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Abstract. This paper deals with convergence estimates of GMRES(m) [Saad and Schultz,
SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869] preconditioned by multigrid [Brandt,
Math. Comp., 31 (1977), pp. 333–390], [Hackbusch, Multi-Grid Methods and Applications, Springer,
Berlin, 1985]. Fourier analysis is a well-known and useful tool in the multigrid community for the
prediction of two-grid convergence rates [Brandt, Math. Comp., 31 (1977), pp. 333–390], [Stüben and
Trottenberg, in Multigrid Methods, Lecture Notes in Math. 960, K. Stüben and U. Trottenberg, eds.,
Springer, Berlin, pp. 1–176]. This analysis is generalized here to the situation in which multigrid is a
preconditioner, since it is possible to obtain the whole spectrum of the two-grid iteration matrix. A
preconditioned Krylov subspace acceleration method like GMRES(m) implicitly builds up a minimal
residual polynomial. The determination of the polynomial coefficients is easily possible and can be
done explicitly since, from Fourier analysis, a simple block-diagonal two-grid iteration matrix results.
Based on the GMRES(m) polynomial, sharp theoretical convergence estimates can be obtained which
are compared with estimates based on the spectrum of the iteration matrix. Several numerical scalar
test problems are computed in order to validate the theoretical predictions.
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1. Introduction. Nowadays, it has become popular to study the convergence of
multilevel methods and to use them in combination with a Krylov subspace accelera-
tion method, in other words, to use multilevel methods as a preconditioner. Often the
cycling in a hierarchy of grids is simplified compared to standard multigrid cycling;
i.e., the multiplicative cycling between the fine and coarse grids is replaced by an
additive (simultaneous) cycling. It is then necessary to use this additive method as
a preconditioner to obtain a converging method even for simple problems. Recently,
standard (multiplicative) multigrid solvers [1], [8] have been used as precondition-
ers as well. This application of standard multigrid is beneficial in situations where
standard multigrid alone does not converge fully satisfactorily, because certain error
frequencies are not reduced well enough. This occurs mainly when complicated PDEs
are solved. In general, it is difficult to construct robust multigrid solvers for large
classes of problems. From this point of view, it makes sense to increase the class of
problems for which proven efficient multigrid solvers exist by accelerating (standard)
multigrid by a Krylov subspace method. Among many other papers, this approach
has been presented in [11], where a symmetric multigrid method was accelerated by
CG, in [3] for problems with fine level structures, in [13] for linear singularly perturbed
problems, and in [14] for nonlinear problems.

Here, we theoretically analyze one combined solution method, restarted GMRES,
GMRES(m), preconditioned by multigrid. We derive quantitative convergence re-
sults. The basis for the theoretical convergence estimates is Fourier analysis, which
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is a well-known tool for obtaining two-grid convergence factors (see [1], [19]). The
typical use of the two-grid Fourier analysis in a multigrid context is that the spectral
radius is obtained theoretically. It is the basis for asymptotic multigrid convergence
estimates [19]. Two-grid Fourier analysis transforms a two-grid iteration matrix into
a block-diagonal matrix from which more information about the spectrum is easily
obtained. Fourier analysis uses unitary basis transformations to simplify the repre-
sentation of the two-grid iteration matrix. It is therefore suitable for the estimate of
the multigrid preconditioned GMRES(m) convergence since unitary transformations
do not affect the convergence behavior of GMRES [15]. A preconditioned Krylov
subspace acceleration method like GMRES(m) implicitly builds up a minimal resid-
ual polynomial. The determination of the polynomial coefficients is easily possible
and can be done explicitly, since a block-diagonal matrix results with the help of the
Fourier analysis.

In this paper, we restrict ourselves to standard problems coming from linear
scalar PDEs discretized with finite differences on uniform Cartesian grids and we keep
the multigrid method simple. For example, we restrict ourselves to point smoothers
combined with standard grid coarsening and analyze the effect of Krylov subspace
acceleration for anisotropic diffusion problems and for problems with mixed deriva-
tives, although it is known that other (more expensive) smoothers or other coarsening
strategies are appropriate remedies for the poor convergence of such equations. In this
way we gain insight in the behavior of the combination of multigrid and GMRES(m).

In section 2 a multigrid preconditioner is presented and the rigorous two-grid
Fourier analysis (see [19], [20]) is repeated briefly for 3D problems. The information
on the multigrid preconditioner obtained is used in section 3, where different ways to
analyze GMRES(m) preconditioned by multigrid are discussed.

There are actually two types of Fourier analysis available in the multigrid com-
munity. The first one is the analysis called “rigorous analysis” here, since it explicitly
takes boundary conditions into account and discrete eigenfunctions are related to the
discrete mesh size. Discrete sine functions are the basis in case Dirichlet boundary
conditions are considered [19]. This analysis is, however, restricted to model situa-
tions, i.e., to symmetric problems and standard multigrid components. The second
possibility is known as local mode analysis [1]. Exponential functions are the basis
for the analysis. A discretization at domain boundaries cannot be taken into account.
This analysis can be used for a wider range of PDEs and multigrid components. Local
mode two-grid analysis and its generalization to multigrid preconditioned GMRES(m)
is explained in section 4. Several numerical tests compare the theoretical convergence
estimates with the actual numerical convergence.

For symmetric equations it is possible to construct a symmetric multigrid cycle
and to apply CG as Krylov subspace acceleration method. We will not do this in
section 3 because CG cannot be applied to the unsymmetric multigrid solvers MG-
RB (multigrid solver based on pre- and post-smoothing by red-black Gauss–Seidel
relaxation) from section 2 and MG-FF (multigrid solver based on pre- and post-
smoothing by lexicographical Gauss–Seidel relaxation) from section 4. Furthermore,
we are dealing with unsymmetric equations in sections 4.2 and 4.3. However, the anal-
ysis as described in section 3 carries over to an acceleration by CG in a straightforward
manner. (See also the first remark in section 4.1.)

Furthermore, a relation to other techniques in which (multistage) parameters for
smoothing methods, or acceleration parameters for coarse grid corrections [4], are
optimized is presented in section 4.3. Such approaches can easily be viewed in the
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framework of Krylov subspace acceleration.
The multigrid purist may not like the approach presented here with multigrid

viewed as a preconditioner. It is, of course, also possible to try to construct an optimal
multigrid method for each separate problem. For the purist, the analysis might give
an indication as to how far his present method is from an optimal multigrid solution
method. In other words, if an additional acceleration of the convergence is found by
the Fourier analysis of multigrid preconditioned GMRES(m), it must also be possible
to tune one of the multigrid components, so that multigrid as a stand alone solver is
improved.

2. Rigorous Fourier analysis of multigrid. The Poisson equation, a simple
test problem, is chosen to explain the possibilities of convergence estimates by Fourier
analysis for multigrid. We apply the standard 5-point discretization on a square
(d = 2) and the 7-point discretization on a cube (d = 3) with Dirichlet boundary
conditions using a uniform mesh with meshsize h = 1/n:

Ahuh(x) = −∆huh(x) = bh(x) on Ωh = (0, 1)d ∩Gh,
(1)

uh(x) = 0 on Γh = ([0, 1]d \ Ωh) ∩Gh,

with Gh := {x = hj, j ∈ Z
d}. Equation (1), in stencil notation, looks like

Ahuh(x) =
∑

κ∈J

aκuh(x + κh) = bh(x) on Ωh,(2)

with J = {(−1, 0, 0), (1, 0, 0), (0,−1, 0), (0, 1, 0), (0, 0,−1), (0, 0, 1), (0, 0, 0)} (d = 3).
We combine stencil, operator, and matrix notation. Multigrid is commonly explained
with operators (see, for example, [19], [1]), whereas Krylov subspace methods are
often described with matrices. An operator is denoted by a subscript “h” (Kh, ∆h,
M2h

h , etc.) and the corresponding Fourier matrix representation is denoted by a tilde

(K̃, M̃ etc.).
A well-known efficient multigrid method (see [19], [20]) for problem (1) consists

of a red-black Gauss–Seidel smoothing method (GS-RB), full weighting of residuals
to obtain the right-hand side on the coarse grids, bi- or tri-linear interpolation (in
2D and 3D, respectively) of corrections from coarse to fine grids, and the coarse grid
discretization of the PDE on a grid with meshsize 2h in each direction. We call this
method the red-black multigrid solver or MG-RB.

