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Abstract

We propose algorithms of adaptive integration for calculation of the

tail probability in multi-factor credit portfolio loss models. We first devise

the classical Genz-Malik rule, a deterministic multiple integration rule

suitable for portfolio credit models with number of factors less than 8.

Later on we arrive at the adaptive Monte Carlo integration, which simply

replaces the deterministic integration rule by pseudo-random numbers.

The latter can not only handle higher-dimensional models but is also

able to provide reliable probabilistic error bounds. Both algorithms are

asymptotic convergent and consistently outperform the plain Monte Carlo

method.

1 Introduction

We consider the computation of the tail probability of credit portfolio loss L
in a multi-factor model like CreditMetrics (Gupton et al. 1997). In such latent
factor models the obligors are assumed to be independent conditional on some
d latent factors, denoted by Yd. We are interested in the estimation of the tail
probability

P (L > x) =

∫

P
(

L > x |Yd
)

dP (Yd),
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especially for extreme losses x. This is essential for the determination of the
portfolio Value at Risk (VaR). The integrand P

(

L > x |Yd
)

can be approxi-
mated with ease since conditional on Yd, the portfolio loss L reduces to a sum of
independent random variables. Various approximations exist and prove to work
very well, for example, the recursive method due to Andersen et al. (2003), the
normal approximation method as in Martin (2004) and the saddlepoint approx-
imation presented in Huang et al. (2007). In a one-factor model (d = 1), the
calculation of the integral can be handled efficiently by Gaussian quadrature.

When one wishes to take into account the effects of different industries and
geographical regions, multiple factors become necessary. A multi-factor model is
certainly able to capture the correlation structure among obligors (or defaults)
better. Meanwhile the computation of the tail probability P (L > x) in a multi-
factor model is much more involved. The product quadrature rule becomes im-
practical because the number of function evaluations grows exponentially with
d and the so-called curse of dimensionality arises.

In this article we deal with the high-dimensionality and show that adaptive
integration algorithms are very well suited for the calculation of the tail prob-
ability. An adaptive integration algorithm successively divides the integration
region into subregions, detects the subregions where the integrand is most irreg-
ular, and places more points in those subregions. We first devise the Genz-Malik
rule (Genz & Malik 1980), a deterministic multiple integration rule suitable for
portfolio credit models with a number of factors less than 8. Later on we arrive
at the adaptive Monte Carlo integration, which simply replaces the deterministic
integration rule by pseudo-random numbers.

The rest of the article is organized as follows. We give in section 2 an intro-
duction into a multi-factor portfolio credit loss model and derive certain prop-
erties of the conditional tail probability as a function of the common factors.
Section 3 gives a motivation for adaptive integration by means of a one-factor
model example. In section 4 we briefly review the globally adaptive integration
algorithm and the Genz-Malik rule. Section 5 presents a tailor-made Genz-Malik
rule for the computation of tail probability in the context of portfolio credit loss,
followed by some numerical results in section 6. We then discuss the adaptive
Monte Carlo integration in section 7 and show some numerical results in section
8. Section 9 concludes.

2 Multi-factor portfolio credit loss model

Consider a credit portfolio consisting of n obligors with exposure wi, i = 1, . . . , n.
Assume that obligor i defaults if its standardized log asset value Xi is less than
some default threshold γi after a fixed time horizon. The event of default can
be modeled as a Bernoulli random variable Di = 1{Xi<γi} with known default
probability pi = P (Xi < γi). It follows that the loss Li due to obligor i is simply
wiDi and the portfolio loss is given by
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L =
n
∑

i=1

Li =
n
∑

i=1

wiDi. (1)

A key issue in portfolio credit loss modeling is the modeling of the default
dependence among obligors. It is common practice to utilize a latent factor
model. The correlations among Li are specified implicitly by a factor model of
asset correlations such that

