longer risky to take m as large as possible in order to achieve the
best convergence.

3.2. The rotating convection-diffusion equation. Next we consider a linear rotating
convection-diffusion problem, tested for example in [9] and the references therein, with
Dirichlet boundary conditions:

−ε∆u+ (a(x, y)u)x + (b(x, y)u)y = 1 on Ω = (0, 1)2 ,

u = f(x, y) on ∂Ω ,(3.5)

where

a(x, y) = − sin(πx) cos(πy) ,

b(x, y) = sin(πy) cos(πx) ,

f(x, y) = sin(πx) + sin(13πx) + sin(πy) + sin(13πy) .

The nonlinearity in this problem arises from the discretization of the convection terms. A
second order finite volume TVD scheme ([7]) with limiter is used for this purpose. For
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FIG. 3.2. The convergence histories for the several truncations (c = 0.1, xc = 0.48, yc = 0.5).

example, for (au)i+1/2,j when a(x, y) > 0, we obtain:

(au)|i+1/2,j =
1

2
(ai,j + ai+1,j)[(ui,j +

1

2
Ψ(Ri+1/2)(ui,j − ui−1,j)] .(3.6)

Here, with Ri+1/2 ≡ (ui+1,j − ui,j)/(ui,j − ui−1,j), nonlinearity enters into the discretiza-
tion. The function Ψ(R) is the Van Albada limiter:

Ψ(R) =
R2 +R

R2 + 1
.(3.7)

This limiter is often used in CFD calculations, as for example in [8]. Similar formulae are
found for (au)|i−1/2,j , for (au)y and for discretizations when a(x, y) < 0. A convection
dominated test case is investigated: ε = 10−5. The rotating convection-diffusion problem
with dominant convection is a difficult test for standard multigrid, because of different scaling
of convection (a(x, y)/h, b(x, y)/h) and diffusion (ε/h2), which is not dealt with properly
on coarse grids. Characteristic components, which are constant along the characteristics of
the advection operator, are not correctly approximated on coarse grids. In channel flow prob-
lems, convergence difficulties do not occur, since line smoothers on the fine grids are also
taking care of the problematic low frequency error components. This is not true for rotating
convection-dominant flow problems. In [2], an optimal multigrid solution method, especially
for the first order upwind discretization of this problem, was constructed by means of over-
weighting of residuals and/or by the use of a point smoother in the flow direction. In [9],
standard linear multigrid was used as a preconditioner for GMRES for the first order linear
discretization of this problem. Here, we want to investigate whether the nonlinear Krylov
acceleration results in a similar satisfactory convergence improvement as was found for the
standard upwind discretization of (3.5) in [9]. The second order nonlinear discretization is
solved directly within multigrid. Multigrid FAS F(2,1)-cycles are used.

A symmetric alternating line smoother is adopted, which is based on a splitting into a
first order upwind part and a remaining part, and is presented in [10]. With smoothers based
on this splitting, fast convergence is obtained for many convection dominated problems. This
smoother is explained here, since it is also the basis for the next examples. All other multigrid
components are standard components. Second order discretizations of (3.5) with (3.6) have
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the general form:

L2u =
∑

µ∈J

∑

ν∈J
a(2)
µν ui+µ,j+ν(3.8)

with coefficients a(2)
µν and a set of indices J = {−2,−1, 0, 1, 2}. A part of the symmetric

alternating line smoother is the x-line smoother for a forward ordering of lines, which we
explain in more detail. It is constructed with a special splitting of L2 into L0, L+ and
L−. First we explain the superscripts: 0 indicates operator parts corresponding to grid points
currently treated, + means already updated and − means still to be updated , as in [13]. In
case of a forward x-line smoother, 0 represents the line j = jc = const. where the unknowns
are currently updated, + indicates the lines j < jc, which were already updated, and − are
the lines j > jc still to be updated. However, the L0 parts of operator L2 are not just the
operator elements of the grid points under consideration. For L0 operator elements from the
first order operator are chosen. L0 and L+ look (with the stencil notation) like:

L0 :=




0
0

0 a
(1)
−10 a

(1)
00 a

(1)
10 0

0
0




, L+ :=




0
0

0 0 0 0 0

a
(2)
0−1

a
(2)
0−2




.(3.9)

Here a(1)
00 etc. denote operator elements from a first order accurate upwind discretization.