For the d-dimensional problem (1) and MG-RB, it is possible to apply rigorous
two-grid Fourier analysis, as it was presented for 2D problems in [19] and used for 3D
(Poisson-type) problems in [20]. We repeat the 3D analysis in some detail here.

The existence of the basis of discrete eigenfunctions

ϕk,`,m
h (x, y, z) = sin kπx sin `πy sinmπz,

(3)
with k, `,m = 1, . . . ,n− 1 ((x, y, z) = x ∈ Ωh)

for the operator (1) is crucial for the 3D discrete Fourier analysis. The scaled basis

functions ϕk,`,m
h (x) generate the space of all grid functions, F (Ωh), and are orthogonal

with respect to the discrete inner product on Ωh:

(vh, wh) := h3
∑

x∈Ωh

vh(x) wh(x) with vh, wh ∈ F (Ωh).
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The discrete solution uh and the current approximation uj can be represented by

linear combinations of the basis functions ϕk,`,m
h (x). The same holds for the error

vj−1 = uj−1−uh before and vj = uj −uh after the jth two-grid cycle. The error vj−1

is transformed by a two-grid cycle as follows:

vj = M2h
h vj−1 with M2h

h = Sν2

h K2h
h Sν1

h = Sν2

h (Ih − Ih2h(∆2h)−1I2h
h ∆h)Sν1

h ,(4)

where Sh is the smoothing operator, ν1 and ν2 indicate the number of pre- and post-
smoothing iterations, K2h

h is the coarse grid correction operator, ∆2h the discretization
of the operator on a 2h coarse grid, Ih2h and I2h

h are transfer operators from coarse to
fine grids, and vice versa.

In case of standard multigrid coarsening (H = 2h) in 3D, it is convenient to divide
F (Ωh) into a direct sum of (at most) eight-dimensional subspaces, the 2h-harmonics

[20]:

Ek,`,m
h = span

[
ϕk,`,m
h , ϕn−k,n−`,n−m

h , ϕn−k,`,m
h , ϕk,n−`,n−m

h , ϕk,n−`,m
h ,

(5)

ϕn−k,`,n−m
h , ϕk,`,n−m

h , ϕn−k,n−`,m
h

]
for k, `,m = 1, . . . ,

n

2
.

This distinction is motivated by the observation that the low-frequency harmonic
ϕk,`,m
h (1 ≤ k, `,m ≤ n

2 ) is also visible on the coarse grid Ω2h, whereas the (at most)

seven corresponding high-frequency harmonics coincide (up to their sign) with ϕk,`,m
h .

If one, two, or three of the indices equal n/2, the dimension of Ek,l,m
h is four, two,

or one, respectively. The coarse grid correction operator K2h
h leaves the (at most)

eight-dimensional spaces of 2h-harmonics Ek,`,m
h with an arbitrary k, `,m = 1, . . . , n

2
invariant; see [20]:

K2h
h : Ek,`,m

h → Ek,`,m
h k, `,m = 1, . . . ,

n

2
.

This is a consequence of the following relations of the transfer and discretization
operators:

∆h : span [ϕk,`,m
h ] → span [ϕk,`,m

h ],

I2h
h : Ek,`,m

h → span [ϕk,`,m
2h ],

∆−1
2h : span [ϕk,`,m

2h ] → span [ϕk,`,m
2h ],

Ih2h : span [ϕk,`,m
2h ] → Ek,`,m

h .

Because of this invariance property, the corresponding matrix representation of K2h
h

with respect to the spaces Ek,`,m
h leads to a block-diagonal matrix K̃:

K̃ :=
[
K̂(k, `,m)

]
k,`,m=1,...,n

2

∧
= K2h

h with K̂(k, `,m)
∧
= K2h

h |Ek,`,m

h

.

The same invariance property is true for the GS-RB relaxation, Sh = SBLACK
h ·

SRED
h [20], where SRED

h and SBLACK
h are the partial step operators, leading to a

matrix S̃:

S̃ :=
[
Ŝ(k, `,m)

]
k,`,m=1,...,n

2

∧
= Sh with Ŝ(k, `,m)

∧
= Sh|Ek,`,m

h

.
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Hence, M2h
h is orthogonally equivalent to a block matrix M̃ consisting of (at most)

8 × 8 blocks (see [19], [20]):

M̃ :=
[
M̂(k, `,m)

]
k,`,m=1,...,n

2

∧
= M2h

h with M̂(k, `,m)
∧
= M2h

h |Ek,`,m

h

.

The tilde ˜ indicates the Fourier matrix representation of the related operator. By
M we denote the matrix representation of the multigrid operator M2h

h , and by A we
denote the matrix representation of ∆h with respect to the Euclidean basis. We have

M̃ = UMU−1(6)

with a unitary matrix U . Eight consecutive rows of U are given by the (n − 1)3-
dimensional orthogonal eigenvectors of A related to the eigenfunctions from (5):

ϕk,`,m, ϕn−k,n−`,n−m, ϕn−k,`,m, ϕk,n−`,n−m, ϕk,n−`,m, ϕn−k,`,n−m,
(7)

ϕk,`,n−m, ϕn−k,n−`,m for k, `,m = 1, . . . ,
n

2
, with, for example,

ϕk,`,m = ( sin kπh sin `πh sinmπh, . . . , sin kπ(1 − h) sin `π(1 − h) sinmπ(1 − h) )T .

Using discrete Fourier frequencies θ = πh(k, `,m) (k, `,m = 1, . . . , n− 1), this gives

Aϕk,`,m = λ(θ, h)ϕk,`,m with λ(θ, h) =
∑

κ∈J

aκ cos(θκ).(8)

The dimension of M̃ is given by (n/2−1)3·8+3(n/2−1)2·4+3(n/2−1)·2+1·1 = (n−1)3

due to the dimensions of the 2h-harmonics (5). The representation of M̂(k, `,m) =

Ŝν2(k, `,m)·K̂(k, `,m)·Ŝν1(k, `,m) (k, `,m = 1, . . . , n
2 ) is obtained by straightforward

generalization of the 2D case in [19]. From the block matrices M̂(k, `,m), we obtain
the two-grid convergence factor by

ρF := ρ(M̃) = max
1≤k,`,m≤n

2

ρ(M̂(k, `,m)).(9)

It is the asymptotic two-grid convergence which is a theoretical estimate of the multi-
grid convergence. Furthermore, it is possible to determine the whole spec-
trum and thus the eigenvalue distribution of M̃ by calculating all eigenvalues of
M̂(k, `,m) for k, `,m = 1, . . . , n

2 . We use this distribution in section 3 for the analysis
of the convergence of the multigrid preconditioned GMRES(m) method.

The smoothing factor µF is based on the ideal coarse grid correction operator
Q2h

h from [19] which annihilates the low-frequency error components and leaves the
high-frequency components unchanged. Q2h

h is a projection operator onto the space of

high frequencies represented by a block-diagonal matrix Q̃ consisting of (at most) 8×8

diagonal blocks: Q̂ = diag(0, 1, 1, 1, 1, 1, 1, 1). This leads to the following definition of
the smoothing factor [19]:

µF := ρ(S̃ν2Q̃S̃ν1) = ρ(Q̃S̃ν1+ν2) = max
1≤k,`,m≤n

2

ρ(Q̂Ŝ(k, `,m)ν1+ν2).(10)

The smoothing factor indicates the smoothing effect of the relaxation method under
consideration. µF is a realistic estimate of the two-grid convergence factor ρF as long
as the ideal coarse grid correction operator is a good approximation of K2h

h .
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2.1. Fourier results for multigrid. In [23] it was shown that an overrelaxation
parameter (ω > 1) improves the smoothing properties of GS-RB (leading to ω-GS-
RB) and therefore improves the convergence of MG-RB for d-dimensional Poisson-
type equations. The extra computational work for performing the overrelaxation in
the smoother is worthwhile if d = 3. With the 3D Fourier two-grid and smoothing
analysis explained above, we are able to estimate this convergence improvement for
(1) very accurately; see Table 1. The average numerical convergence rate ρmg

h from
MG-RB (after 100 multigrid iterations) is compared to ρF in Table 1. The number of
multigrid levels used is 5, 6, and 6, respectively, for the 323, 643, and 963 problems.

