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Abstract

The acceleration of an option pricing technique based on Fourier
cosine expansions on the Graphics Processing Unit (GPU) is reported.
European options, in particular with multiple strikes, and Bermudan
options will be discussed. The influence of the number of terms in the
Fourier cosine series expansion, the number of strikes, as well as the
number of exercise dates for Bermudan options, are explored. We also
give details about the different ways of implementing on a GPU. Nu-
merical examples include asset price processes based on a Lévy process
of infinite activity and the stochastic volatility Heston model. Further-
more, we discuss the issue of precision on the present GPU systems.

Keywords: Option pricing, Fourier Cosine expansions, Graphics Processing
Units implementation, Options with multiple strikes, Riccati ODEs, Jump
and stochastic volatility processes.

1 Introduction

In this paper we deal with a topic from Computational Finance, i.e., the
efficient pricing of options on stocks or other assets. Several methods for
pricing these contracts exist. The Feynman-Kac theorem relates the condi-
tional expectation of the value of an option contract payoff function under
the risk-neutral measure to the solution of a partial differential equation.
Various pricing techniques can therefore be developed, like partial-(integro)
differential equation (PIDE) finite-difference solvers, monte Carlo simula-
tions or numerical integration methods. Option pricing techniques need to
be accurate, robust and fast. The latter feature is particularly necessary
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when the mathematical asset price models are calibrated to real market
data. Option values, with many different parameter values for the under-
lying asset price process, are then computed thousands of times in order
to fit the mathematical model. In this paper, we focus on this setting and
show that it may make sense to perform this task on a Graphics Processing
Unit-based computer.

A highly efficient pricing method is the COS method [1, 2], based on
Fourier cosine series expansions. In this method, based on the conditional
expectation formula, the conditional density function of the underlying is
approximated by a series expansion which is connected to the characteristic
function. The COS method is applicable if the characteristic function of the
stochastic asset price process (i.e. the Fourier transform of the conditional
density function) is available. This is certainly the case for state-of-the-art
asset price models, like the Lévy jump processes and the Heston stochastic
volatility process, which we discuss in the present paper. However, also
more involved hybrid stochastic processes, for example for interest rates and
equity can be considered, as long as we can get to a characteristic function.
For such asset models with stochastic volatility and stochastic interest rate,
like the Heston-Hull-White or the Heston–Gaussian two-factor model, the
analytic characteristic function is typically not available. However, after
some appropriate reformulations of the SDE system (see, for example [7])
the coefficients of the characteristic function can be found as the solution
of a Riccati system of ordinary differential equations (ODEs), as described
in [8]. These ODE systems can be solved numerically by means of an explicit
Runge–Kutta method or by other ODE solvers. We will show that this task
can also be performed efficiently on a GPU.

In practice, the option values obtained from a mathematical model should
be consistent with market option prices. Usually, options with many differ-
ent strike prices are needed for calibration. In the COS method, European
option prices for a vector of strikes can be computed in one computation,
which accelerates the calibration procedure significantly.

To further accelerate the calibration procedure, two approaches directly
come into mind. The easiest is to purchase a faster CPU! As an example,
Table 1 compares error convergence and cpu times between the CPU used in
[1] (CPU 1: Intel(R) Pentium(R) 4 CPU, 2.80GHz with cache size 1MB) and
a faster CPU (CPU 2: Intel(R) Core(TM)2 Duo CPU, E6550 @ 2.33GHz
Cache size 4MB) for European calls under a Geometric Brownian Motion
asset process. Time is in milli-seconds1.

The faster CPU gives a satisfactory acceleration, but one needs to wait
(sometimes up to two years) for an acceleration by a factor two.

