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AN EVALUATION OF PARALLEL MULTIGRID
AS A SOLVER AND A PRECONDITIONER
FOR SINGULARLY PERTURBED PROBLEMS*

C. W. OOSTERLEET AND T. WASHIO#%

Abstract. In this paper we try to achieve h-independent convergence with preconditioned
GMRES ([Y. Saad and M. H. Schultz, SIAM J. Sci. Comput., 7 (1986), pp. 856-869]) and BiICGSTAB
(H. A. Van der Vorst, SIAM J. Sci. Comput., 13 (1992), pp. 63-644]) for two-dimensional (2D)
singularly perturbed equations. Three recently developed multigrid methods are adopted as a pre-
conditioner. They are also used as solution methods in order to compare the performance of the
methods as solvers and as preconditioners.

Two of the multigrid methods differ only in the transfer operators. One uses standard matrix-
dependent prolongation operators from [J. E. Dendy Jr., J. Comput. Phys., 48 (1982), pp. 366-386],
[W. Hackbusch, Multi-grid Methods and Applications, Springer, Berlin, 1985]. The second uses
“upwind” prolongation operators, developed in [P. M. de Zeeuw, J. Comput. Appl. Math., 33 (1990),
pp. 1-27]. Both employ the Galerkin coarse grid approximation and an alternating zebra line Gauss—
Seidel smoother. The third method is based on the block LU decomposition of a matrix and on
an approximate Schur complement. This multigrid variant is presented in [A. Reusken, A Multigrid
Method Based on Incomplete Gaussian Elimination, University of Eindhoven, the Netherlands, 1995].
All three multigrid algorithms are algebraic methods.

The eigenvalue spectra of the three multigrid iteration matrices are analyzed for the equations
solved in order to understand the convergence of the three algorithms. Furthermore, the construction
of the search directions for the multigrid preconditioned GMRES solvers is investigated by the
calculation and solution of the minimal residual polynomials.

For Poisson and convection-diffusion problems all solution methods are investigated and evaluated
for finite volume discretizations on fine grids. The methods have been parallelized with a grid
partitioning technique and are compared on an MIMD machine.

Key words. Krylov subspace methods, multigrid, robustness, parallel computing, grid parti-
tioning
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1. Introduction. In the search for robust and efficient Krylov subspace meth-
ods, multigrid is being considered as a preconditioner. With preconditioners based on
multigrid it is expected that grid—size-independent convergence can be achieved for a
large class of problems. BiCGSTAB ([19]) and GMRES ([14]) will be used as Krylov
subspace solvers. Several 2D singularly perturbed problems are considered, for which
the design of optimal standard multigrid is not easy. For these problems the adopted
multigrid methods are being compared as solvers and as preconditioners. The pur-
pose of this work is not to make optimal multigrid methods for specific problems but
merely to construct a robust well-parallelizable solver, in which the smoother as well
as the coarse grid correction is fixed.

Three different state-of-the-art multigrid methods are being compared. The first
two algorithms differ only in the transfer operators. Matrix-dependent transfer oper-
ators are employed so that problems with convection dominance, as well as problems
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with jumping coeflicients, can be solved efficiently. The first algorithm includes well-
known matrix-dependent operators from the literature ([3], [6]). In [3] the operators
have been designed so that problems on grids with arbitrary mesh sizes, not just pow-
ers of two (41), can be solved with similar efficiency. Although in [3] these operators
are mainly used for symmetric interface problems, we will also consider them here for
unsymmetric problems.

The second algorithm uses the prolongation operators introduced by de Zeeuw
([25]), which are specially designed for solving unsymmetric problems. Both algo-
rithms employ Galerkin coarsening ([6], [24]) for building the matrices on coarser
grids. A robust smoother is a necessary requirement in standard multigrid for achiev-
ing grid—size-independent convergence for many problems. The alternating zebra line
Gauss—Seidel relaxation method was found to be a robust smoother for 2D model
equations ([15], [24]). This smoother is used since it is possible to parallelize a line
solver efficiently on a parallel machine ([23]). Constructing robust parallel solvers is
an important purpose of our work.

The third multigrid algorithm in our comparison is based on the block Gaussian
elimination of a matrix and an approximate Schur complement. This method has been
recently introduced by Reusken ([12]). An interesting aspect is that the M-matrix
([20]) properties of a fine grid matrix are preserved on coarse grid levels. The three
multigrid methods are described in section 2.

Another robust multigrid variant for solving scalar partial differential equations is
algebraic multigrid (AMG) by Ruge and Stiiben ([13]), in which the smoother is fixed
but the transfer operators depend on the connections in a matrix. Efficient paralleliza-
tion of AMG is, however, not trivial. Other multigrid preconditioners have been used
for problems on structured grids, for example, in [1], [16], [17], and for unstructured
grids in [2]. In [9] an early comparison of multigrid and multigrid preconditioned CG
for symmetric model equations showed the promising robustness of the latter method.
A comparison between multigrid as a solver and as a preconditioner for incompressible
Navier—Stokes equations is presented in [26].

The solution methods are analyzed in order to understand the convergence be-
havior of the MG methods used as solvers and as preconditioners. The eigenvalue
spectrum of the multigrid iteration matrices for the singularly perturbed problems
is calculated in section 3. Interesting subjects for the convergence behavior are the
spectral radius and the eigenvalue distribution. Another paper in which eigenvalues of
multigrid preconditioned Krylov methods are determined for convergence analysis is
[16]. Furthermore, the polynomials that give a representation of the GMRES residual
in terms of the preconditioned matrix and the initial residual are explicitly computed
and solved. The evolution of the subspace in which GMRES minimizes the residual
can be determined from the solution of these polynomials.

Numerical results are also presented in section 3. The benefits of the constructed
multigrid preconditioned Krylov methods are shown for 2D Poisson and convection-
diffusion problems on fine grids solved on the NEC Cenju-3 MIMD machine ([8]).
The message passing is done with the message-passing interface (MPI). Furthermore,
the methods are compared with MILU ([18]) preconditioned Krylov methods.

In [23] we compared several standard and nonstandard multilevel precondition-
ers for BICGSTAB. The changes in the multigrid algorithm presented in this paper
can also be applied to the nonstandard multilevel approach MG-S from [23]. Further
research on parallel nonstandard multilevel preconditioners particularly for 3D prob-
lems (in order to avoid alternating plane smoothers) will be described in part II of
this paper.
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Fi1G. 1. The nine-point stencil with numbering.

2. The multigrid preconditioned Krylov methods. We concentrate on lin-
ear matrix systems with nine diagonals

(1) Ap=1b

or
1 2 3 4 5 6
Qi jPi-1,j—1 + @5 jPij—1 + G5 jPit15-1 + a5 jPio1,5 + a7 ;P 5 + a5 jPit

(2) + az,j¢i—1,j+1 + a?,j¢i,j+1 + a?,j¢i+1,j+l =b;; V(i,j) € G.