With the definitions of L0, L+ and L− given we define the following splitting for obtaining
u∗ for the grid points j = jc under consideration:

L0u∗ = f + L0un − ( (L2 − L+)un + L+un+1 ) .(3.10)

With the notation as explained above, it is possible that iteration indices n (i in the previous
chapters, changed to n in order to avoid confusion) and n + 1 appear in a right-hand side,
since all neighboring grid points appear in the right-hand side. Inserting an underrelaxation
parameter ω in (3.10) leads to:

un+1 = ωu∗ + (1− ω)un(3.11)

for j = jc, after which the next line of points j = jc + 1 is relaxed. We use ω = 0.9.
The test with rotating convection is performed on a 1292 grid. For the Krylov accel-

eration, we take the best method from the previous experiment, Method M3. We choose
γA = 2, and study the effect of restart parameter m, which is set to 2, 5 and 10. Of course,
the smallest m that results in good convergence is the most interesting one with respect to the
storage demands of the acceleration method. Figure 3.3 compares FAS convergence to FAS
+ Krylov convergence. It can be seen that m = 2 already gives very satisfactory results. For
this problem, the dependence on m is relatively small. The average convergence factor for
FAS is found to be 0.81, whereas the FAS+Krylov convergence with m = 2 is 0.66. With
Krylov acceleration, the second order residual is reduced with additionally 4 to 5 orders of
magnitude after 50 iterations compared to the FAS convergence.

We already stated that the costs of the Krylov acceleration is negligible. Of course, it
is necessary to compare the costs in order to make the comparison. For the problem pre-
sented above, 25 FAS F(2,1)-cycles cost 295 seconds on a common workstation, while 25
FAS+Krylov cycles with m = 10 take 319 seconds, 314 seconds with m = 5 and 312 sec-
onds with m = 2. The cost of Krylov acceleration is less than 10 percent of the total CPU
time.
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FIG. 3.3. Convergence of FAS and FAS + Krylov (γA = 2) for the rotating convection-diffusion problem,
ε = 10−5 with F(2,1) cycles on a 1292 grid. Symmetric alternating line-smoother ω = 0.9.

3.3. The driven cavity problem atRe = 10000. Next, an incompressible flow example
is treated. The 2D steady incompressible Navier-Stokes equations are written as a system of
equations as follows:

∂f

∂x
+
∂g

∂y
=
∂fv
∂x

+
∂gv

∂y
,(3.12)

where f and g are the components of the convective flux vector, and fv and gv are the viscous
fluxes:

f =



u2 + p
uv
c2u


 . g =




uv
v2 + p
c2v


 , fv =




1
Re∂u/∂x
1
Re∂v/∂x

0


 , gv =




1
Re∂u/∂y
1
Re∂v/∂y

0


 .

Here, u and v are Cartesian velocity unknowns, p is pressure, c is a constant reference velocity
andRe is the Reynolds number defined asRe = U ·L/ν, with U a characteristic velocity,L a
characteristic length and ν the kinematic viscosity. A 2D vertex-centered discretization (on a
nonstaggered collocated grid) of (3.12) is used with Dick’s flux difference splitting, presented
in [3]. Differences of the convective fluxes with respect to u can be written as

∆f = A1∆u , ∆g = A2∆u ,(3.13)

with u = (u, v, p)T and A1, A2 being discrete Jacobians.
Integration of the convective part of (3.12) over a control volume Ωi,j gives,

∫

Ωi,j

(
∂f

∂x
+
∂g

∂y
)∂Ω = F · dS |i+1/2,j

i−1/2,j + F · dS |i,j+1/2
i,j−1/2 ,(3.14)
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where F = n · F with F = (f ,g)T and n = (nx, ny)
T is the outward normal vector on the

volume side and dS the length of the volume side. The formula used in the discretization, ex-
plained in detail in [3], is obtained with a second order accurate approximation. For example,
for Fi+1/2,j we have