Table 1

W(1,1)-cycle multigrid convergence ρmg
h , predicted convergence ρF , and smoothing factor µF

for the 3D Poisson equation.

ω = 1 ω = 1.1 ω = 1.15 [23]
Grid ρmg

h ρF µF ρmg
h ρF µF ρmg

h ρF µF

323 0.192 0.194 0.194 0.089 0.091 0.090 0.070 0.072 0.088
643 0.196 0.197 0.197 0.091 0.092 0.092 0.074 0.074 0.088
963 0.196 0.198 0.197 0.091 0.093 0.093 0.074 0.075 0.088

In [23] it was shown furthermore that ω-GS-RB also improves the convergence
factor of the 2D anisotropic diffusion equation,

Ahuh(x) =
1

h2




−1
−ε 2ε + 2 −ε

−1


uh(x) = bh(x) on Ωh,

(11)
uh(x) = 0 on Γh.

For moderate values of ε, like 100 ≥ ε ≥ 0.01, the extra computational work pays off.
Anisotropic problems can be solved with line smoothers in the multigrid process [19],
by which much better convergence rates are obtained. However, line smoothers cannot
be applied to unstructured grids in a straightforward way and their parallelization can
be expensive. Here, we investigate the possibility to improve a multigrid method with
a point smoother for moderate anisotropies with GMRES(m) acceleration. (Results
are presented in the next sections.)

The rigorous Fourier analysis also applies for (11). In 2D we have to deal with

(at most) four-dimensional 2h-harmonics (see (5)) and therefore M̃ consists of (at
most) 4 × 4 blocks [19]. We perform numerical tests with ε = 0.1 and ε = 0.01. In
both cases a large overrelaxation parameter (ωopt=1.41, 1.76) has to be selected (for
these values, see [23]) to obtain an impressive multigrid convergence improvement.
The numerical multigrid convergence rates ρmg

h and the Fourier values µF and ρF
are shown in Table 2. The W-cycle with ν1 = ν2 = 1 (W(1,1)) is chosen with seven
multigrid levels for problem (11) discretized on a 128 × 128 grid.

Table 2

W(1,1)-cycle multigrid convergence ρmg
h , predicted convergence ρF , and smoothing factor µF

for the 2D anisotropic diffusion equation, h = 1/128.

ω = 1.0 ω = ωopt

ε ρmg
h ρF µF ρmg

h ρF µF

ε = 0.1 0.679 0.682 0.682 0.193 0.210 0.219
ε = 0.01 0.957 0.960 0.960 0.566 0.583 0.590
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In Figure 1, we show the effect of an overrelaxation parameter ω = 1.76 on the
eigenvalue distribution of the two-grid iteration matrix for the anisotropic (ε = 0.01)
diffusion problem. In contrast to the almost real-valued spectrum for ω = 1.0, which is
uniformly distributed on the interval [0.0, 0.960], we find complex eigenvalues clustered
around the origin and uniformly distributed on a circle by the overrelaxation.
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Fig. 1. Eigenvalue spectra of the red-black two-grid 2D anisotropic diffusion solver from rig-
orous Fourier analysis; ν1 = ν2 = 1, ε = 0.01, h = 1/128. (Note the different scaling of the axes in
Figure 1 (a).)

From the comparison of the predicted convergence rates ρF and the numerically
obtained ρmg

h , it is clear that the two-grid Fourier analysis provides excellent quan-
titative estimates for the actual multigrid convergence of MG-RB for Poisson-type
equations. These results encourage the following considerations concerning Fourier
analysis of the multigrid preconditioned GMRES(m).

3. Fourier analysis of GMRES(m) preconditioned by multigrid. In this
section we discuss two approaches for the analysis of GMRES(m) preconditioned by
multigrid. For both approaches it is crucial that the discrete Fourier analysis uses
unitary basis transformations (6) which simplify the representation of the multigrid
iteration matrix.

We consider the linear system related to (2),

Au = b.(12)

A two-grid (or more generally, a multigrid) cycle for solving (12) is described by the
following matrix splitting:

Cuj + (A− C)uj−1 = b,(13)

where uj represents a new and uj−1 a previous approximation. This formulation is
equivalent to

uj = uj−1 + C−1(b−Auj−1), rj = (I −AC−1)rj−1,(14)
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with rj , rj−1 the residual vectors and I − AC−1 represents the two-grid (multi-grid)
iteration matrix.

The multigrid method (13) considered was described in the previous section. It
is used as a right preconditioner for GMRES(m). The parameter m represents the
number of search vectors stored after which the GMRES(m) algorithm will restart.
GMRES(m) searches for a solution uj in the following subspace:

C(uj − uj−m) ∈ span[rj−m, (AC−1)rj−m, . . . , (AC−1)m−1rj−m]
(15)

=: Km(AC−1, rj−m),

where Km(AC−1, rj−m) is the Krylov subspace. It selects a new approximation uj

by minimizing the corresponding residual rj in the L2-norm

min
C(uj−uj−m)∈Km(AC−1,rj−m)

||b−Auj ||2.(16)

Any element w in the affine subspace uj−m + C−1Km(AC−1, rj−m) (see (14), (15))
can be represented by

w = uj−m + C−1(α1rj−m + α2AC−1rj−m + · · · + αm(AC−1)m−1rj−m).(17)

By substituting (17) into the residual equation, we obtain

rw = b−Aw

= rj−m − α1AC−1rj−m − α2(AC−1)2rj−m − · · · − αm(AC−1)mrj−m

= Pm(AC−1)rj−m,(18)

where Pm is an mth order polynomial defined by Pm(λ) = 1−
∑m

k=1 αkλ
k. Comparing

(16) and (18), we see that the L2-norm of rj satisfies the following minimization
property:

||rj ||2 = min{||Pm(AC−1)rj−m||2 | Pm ∈ Pm},(19)

where Pm denotes the set of all polynomials of degree at most m with Pm(0) = 1.

Since we are interested in the convergence of multigrid preconditioned GMRES
with a restart after m iterations, we consider the residuals rm, r2m, . . . , ri·m. This
leads to the following definition of the reduction factors ρi for a complete ith iteration,
consisting of m multigrid preconditioned GMRES(m) steps:

ρi :=

[( ||ri·m||2
||r0||2

)1/m
]1/i

.

In subsection 3.1, we review estimates for ρi which are based on an analysis of the
spectrum σ of AC−1 (see [5], [6], [15], [16], [17]). In general, these estimates exhibit a
qualitative character, and concrete values are rarely found in the literature because the
spectrum is usually not available. However, with the Fourier analysis these estimates
can be calculated explicitly since the spectrum is easily obtained if multigrid is used
as a preconditioner. In subsection 3.2 we introduce a sharper estimate, which is based
on an analysis of the GMRES(m) polynomial.
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3.1. Analysis with the spectrum of the iteration matrix. The usual way
to analyze the convergence of GMRES is to exploit information about the spectrum
of the iteration matrix AC−1. If we compare the error transformation (4) and the

residual transformation (14) by a two-grid cycle, the Fourier matrix M̃ (6) is related
to the two-grid iteration matrix I −AC−1 via the identity

M̃ = UA−1(I −AC−1)AU−1 ⇐⇒ M̃ = I − UC−1AU−1,(20)

with the unitary matrix U from (6). With (20) we have

UAC−1U−1 = I − UAU−1M̃(UAU−1)−1 = I − ÃM̃Ã−1.(21)

Ã and Ã−1 are diagonal matrices since the rows of U are eigenvectors of A (see (7) and
section 2). This means that UAC−1U−1 is a block-diagonal matrix which consists of
(at most) 8 × 8 blocks in the 3D case and of (at most) 4 × 4 blocks in the 2D case.
The eigenvalues of these block matrices are easily calculated.