Another possibility to accelerate the pricing engine is to run the program,
or parts of it, on the popular Graphics Processing Unit, which supports

11 milli-second=10−3 second

2



parallel computation. Executing a code on a GPU is worthwhile if:

1. A program can be divided into several independent parts;

2. A program does not contain many sequential parts;

3. A program does not require much memory transfer from host to device
or vice versa.

Previous work in the direction of option pricing, with an integration-based
method [6], concluded that the GPU option pricing code outperformed a
corresponding CPU code for pricing American and so-called path-dependent
options, but not for European options. A large number of space and time
points was needed to show the advantages of the GPU. In our paper, we
will demonstrate a significant performance improvement on the GPU, due
to parallelization, when pricing European options with multiple strikes but
with not-more-than-necessary terms in the Fourier cosine expansion. The
GPU may therefore be used for the important task of calibration, which
is traditionally done with European options. For certain modern option
products it also makes sense to calibrate to barrier options, or other, liquid
financial products. The pricing of barrier options with the COS method is
closely connected to the example of pricing Bermudan options in the present
paper.

The outline of this paper is as follows. Section 2 gives an introduction
in the COS option pricing method. For European options different ways of
implementation of the method are described in Section 3. Section 4 presents
the speed-up for multi-strike European options on the GPU. The accelera-
tion of an explicit Runge–Kutta method for numerically solving systems of
Riccati ODEs to approximate a characteristic function (if it is not available
in closed form) is presented in Section 5. Section 6 gives pricing results for
Bermudan options, that may be exercised early (before the maturity date).
Here the influence of the number of terms in the Fourier cosine expansion
as well as the number of early exercise dates on the speed-up factor on the
GPU are discussed.

The GPU we work on is an NVIDIA GeForce 9800 GX2, which has two
graphics processing units (GPUs) and 1 GB of memory (512 MB for each
GPU); the CPU on the same computer, needed for data transfer etc., is
an AMD Athlon(tm)64 X2 Dual Core Processor 4600+ (cache size 512 KB,
2412.364MHz).

The results obtained are compared with timings on a CPU from an
Intel(R) Core(TM)2 Duo CPU E6550 (@ 2.33GHz Cache size 4MB).
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2 COS Pricing Method

Starting from the risk-neutral valuation formula

v(x, t0) = e−r∆t

∫ ∞

−∞
v(y, T )f(y|x)dy,

where v(x, t) is the option value, and x, y can be any increasing functions of
the underlying at t0 and T , respectively, we truncate the integration range,
so that

v(x, t0) ≈ e−r∆t

∫ b

a
v(y, T )f(y|x)dy. (1)

with |
∫

R f(y|x)dy −
∫ b
a f(y|x)dy| < TOL. Error analysis of the various

approximations is given in [1, 2].
The conditional density function of the underlying is then approximated

by means of the characteristic function via a truncated Fourier cosine ex-
pansion, as follows:

f(y|x) ≈ 2
b− a

∑′N−1

k=0
Re(φ(

kπ

b− a
;x) exp (−i akπ

b− a
)) cos (kπ

y − a

b− a
), (2)

where Re means taking the real part of the expression in brackets, and
φ(ω;x) is the characteristic function of f(y|x) defined as:

φ(ω;x) = E(eiωy|x). (3)

The prime at the sum symbol in (2) indicates that the first term in the
expansion is multiplied by one-half. Replacing f(y|x) by its approxima-
tion (2) in (1) and interchanging integration and summation, gives us the
COS algorithm to approximate the value of a European option:

v(x, t0) = e−r∆t
∑′N−1

k=0
Re(φ(

kπ

b− a
;x)e−ikπ a

b−a )Vk, (4)

where

Vk =
2

b− a

∫ b

a
v(y, T ) cos (kπ

y − a

b− a
)dy (5)

is the Fourier cosine coefficient of v(y, T ), which is available in closed form
for several European option payoff functions.

Formula (4) can be directly applied to calculate the value of a European
option, and it also forms the basis for pricing Bermudan options.

The COS algorithm exhibits an exponential convergence rate for all pro-
cesses whose conditional density f(y|x) ∈ C∞((a, b) ⊂ R). The size of the
integration interval [a, b] can be determined with help of the cumulants [1].
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2.1 Pricing of European Options with Multi–Strike Features

With Xt = log(St/K), the solution for Equation (5) can be written as

Vk = UkK, (6)

where

Uk = {
2

b− a
(χk(0, b)− ψk(0, b)), for a call,

2
b− a

(ψ(a, 0)− χ(a, 0)), for a put,
(7)

with

χk(x1, x2) :=
∫ x2

x1

ex cos
(
kπ
x− a

b− a

)
dx, (8)