Here, G is a subset of P"»"™v = {(4,j)|1 <i<mng, 1 <j<mny,}
The stencil is presented in Figure 1 for convenience.
Matrix A has right preconditioning as follows:

(3) AK Y(K¢) =b.

The Krylov subspace methods that are used for solving (3) are BiICGSTAB ([19]), as
described in detail in [23], and GMRES(m) ([14]).

2.1. GMRES. The GMRES(m) algorithm with a right preconditioner appears
as follows:
GMRES (m,A, b, ¢) {
Choose 9, dimension m, matrix H = 0 with dim: (m+1)xm
r@ =b—A¢"; B=[rOllz fi=r/p;
forj=1,...,m{
Uj 1= K_lfj;
w = Auy;
fori=1,...,51
hij = (w, f;);
w:i=w — hi,jfj;
hivrg = llwll2, fij1=w/hjy1s;

}
Define F,, := [f1,- .-, fml;

&) = O 4 KR,y with y,, = min,||Be; — I:Iy||2,
(61 = [1, O, ey O]T);

Compute (™) = b — Ap(™);

If satisfied stop, else restart ¢ «— ¢(m);

}

K~1f; is the preconditioning step, which is one iteration of a multigrid cycle.
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The algorithms are described in a C-type metalanguage. The software is imple-
mented as a combination of Fortran 77 and C. C is used for the driver routines of
the preconditioner in order to exploit the recursiveness of C and so to simplify the
multigrid implementation.

Storage. The parameter m represents the number of vectors stored after which
the GMRES(m) algorithm will restart. It is set to 20 in our work. Restart vectors
are not necessary in BICGSTAB, where six intermediate vectors have to be stored.
The work for one GMRES iteration consists of one matrix—vector product and one
preconditioning step. In BICGSTAB two matrix—vector products and two precondi-
tioning steps are necessary in each iteration. The computation of one iteration of
BiCGSTAB is twice as expensive as an iteration of GMRES(m), when, as in our case,
the computation is dominated by the preconditioning and the matrix—vector product.
When the number of iterations needed for convergence is much larger than the restart
parameter m, it might be better to choose BICGSTAB.

Parallelism is straightforward in Krylov methods, except for the multigrid precon-
ditioner, the matrix—vector, and inner products, which need communication among
neighboring processors.

Using a preconditioner as solver. A preconditioner, like the multigrid precondi-
tioner, can easily be used as a solver. An iteration of a multigrid solver is equivalent
to a Richardson iteration on the preconditioned matrix. With K being the iteration
matrix, multigrid can be written as follows:

(4) Kot 4 (A — K)p™ =b.
This formulation is equivalent to
(5) PFH) = (k) 4 K '(b— A¢(k)) =) 4 gK=1p(R), pktl) — (I— AK_l)r(k).

The multigrid solver is implemented as a Richardson iteration with a left multigrid
preconditioner for A. The convergence of (5) can be investigated by analyzing the
spectrum of the iteration matrix. The spectral radius of I — AK ~! determines the con-
vergence. This spectrum is analyzed in section 3 for the different multigrid methods
for the problems tested on 332 and 652 grids. With this spectrum we can also inves-
tigate the convergence of GMRES, since the spectra of left and right preconditioned
matrices are the same.

Nested iteration ([6]), or full multigrid (FMG), which often reduces the number
of multigrid iterations, is closely related to the multigrid algorithms considered here.
Our starting point is the sparse matrix on the finest grid, but an F-cycle without
presmoothing is always used.

The convergence of GMRES. Here, we give an estimation of the convergence of
GMRES(m) in cases where most of the eigenvalues (the last n — [ eigenvalues in the
theorem below) of the preconditioned matrix A are close to 1 € C.

THEOREM 2.1. Let A be an n x n nonsingular matriz with eigenvalues {\; €
C | 1<i<n}, and let V; be the subspace spanned by the vectors {v € V[T~ (Al —
A)v =0}, let K; be the Krylov subspace K (1,1, A) = span[r(®, Ar(©) . Al=1700)]
and let Py be a set of kth-order complex polynomials pi(\) that satisfy px(0) = 1, and
r© =b— A the initial residual. Let radius T; be defined as

(6) I, = max{||()\ZI — A)UHQ |’U S ‘_/;;1 N K;; ||’UH2 = 1}
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Then a vector 7V defined by

l
(7) ) = (H;)\I A> )

is included in V; N K, 1.
Furthermore,

1
~ Ty
(8) 7|5 < <H |/\|> [P

i=1
Assuming | < k < m, then the norm of the residual of kth GMRES(m) iteration can
be estimated as follows:
) Ir® |2 < min||px—i(A)F|l2 | pr—i(A) € Pei}
(10) < (I = AP 17O .
Proof. Inequality (8) is found by induction: 7 = /\%()\lf(l_l) — AF(-D)y €
‘71 N Kl+17 S0

I

1 _
(11) 17Ol = ||\ = A=D1 < =D,
A I\

2

GMRES(m) is one of the algorithms which searches an update ¢ in the Krylov sub-
space K (k,r(®), A) since it minimizes residual 7*) = b — A(¢(®) 4 ¢q) = r(®) — Aq at
the kth iteration ([14]). Hence, from this fact,

(12) 112 = min{||pr(A)F |z | pr(A) € P}

is satisfied for k& < m. From (12) and the fact that

l
(13) %Q)OIMXA>M4Q)

i=1

is included in Py for an arbitrary pp_;(\) € Px—;, inequality (9) is obvious.
Inequality (10) is found with (1 — X\)*~! as a choice for px_;(\) in (9). o
Although A is not symmetric in our case, it might be helpful for understanding
(8) to consider the symmetric case. As upperbound for I'; it then follows that

[; <T; = max{||(\] — A)UHQ lv € Vi_q; |lv]l2 = 1}
(14) — max{[A = Ayl 152 i

Figure 2 shows I'; in this case.
When A is nonsymmetric, we see that

(15) T; > max{|\; — \;| |7 >i}.

Here are some remarks concerning the theorem.

Remark 2.1.1. If some eigenvalues \; (i < 1) are close to zero, the norm of #(!)
becomes large. This suggests that we may need a relatively large k to reduce the
residual by a certain order of magnitude even if [ is not large.
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FiG. 2. T'; for a case where most eigenvalues are near one.

Remark 2.1.2. Inequality (9) shows that ||7(®) is not larger than the norm of
the (k — I)th residual of GMRES(m) with initial residual 7) that is included in the
subspace corresponding to the eigenvalues close to one {\; | i > [}.