We are dealing with positive real iteration matrices AC−1 (due to the multigrid
preconditioner), so the symmetric part of AC−1 is positive definite. It is shown in
[6], [5] that GMRES(m) always converges for this type of matrices. More generally,
it is sufficient that the field of values of the iteration matrix {x̄TAC−1x/x̄Tx : x ∈
C

(n−1)d} lies in an open half-plane {z : Re(e−iθz) > 0}. This is called the half-plane

condition [12]. In particular the following error bound can be established for any
restart parameter m and iteration index i [6]:

||ri·m||2 ≤ (1 − α/β)m/2||r(i−1)m||2,(22)

with α = (λmin( 1
2 (AC−1+(AC−1)T )) )2 and β = λmax( (AC−1)TAC−1 ). Using (22),

we obtain

||ri·m||2 ≤ (1 − α/β)i·m/2||r0||2 =⇒ ρi ≤ (1 − α/β)1/2 =: ρhpc < 1.(23)

In general, the m- and i-independent value ρhpc is not a realistic quantitative estimate
of ρi, but the residual bound from (23) is an important qualitative result because it
ensures the convergence of GMRES(m) for all m.

Next, we discuss considerations on the convergence of GMRES(m) from [15], [16],
[17], which are also based on the spectrum of the iteration matrix. From (19) it follows
that

||ri·m||2 ≤ ||Pm(AC−1)||2 ||r(i−1)m||2 for all Pm ∈ Pm.(24)

Suppose that all eigenvalues of AC−1 are located in an ellipse E(c, d, a) which excludes
the origin. c denotes the center, d the focal distance, and a the major semi-axis. Then
it is known [17] that the absolute value of the polynomial

tm(z) := Tm

(
c

d
− 1

d
z

)
/Tm

( c
d

)
= Tm(ẑ)/Tm

( c
d

)
with z, ẑ :=

(
c

d
− 1

d
z

)
∈ C

is small on the spectrum of AC−1. Here, Tm represents the Chebychev polynomial of
degree m of the first kind which is given by the three-term recurrence relation

T0(ẑ) = I , T1(ẑ) = ẑ , Tm+1(ẑ) = 2Tm(ẑ) − Tm−1(ẑ) for m ≥ 1.
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If AC−1 is diagonalizable, AC−1 = XDX−1; then (24) yields

||ri·m||2 ≤ ||tm(AC−1)||2 ||r(i−1)m||2 ≤
[
||tm(AC−1)||2

]i
||r0||2(25)

≤
[
||X||2 ||X−1||2 max

λj∈σ
|tm(λj)|

]i
||r0||2(26)

≤
[
κ2(X)Tm

(a
d

)
/Tm

( c
d

)]i
||r0||2,(27)

where κ2(X) denotes the spectral condition number of the transformation matrix
X (see [16], [17]). Inequality (27) uses the fact that the maximum modulus of a
complex analytical function is attained on the boundary of the domain, which is due
to Liouville’s theorem [16]. Heuristically, we expect this inequality to be sharp if the
interior of the ellipse E(c, d, a) is well covered by the spectrum σ. Using (25) and
(27), we obtain the following well-known estimates [16], [17] for ρi:

ρi ≤ NE
m ≤ (κ2(X))1/m TE

m ,(28)

with NE
m := (||tm(AC−1)||2)1/m and TE

m :=
(
Tm

(a
d

)
/Tm

( c
d

))1/m

.(29)

TE
m can be further approximated by

TE
m =

((
a
d +

√
(ad )2 − 1

)m
+
(
a
d +

√
(ad )2 − 1

)−m

(
c
d +

√
( c
d )2 − 1

)m
+
(
c
d +

√
( c
d )2 − 1

)−m

)1/m

≈ a +
√
a2 − d2

c +
√
c2 − d2

.(30)

Approximation (30) is sharp if a � d and c � d or m � 1 holds. The first inequality
is fulfilled if the ellipse E(c, d, a) tends to a circle which means that the focal distance
d becomes very small compared to a (in our tests it is usually sufficient if approxi-
mately a ≥ 2d). In all cases considered, the multigrid preconditioner ensures that the
spectrum σ is clustered around 1, which means that the second inequality is satisfied.
If (30) is sharp due to a circular shape of σ or due to a large m, TE

m is independent of
the restart parameter m. In this case, it is difficult to further accelerate the multigrid
method. A large Krylov subspace (15) does not lead to additional acceleration.

The main drawback of the estimates (28) for the reduction factors ρi is their
i-independence. The relative amount of residual decrease from early GMRES cycles
compared to later ones depends on both the matrix and the initial residual. The re-
duction by early cycles may be very different from the reduction by later ones. More
precisely, the estimates from (28) are based on the worst previous residual that is possi-

ble due to the definition of the matrix norm ||A||2 := sup{||Ar||2/||r||2 : r ∈ C
(n−1)d}.

Thus, in general they cannot be expected to be sharp approximations for large i be-
cause r(i−1)m can be completely different from the worst residual since many iterations
have already been performed and the worst search directions have already been re-
moved from the current approximation u(i−1)m by GMRES(m). Furthermore, κ2(X)
can be very large if the iteration matrix AC−1 is far from normal. But it is found
in [12] that the condition number κ2(X) is not always relevant for the convergence
of GMRES. In [17] it is stated that (28) is an asymptotic result and that the actual
residual norm should behave like TE

m without κ2(X). Therefore, the explicit values
for TE

m are also given in subsection 3.3 and compared with the asymptotic numerical
convergence results. However, TE

m is a heuristic estimate for ρi�1 and not an upper
bound like NE

m.
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3.2. Analysis with the GMRES-polynomial. To obtain a quantitative re-
sult for the convergence of GMRES(m), we present a second approach to estimate ρi,
which explicitly depends on the iteration index i. In this way, it is possible to take the
benefits of the previous iterations into account, in contrast to the above estimates. An
initial residual r0 is prescribed, and the GMRES(m)-polynomials P i

m are explicitly
determined for every i. The choice of r0 does not influence the average reduction
factor for i � 1 in which we are interested.

For any unitary matrix U , and in particular for U from (6), we have ||ri·m||2 =
||Uri·m||2. In order to find the coefficients αi

k (k = 1, . . . ,m) of the GMRES(m)-
polynomials P i

m, the following function f is minimized:

f(αi
1, . . . , α

i
m) :=

(
UP i

m(AC−1)r(i−1)m, UP i
m(AC−1)r(i−1)m

)

=
(
P i
m(UAC−1U−1)Ur(i−1)m, P i

m(UAC−1U−1)Ur(i−1)m

)

=

m∑

l,k=1

αi
lα

i
k

(
(UAC−1U−1)lUr(i−1)m, (UAC−1U−1)kUr(i−1)m

)

+ 2

m∑

l=1

αi
l

(
(UAC−1U−1)lUr(i−1)m, Ur(i−1)m

)
.

The αi
k are obtained by solving the following linear system of equations:

∂f

∂αi
l

=2

m∑

k=1

αi
k

(
(UAC−1U−1)lUr(i−1)m, (UAC−1U−1)kUr(i−1)m

)

(31)

+ 2
(
(UAC−1U−1)lUr(i−1)m, Ur(i−1)m

)
= 0 for l = 1, . . . ,m.