ψk(x1, x2) :=
∫ x2

x1

cos
(
kπ
x− a

b− a

)
dx. (9)

Now, the pricing formula (4) reads:

v(x, t0) = Ke−r∆tRe(
∑′N−1

k=0
φ(

kπ

b− a
;x) · e−ikπ a

b−aUk) (10)

Let’s assume that we deal with a vector of strikes, K = [K(1), · · · ,K(P )]T ,
where P is the number of strikes. Recall from (1) that [a, b] is the trunca-
tion range for the log–asset price x. As x is a function of K, i.e. x(j) =
log(S/K(j)), j = 1, · · · , P , the parameters a and b also depend on K; there-
fore, they are also vectors with length P . For a vectorised version of the
COS method, enabling an efficient computation of multi-strike options, we
define the following matrices:

• Φ is a (P ×N)-matrix with elements

Φ(j, k + 1) = φ(
kπ

b(j)− a(j)
;x(j))e−ikπ

a(j)
b(j)−a(j) ,

j = 1, · · · , P, k = 0, · · · , N − 1.

• Ū is an (N×1)-vector with elements Ū(k+1, 1) = Uk, k = 0, · · · , N−1.

• Λ is a (P × P ) diagonal matrix with Λ(j, j) = K(j), j = 1, · · · , P .

With these matrices, the formula for pricing options with multi–strike fea-
tures reads:

v(x, t0) = e−r∆t Λ Re(Φ U), (11)

so that option values for many strikes can be computed simultaneously.
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2.2 COS Method for Bermudan Options

The pricing formula for a Bermudan option with M exercise dates, with
m = M,M − 1, . . . , 2, is divided into a stage in which a continuation
value is computed, and a stage where this value is compared to the pay-
off g(x, tm−1) ≡ v(x, T ). These stages are given by:{

c(x, tm−1) = e−r∆t
∫

R v(y, tm)f(y|x)dy,
v(x, tm−1) = max (g(x, tm−1), c(x, tm−1)),

(12)

followed by the final computation,

v(x, t0) = e−r∆t

∫
R
v(y, t1)f(y|x)dy. (13)

In this description, we have x := ln (S(tm−1)/K) y := ln (S(tm)/K),
and v(x, t), c(x, t) are the option value, and the continuation value at time
t, respectively. For vanilla options g(x, t) ≡ (αK(exp(x)− 1))+ with α = 1
for a call and α = −1 for a put.

Practically, for each time step we first determine an early-exercise point,
x∗m, for which c(x∗m, tm) = g(x∗m, tm) by means of the Newton method. If x∗m
lies outside interval [a, b] we set x∗m equal to the nearest boundary point. At
each time step, tm, we then can split the Fourier cosine coefficients Vk(tm)
into two parts:

Vk(tm) = Ck(a, x∗m, tm) +Gk(x∗m, b), for a call, (14)

Vk(tm) = Gk(a, x∗m) + Ck(x∗m, b, tm), for a put. (15)

for m = M − 1,M − 2, . . . , 1, and

Vk(tM ) = Gk(0, b) for a call,

Vk(tM ) = Gk(a, 0) for a put.

Here,

Gk(x1, x2) =
2

b− a

∫ x2

x1

g(x, tm)cos(kπ
x− a

b− a
)dx, (16)

Ck(x1, x2, tm) =
2

b− a

∫ x2

x1

ĉ(x, tm)cos(kπ
x− a

b− a
)dx, (17)

with

c(x, tm) = e−r∆t
∑′N−1

k=0
Re(φ(

kπ

b− a
;x)e−ikπ a

b−a )Vk(tm+1),

from the Fourier cosine expansion.
Gk(x1, x2) is known analytically, like for European options, and for Lévy

processes,
C(x1, x2, tm) ≡ Ck(x1, x2, tm))N−1

j=0
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can be written as

C(x1, x2, tm) = e−r∆tIm(Msu+Mcu)/π

where Im means taking the imaginary part of the expression in brackets.
Msu represents the first N elements of D−1(D(ms) · D(us)) 2, and Mcu
denotes the computation of the first N elements of D−1(D(mc) ·sgn ·D(us)),
in reversed order, see [2].