Remark 2.1.3.  As already mentioned, (I — AK~!) gives the residual trans-
formation for the Richardson iterative process based on the matrix splitting A =
K+ (A—-K). Hence, from (10), the asymptotic convergence of GMRES(m) is at least
faster than Richardson with an initial residual; that does not include components
corresponding to the large eigenvalues {)\; | i <1} of AK 1.

GMRES polynomial. We construct the GMRES polynomial p; to understand the
way the GMRES search directions are constructed. Here, the GMRES polynomial
means p; € Py, which gives the residual vector r*) of the kth GMRES iterative
process as r®) = p,(A)r©). As mentioned in the proof of Theorem 2.1, pj, gives the
minimal Ly-norm of the residual under the condition p;(0) = 1. The minimal residual
polynomial px looks like

(16) pr(A)r® = b AFr© o AL (O
In order to find the coefficients by the following function f should be minimized:

f(bla ey bk) = (pk(A)r(O)apk(A)r(O))

k k
(17) =) bib (AT, AP0 2y b (AT, ),
i,j=1 i=1
Therefore,
of Mo _
(18) o= 2> b (A, ATrO) 4 2(ArO) ) = 0.
K3 j:1

The coefficients by, are obtained by solving matrix equation (18).

The solutions of py(A\*) = 0 will suggest how GMRES optimizes py(A)r(®); these
solutions are calculated in section 3. Then it can be seen whether the polynomial (13)
assumed in Theorem 2.1 is appropriate for the problems investigated.

2.2. Three multigrid methods. For a given positive number M, a standard
sequence of grids G, G?,...,GM for multigrid is defined as follows:

(19) oM =@,
(20) GF={(,)I2i-1,2j-1) e G}, 1< L<M-1
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(2j+1) H1® X ® @ = coarse (and fine) grid point
w3 | w4

X =finegrid point

(@) K X
. wl 3 w2
(2-1) J@ X ®
| 1+1
(2i-1) (20 (2i+1)

F1G. 3. One coarse grid cell with the prolongation weights and four fine grid cells for standard
multigrid (for coarse grid indices capital letters are used and the fine grid indices are in brackets).

The three multigrid preconditioners that are implemented and whose performance is
compared are now discussed.

2.2.1. Prolongation operators. In the first two algorithms different matrix-
dependent prolongation operators are implemented. Figure 3 shows one coarse and
four fine grid cells with indices for the explanation of the different prolongation
weights. The first operator is well known in the literature ([3], [6]) and has been
used before by the authors in [23]. Problems on grids with arbitrary grid sizes can be
solved with a similar efficiency. So it is not necessary to choose powers of two (+1)
for the grid sizes. The prolongation mapping PL*1 : ul € QF" s ul+l € Q&
with weights w1, w2, and w3 appears as follows:

. . L+1
e for (20,25 — 1) € Q¢
1 4 7
di = a%i,Qj—l + a%i,Qj—l + ;95 15
dg = A4 951t A5 051 A3 051,
_ 2 5 8
d=—(a3;9;_1 + a3 9;_1 + a5 9;_1),
dy . _ ds.
wlggoj1 = 75 W24 25-1 = °F;
. . L+1
e for (2i —1,2j) € Q¢
_ 1 2 3
di = a%i—1,2j + a%i—l,Qj +ag;_q 24
do = a3 9j + a3 _1 05 + G571 9;,

_ 4 5 6
d=—(a3;_1.9; +a3;_1.9; +a5_1.2;),

di . d
wlai—125 = 75 w3125 = F.

The construction of d differs from the operators in [23] and results in an accurate
prolongation, for example, near Dirichlet boundaries, when the grid size is not ideal
for multigrid.

On the remaining points the prolongation is found as follows:

(21) on points (2i-1,2j-1) udith oy =ul
22) on points (2i,2j) ul .} is determined so that ALT'PLHyE =0 at (2i,2)).
24,27

Some matrix components in the algorithm disappear at boundaries. Therefore, the
prolongation is also valid at a boundary. This first algorithm is denoted by MG1.
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The second algorithm evaluated, denoted by MG2, adopts the “upwind” prolon-
gation operator by de Zeeuw ([25]). This operator is also presented in [24] and is
specially designed for problems with jumping coefficients and for second-order differ-
ential equations with a dominating first-order derivative. As already indicated in [4],
it is appropriate for the construction of transfer operators for unsymmetric matrices
to split a matrix A into a symmetric and an antisymmetric part:

(23) S:%(A+AT), T:A—S:%(A—AT).

The investigated transfer operators for M G2 are also based on this splitting. The
diagonal elements of matrices S and T are numbered similarly as the elements of A
in (2). One now defines the following:

(24) dy = max(|3%i,2j71 + 34211‘,2j71 + Sgi,2j71|7 |S%i,2j71|7 |Sgi,2j71|)7
(25) de = maX(|Sgi,2j71 + Sgi,2jfl + Sgi,ijllﬁ |S§i,2jfl|’ |sgi,2j71|)’
(26) dn, = ma’x(|8;i—1,2j + Sgi—l,Qj + Sgi—1,2j|a |3;i—1,2j|7 |Sgi—1,2j|)a
(27) ds = max(|sy;_, 25 T S5i1 2; T S5 1 245 |5§i—1,2j|7 |5§i—1,2j|)a

1
(28) o1 = -min | 1,1 - 72’“ 1720271
2 2z ,25—1
1 sk
(29) oo = -min [ 1, |1 — Zk k=1 7207125
2 G’Qz 1,25
(30) 1= tgi,2j—1 + tgi,Qj—l + t2i,2j—1 - (t2z’,2j—1 + tgi,Zj—l + t;i,Qj—l)v
(31) Cy = t;i—l,Qj + tgi—l,Zj + tgi—1,2j - (t%i—l,Qj + t%i—l,Qj + tgi—l,Qj)?
d — dp C1 :|
32 w 14 -+
(32) v { dp +d.  dy+d.+d, +ds

(33) We = 207 — Wy,

ds — dn + C2

ds +d,, dy+d.+d,+ds
(35) Wy = 209 — Wy,

(34) Wy, = 0y {1 +

Weights wl and w2 are now found as follows:

o for (2i,2j — 1) € Q¢
wlg; 251 = min(207, max(0, wy)); w2 2;—1 = min(2o, max(0, we));

o for (2i—1,25) € Q&
wlg;_1 95 = min(202, max(0, ws)); w3zi—1,2; = min(202, max(0, w,)).

Equations (21) and (22) are used for the remaining grid points.

Analysis of this operator and the numerical experiments by de Zeeuw [25] show
the very interesting behavior of M G2 as a solver for several problems.

Restriction. As a restriction operator in MG1 and MG2, the transpose of the
prolongation is used. Restriction R : uf*t ¢ QGL+1 —ul e QGL is defined as

(36) RE=PY 1<L<M-1.
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V-cycle F-cycle

W-cycle

F1G. 4. Different ways of cycling through fine and coarse grids.