Fi+1/2,j =
1

2
(F (uL) + F (uR)− |A(uL,uR)|(uR − uL)) ,(3.15)

where

A = nxA1 + nyA2 =



nxu+ r nyu nx
nxv nyv + r ny
nxc

2 nyc
2 0


 ,(3.16)

with r = nxu+ nyv.
Second order accuracy results from the determination of the left and right state vectors

uL and uR, which are obtained with the Fromm scheme. In (3.15), these state vectors are,
for example,

uL ← ui,j +
1

4
(ui−1,j − ui,j) +

1

4
(ui,j − ui+1,j) ,

uR ← ui+1,j +
1

4
(ui,j − ui+1,j) +

1

4
(ui+1,j − ui+2,j) .(3.17)

The fluxes on the other volume boundaries in (3.14) are treated in the same way. The viscous
fluxes fv, gv are discretized with the Peyret control volume technique. For incompressible
Navier-Stokes equations, it is not necessary to implement a limiter. For many (2D and 3D)
different problems at low and high Reynolds numbers, oscillations did not appear (for ex-
ample, in the pressure distribution, as they occur near discontinuities for compressible flow
problems).

A well-known difficult 2D test case is the lid-driven cavity flow in a unit square at Re =
10000. We solve this problem on a 1932 grid with stretching. The streamlines resulting
for this problem (with top wall moving with u = 1) are shown in Figure 3.4. With the 1932

stretched grid, the centerline velocity profiles (not shown here) agree very well with reference
results.

The multigrid FAS scheme used for solving this problem is the same as for the rotating
convection-diffusion problem. The smoother is now a coupled collective symmetric alternat-
ing line smoother, based on splitting (3.10), with ω = 0.4. W(2,1)-cycles are used. For the
Krylov acceleration again we adopt method M3 with γA = 2. We study the effect of the
size of parameter m, which varies between 2 and 10. The results are presented in Figure 3.5,
from which it can be seen that the FAS convergence is problematic, at least for the first 30
iterations. The multigrid convergence problems for this driven cavity example atRe = 10000
are not surprising from the considerations on the rotating flows in Subsection 3.2. The ac-
celerated FAS cycles, however, show a regular convergence almost independent of parameter
m. With larger m, slightly better convergence is obtained. We find with m = 2 an average
convergence of 0.71, with m = 5 it is 0.66 and with m = 10 it is 0.63. Similar convergence
was found with γA = 0.9. Also here, the FAS convergence is accelerated very satisfactorily
even with small values of m. We would like to mention that the classical multigrid approach
for solving this problem is by means of defect-correction [3], [8]. Without Krylov acceler-
ation, defect-correction converges and reduces the second order residual after 100 cycles to
10−3. Experimentally, it is observed that it is not possible to improve the convergence of
defect-correction with this Krylov acceleration.
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FIG. 3.4. Streamlines for the lid driven cavity flow problem at Re = 10000.
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FIG. 3.5. Convergence of FAS and FAS + Krylov (γA = 2) for the driven cavity problem, Re = 10000 with
W(2,1) cycles on a 1932 stretched grid. Symmetric alternating line smoother.

3.4. An Euler channel flow problem. A last example is compressible Euler flow in
a channel with a bump. The 2D steady compressible Euler equations are written in their
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differential form as follows:

∂

∂x




ρu
ρu2 + p
ρuv

(E + p)u


+

∂

∂y




ρv
ρuv

ρv2 + p
(E + p)v


 = 0 ,

p = (γ − 1)(E − 1

2
ρ(u2 + v2)) ,(3.18)

where ρ is density, u and v are Cartesian velocity components,E is total energy, p is pressure,
and γ (assumed to be constant) is the ratio of the specific heats at constant pressure and
constant volume.

The vertex-centered finite volume discretization adopted for the Euler equations is de-
scribed briefly. It is based on the cell-centered discretization as in [12], [8]. For the finite
volume discretization the domain Ω is divided into control volumes Ωi,j . For each quadrilat-
eral, equation (3.18) must hold in integral form:

∮

∂Ωi,j

(f(u)nx + g(u)ny)dS = 0 ,(3.19)

where (nx, ny)T = (cosφ, sinφ)T is the outward normal vector on ∂Ωi,j , and u is the state
vector.