In (21) it is seen that the argument UAC−1U−1 = I − ÃM̃Ã−1 of the GMRES(m)-
polynomials P i

m has a simple block structure. Therefore, due to the sparse structure
of (UAC−1U−1)l (l = 1, . . . ,m), the solution of the linear system (31) is easily com-
puted for every complete iteration i, as soon as the previous transformed residual
Ur(i−1)m is given. We prescribe right-hand side b = 0 and a randomly chosen ini-

tial approximation Uu0, which yield a transformed initial residual Ur0 = −ÃUu0.
More precisely, we select an initial solution u0 =

∑n−1
k,`,m=1 β(k, `,m)ϕk,`,m, where the

amplitudes β(k, `,m) of the eigenvectors are randomly chosen. Hence, we get

Uu0 =
(
β(1, 1, 1), β(n− 1, n− 1, n− 1), . . . , β

(n
2
,
n

2
,
n

2

))T
;

see (7). From Ur0 it is possible to evaluate the α1
k by solving (31) for i = 1. This

gives

Urm = P 1
m(UAC−1U−1)Ur0.

It follows that Uri·m is easily calculated for every i. This leads to the definition of an
average reduction factor ρUi obtained by the Fourier analysis:

ρUi :=

[( ||Uri·m||2
||Ur0||2

)1/m
]1/i

.(32)
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A straightforward way to compute ρUi is to run GMRES(m) directly for the prescribed
residual r0 and the transformed matrix UACU−1. However, it turns out (see sub-
section 4.3) that an explicit calculation of the coefficients αi

k (k = 1, . . . ,m) of the
GMRES(m)-polynomials gives an interesting insight into the behavior of GMRES(m).

In most of the tests, presented in the next subsection, ρUi becomes constant for
i ≥ 20. Thus, ρU20 is expected to match numerical reference values very well and, in
particular, to be sharper than the estimates from subsection 3.1.

3.3. Fourier results of multigrid preconditioned GMRES(m). Here, we
investigate the quality of the theoretical considerations by comparing them to the
numerical convergence of the multigrid preconditioned GMRES(m) method for the
test problems from subsection 2.1. We compare the average accelerated multigrid
convergence rate, ρacch , from numerical experiments with the theoretical prediction
ρUi=20, the heuristic estimate TE

m , and the upper bound NE
m. Insight into the behavior

of the acceleration method is gained by considering different combinations of the
relaxation parameter ω and the GMRES(m) restart parameter m.

In order to make sure that the asymptotic convergence behavior is observed, we
present ρacch after 40 or after 100 multigrid preconditioned GMRES(m) iterations.
These numbers of iterations match ρUi=20 for m = 2 and for m = 5, respectively.
However, the numerical convergence stabilizes much earlier and often the asymptotic
values are obtained after only a few complete iterations.

The results for the 3D Poisson equation with right-hand side bh(x) = 0 and
initial guess u0 = (1, . . . , 1)T are presented in Table 3. We observe that ρUi=20 and TE

m

provide accurate predictions of ρacch for different overrelaxation parameters ω. The
upper bound NE

m becomes sharper with increasing m as TE
m and NE

m coincide for large
m, because the condition number κ2(X) cancels out (see (28)). Comparing Tables 1
and 3, we observe a satisfactory convergence improvement for ω = 1. If overrelaxation
is selected, the benefits of the GMRES(m) acceleration are small and the convergence
cannot be improved significantly by using a larger Krylov space (15). This behavior is
expected from the spectral picture in Figure 2. The ellipses become more orbital (note
the different scaling of the axes) with the overrelaxation so that approximation (30)
gets sharper.

Table 3

W(1,1)-cycle multigrid preconditioned GMRES(m) convergence ρacch and convergence estimates

ρUi=20, T
E
m , NE

m for the 3D Poisson equation, h = 1/32.

Relaxation Acc. MG-RB, m = 2 Acc. MG-RB, m = 5
parameter ρacch ρUi=20 TE

m NE
m ρacch ρUi=20 TE

m NE
m

ω = 1.0 0.085 0.090 0.091 0.186 0.070 0.072 0.074 0.115
ω = 1.1 0.045 0.054 0.055 0.133 0.042 0.045 0.047 0.082

ω = 1.15 [23] 0.050 0.054 0.056 0.129 0.045 0.049 0.055 0.077

Similar statements hold for the 2D anisotropic diffusion equation, where right-
hand side bh(x) = 0 and initial guess u0 = (1, . . . , 1)T are chosen, as in the 3D
case. Theoretical predictions ρUi=20 match very well with ρacch , as can be seen from
Table 4. In most cases the same observation can be made for the values TE

m and
ρacch . NE

m is not a good approximation for ρacch but it improves with increasing m.
If we choose an optimal overrelaxation parameter for ε = 0.1 and ε = 0.01, it is not
really possible to further accelerate the ω-MG-RB method due to the circular shape
of the corresponding spectrum σ shown in Figure 3. For the same reason further
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Fig. 2. Eigenvalue spectra of the red-black two-grid 3D Poisson solver from Fourier analysis;
ν1 = ν2 = 1, h = 1/32. (Note the different scaling of the axes.)

Table 4

W(1,1)-cycle multigrid preconditioned GMRES(m) convergence ρacch and convergence estimates

ρUi=20, T
E
m , NE

m for the 2D anisotropic diffusion equation, h = 1/128.

Acc. ε = 0.1, ω = 1.0 ε = 0.1, ω = 1.41
MG-RB ρacch ρUi=20 TE

m NE
m ρacch ρUi=20 TE

m NE
m

m = 2 0.350 0.392 0.405 0.734 0.173 0.184 0.186 0.724
m = 5 0.300 0.327 0.333 0.409 0.169 0.180 0.185 0.354

Acc. ε = 0.01, ω = 1.0 ε = 0.01, ω = 1.76
MG-RB ρacch ρUi=20 TE

m NE
m ρacch ρUi=20 TE

m NE
m

m = 2 0.795 0.800 0.861 1.460 0.568 0.579 0.580 2.385
m = 5 0.723 0.740 0.763 1.054 0.566 0.579 0.580 1.182

improvement cannot be achieved by a larger Krylov space. For ω = 1.0 a satisfactory
convergence improvement can be observed comparing Table 2 and Table 4.

As mentioned before, the Fourier analysis for multigrid is based on M̃ = I −
UC−1AU−1 (see (20)), the error reduction in a two-grid algorithm, whereas Krylov
methods minimize the residual norm and are based on AC−1. Thus, we have for the
corresponding spectra: σ(AC−1) = 1−σ(M̃) (compare Figure 1 (b) and Figure 3 (b)).
As a consequence the iteration matrices AC−1 are always positive real here because
the spectrum of the multigrid iteration matrix σ(M̃) is mainly clustered around the

origin. In particular ρ(M̃) = ρF < 1 holds because the multigrid preconditioner is
already a convergent method. Thus, any eigenvalue of AC−1 lies in the right half-
plane and we have ρhpc < 1.

Remark. In this connection it is interesting to note that the residual reduction
norm ||ÃM̃Ã−1||2 decreases with an increasing number of post-relaxations ν2 in con-

trast to the error reduction norm ||M̃ ||2 which decreases with an increasing ν1 [19].
According to this observation, one should choose similar values for ν1 and ν2 and
prefer ν1 ≥ ν2 to ν1 ≤ ν2 when multigrid is selected as a solver [19]. The reversed
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Fig. 3. Eigenvalue spectra of the red-black two-grid 2D anisotropic diffusion solver from Fourier
analysis; ν1 = ν2 = 1, h = 1/128.

statement (prefer ν1 ≤ ν2 to ν1 ≥ ν2) holds if we apply multigrid as a preconditioner
for a Krylov acceleration technique.

From Tables 3 and 4, it follows that a significant acceleration of the ω-MG-
RB method with the help of GMRES(m) is possible if ω = 1.0. This acceleration
is observed if we compare the numerical results ρmg

h and ρacch from subsections 2.1
and 3.3 and if we compare the Fourier estimates ρF and ρUi=20. If, in some sense, an
optimal multigrid method is selected by using the optimal overrelaxation parameter,
a further improvement is almost impossible.

ρUi=20 can be considered as a quantitative value which is found to be close to the
numerical convergence rate ρacch . The heuristic estimate TE

m gives good insight into the
asymptotic convergence behavior, whereas NE

m is too pessimistic an approximation
in general. The qualitative value ρhpc is important for theoretical purposes, but it
doesn’t help in choosing between solution methods. In most cases ρhpc is close to 1
and far away from ρacch .