In this description, we have

sgn = [1,−1, 1,−1, . . . ]T , ms = [m0,m−1, · · · ,m1−N , 0,mN−1, · · · ,m1]T ,

mc = [m2N−1,m2N−2, · · · ,m1,m0]T , us = [u0, u1, · · · , uN−1, 0, · · · , 0]T ,

with elements
mj =

(x2 − x1)
b− a

πi, if j = 0,

mj =
exp(ij (x2−a)π

b−a )− exp(ij (x1−a)π
b−a )

j
, if j 6= 0.

Finally, uj = φ(jπ/(b− a))Vj(tm+1) and u0 = 1
2φ(0)V0(tm+1).

For all time steps, m = M − 1, · · · , 1, approximation of Vk(tm) is recov-
ered from (14) or (15). Option value v(x, t0) is obtained by inserting Vk(t1)
into (13), and then, applying (4) with T replaced by t1.

2.3 Underlying Asset Processes

In this paper we discuss two different underlying asset processes, the CGMY
process, a Lévy jump process and the Heston stochastic volatility process.
For our purposes, the characteristic functions related to these processes are
needed.

The CGMY process, as defined in [9], is a generalisation of the Variance
Gamma process with the following characteristic function:

φCGMY (ω, t) = exp(tCΓ(−Y )[(M − iω)Y −MY + (G+ iω)Y −GY ]). (18)

Four parameters need to be calibrated to market data: Parameter Y : Y < 2
controls whether the CGMY process has finite or infinite activity. Param-
eter C : C > 0 controls the kurtosis of the distribution and non-negative
parameters G,M give control over the rate of exponential decay on the right
and left tails of the density, respectively.

In the Heston stochastic volatility model, the underlying and the volatil-
ity are modeled by the following stochastic differential equations,

dxt = (r − 1
2
µt)dt+

√
µtdW1,t,

dµt = λ(µ̄− µt)dt+ η
√
µtdW2,t, (19)

2Here, D(vector) denotes the discrete Fourier transform, whereas D−1 stands for the
inverse discrete Fourier transform.
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where xt and µt denote the log–asset price process and the variance of the
asset price process, respectively. Parameters λ, µ̄, η represent the speed of
mean–recursion, the mean value of variance and the volatility of volatility.
Moreover, W1,t and W2,t are Brownian motions, correlated with correlation
coefficient ρ.

For the log-asset price in the Heston model an analytic characteristic
function can be found, which reads:

φ(ω,∆t, µ0) = exp (iωr∆t+
µ0

η2
(

1− e−D∆t

1−Ge−D∆t
)(λ− iρηω −D)) ·

exp (
λµ̄

η2
(∆t(λ− iρηω −D)− 2 log(

1−Ge−D∆t

1−G
)))

withD =
√

(λ− iηρω)2 + (ω2 + iω)η2 andG = λ− iηρω −D/λ− iηρω +D.
As for the value of D, we take the square root whose real part is non-

negative.

Remark 2.1. [Advantage of COS method on GPU] From [10] we know
that, compared to the execution on a CPU, the GPU is favorable for many
of the time-consuming operations in the COS method. Moreover, the ele-
ments of the sum in (4) are independent of each other and can be computed
simultaneously. Therefore, the GPU is expected to outperform the CPU
when executing the COS algorithm, in particular when many computations
are necessary, as for European options with multi-strike features and for
Bermudan options.

3 European Options

A European option can be viewed as a special case of a Bermudan option
with only one possible exercise date (the expiry time). For European options,
the Fourier and inverse Fourier transform operations are not needed.

3.1 Different Ways of GPU Implementation

In this section, we discuss different ways of implementation on the GPU.
Consider a simple case where we need to price one vanilla option.