Coarse grid discretization. Coarse grid matrix AY on grid G is defined with
Galerkin coarsening ([6], [24], [25])

(37) AM = A
(38) Al = REAIFIPEFL 1 <L <M —1.

A drawback of the multigrid preconditioners, compared with, for example, ILU pre-
conditioners, is that additional storage for the matrices on coarse grids as well as for
the matrix-dependent transfer operators is needed.

Smoother. The smoother in MG1 and MG2 is the alternating zebra line Gauss—
Seidel smoother. First, all odd (white) lines are processed in one direction, after
which all even (black) lines are processed. This procedure takes place in the -
and y-directions. Fourier smoothing analysis for model equations, presented in [24],
indicates the robustness of this smoother. The parallel implementation by means of
grid partitioning is explained in detail in [23]. Care has been taken that the single
block and the multiblock convergences are identical.

Multigrid cycles. The multigrid correction scheme is used for solving the linear
equations. In [23] we chose the V-cycle as iteration cycle. Here, the robustness and
efficiency of more expensive cycles, like the W- and F-cycles, are also evaluated. The
cycles are shown in Figure 4.

The multigrid F-cycle is a cycle between the cheap V-cycle and the expensive
W-cycle. The algorithm is written down for convenience in a recursive way.

MG F-cycle
MGF (AL, fLoul vy e, v3) {
if (L=1){
ul := smoother(AL, f1, ul, v3);
return;

}

uL = smoother(AL7 fL7 UL7 I/l);
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rLi= L ALy L,

fol *RLilTL,

ul=1:=0;

ul == MGF(ALY fE=1 ul =1 vy 1o, 13);
ul =yl 4+ PLyL-1,

ul := smoother(AL, f£ ul 1);

PLi= L ALyl

FL=1 .= RL-1,L.

ul=1 .= 0

uF =l i= MGV (AP fE=1 b=t g s, 1),
ul = ul + Plyl—1;

ul := smoother(AL, fL ul vs);

}

All components in the code have been explained in this section.

2.2.2. Multigrid based on the block LU decomposition. The third algo-
rithm, MG3, evaluated as a solver and a preconditioner, was recently proposed by
Reusken ([12]). It originates from several publications in which the fine grid matrix
A is decomposed ([10], [11]). In matrix A the fine grid points (excluding the coarse
grid points) are ordered in the first part, the coarse grid points in the second part.
The coefficient matrix on the fine grid is now described as

A A
39 A= .
(39) <A21 A22)

An approximation M of the above matrix based on the block LU decomposition is
made as follows:

B I 0 A A
(40) M= ( Apn A~ I ) ( o S )

If S equals the Schur complement Sy (= Ags — A21A11_1A12), M is equal to A.
Multigrid methods based on the formulation and splitting from (40) lead to interest-
ing properties of coarse grid matrices. If the fine grid matrix is an M-matrix ([20]),
S will also be an M-matrix. In [12], S is an approximate Schur complement con-
structed from the Schur complement of a modified matrix A. With the modification
based on linear interpolation, A;; and Ao reduce to A;; and Ajs, where A is
diagonal:

— A, A — . — .
(41) A= ( A; AZ ); Apy = diag(Ar1), A2 = Aip + offdiag(Aq1) Pra.

In (41), Pi2 is an operator that interpolates fine grid elements bilinearly to adjacent
coarse grid points.
A damping parameter w is used to correct an incorrect scaling of S compared to

Sa. So
(42) S = w_l(AQQ — Aglﬂl_llﬂu).

Another choice for S based on lumping is found in [11].
We construct multigrid cycles based on the Richardson iteration of the splitting
of A=M+ (A— M) as in (4).
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An iteration with M in (40) is described as follows:
Lo = fi — Anul” = Al ro = fo — Anul® — Agpul?.
Solve A1 Auj = ry.
v =ro — Ap Auj = fo — Aoy (u”) + Aug) — Appu?.
Solve SAul = r3.
ugkﬂ) = uék) + Auék).
Solve AuAugk) =r — AlgAUék).
7. ugkﬂ) = ugk) + Augk).
Vectors u, f, and r are also split according to (39); uf and r} are intermediate
variables. Steps 6 and 7 are rewritten as follows:

AN el

An(Adt® — Aup) = fi — An @l + Aup) — A (ud” + Aud?),
ugkﬂ) = (ugk) + Auy) + (Au(lk) — Auy).
The algorithm from [12] is obtained if we put
uj = ugk) + Auj,
Auy™ = Augk) — Auj.

The following equivalent process is obtained:
k k
1. r = f1 — Allug ) — Auué )
Solve A11Auf =ri,uf = ugk) + Auj.
* * k
Ty = f2 — A21u1 — Aggué )
Solve SAugk) =r}.
ugk-’_l) = uék) + Augk).
E+1
TT = fl - A11U>{ — Algug + )
7. Solve A1 Aui* =rf, ugkﬂ) = uj + Auj*.
For solving the linear system A;1, a certain number of iterations (v) of an alternating
line Jacobi relaxation is performed on the fine grid points excluding the coarse grid
points. This operation with right-hand side vector f; is described as

S ot W

(43) w1 = Ji1 (A, fi,u1,v).

Rewriting the algorithm leads to the algorithm that has been implemented. The
multigrid V-, F-, and W-cycles are now constructed with recursive calls replacing
step 4 in the algorithms.

The robustness of this algorithm has been presented in [12] by means of two-grid
Fourier analysis for the convection-diffusion equation. In the numerical results in [12]
parameter w was set to 0.7. For convenience the MGLU F-cycle is written out in
metalanguage.

MGLU F-cycle
MGLUF (AL, fE ul vy ve,v5) {
if (L=1){
u! := smoother(A!, f1,ul,v3);
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return;
L._ ¢L L, L.
ry = fi = Afpuy;
L._ L L .
uy = Jll(Alla r1,uy, V1)7
ry = fy — Ajjut — Agpug;
fL—l N 7"5/ . uL—l = 0:
A b L ?
ul = ul + MGLUF(S, fL=1 ul=1 vy v, 13);
it e g - bk
L._ L L .
up = Ji (A, ey, ur, ve);
ry = fy — Afjuf — Assug;
FEli= gk b1 =,
. b) M b
ub = uk + MGLUV(S, fE=1 ul =1 vy, v, 13);
iy
L._ L L .
uy = J11(A11,T1 y Ut V2)7

}

2.3. MILU preconditioner. We also present results with an ILU precondi-
tioner for the comparison of convergence with the multigrid approaches. Though
efficient parallelizations can be achieved by employing parallel ordering of grid points
(like red—black ordering), it is well known that the convergence degradation is large
compared to the natural order ([5]). In [22] a parallelization of the ILU preconditioner
by ignoring interface components between subdomains and by applying the natural
ordering in each subdomain is described. However, for our problems, a severe conver-
gence degradation was observed, compared to the single block convergence, because
strong couplings of unknowns across grid partitioning interfaces exist. Therefore,
in section 3 only single block convergence results of five-point MILU(a) precondi-
tioners with an acceleration parameter «; ([18]) are given. Elapsed times are not
presented.