Xi = αi1Y1 + · · · + αidYd + βiZi, (2)

where (Y1 . . . Yd) and Zi are independent for all i. (Y1 . . . Yd) are thought as
systematic factors that affect more than one obligor and Zi is an idiosyncratic
part that only affects an obligor itself. In case that d = 1 the model reduces to
a one-factor model, in which Y can be interpreted as the “state of economy”. A
well-known example of the one-factor model is the Vasicek (2002) model. More
factors are necessary if one wishes to take the effects of different industries
and geographical regions into account. The resulting multi-factor model offers a
better solution to identifying the correlations among individual obligors. Write

Yd = (Y1, . . . , Yd) and αi = (αi1, . . . , αid).

It is easily deduced that Xi and Xj are conditionally independent given the
realization of Yd. This implies that Li and Lj are also conditionally independent
given Yd.

In this article we are interested in the estimation of tail probability

P (L > x) =

∫

P
(

L > x |Yd
)

dP (Yd), (3)

especially for extreme losses x. This is essential for the determination of the
portfolio Value at Risk (VaR). For now we consider the widely used Gaussian
factor model as in CreditMetrics (Gupton et al. 1997), where Y1 . . . Yd and all
Zi are i.i.d. standard normal random variables. α2

i1 + · · ·+ α2
id + β2

i = 1 so that
the Xi are also standard normally distributed. We further assume that all αik

and βi are nonnegative.
Under this setup the probability of default of obligor i conditional on the

common factor Yd is given by

pi

(

Yd
)

= P
(

Di = 1|Yd
)

= P
(

Xi < γi|Yd
)

= Φ

(

Φ−1(pi) − αi ·Yd

βi

)

, (4)

where Φ denotes the cumulative distribution function of the standard normal
distribution. Equation (4) shows that the individual conditional default proba-
bility is non-increasing in Yd. An important consequence is that the conditional
tail probability of portfolio loss P

(

L > x |Yd
)

is also non-decreasing in Yd.
Without loss of generality, we prove the following proposition.
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Proposition 1. The mapping

yk 7−→ P (L > x|Y1 = y1, Y2 = y2, . . . , Yd = yd), k = 1, · · · , d,

is non-increasing in yk.

Proof. Let us write

L =

n
∑

i=1

wi1{Xi<γi} =

n
∑

i=1

wi1{αi1y1+···+αidyd+βiZi<γi}.

The conditional tail probability can be reformulated to be

P (L > x|Y1 = y1, Y2 = y2, . . . , Yd = yd) = P

(

n
∑

i=1

wi1{αi1y1+···+αidyd+βiZi<γi} > x

)

.

The indicator function

1{αi1y1+···+αidyd+βiZi<γi} = 1{Zi<
1

βi
(γi−αi1y1−···−αidyd)}

is non-increasing in yk for all k when αik and βi are nonnegative for all i. It
follows that

n
∑

i=1

wi1{αi1y1+···+αidyd+βiZi<γi}

is also non-increasing in yk for all k. This immediately leads to the assertion.

In addition it is not difficult to derive that P (L > x| −∞, . . . ,−∞) = 1 and
P (L > x| + ∞, . . . , +∞) = 0.

The rest of this article hinges strongly on the validity of Proposition 1. Note
that Proposition 1 is a quite general result. Its proof is not contingent on the
assumption that Y1, . . . Yd are independent. The distributions of Yd and Zi,
i = 1, . . . , n are not relevant either. The only two necessary conditions for the
monotonicity are

1. Yd and Zi, i = 1 . . . n are independent, and

2. the factor loadings, αik , i = 1, · · · , n, k = 1, · · · , d are all nonnegative.

Proposition 2. P (L > x|Y1, Y2, . . . , Yd) is continuous and differentiable with
respect to Yk, k = 1, · · · , d.