From (4) the COS algorithm can be decomposed into two steps, i.e.,
computations on each element of a vector, Re(exp (−ikπ a

b−a)φ( kπ
b−a ;x)Vk),

which can be parallelized; and the summation of vector elements.
We consider three ways of GPU implementation:

1. Directly run the whole code on the GPU, referred to as GPU1;

2. All operations related to each vector element are parallelized on the
GPU, whereas the summation is performed on the CPU. This hybrid
GPU/CPU way of implementation is referred to as GPU2;
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3. When summing up the elements of a vector, we can split the vector in
two vectors, each of size N/2, and sum up these two on the GPU. The
procedure is repeated untilN = 1. The summation of pairs of elements
can be parallelized on the GPU this way. The number of operations
for the summation can be reduced from N to log2(N), referred to as
GPU3.

Figure 1: Comparison of different GPU implementations.

Figure 1 presents a comparison of the time consumed by the above men-
tioned three ways of GPU implementation and also the CPU time. Clearly,
GPU1 is faster than the CPU only when N , the number of terms in the
Fourier cosine expansion, is large, whereas the implementations GPU2 and
GPU3 are significantly faster than either the CPU implementation or GPU1.
Moreover, as N increases, the speed-up of GPU2 and GPU3 also increases.
GPU3 is slightly slower than GPU2 for small N , but when N is very large,
GPU3 beats GPU2.

Moreover, unlike the CPU or GPU1, the time for GPU2 and GPU3 does
not increase much as N increases, until N ≈ 216.

For Bermudan options, implementation GPU3 is preferred, since the
complete code then runs on the GPU and data transfer can be reduced. With
GPU2, we would need to transfer data at each time step, which consumes
time.

In this paper we will use implementation GPU3 for all numerical exam-
ples to follow.
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3.2 Numerical Example

We take as an example the CGMY model with Y = 1.5. The other param-
eters are chosen as S0 = 100; K = 80; C = 1; M = 5; G = 5. Table 2
compares time and accuracy of the CPU and the GPU results, with time
measured in milli-seconds. Table 2 shows that with N = 1024 the GPU
implementation is 1.5 times faster than running the code on the CPU. How-
ever, it is not necessary to take such a large value of N in the COS method
in practice, as with N = 256 the option values already differ less than one
basis point. Therefore, in the present setting (COS method, small values of
N) the GPU is not advantageous. However, with multiple strikes, presented
in Sections 4 and 5, many more computations are needed so that the GPU
performance is expected to be more profound.

4 Multiple Strike Option Pricing

In this section we focus on pricing European options, but now with multiple
strikes, on the GPU. The parameters used, next to S0 = 100, in the CGMY
process and for the Heston process are:

CGMY : r = 0.1;C = 1;G = 5;M = 5;Y = 1.5;T = 1;
Heston : λ = 1.577; η = 0.575; r = 0.040, µ0 = 0.018; ρ = −0.57;T = 10.

We price European call options with different vectors of strikes, as shown in
Table 3.

To efficiently implement (11) on a GPU, we first divide the P–axis and
the N–axis in different blocks and threads, as shown in Figure 2.

Figure 2: Blocks and threads.

Then each element of a (P ×N)-matrix can be calculated simultaneously
as illustrated in Figure 3.

When performing the summation on each row of matrix v, as the final
step in (11), we divide the (P × N)-matrix into smaller sub-matrices. For
instance, with N = 128, and 21 strikes, the corresponding 21 × 128-matrix
can be subdivided into fifty–six 3×16-matrices. The values of these smaller
sub-matrices are copied to shared memory as shown in Figure 4:

Here aBegin is the first location of As, i.e. the blocks with shared mem-
ory, and tx, ty are the thread indices of As. Then as we run the program,
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Figure 3: Parallelization of cos method for options with multi–strike.

Figure 4: Data transfer from global memory to shared memory.

data transfer only happens within the shared memory, and not in the global
memory, which saves us a lot of GPU time.

4.1 Convergence and Precision

Tables 4 and 5 present the convergence behaviour and the precision of option
values with 5 strikes and 21 strikes, respectively, for the two underlying
processes. Time is again measured in milli-seconds. Option values obtained
with N = 216, and in double precision, are taken as the reference values.
We calculate the maximum absolute error, for varying values of N , over the
strike vectors.