3. Numerical results. The partial differential equations investigated are 2D
singularly perturbed problems. Poisson-type equations and a convection-diffusion
equation with a dominating convection term are solved. Except for the first equation,
we concentrate on “difficult” problems for multigrid.

The results presented are the number of iterations (n) to reduce the Ly-norm of
the initial residual with eight orders of magnitude (||7(™|]2/||7(@ ]2 < 10~8). If this
criterion is not satisfied in 70 iterations, the asymptotic convergence p is presented.
Furthermore, the elapsed time T¢jqpseq for this number of iterations obtained on the
NEC Cenju-3 MIMD machine ([8]) is presented. For all problems 32 processors are
used in a 4 x 8 configuration.

As the initial guess ¢(9) = 0 is used for all problems. After some efficiency tests,
we choose no presmoothing and two postsmoothing iterations in MG1 and MG2. On
the coarsest grid two smoothing iterations are performed (v3 = 2) in order to keep
the method as cheap as possible. For the problems investigated this did not influence
convergence negatively, since the coarsest grid is always a 32 grid. As the number of
J11 iterations in MG3 varies, it is explicitly mentioned.

Problem 1. An anisotropic diffusion equation. The first problem investigated is
an anisotropic diffusion problem from [12]:

L 92 2
(44) —ea“*z)% —~ gT;j =1lonQ=(0,1) x (0,1).
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Boundary conditions are chosen as

(45) gn =0 on{r=00<y<1} {0<z<1, y=0}
p=0 on{z=1,0<y<l1} {0<z<1, y=1}

This problem with varying anisotropy along z-direction is relatively easy for multi-
grid methods with an alternating line smoother. Also, Poisson problems on severely
stretched grids, which are known to be difficult for ILU preconditioners, are handled
very well with our MG1 and MG2 methods. It is, however, interesting to see the
difference in convergence between the three MG methods. Parameter o in (44) was
set to one here; other parameter choices lead to similar convergence results.

MG as solver. In Table 1 results are presented for the multigrid methods MG1,
MG2, and MG3 used as solvers. The convergence results are obtained with the
V-, F- and W-cycles on three consecutive grid sizes. Convergence on a 5142 grid
is also presented to show that for MG1 and MG2 similar convergence is found on grid
sizes that are not ideal for multigrid. For MG3 convergence was not found on this
grid size because the transfer operators were not suited for irregular sizes. MG3 also
performs well for this problem on the 5142 grid, if the linear interpolation P;s for the
modification of A in (41) is changed to a matrix-dependent interpolation with weights
from MG1 or MG2.

Grid-independent convergence is found for all cycles with MG1 and MG2. Their
performance is similar for this test problem. The convergence of MG3 is slower than
that of the other algorithms but is in accordance with the performance in [12].

It was found that MG3 as a solver is fairly sensitive in the variation of parameter
w from (42); optimal for this problem is w = 0.75. In order to obtain grid-independent
convergence the number of Ji; steps grows for MG3 as the problem grows: on a 1292
grid J11(2,4) (two pre- and four post-line Jacobi steps) was sufficient; on the 2572
grid J11(3,5) steps were necessary, and on a 5132 grid J11(4, 6) steps were necessary.
The condition number of Aj; grows as the grid size becomes larger.

Furthermore, it can be seen in Table 1 that a W-cycle is more expensive than an
F-cycle on a parallel machine. This is due to the fact that coarse grids are processed
more often and that an agglomeration strategy ([7]) is not incorporated. On coarse
grid levels some processors are idle, and the other processors contain a very small
number of grid points. Communication is then dominant. On one processor the
difference between the F- and W-cycle is less pronounced.

MG as preconditioner. In Tables 2 and 3 the results are presented with MG1,
MG2, and MG3 as preconditioners. In Table 2 BICGSTARB is the solution method, in
Table 3 GMRES(20) is the solution method. Comparison of these tables shows that
the elapsed times for the same preconditioning cycle are in the same range; there is
not much difference between the performance of BiCGSTAB and GMRES(20). The
number of iterations as well as the elapsed time are reduced compared to Table 1 for
many cases. Also, in Tables 2 and 3 grid-independent convergence is found with all
cycles as preconditioners. It is interesting to see that the performance of MG3 as a
preconditioner is much better and more robust than that of MG3 as a solver. For
this problem it was also possible to choose a V-cycle for MG3 as a preconditioner,
and the number of pre- and post-Jacobi steps could be reduced by two for each grid
size. With MG3 as a preconditioner the methods also converge on the 5142 grid with
linear interpolation Pjg in (41), i.e., the original method from [12].

MILU preconditioner. Problem (44) is also solved with the MILU(ay) precondi-
tioned Krylov methods. The convergence appeared to be very sensitive with respect
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TABLE 1
Multigrid as solver: number of solution iterations (n) and elapsed time Teiqpseq in seconds for
the anisotropic diffusion equation (o = 1) on several grid sizes.

Grid: 1292 2572 5132 5142
Method: Cycle:
\Y% (11) 1.4 (11) 2.0 (11) 4.1 (11) 4.1
M F (8) 2.7 (8) 3.9 (8) 6.7 (5) 4.2
W (8) 7.3 (8) 15.1 (8) 31.9 (5) 20.2
\Y% (9) 1.1 (9) 1.8 (9) 4.2 (11) 4.3
MG2 F (7) 2.3 (7) 3.7 (7) 6.8 (9) 8.0
W (7) 6.5 (7) 13.4 (7) 28.9 (9) 36.6
\Y% p=0.82 DIV DIV DIV
MG3 F (29) 13.5 || (34) 29.3 (40) 57.9 DIV
W (19) 23.6 || (17) 55.4 || (16) 133.5 DIV

TABLE 2
Multigrid as preconditioner for BiCGSTAB: number of solution iterations (n) and elapsed time
Telapsed in seconds for the anisotropic diffusion equation (o = 1) on several grid sizes.