The rotational invariance of the Euler equations is used, and the discretization results in

∑

(k,l)∈Ni,j
F (uL,uR)∂Sk,l = 0 ,(3.20)

where Ni,j indexes the set of cells neighboring Ωi,j , ∂Sk,l is the length of the boundary
between Ωi,j and Ωk,l and F (uL,uR) is an approximate Riemann solver, which depends
on uL and uR, the left and right states, along the cell boundary. The approximate solu-
tion F (uL,uR) of the 1D Riemann problem is solved with an approximate Riemann solver
proposed by Osher in its P-variant form ([12]):

F (uL,uR) =
1

2
(f̃(uL) + f̃(uR)−

∫ uR

uL
|A(u)|du) ,(3.21)

where |A(u)|(= A+(u) − A−(u)) is a splitting of the Jacobian matrix into matrices with
positive and negative eigenvalues, and f̃ represents the transport of mass, momentum and
energy across ∂Sk,l along the normal vector. The states uL and uR on ∂Sk,l in (3.21) are
approximated by the Fromm scheme (3.17). State vector u = (u, v, c, z)T is chosen, where
c ≡

√
γp/ρ is the speed of sound and z ≡ ln(pρ−γ) is an unscaled entropy. In order to avoid

wiggles that may appear with this scheme near discontinuities, the van Albada limiter as in
(3.6) is implemented here. For further details on the discretization adopted here, see [12].

A transonic channel problem is evaluated at Mach 0.85. The bump in the channel is a
4.2% circular bump, the height of the channel is 2.1, its length is 5 and the bump length is
1. The domain is discretized with 97 × 65 cells, which results in a multigrid method with
5 levels. With the smoother as explained in (3.10), the second order discretization for the
Euler equations is solved directly by multigrid. The underrelaxation parameter is ω = 0.7.
For this test, where a shock appears in the solution, we use the second order smoother only
on the finest grid; on the coarse grid, we discretize and smooth with the first order accurate
upwind discretization. A V(1,0)-cycle is used for the transonic test. FAS convergence is
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improved with more smoothing iterations, but a smoothing iteration is relatively expensive.
Here, we test if we can improve multigrid convergence with only one smoothing iteration by
the computationally cheaper Krylov acceleration. For Krylov acceleration, again we adopt
Method M3 with γA = 2 and study the effect of parameter m, which varies between 2 and
10. The results are presented in Figure 3.6. Observe that FAS V(1,0)-convergence is already
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FIG. 3.6. Convergence of FAS and FAS + Krylov (γA = 2) for the Euler channel flow problem, Mach= 0.85
with V(1,0) cycles on a 97× 65 grid. Symmetric alternating line smoother ω = 0.7.

satisfactory. However, acceleration improves the residual by 5 orders of magnitude after 40
iterations for the transonic test. Larger values of m further improve the convergence. The
solution for the transonic test with the domain parameter given is shown in Figure 3.7.

4. Conclusions. In this paper, we have presented a nonlinear Krylov acceleration strat-
egy for nonlinear equations. The strategy is similar to GMRES for linear equations. It is
possible to use the acceleration strategy in combination with a nonlinear preconditioner, such
as a nonlinear multigrid method. The strategy is cheap, relative to a nonlinear multigrid pre-
conditioner, since it uses intermediate solutions and residuals that are already calculated in
the multigrid iteration. Jacobians need not be re-evaluated explicitly. Based on proper se-
lection criteria, it is then decided whether to adopt the accelerated intermediate solution or
the solution obtained from the preconditioner. This is necessary, since the nonlinear Krylov
acceleration is based on a linear approximation of Jacobians, which might not be accurate if
intermediate solutions are far from the discrete solution. Furthermore, the acceleration will
then never disturb satisfactory convergence of a nonlinear preconditioner for ‘easy’ prob-
lems. Criteria for restarting are also prescribed and evaluated. A significant convergence
improvement has been presented for several nonlinear problems, which are known to be diffi-
cult problems for nonlinear multigrid: scalar equations, like the Bratu problem and a rotating
convection-diffusion problem, and systems of incompressible Navier-Stokes and compress-
ible Euler equations. By means of the nonlinear Krylov acceleration, the solution method is
made much more robust: larger ranges of problem parameters can be efficiently treated.



ETNA
Kent State University 
etna@mcs.kent.edu

290 Nonlinear Krylov acceleration

FIG. 3.7. Isobars for the transonic Euler channel flow (Mach 0.85) on a 97× 65-grid.
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