Both the GPU and CPU results are extremely fast, as we need only
N = 64 for the CGMY process and N = 128 for Heston’s model, to obtain
converged option values on the GPU and the CPU. However, the execution
time on the GPU is significantly smaller than on the CPU. As we are in the
milli-seconds range, one might question the relevance of this gain in speed.
However, within a calibration setting option prices have to be computed
several thousands of times, which immediately turns a small gain into a
significant profit. The advantage of the use of the GPU becomes more
pronounced when the values ofN andK increase, since then more arithmetic
operations are required. As shown in Tables 4 and 5, the acceleration on the
GPU for Heston’s model increases for 5 strikes from 12 to 21, as N increases
from 128 to 256. For 21 strikes, the speed-up on the GPU is a factor 37
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for N = 128 and 47 for N = 256. Since the evaluation of the characteristic
function of the Heston model is more involved than the one of the CGMY
model, the speed-up on the GPU for the Heston model is higher than for
the CGMY model. However, due to the fact that the present GPUs give
computed values in single precision only, round-off errors can build up easily
during the computation of the characteristic function on the GPU. A larger
maximum absolute error for the Heston model is therefore observed in the
tables.

In the next section, we will deal with an explicit Runge-Kutta ODE
solver to determine the characteristic function for Heston’s model. In this
numerical procedure operations like taking the square root of a complex
number are not needed, in contrast to the evaluation of the analytic solution.
For the numerical ODE solver the influence of single precision arithmetic is
therefore less pronounced, and we obtain a higher accuracy than with the
analytic characteristic function.

Figure 5 presents the speed-up obtained on the GPU for different num-
bers of strikes, with N = 128, 512, 2048. When N is relatively small (N =
128), we get an improved speed-up when the number of strikes increases.
With N large (N = 512, 2048), however, more strikes may lead to a lower
speed-up factor on the GPU due to the increased data transfer time between
the CPU and the GPU, and due to the fact that a larger memory is needed.
Figure 5 displays a speed-up of 30-40 for 21 strikes on the GPU with only
N = 128, and a speed-up of 60-70 for 13 and 17 strikes with N = 512.

Figure 6 shows that, due to the parallelization, the GPU time hardly
changes for N ≈ 29 − 210. With N > 210, however, the GPU time increases
as the influence of data transfer time comes into play.

Figure 5: GPU speed-up for Heston model with different number of strikes,
N = 128, 512, 2048.
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Figure 6: GPU time versus N for different stochastic models.

5 Riccati ODEs and Characteristic Function

The Riccati ODEs arise in the determination of a characteristic function.
Often, as in the case of the Heston model, the characteristic function is
known analytically. In the cases for which we cannot find an analytic ex-
pression, we may resort to a numerical solution of the Riccati ODEs. This
is typically for systems of stochastic differential equations that are involved
(meaning, including stochastic interest rate, by means of a two-factor model,
and stochastic volatility, for example) we need the numerical approximation.
Here, we focus again on the Heston model, and pretend that the character-
istic function is not available. We aim at determining it by means of an
explicit Runge-Kutta ODE solver. From [8] we know that the characteristic
function for the Heston model (19) is of the following form:

φx,µ(ω, t) = eA(ω,t)+Bµ(ω,t)µ0+Bx(ω,t)x0 , (20)

with the coefficients A(ω, t), Bx(ω, t) and Bµ(ω, t) given by the following
Riccati ODEs:

∂
∂tBx(ω, t) = 0, Bx(ω, 0) = iω

∂
∂tBµ(ω, t) = 0.5η2µ2

t − (λ− iρηω)µt − 0.5iω − 0.5ω2, Bµ(ω, 0) = 0

∂
∂tA(ω, t) = λµ̄µt + i(r − q)ω, A(ω, 0) = 0.

(21)
It is easy to see from (21) that Bx(ω, t) = iω. A(ω, t) and Bµ(ω, t) are
solved numerically by the explicit fourth order Runge–Kutta method (RK4),
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and inserted in the general characteristic function (20), to employ the COS
method.