Grid: 1292 2572 5132 5142
Method: Cycle:
\Y% (5) 1.1 (4) 1.4 (4) 2.9 (4) 3.0
M1 F (4) 2.6 (4) 4.0 (4) 6.7 (3) 4.3
w (4)7.3 (4) 15.1 (4) 32.0 (3) 24.2
\Y% (4) 0.9 (4) 1.4 (4) 2.9 (4) 2.9
MG2 F (3) 1.9 (3) 2.9 (3) 5.1 (3) 5.1
W (3) 5.4 (3) 11.3 (3) 24.0 (3) 24.2
\Y% (16) 3.8 (23) 7.8 || (30)28.9 | (33) 40.7
MG3 F (10) 6.5 || (10) 13.4 || (10) 28.5 | (16) 46.1
W (6) 14.9 (7) 45.7 (7)96.2 | (12) 167.7

TABLE 3
Multigrid as preconditioner for GMRES(20): number of solution iterations (n) and elapsed
time Tejapsed in seconds for the anisotropic diffusion equation (oo = 1) on several grid sizes.

Grid: 1292 2572 5132 5142
Method: Cycle:
\Y% (7) 0.8 (8) 1.5 (8) 3.1 (7) 2.8
Ma F (6) 2.0 (6) 3.0 (6) 5.2 (5) 4.3
W (6) 5.5 (6) 11.5 (6) 24.1 (5) 20.3
\Y% (7) 0.9 (7)1.3 (1) 2.7 (7) 2.7
MG2 F (6) 2.0 (6) 3.0 (6) 5.2 (6) 5.2
W (6) 5.5 (6) 11.4 (6) 24.1 (6) 24.3
\Y% (29) 4.1 (39) 7.7 || (58) 31.9 | (69) 47.5
MG3 F (18) 6.0 (18) 12.4 || (18) 26.7 | (31) 46.7
W (12) 15.0 || (12) 40.0 || (13) 90.2 | (22) 155.7

to parameter . For this problem the best results were obtained with a; = 1 and
BiCGSTAB. On a 1292 grid 54 iterations were needed; on a 2572 grid, 91 iterations,
on a 5132 grid, 126 iterations, and on a 5142 grid, 130 iterations. With GMRES(50)
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the following results were obtained: on a 1292 grid, 62 iterations; on a 2572 grid, 139
iterations, on a 5132 grid, 444 iterations, and on a 5142 grid, 446 iterations. The
number of iterations grows rapidly for larger grid sizes.
Problem I1: Rotating convection-diffusion equation. The next problem is a rotat-
ing convection-diffusion problem, presented in [21] and also tested in [23],
¢ ¢
y

(46) _6A¢+a(x7y)7 +b($?y)

9 =1 onQ=(0,1) x (0,1).

Here, a(x,y) = —sin(wz). cos(my), b(x,y) = sin(ny). cos(mx).

Dirichlet boundary conditions are prescribed:  ¢|r = sin(wz) + sin(137z) +
sin(my) + sin(137y).

A convection dominated test case is chosen: € = 107°. The convection terms are
discretized with a standard upwind discretization, due to the fact that the multigrid
methods with the chosen smoothers are not convergent methods for matrices resulting
from a second-order discretization. In a forthcoming paper, possibly part III, we will
concentrate on second-order accuracy for convection-diffusion problems.

Spectrum analysis. For this test problem we investigate the eigenvalue spectrum
of the Richardson iteration matrix I — K~1A (5). For K~ ! in (5) all MG methods
are compared on a 332 grid. The spectra are presented in Figure 5. As can be
seen, most eigenvalues are clustered around zero for MG1 and MG2 but not for MG3.
For MG3 this has also been observed in [12]. Furthermore, a difference between the
distribution of MG1 and MG2 can be seen; the spectral radius of MG1 is larger. The
actual convergence with these methods as solvers and preconditioners on the 332 grid
is presented in Figure 6. Also, if it was obtained, the observed asymptotic convergence
p is presented. If an asymptotic convergence was not found, the average convergence
pM = (r(")/r(o))% is shown. Comparing Figures 5 and 6 we see that the spectral
radius determines the convergence of the MG methods as solvers, as expected.

For this problem we study the development of the solutions A} of the minimal
residual polynomial py(Af) = 0 from (16). Solutions 1— A} of the last five polynomials
until convergence are presented in Table 4 for MG1 and MG2. Due to the fact that
1 — A\* is presented, it is possible to compare Table 4 and the eigenvalues in Figure 5.
It can be clearly seen that the vectors belonging to the most distant eigenvalues of
I — AK~! from zero are first captured in the Krylov space. The development of this
space gives a clear view of the search directions of GMRES. For MG1 six eigenvalues
with largest distance from zero are obtained from the ninth polynomial, for MG2 four
are found after seven iterations. So the choice of si(A) in (13) may give a nearly
optimal upper bound.

MG as solver and preconditioner. Tables 5, 6, and 7 present convergence results
obtained on three different grid sizes, 1292, 2572, and 5132. The MG methods are
used as solvers in Table 5, as preconditioners for BICGSTAB in Table 6, and for
GMRES(20) in Table 7. For MG3 the number of Ji; steps is as in Problem I, with
less steps as a preconditioner than as a solver. Here, matrix-dependent interpolations
n (41) did not result in a robust MG3 method. It can be seen that MG2 handles
this test case with dominating convection better than the other methods. With the
expensive W-cycle almost grid-independent convergence is found. Very satisfactory
convergence associated with small elapsed times is found in most cases with the F-
cycle. With the V-cycle used as a preconditioner the best elapsed times are found,
but the number of iterations is increasing for large grid sizes. Again, the convergence
is fastest when the MG methods are used as preconditioners.
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o: MG1 solver, p = 0.34
o: MG?2 solver, p=10.11
*: MG 3 solver, p =0.43

o: MG1 prec., p19 = 0.12
o: MG2 prec., p(13) = 0.06
x: MG 3 prec., p1%) =0.29

103

20 30

cycles (= n)

(2)

-9 I T T
0 10 20

cycles (=n)

(b)

30

F1G. 6. The convergence of the MG solvers (a), and GMRES(20) with MG preconditioners (b),
for the rotating convection-diffusion equation on a 332 grid.