4. Local mode analysis of multigrid preconditioned GMRES(m). The
Fourier analysis as presented in section 2 is restricted to model operators Ah, for which
the discrete functions (3) form a basis of eigenfunctions. Furthermore, it is not pos-
sible to apply this analysis for multigrid methods based on Gauss–Seidel relaxations
with a lexicographical ordering of the grid points (GS-LEX). The eigenfunctions (3)
are no longer invariant under the GS-LEX operators. Instead they are intermixed,
which leads to a full matrix S̃. For a general linear operator Ah with constant or
frozen coefficients it is, however, possible to use the local mode Fourier analysis [1]
for analyzing multigrid methods based on GS-LEX as the smoother. The theoretical
foundations (for example, presented in [18], [2]) for the local mode analysis are not as
straightforward as they are for the analysis from section 2. Basically the local mode
analysis is valid if the influence of a domain boundary is negligible [2]. Often, this re-
quirement can be satisfied by performing extra local boundary relaxation. In practice,
the local mode (or infinite grid) two-grid and smoothing analysis gives satisfactory
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sharp estimates of the actual multigrid convergence.
Instead of considering the finite domain with discrete eigenfunctions (3) of Ah

an infinite domain Ωh := {x = (jxh, jyh, jzh) : jx, jy, jz ∈ Z} is considered with
continuous eigenfunctions

φh(θ,x) = eixθ/h = eijθ = ei(jxθx+jyθy+jzθz),(33)

where the Fourier frequencies θ = (θx, θy, θz) vary continuously in R
3. The corre-

sponding eigenvalues are given by λ(θ, h) =
∑

κ∈J aκe
iθκ (see (8)). Fourier compo-

nents with |θ| := max{|θx|, |θy|, |θz|} ≥ π are not visible on Ωh, since they coincide

with components eijθ̂ where θ̂ = θ(modπ). Therefore, the Fourier space

εh = span{eijθ : θ ∈ Θ = (−π, π]3}

contains any infinite grid function on Ωh [19]. As in the discrete Fourier analysis,
we divide the Fourier space εh into eight-dimensional subspaces εhθ, which consist
of one low-frequency harmonic (θ ∈ Θl := (−π/2, π/2]3) and seven corresponding
high-frequency harmonics (θ ∈ Θh := Θ\Θl) (5):

εhθ = span[φ(θαxαyαz ,x) = eijθαxαyαz

: αx, αy, αz ∈ {0, 1}], with x ∈ Ωh,

θ000 ∈ Θl, and θαxαyαz = (θx − αxsign(θx)π, θy − αysign(θy)π, θz − αzsign(θz)π).

These spaces εhθ of 2h-harmonics are invariant under the coarse grid correction op-
erator K2h

h (4) and also under a GS-LEX relaxation operator. In order to obtain a
well-defined two-grid operator we replace the Fourier space εh by a slightly shrunk
subspace ε̃h such that (Ah)−1 exists and also (A2h)−1 can be reasonably defined on
the coarser grid, as in [19]:

ε̃h = εh\
⋃

θ∈Ψ

εhθ with Ψ := {θ : λ(θ, h) = 0 or λ(2θ, 2h) = 0}.

Hence, we have a well-defined operator M2h
h (4) on ε̃h with the invariance property

M2h
h : εhθ −→ εhθ with θ ∈ Θ̃l := Θl\Ψ,

equivalent to a block-diagonal matrix M̃ . The spectral radius ρ(M̃) of the correspond-
ing Fourier matrix is determined similarly as in the previous Fourier analysis (9):

ρF := ρ(M̃) = sup
θ∈Θ̃l

ρ(M̂(θ)) with M̂(θ)
∧
= M2h

h |εh
θ

.(34)

We consider operators with Ψ = {(0, 0, 0)}, which is an ellipticity requirement [2].
Then, it is possible to keep the suprenum (34) finite by an appropriate choice of the
transfer operators I2h

h and Ih2h [9].
The whole spectrum is obtained similarly as in section 2. We, however, always

observe a spectrum from a discrete mesh, whereas we have a continuously defined set
of eigenfunctions (33) in order to get h-independent upper bounds for the convergence
rates.

The definition of the smoothing factor (10) carries over from the rigorous analysis.
The coarse grid correction operator is replaced by an ideal operator Q2h

h which is

orthogonally equivalent to a block matrix Q̃ with blocks Q̂ = diag(0, 1, 1, 1, 1, 1, 1, 1).

µF := ρ(S̃ν2

2 Q̃S̃ν1

1 ) = ρ(Q̃S̃ν1

1 S̃ν2

2 ) = sup
θ∈Θ̃l

ρ(Q̂Ŝ1(θ)ν1 Ŝ2(θ)ν2) with Ŝ∗(θ)
∧
= S∗

h|εh
θ

.
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Table 5

Multigrid convergence ρmg
h , predicted convergence ρF , and smoothing factor µF for the 2D

anisotropic diffusion equation; h = 1/128.

Solution method ω = 1.0 ω = ωopt

ε ρmg
h ρF µF ρmg

h ρF µF

MG-FF, ε = 0.1 0.693 0.696 0.697 0.410 0.433 0.492
MG-FB, ε = 0.1 0.693 0.697 0.697 0.437 0.440 0.492
MG-FF, ε = 0.01 0.957 0.961 0.961 0.755 0.758 0.769
MG-FB, ε = 0.01 0.957 0.962 0.961 0.750 0.759 0.769

Table 6

Multigrid preconditioned GMRES(m) convergence ρacch and convergence estimates ρUi=20, TE
m ,

NE
m for the 2D anisotropic diffusion equation; h = 1/128.

Acc. ε = 0.1, ω = 1.0 ε = 0.1, ω = 1.40
MG ρacch ρUi=20 TE

m NE
m ρacch ρUi=20 TE

m NE
m

FF, m = 2 0.475 0.515 0.529 0.911 0.410 0.420 0.430 0.524
FF, m = 5 0.450 0.469 0.519 0.907 0.410 0.420 0.430 0.441
FB, m = 2 0.370 0.402 0.408 0.718 0.185 0.185 0.203 0.445
FB, m = 5 0.305 0.331 0.331 0.487 0.158 0.160 0.165 0.202

Acc. ε = 0.01, ω = 1.0 ε = 0.01, ω = 1.75
MG ρacch ρUi=20 TE

m NE
m ρacch ρUi=20 TE

m NE
m

FF, m = 2 0.850 0.895 0.907 0.952 0.753 0.750 0.757 0.923
FF, m = 5 0.800 0.837 0.896 0.897 0.753 0.750 0.757 0.813
FB, m = 2 0.784 0.850 0.865 1.403 0.397 0.380 0.479 0.717
FB, m = 5 0.723 0.755 0.768 1.102 0.362 0.370 0.392 0.457

From the local mode analysis, the analytical values ρUi=20, TE
m , NE

m, and ρhpc for
the multigrid preconditioned GMRES(m) method are obtained by straightforward
modifications of the definitions (32), (29), and (23) taken from the rigorous case.

4.1. Results for Poisson-type equations. The first example of the local-
mode Fourier analysis of multigrid preconditioned GMRES(m) deals again with the
anisotropic diffusion equation (2). We analyze the difference in convergence between
performing two smoothing iterations (ν1 = ν2 = 1) of the forward lexicographical
point Gauss–Seidel (GS-fLEX) method, and one iteration of GS-fLEX and one itera-
tion of backward lexicographical point Gauss–Seidel (GS-bLEX). The other multigrid
components are identical to the previously introduced multigrid method MG-RB. In
the following, we call these multigrid methods MG-FF and MG-FB, which stand for
multigrid forward forward and multigrid forward backward, respectively.