Tables 6 and 7 show the timing results on the GPU and the CPU for 5
and 21 strikes, respectively, with the characteristic function determined by
the RK4 method. Compared to the Tables 4 and 5, a higher speed-up can
now be achieved on the GPU compared to the case in which the analytic
characteristic function is used. For 5 strikes, with N = 128 and N = 256,
the GPU timings are 45 and 65 times faster than the CPU results. For 21
strikes the acceleration on the GPU is a factor of 103 and 100. Note that for
21 strikes, due to increased data transfer, the speed-up factor reduces as N
increases, but since the COS method exhibits an exponential convergence
rate, the choice N = 128 is sufficient for converged option prices.

Figure 7 shows the speed-up factor for the GPU with N = 128, 256, 512
and a different number of strikes. The advantage of using the GPU for
these computations is obvious. Of course, option pricing with an analytic
characteristic function is still fastest, but the numerical solution of Riccati
ODEs can be performed highly efficiently on these units.

Figure 7: GPU acceleration for Heston model with different strike vectors
and N , characteristic function obtained by RK4.

6 Bermudan Options

In this section we consider the pricing of Bermudan options with a discrete
number of early exercise points. Also here we do not focus on large numbers
of N or on many time points, M . In particular, by using the COS pricing
method, with N = 160, we obtain the price of a Bermudan option already
with an error of less than 10−9. Moreover, Bermudan options with up to
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64 time points (M = 64) are typically sufficient to get a very satisfactory
approximation of the value of an American options (that can be exercised
at any time before expiry) by a repeated Richardson extrapolation, see [3].

We will show in this section that by exploiting the parallelism on a
GPU the COS algorithm executes faster than on the CPU, even with a
“not-more-than-necessary” terms, N , in the Fourier cosine expansion and
“not-more-than-necessary” time points, which is attractive from a practical
point-of-view. However, the reduction of the total execution time is not as
impressive as in the previous sections.

We use as a numerical example a Bermudan put option under CGMY.
The model parameters are S0 = 100;K = 80;M = 10;C = 1;M = 5;G =
5;Y = 1.5. Tables 8 and 9 compare time and accuracy between the GPU
and CPU.

It is shown that, with N relatively small, the Bermudan option price
converged well and that the error is small. However, as mentioned before,
as N gets larger, probably for other types of options, the advantage of using
the GPU will become more obvious.

6.1 Increasing Number of Exercise Dates

We increase the number of exercise dates, M , to 20, 40 and 80 and compare
the GPU with the CPU time. The model parameters are S0 = 100;K =
80;N = 512;C = 1;M = 5;G = 5;Y = 1.5. Results are listed in Tables 10
and 11.

With N = 512 the GPU is twice as fast as the CPU for different numbers
of exercise dates. The number of exercise dates does not influence the speed-
up factor of the GPU. This is because the algorithm can not be parallelized
in time, as we use values at tm+1 to calculate values at tm in the backward
recursion procedure. This results in a recursion of m = M − 1, · · · , 1 in the
CUDA implementation.

Furthermore, as the number of early exercise dates increases, the GPU
option values converge slower than the CPU, double precision, values. For
instance, when N = 1024, the GPU option price for M = 80 is 28.932182,
which resembles the reference value of 28.932234 closer than the value re-
ported in Table 11.

7 Conclusions

The COS method is a highly efficient pricing method for both European
and early–exercise options. It is a challenge to implement such an efficient
method, which requires a small number of terms in the Fourier cosine ex-
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pansion and a small number of exercise dates to approximate the value of
an American option, efficiently on a GPU.

In this paper, we implemented COS algorithm on the GPU, and the GPU
time and option values were compared to those obtained on the CPU. We
optimized the GPU implementation, by splitting a vector and performing
the summation in parallel to exploit the advantages of a GPU.

A highly satisfactory performance on the GPU is observed especially
in the case of multiple strike European option computations. Then, we
find speed-up factors ranging from 10 to 100, depending on the form of
the characteristic function and on the number of strikes that is computed
simultaneously.

Although computation on a GPU to date still exhibits several disad-
vantages, such as single precision arithmetic, a time-consuming memory
transfer, and additional computations due to an unscaled inverse Fourier
transform, it is a promising architecture for option pricing.