TABLE 4
Solutions 1 — A} related to the polynomials py chosen by GMRES with MG1 and MG2 for the
convection-diffusion equation (e = 107°).

k 5 6 7 8 9
0.32 0.33 0.34 0.34 0.34
MG1 0.25 0.28 0.24 + 1.9.10~ 2 0.27 0.26
0.14 0.18 0.24 — 1.9.1072; 0.21 0.21
1— A% 2.4.10~2 —4.3.1072 —5.4.1072 —6.4.10"2 —8.5.1073
—1.7.10"2 6.6.10 2 0.12 0.12 0.13
1.6.10~2 2.5.102 1.7.1072 1.7.1072
—1.1.1072 5.9.102 6.4.102
—5.3.1072 | —5.9.1072 4+ 2.3.10~ 2%
—5.9.1072 — 2.3.10~ 23
k: 4 5 6 7

8.5.10"2 + 1.8.10 24

9.0.10~2 4+ 1.6.10 24

9.1.10—2

0.14

9.5.10~2 +3.5.10 24

MG2 8.5.1072 —1.8.10"2¢ | 9.0.1072 — 1.6.10~ 2 9.1.10~2 4+ 2.2.10" %4
—2.8.1072 —2.4.1072 9.1.1072 — 2.2.10"2; 9.5.1072 — 3.5.10 " 2i
1-Af 9.0.1073 4.4.1072 -1.0.107%2 +1.6.1072% | —-1.3.107% +1.7.10"%;
7.9.1073 —1.0.1072 —1.6.107%i | —1.3.10"2 — 1.7.10 %4
3.3.1073 6.6.10~2
8.4.103

MILU preconditioner. The MILU(«ay) preconditioner converges satisfactorily with
ap = 0.95. Here, GMRES(50) did not lead to convergence. For BiCGSTAB, the
number of iterations to reduce the initial residual with eight orders of magnitude
were as follows: for 1292 grid, 32 iterations; for 2572 grid, 58 iterations; for 5132 grid,
133 iterations.

Problem II1: The rotated anisotropic diffusion equation. The third equation in-
vestigated is the well-known rotated anisotropic diffusion equation

(47)
0%¢

0%¢ 5o
0xdy

0a?

0%¢
87y2 =1
n (0,1) x (0,1).

—(cos? 3 + esin? B) —2(e—1)cosBsin g ecos? 3 + sin” f)
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TABLE 5
Multigrid as solver: number of solution iterations (n) and elapsed time Teiqpseq in seconds for
the rotating convection-diffusion equation on several grid sizes.

Grid: 1292 2572 5132
Method: | Cycle:
A p=0.78 p=0.88 p=0.94
MG1 F (41) 14.2 || (58) 29.1 p=0.78
W (36) 33.8 || (43) 83.0 || (50) 204.8
v (29) 3.5 (54) 9.7 p =081
MG2 F (15) 5.1 (20) 10.1 (29) 24.8
W (13) 12.1 || (15) 28.9 (16) 65.4
\% p=0.90 DIV DIV
MG3 F (49) 20.6 || (58) 39.2 (64) 66.4
W (35) 36.3 || (42) 108.0 || (46) 202.9
TABLE 6

Multigrid as preconditioner for BiCGSTAB: number of solution iterations (n) and elapsed time
Telapsed in seconds for the rotating convection-diffusion equation on several grid sizes.

Grid: 1292 2572 5132
Method: | Cycle:
\Y% (14) 3.4 (22) 7.8 (36) 26.3
MG1 F (11) 7.3 (12) 12.1 (16) 27.2
W (10) 18.9 || (12) 46.5 || (13) 106.7
A% &)1 (12) 4.2 (19) 13.9
MG2 F (6) 3 (7) 7.0 (9) 15.3
W (5)9 (6) 23.2 (7) 57.4
\Y% (36) 13.3 || (54) 19.1 >70
MG3 F (15) 11.1 || (19) 18.3 (21) 43.1
W (12) 24.2 || (13) 66.9 (14) 97.2
TABLE 7

Multigrid as preconditioner for GMRES(20): number of solution iterations (n) and elapsed
time Teiapsed n seconds for the rotating convection-diffusion equation on several grid sizes.

Grid: 1292 2572 5132
Method: | Cycle:
\Y% (23) 3.0 (40) 7.9 p=0.80
MGl F (19) 6.5 (23) 12.1 (30) 27.0
W (18) 17.1 || (22) 43.3 || (25) 104.1
\Y% (14) 1.8 (20) 4.1 (40) 17.0
MG2 F (10) 3.5 (12) 6.1 (16) 14.3
W (10) 9.5 (11) 21.6 (12) 49.8
\Y p=0.7 DIV DIV
MG3 F (29) 13.7 || (34) 16.9 (39) 42.4
W (23) 24.1 || (24) 63.0 (27) 96.6

Boundary conditions used are as in Problem I (45).
varied. The mixed derivative is approximated with four grid points.

Parameters ¢ and ( are to be

A nine-point

stencil results from the discretization of all terms in (48). Multigrid convergence is

slow, for example, for parameters e = 10~° and 3 = 135°.
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F1G. 7. The eigenvalue spectra for the rotated anisotropic diffusion problem, e = 1072, 3 = 135°
on a 332 and a 652 grid, with MG2 F(0,2).

Spectrum analysis. For these parameters we also calculated the eigenvalue spec-
trum of the Richardson iteration matrix (5) for a 332 and a 652 problem. The spectra
presented in Figure 7 are obtained with MG2 and the F(0,2)-cycle. They are al-
most identical to the spectra obtained with MG1. With the two eigenvalue pictures
in Figure 7 it is possible to observe the mesh dependency of the multigrid conver-
gence. It can be seen, for example, that the spectral radius is increasing as the grid
gets finer. The spectral radius is, for these coarse grid problems, already larger than
0.6. Therefore, the multigrid convergence slows down more dramatically than the
convergence of the preconditioned Krylov methods. Many eigenvalues are clustered
around zero and only a limited number of eigenvalues are larger than 0.4 for both
grid sizes, so eigenvalues of the preconditioned matrix (AK 1) are clustered around
one, which is advantageous for the Krylov methods. The convergence of MG1, MG2,
and MG3 as solution methods (Figure 8(a)) and as preconditioners for GMRES(20)
(Figure 8(b)) is presented for the 332 grid. Also, for this problem, it is interesting to
examine the way GMRES minimizes the residual to find the solutions of the different
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e: MG1 solver, p = 0.66 o: MG1 prec., /)(13) =0.21
o: MG2 solver, p = 0.65 o: MG2 prec., p13) =0.21
*: MG3 solver, p =0.92 *: MG3 prec., pt10) = 0.59
0
-3
)
log(“ (0)“)
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F1a. 8. The convergence of the MG solvers (a), and GMRES(20) with MG preconditioners (b),
for the rotated anisotropic diffusion equation on a 332 grid.

TABLE 8
Number of BiCGSTAB and GMRES(20) iterations (n) and elapsed time Teigpseqa in seconds
for the rotated anisotropic diffusion equation (¢ = 1075, 8 = 135°).

Grid: 2572 5132 7692
Method:  Cycle: || BiCGSTAB | GMRES || BiCGSTAB | GMRES || BiCGSTAB | GMRES
MG2 F (17) 17.0 (31) 13.1 (21) 35.6 (43) 39.0 (25) 69.2 (48) 71.2
W (10) 38.9 (19) 37.2 (12) 98.4 (20) 83.3 (13) 196.4 | (22) 168.8

polynomials (16) of GMRES. It was found that, indeed, the first eigenvalues identified
corresponded to the eigenvalues with the largest distance from zero in Figure 7. Six
of these eigenvalues were solutions of the tenth polynomial for the 332 problem.