Proof. Denote by ε = (ε1, . . . , εn) = {0, 1}n a realization of (D1, . . . , Dn) and
write w = (w1, . . . , wn). The conditional tail probability is given by

P (L > x|Yd) =
∑

ε:w·ε>x

P
(

Di = εi, i = 1, . . . , n|Yd
)
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As Di and Dj are independent conditional on Yd, we get

P
(

Di = εi, i = 1, . . . , n|Yd
)

=
n
∏

i=1

[

pi

(

Yd
)]εi

[

1 − pi

(

Yd
)]1−εi

.

Since pi (Y1, Y2, . . . , Yd) is continuous and differentiable in Yk for all k, so is the
tail probability P (L > x|Y1, Y2, . . . , Yd).

3 Motivation for adaptive integration: a one-

factor model

We start with a Gaussian one-factor model, motivating the need for adaptivity
in the numerical integration. For integration we employ a straightforward N -
point Gauss-Legendre quadrature rule. We truncate the domain of the common
factor Y to the interval [−5, 5] so that the probability of Y falling out of this
interval is merely 5.7 × 10−7. Denote the Gauss nodes and weights by Yk with
Y1 > Y2 > ... > YN and uk, k = 1, . . . , N , respectively. The tail probability
P (L > x) is then approximated by

P (L > x) ≈
∫ 5

−5

P (L > x|Y )dP (Y ) ≈
N
∑

k=1

P (L > x|Yk)φ(Yk)uk, (5)

where φ denotes the probability distribution function of the standard normal
distribution.

Take as an example a homogeneous portfolio A consisting of 1000 obligors
with wi = 1, pi = 0.0033 and αi =

√
0.2, i = 1, . . . , 1000. The integrand

P (L > x|Y ) with x = 100 is illustrated in Figure 1. It is a non-increasing
function of Y . Furthermore, it decreases rapidly from its upper bound 1 to
its lower bound 0 for Y in a narrow band (between the two dashed vertical
lines in Figure 1) much smaller than the domain of Y . Note that the band
will move toward the left tail of Y as the loss level x increases. Moreover the
width of the band should further decrease as the number of the obligors n
increases. Asymptotically, as n → ∞, P (L > x|Y ) approaches a Heaviside
step function. Due to the law of large numbers, L(Y ) → ∑

wipi(Y ) a.s. and
P (L > x|Y ) → 1{

∑

wipi(Y )>x}.
Generally an N -point quadrature rule demands N integrand evaluations.

However since in our problem the integrand is monotone and bounded in [0, 1],
significantly fewer evaluations are necessary with an adaptive integration algo-
rithm for the same accuracy. Below we give a simple procedure that utilizes the
nodes of an N -point Gauss-Legendre quadrature rule. It produces identical re-
sults for the integral (5) as the N -point quadrature but it substantially reduces
the number of integrand evaluations. For simplicity, we write f(Y ) instead of
P (L > x|Y ) and denote I = P (L > x). Basically the algorithm first identifies
the smallest node y1 giving f(y1) = 0. It then discards all nodes larger than
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Figure 1: The integrand P (L > 100|Y ) as a function of the common factor Y
for portfolio A, which consists of 1000 obligors with wi = 1, pi = 0.0033 and
αi =

√
0.2, i = 1, . . . , 1000.

y1 and proceeds sequentially with decreasing Y until we find a y2 such that
f(y2) = 1. For all Y < y2 we set f(Y ) = 1.

Algorithm 1 1D adaptive integration

Generate the N -degree Gaussian nodes Y1, . . . , YN and weights u1, . . . , uN

Find Yi = min{Yk|f(Yk) = 0, k = 1, . . . , N}
j = i + 1, I = 0
while j ≤ N, f(Yj) < 1 do

I = I + f(Yj) · φ(Yj) · uj

j = j + 1
end while

I = I +
∑N

k=j φ(Yk) · uk

For the above example with N = 100 this algorithm results in less than 20
integrand evaluations. It is evident that an adaptive integration algorithm is
able to effectively reduce the amount of computations in a one-factor model.
Unfortunately the above algorithm cannot be extended to a multi-factor model
by a simple product rule.