Local mode analysis gives sharp quantitative predictions for the multigrid conver-
gence of MG-FF and MG-FB for the 2D anisotropic diffusion equation with ε = 0.1
and ε = 0.01, as can be seen in Table 5. In the anisotropic case, it is also bene-
ficial to introduce an overrelaxation parameter for these lexicographical smoothers
leading to ω-MG-FF and ω-MG-FB. The improvement is less impressive than for
ω-MG-RB from [23], even if the optimal overrelaxation parameter (ωopt = 1.40 for
ε = 0.1, ωopt = 1.75, or ε = 0.01) is selected (see Table 5).

In contrast to ωopt-MG-FF (and ωopt-MG-RB), it is possible to further accelerate
ωopt-MG-FB significantly by GMRES(m). This can be observed by comparing Table 5
and Table 6 and can be explained as follows. If A is a symmetric matrix, then MG-
FB results in an A-symmetric iteration matrix due to the construction of the coarse
grid correction (FW as the restriction and bilinear interpolation as the prolongation
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operator) and the two relaxations which are adjoint to each other [8]. This means that
the multigrid iteration matrix M is symmetric with respect to the A-induced inner
product ( . , . )A := (A . , . ) (see, for example, [10]). The spectrum of the iteration
matrix is real-valued, and uniformly distributed on the interval [λmin, λmax]. This
feature is maintained if ωopt is introduced, whereas for ωopt-MG-FF an acceleration
by GMRES(m) is not possible because the spectrum becomes orbital. This behavior
of ω-MG-FF can be observed in Figure 4, where the spectra of the iteration matrices
for ω = 1.0 and ω = 1.75 are shown for ε = 0.01. For other applications it is found
in [10] that a symmetrization is not beneficial if Bi-CGstab [21] is used as the Krylov
subspace acceleration method.
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Fig. 4. Eigenvalue spectra of the MG-FF two-grid 2D anisotropic diffusion solver from local
mode analysis; ε = 0.01, h = 1/128. (Note the different scaling of the axes in Figure 4(a).)

Remark. For A-symmetric matrices it is possible to use the CG iteration as the
acceleration method, in which the residual is minimized in the A-norm instead of
the 2-norm (see (16)). The asymptotic convergence rate for the preconditioned CG
iteration is given by the well-known formula [16]

ρcg :=
(

min
P∈Pm

max
λj∈[λmin,λmax]

|P (λj)|
)1/m

=

(
max

λj∈[λmin,λmax]

Tm(1 + 2
λmin−λj

λmax−λmin
)

Tm(1 + 2 λmin

λmax−λmin
)

)1/m

=

(
2/Tm

(
λmax + λmin

λmax − λmin

) )1/m

≤ 2

√
κ− 1√
κ + 1

with κ := κA(AC−1) =
λmax

λmin
.

If we consider the definition TE
m (29) for a real-valued spectrum σ ⊂ [λmin, λmax],

then the ellipse E(c, d, a) deteriorates to a line. In particular we have a = d =
(λmax − λmin)/2 and c = λmin + a, which leads to TE

m = (Tm(aa )/Tm( c
a ))1/m = ρcg

(see (29), (30)). As the iteration matrix is A-symmetric, we find κA(X) = 1, where
κA(X) denotes the condition number of the transformation matrix X (26) with respect
to the A-norm. In general, this does not imply that κ2(X) = 1, but κ2(X) cancels
out of (28) for large m. It can be expected that GMRES(m) has a similar asymptotic
convergence as CG.
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Table 7

Multigrid and multigrid preconditioned GMRES(m) convergence (different m) for the 3D Pois-
son equation and forward and backward lexicographical Gauss–Seidel smoothers.

Solution Grid Fourier
method 323 643 963 values

MG-FF 0.25 0.26 0.26 ρF = 0.266
Acc. MG-FF, m = 2 0.22 0.22 0.22 ρUi=20 = 0.233
Acc. MG-FF, m = 5 0.22 0.21 0.21 ρUi=20 = 0.233

MG-FB 0.29 0.29 0.29 ρF = 0.294
Acc. MG-FB, m = 2 0.098 0.10 0.10 ρUi=20 = 0.121
Acc. MG-FB, m = 5 0.086 0.085 0.086 ρUi=20 = 0.099

The analytical prediction ρUi=20 shows a sharp quantitative character again, and
the estimate TE

m gives a reliable indication of the average accelerated convergence
rate presented in Table 6. NE

m is an interesting quantity for large m. For the 3D
Poisson equation also, the multigrid convergence of MG-FF and MG-FB is similar.
The convergence estimate ρF is 0.266 for MG-FF and 0.294 for MG-FB, whereas the
spectra are completely different (as in 2D). It can be seen from Table 7 that the con-
vergence rates with and without GMRES(m) are h-independent. Table 7 shows that
very satisfactory convergence rates are obtained by the Krylov subspace acceleration
of MG-FB. Moreover, due to the symmetry, we can predict the convergence rate of
the accelerated MG-FB accurately from ρcg for different m.

Remark. With this knowledge, a symmetrization of the red-black multigrid Pois-
son solver is performed by doing the post-smoothing in black-red order. Indeed, the
iteration matrix is A-symmetric, but the asymptotic convergence factor ρF increases
to 0.440, which is also the value for MG-RB with only one smoothing step (see, for
example, [7]). In this case the nonsymmetric multigrid iteration matrix leads to much
better convergence factors with and without Krylov acceleration.

4.2. Results for a problem with mixed derivative. Next, we discuss an
unsymmetric equation where reasonable smoothing properties can be achieved with
point smoothers, but the coarse grid correction turns out to be problematic in combi-
nation with standard coarsening [19]. This equation is tackled in order to demonstrate
that GMRES can also be applied to overcome coarse grid difficulties. We investigate
the 2D differential equation with a mixed derivative −∆u − τuxy = b discretized by
the O(h2) 9-point operator

Ahuh(x) =
1

h2




τ
4 −1 − τ

4
−1 4 −1
− τ

4 −1 τ
4


uh(x) = bh(x) on Ωh.

It is no longer elliptic if |τ | = 2 and the efficiency of all previously considered multi-
grid methods (MG-RB, MG-FF, MG-FB) deteriorates for |τ | → 2 (see, for example,
Table 8 and [19]). This behavior can be explained if we perform a simplified two-grid
analysis where only the very low Fourier frequencies along the characteristic direction
of the differential operator (first differential approximation (FDA) [22]) are consid-
ered. The transfer operators act almost as identities for very low-frequency harmonics
and no reduction of amplitudes can be achieved by the Gauss–Seidel relaxation. Thus,
we obtain the following two-grid amplification factor (see (4)):

ρFDA(θ) := 1 − λ(θ, h)

λ(2θ, 2h)
for |θ| := max{|θ1|, |θ2|} −→ 0.(35)
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Table 8

Multigrid and two-grid convergences ρmg
h and ρtgh , predicted convergence ρF , and smoothing

factor µF for the τ -problem, MG-FB, h = 1/64.

τ = −1.90 τ = −1.99

ρmg
h ρtgh ρF µF ρmg

h ρtgh ρF µF

0.747 0.654 0.662 0.499 0.839 0.730 0.745 0.518

Table 9

Multi- and two-grid preconditioned GMRES(m) convergence factors ρacch and ρacch (tg) and es-

timates ρUi=20, T
E
m for the τ -problem, h = 1/64.

Acc. τ = −1.90 τ = −1.99
MG-FB ρacch ρacch (tg) ρUi=20 TE

m ρacch ρacch (tg) ρUi=20 TE
m

m = 2 0.420 0.333 0.372 0.373 0.533 0.404 0.415 0.463
m = 5 0.370 0.287 0.302 0.304 0.472 0.348 0.354 0.378

The Fourier symbol λ(θ, h) of the differential operator reads as follows:

λ(θ, h) =
1

h2

(
4 − 2 cos(θ1) − 2 cos(θ2) +

τ

2
cos(θ1 − θ2) −

τ

2
cos(θ1 + θ2)

)

=
1

h2

(
θ2
1 + θ2

2 +
τ

4
( (θ1 + θ2)

2 − (θ1 − θ2)
2 ) − θ4

1 + θ4
2

12

+
τ

48
( (θ1 − θ2)

4 − (θ1 + θ2)
4 ) + O(|θ|6)

)
,

where Taylor’s expansion is used. If τ −→ ±2 the characteristic frequencies are given
by θ2 = ∓θ1. This gives

λ(θ, h) =
1

h2

(
(2 ∓ τ)θ2

1 −
(1

6
∓ τ

3

)
θ4
1 + O(θ6

1)
)

=⇒ ρFDA(θ) = 1 − 4

16
= 0.75 for |θ| −→ 0 and τ −→ ±2.