MG as solver and preconditioner. On finer grids the multigrid convergence rates
further increased towards one, while the convergence with the W-cycle preconditioners
of MG1 and MG2 was level independent.

Table 8 presents the convergence of BICGSTAB and GMRES(20) with MG2 F-
and W-cycles as preconditioners on three very fine grid sizes. Results with MG1 were
similar to those from Table 8; with MG3 convergence was more slow.

MILU preconditioner. Satisfactory convergence was not found with the MILU ()
preconditioners for this test problem on these grid sizes.

Problem IV: An interface problem. Next, an interface problem is considered. This
type of problem has been investigated with multigrid in [1], [3], [16], and [25]. The
problem to be solved is presented in [23] and appears as follows:

9,06 9, 0

4 _ _ _— =
(48) ox 18x+6‘y 25y

b onQ=(0,1) x (0,1).

Right-hand side b is chosen as follows: b($,%) = b(3,2) =b(3,2) = 10, elsewhere
b(x,y) = 0.
Dirichlet conditions are used:

1 1
(49) ¢=1on {x§2/\y0} and on {xO/\ygz}; elsewhere ¢ = 0.
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Fi1G. 9. The domain with the jumping diffusion coefficients.

The computational domain with the values of the jumping diffusion coefficients D,
and Ds is presented in Figure 9. The discretization is vertex centered and all diffu-
sion coefficients are assumed in the vertices. For the discretized diffusion coefficient
between two vertices the harmonic average of the neighboring coefficients is then
taken.

Clearly our multigrid methods can solve many interface problems, presented, for
example, in [3] or [25]. Here, we constructed a difficult problem, where the robust
components of MG1, MG2, and MG3 are not satisfactory. The Krylov acceleration is
really needed for convergence. AMG ([13]), however, solves this problem in approxi-
mately 15 iterations on different grid sizes.

Spectrum analysis. The eigenvalue spectrum obtained with MG?2 is presented in
Figure 10. Also, for this problem the performance of MG1 and MG2 was almost
identical. In Figure 10 we see two eigenvalues close to one, so multigrid convergence
is already very slow on this coarse grid. With two eigenvalues of the preconditioned
matrix close to zero, this is an example mentioned in Remark 2.1.1. The convergence
of GMRES(20) with MG1, MG2, and MG3 as preconditioners on the 332 grid and
of GMRES(30) on a 1292 grid is shown in Figure 11. On the finer grid the restart
parameter is raised so that the convergence for this example is not disturbed by
restarts. Multigrid as a preconditioner is converging well. In Figure 11(a) it can
be seen that for the problem on a 332 grid the first nine GMRES iterations are not
reducing the residual very much, but after iteration nine fast convergence is obtained.
This can also be observed after the calculation of the solutions 1 — A} related to
the GMRES minimal residual polynomial. These solutions of the eighth and ninth
polynomial are presented in Table 9. Here, it can be seen that the vector belonging
to a second eigenvalue of I — AK~! around one is obtained in the Krylov space in the
ninth iteration, and then GMRES starts converging very rapidly. In the polynomial
for the interface problem discretized on a 1292 grid, a second eigenvalue near one was
seen first as solution of polynomial 15, and it was developing even more towards one
in polynomial 16. In Figure 11(b) it can be seen that the GMRES convergence for
the 1292 problem starts after 15 iterations.

MG as solver and preconditioner. For this test problem the convergence of the
preconditioned Krylov methods with the M G2 preconditioner on three very fine grids
is presented. The number of BiICGSTAB and GMRES(20) iterations (n) and the
elapsed time T¢jqpseq are presented in Table 10. The GMRES convergence is influenced
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F1G. 11. The convergence of GMRES(20) with MG preconditioners (a), 332 grid, (b) 1292 grid.

by the fact that the restart parameter is 20; a larger parameter results in faster
convergence.

Again, the F-cycle is preferred for its robustness and efficiency. From Table 10 it
can be seen that with a cheap cycle, like the V-cycle, BICGSTAB is more favorable
than GMRES(20), due to the restarts. On finer grids the number of solution iterations
decreases, which is due to a better initial residual.

MILU preconditioner. For interface problem (48) MILU(«;) performed best with
a1 = 1. On fine grids the number of iterations found with BICGSTAB were as follows:
1292 grid, 89 iterations; 2572 grid, 124 iterations; 5132 grid, 210 iterations; 7692 grid,
295 iterations. The increase in the number of iterations on fine grids is large.

4. Conclusion. In the present work three multigrid methods have been evalu-
ated as solvers and as preconditioners for BICGSTAB and GMRES. The problems
investigated were singularly perturbed. The behavior of the multigrid methods was
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Solutions 1 — A} related to the eighth and ninth polynomial constructed in GMRES for the
interface problem, 332 grid.

k: 8 9

0.99 0.99

0.73 0.98

0.74 4+ 0.19¢ 0.63

0.74 — 0.19¢ 0.62

1-X; 0.29 0.33

8.3.10~2 0.15

3.8.10~2 0.11
5.5.104 7.9.1073
—3.9.10~4

TABLE 10

Number of BiCGSTAB and GMRES(20) iterations (n) and elapsed time Tejgpsed in seconds
for the interface problem.

Grid: 2572 5132 7692
Method:  Cycle: || BiCGSTAB | GMRES || BiCGSTAB GMRES BiCGSTAB GMRES
v (28) 9.8 (62) 12.1 (27) 19.8 (79 = 0.84 (24) 35.0 (70 = 0.83
MG2 F (23) 22.8 (40) 20.8 (19) 32.4 (38) 34.6 (18) 49.9 (35) 51.8
W (18) 70.0 (32) 62.7 (15) 122.9 (29) 120.8 (16) 241.1 (22) 168.7

much more robust when they were used as preconditioners, since then the convergence
was not sensitive to parameter changes. Problems that could not be solved with the
multigrid methods as solvers could be solved with the preconditioned Krylov meth-
ods. The most efficient results were also obtained when the methods were used as
preconditioners. For several problems level-independent convergence rates were found
with the W-cycle and best elapsed times were found with the V-cycle. The F-cycle
is preferred, however, since it is robust and efficient. For good efficiency with the
W-cycle on an MIMD machine, an agglomeration strategy is a necessary requirement.

The convergence behavior can be well understood by investigating the eigenvalue
spectrum of the iteration matrix and the solutions of the GMRES minimal residual
polynomials. From these investigations and the convergence behavior on fine grids, it
was found that methods based on standard multigrid, MG1 and M G2, are more robust
for the problems investigated than MG3 based on an approximate Schur complement.
In particular, MG2 performed very satisfactorily with transfer operators based on the
splitting of a matrix into symmetric and antisymmetric parts.
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