Whereas for the Heston model an analytic characteristic function is well-
known, this is not the case for more complex hybrid stochastic models. Their
characteristic functions need to be determined numerically by a Riccati ODE
solver. Based on our results this is also a favorable exercise on a GPU. A
GPU-based architecture may therefore serve very well as a calibration engine
in option pricing.
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N 16 32 64
msec(cpu1) 0.337 0.388 0.506

msec(cpu2) 0.1032 0.1503 0.2270
max.abs.error 0.0059 9.1396e-08 1.4211e-14

Table 1: Comparison of cpu times between different CPUs,.

N CPU(time) GPU(time) CPU(value) GPU(value)
256 0.193. . . 0.182 27.974744 27.974733
1024 0.691. . . 0.433 27.974744 27.974733

Table 2: Comparison of time and precision for CPU and GPU implementa-
tion of the COS method for a single European option.

Number op strikes value of K
3 strikes K = 80, 100, 120
5 strikes K = 80, 90, 100, 110, 120
9 strikes K = 80, 85, · · · , 115, 120
13 strikes K = 70, 75, · · · , 125, 130
17 strikes K = 60, 65, · · · , 135, 140
21 strikes K = 50, 55, · · · , 145, 150

Table 3: Vectors of strikes used in the numerical examples.
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CGMY model
N 32 64 128

MATLAB
msec 0.413230 0.745590 1.388770

max.abs.err 1.3409e-05 < 10−14 < 10−14

GPU
msec 0.141144 0.143051 0.152826

max.abs.err 0.000027 0.000034 0.000034
Heston model

N 64 128 256

MATLAB
msec 1.206600 1.958680 3.873950

max.abs.err 4.2839e-04 2.2218e-08 < 10−14

GPU
msec 0.154972 0.159979 0.182867

max.abs.err 0.000534 0.000104 0.000104

Table 4: Convergence and maximum absolute error when pricing a vector
of 5 strikes.

CGMY model
N 32 64 128

MATLAB
msec 1.335130 2.690250 5.340340

max.abs.err 1.3409e-05 < 10−14 < 10−14

GPU
msec 0.154018 0.169992 0.200987

max.abs.err 0.000053 0.000053 0.000053
Heston model

N 64 128 256

MATLAB
msec 3.850890 7.703350 15.556240

max.abs.err 6.0991e-04 2.7601e-08 < 10−14

GPU
msec 0.177860 0.209093 0.333786

max.abs.err 0.000534 0.000144 0.000144

Table 5: Convergence and maximum absolute error when pricing a vector
of 21 strikes.

Heston model
N 64 128 256

MATLAB
msec 37.9491 50.5196 81.1083

max.abs.err 4.2848e-04 8.4949e-08 1.0650e-07

GPU
msec 1.091957 1.121998 1.253843

max.abs.err 0.000443 0.000013 0.000013

Table 6: Convergence and maximum absolute error for 5 strikes, character-
istic function obtained by RK4.
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Heston model
N 64 128 256

MATLAB
msec 84.9870 145.0005 268.2299

max.abs.err 6.0979e-04 1.5607e-07 1.2847e-07

GPU
msec 1.228094 1.402855 2.689838

max.abs.err 0.000611 0.000037 0.000037

Table 7: Convergence and maximum absolute error for 21 strikes, charac-
teristic function obtained by RK4.

N CPU(time) GPU(time)
256 13.15. . . 11.02
512 24.69. . . 13.69
1024 46.65. . . 27.34

Table 8: Comparison between CPU and GPU time for the CGMY model,
for a Bermudan option; different numbers of terms in the Fourier cosine
expansion.

N CPU(value) GPU(value)
256 28.829781987399432 28.829739
512 28.829781987399425 28.829721
1024 28.829781987399404 28.829756

Table 9: Precision on the GPU, Bermudan put option, for different numbers
of terms in the Fourier cosine expansion.

M CPU(time) GPU(time)
20 51.04. . . 26.09
40 104.00. . . 50.88
80 210.20. . . 100.54

Table 10: Comparison of CPU and GPU times for the CGMY model, Bermu-
dan option with a different numbers of exercise dates.

M CPU(value) GPU(value)
20 28.888713582335640 28.888538
40 28.917953599279208 28.917654
80 28.932234254713762 28.931826

Table 11: Precision on the GPU, Bermudan put with different numbers of
exercise dates.
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