For τ = −1.99 and MG-FB, this limiting value of 0.75 is almost obtained by the
predicted two-grid factor ρF and also by the numerically obtained ρtgh ; see Table 8.
The multigrid convergence ρmg

h increases further since the coarse grid problem occurs
on all coarser grids (actually six grids are used).

One way to handle the coarse grid problem is to change the smoother to the
more expensive ILU-type relaxation [19], which also takes care of the problematic
low-frequency error components. A second way is to replace the grid coarsening by
a nonstandard coarsening technique. We keep the point Gauss–Seidel smoother with
standard grid coarsening and solve this problem by the Krylov subspace acceleration
of MG-FB. In Table 9, a significant improvement of the multigrid convergence due
to the acceleration is observed even with a small Krylov subspace. The two-grid
convergence ρacch (tg) is very well predicted by ρUi=20 and TE

m .
Comparing the accelerated two-grid and multigrid convergences from Table 9, it

is expected that it is possible to further improve ρacch by incorporating the Krylov
acceleration into the multigrid cycle and to apply it also on the coarse grids as in [14].

4.3. Further results and extensions. Here, we present a relation between
Krylov subspace acceleration and a coarse grid correction acceleration as presented
for the convection-diffusion equation in [4] and a relation between Krylov subspace
acceleration and optimal (multistage) overrelaxation in a smoothing method.
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A standard upwind discretization of a convection-dominated (0 < ε � 1) convec-
tion-diffusion equation

−ε∆u(x) + ( a1(x)u(x) )x + ( a2(x)u(x) )y = b(x),(36)

with a rotating convection term (a1(x) = − sin(πx) cos(πy), a2(x) = sin(πy) cos(πx)),
is another well-known equation with a problematic coarse grid correction (see [4],
[8]). A similar FDA analysis, as in the previous section, shows that characteristic
low frequency error components, that are constant along the characteristics of the
advection operator, are not reduced efficiently on coarse grids [4]. The different scaling
of convection ( a1(x)/h, a2(x)/h ) and diffusion ε/h2 is not approximated properly on
the 2h-grid which leads to a limiting two-grid convergence factor of 0.5 [4]. It is shown
in [14] that the problems with rotating convection direction can be solved efficiently by
a Krylov subspace acceleration of multigrid (also on the coarser grids of the multigrid
preconditioner). In [4] an improved multigrid method is designed for this problem
where the residuals in the kth two-grid cycle are overweighted by optimized accele-
ration parameters ηk. This means that the FDA error amplification factor after the
mth cycle is given by the following polynomial (see (35) and [4]):

ρFDA
m (θ) =

m∏

k=1

( 1 − ηkζ(θ) ) with ζ(θ) =
λ(θ, h)

λ(2θ, 2h)
.

The two methods are related. The FDA analysis can also be performed for the argu-
ment of the GMRES(m)-polynomials (21). It yields that the block matrix UAC−1U
is dominated by ζ(θ) for very low characteristic frequencies θ. We can construct an
initial solution u0 (necessary to calculate the GMRES(m)-polynomials explicitly; see
subsection 3.2), which consists only of characteristic error components and freezes the
discretization operator at a fixed (but arbitrary) point x. All resulting GMRES(m)-
polynomials P i

m are almost identical for i ≥ 20. Therefore, always the same coefficients
αi
k (k = 1, . . . ,m) are found. Thus, it is possible to identify ρFDA

m with P i
m for i ≥ 20

and we can express the coefficients αi
k (i ≥ 20) by the ηk, for example,

αi
1 = −η1 for m = 1 , αi

1 = −(η1 + η2) , α
i
2 = η1η2 for m = 2.(37)

The above considerations are confirmed by test calculations where such relations as
from (37) are established for i ≥ 20 and also for larger m. For problem (36), for
example, we find

αi
1 = −1.33 for m = 1 , αi

1 = −2.82 , αi
2 = 1.88 for m = 2,

which matches exactly with the reference values ηk; see [4]. We see from this heuristic
consideration that an optimal tuning of the coarse grid correction is implicitly done
by the Krylov subspace acceleration.

Similarly it is possible to find optimal overrelaxation parameters for smoothing
methods, like Jacobi or GS-RB, if the coarse grid correction acts as the optimal
operator Q2h

h from sections 2 and 4. For example, consider the multistage Jacobi
relaxation for the 2D Poisson equation for which the smoothing operator is given by
the polynomial

Sh =

m∏

k=1

( Ih − ωk∆h/4 ).(38)
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The corresponding smoothing factor for the multistage relaxation Sh from (38) can be
minimized analytically, yielding the optimal ωk, which are knots of Chebychev polyno-
mials [19]. If we select an initial approximation which consists only of high frequency
error components, it is possible to identify Sh with the GMRES(m)-polynomials P i

m

(for i ≥ 20) as the coarse grid correction leaves the high frequency components al-
most unchanged. A similar comparison of coefficients ωk and αk can be performed as
described above for ηk and αk (37). The related αi

k, calculated by the analysis from
subsection 3.2, match with the optimal ωk for i ≥ 20 very well.

For more complicated equations (or smoothing procedures) it is, in general, not
possible to determine optimal overrelaxation parameters analytically, but the analysis
is easily applicable and the αi

k can be determined. As an example we consider the
discrete biharmonic equation ∆h∆huh = bh which is sometimes transformed into a
system of two Poisson-type equations in order to achieve better smoothing properties
[1]. Here we keep the scalar forth order problem and apply a multistage version of a
GS-RB smoothing method

SmsRB
h =

m∏

k=1

( Ih − ωk(Ih − SBLACK
h · SRED

h ) ),

where the multistage parameters ωk are obtained by an evaluation of the related αi
k

(i ≥ 20). It can be seen in Table 10 that it is possible to obtain satisfactory smoothing
rates also for the scalar biharmonic equation.

Table 10

Multistage red-black Gauss–Seidel relaxation parameters and smoothing rate for the biharmonic
equation.

α1 α2 α3 µF (µF )1/m

m = 1 -1.39 0.501 0.501
m = 2 -3.17 2.20 0.152 0.390
m = 3 -4.81 7.13 -3.30 0.050 0.369

Finally, it can be concluded that the Krylov subspace acceleration implicitly im-
proves the coarse grid correction or the relaxation procedure, if one of these multigrid
components clearly hampers the overall multigrid convergence. Furthermore, the
analysis from subsection 3.2 is an easy tool to obtain good overrelaxation parameters
for different (and also difficult) problems.

5. Conclusions. In this paper we have presented a way to obtain sharp quan-
titative convergence estimates for GMRES(m) preconditioned by multigrid on the
basis of Fourier analysis. For all the cases considered the estimates are accurate com-
pared to measured numerical convergence of the multigrid preconditioned GMRES(m)
method.

It has been shown that it is not easily possible to further accelerate multigrid
methods which are optimally tuned with, for example, overrelaxation parameters. In
other situations, however, very satisfactory convergence improvement is achieved with
the Krylov subspace acceleration. The possibilities for the subspace acceleration of
multigrid are not only available in the case of isolated eigenvalues from the multigrid
preconditioner, but they depend also on the shape of the spectrum. A spectrum
resulting from the preconditioner with a circular shape is not appropriate for an
acceleration with the method presented. For a fair comparison one should take the
additional work for the Krylov subspace acceleration into account. This, however,
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is not the main issue in this paper. The acceleration is, in general, cheap compared
to the multigrid method. The proposed acceleration is, of course, also applicable to
situations in which it is not easy to tune a multigrid method.
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