4 Globally adaptive algorithms for numerical in-

tegration

Consider now a general integral over a d-dimensional rectangular region Cd

I(f) =

∫

· · ·
∫

Cd

f(x)g(x)dx1dx2 · · · dxd, (6)

where x = (x1, x2, . . . , xd) and g(·) is a weight function.
Monte Carlo simulation and quasi-Monte Carlo methods are the prevailing

methods used to solve multi-dimensional problems in finance. Both methods
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do not suffer from the dimensional effect. The Monte Carlo method is known
to be only accurate with a tremendous amount of scenarios since its rate of

convergence is O
(

1/
√

N
)

. Quasi-Monte Carlo methods use deterministic se-

quences that have better uniform properties measured by discrepancy. They are
usually superior to the Monte Carlo method as they have a convergence rate
of O

(

(log N)d/N
)

. The advantage of the Monte Carlo method is however that
it gives practical probabilistic error bounds. As for quasi-Monte Carlo methods
even though they are able to provide a deterministic error bound, the bounds
can be unrealistically pessimistic (cf. Spanier & Maize 1994, Cools 2002).

Recall that integration with both Monte Carlo and quasi-Monte Carlo meth-
ods require a transformation of integration region into the unit cube [0, 1]d.
Pseudo-random numbers or quasi-random sequences are then generated uni-
formly in the [0, 1]d cube. This can however be inefficient if most of the points
are placed outside the regions which are significant for the evaluation of the
integral. In this respect the better uniform properties of quasi-Monte Carlo se-
quences over Monte Carlo simulation can be meaningless. In addition, both
Monte Carlo and quasi-Monte Carlo methods are not able to take advantage of
the regularity of the integrand.

4.1 Preliminaries

An adaptive integration algorithm differs fundamentally from Monte Carlo and
quasi-Monte Carlo methods in that it successively divides the integration region
into subregions, detects the subregions where the integrand is most irregular,
and places more points in those subregions.

We restrict ourselves to the globally adaptive algorithms for multi-
dimensional integration, which typically have a structure that consists of the
following steps:

1. Choose a subregion from a collection of subregions and subdivide the
chosen subregion.

2. Apply an integration rule to the resulting new subregions; update the
collection of subregions.

3. Update the global integral and error estimate; check whether a predefined
termination criterion is met; if not, go back to step 1 .

The two important ingredients of an adaptive algorithm are

1. an integration rule for estimating the integral in each subregion.

2. an error estimate for each subregion.

Definition 1. An integration rule for the cube [−1, 1]d is fully symmetric if,
whenever the rule contains a point x = (x1, x2, ..., xd) with associated weight u,
it also contains all points that can be generated from x by permutations and/or
sign-changes of the coordinates with the same associated weight.

7



Example 1. If a fully symmetric integration rule for the square [−1, 1]2 con-
tains (x1, x2), with x1 6= x2, then it also contains the following points, (x1,−x2),
(−x1, x2), (−x1,−x2), (x2, x1), (x2,−x1), (−x2, x1), (−x2,−x1).

A variety of fully symmetric polynomial interpolation rules for multiple inte-
gration in a d-rectangle are available. An integration rule has polynomial degree
m if it integrates exactly all monomials xk1

1 xk2
2 . . . xkd

n with
∑

ki ≤ m and fails
to integrate exactly at least one monomial of degree m+1. For a comprehensive
review see Stroud (1971), Cools & Rabinowitz (1993), Cools (1999).

An error estimate ε is generally taken to be the difference of two quadrature
rules with different degrees of exactness m1 and m2,

ε = Im1 − Im2 , m1 > m2.

It is expected that Im1 is a better approximation to I than Im2 , i.e.,

|I − Im1 | ≤ |Im1 − Im2 |, m1 > m2 (7)

so that |Im1 − Im2 | acts as a conservative estimate of the integration error.
The use of the error estimate is usually two-fold. The subregions with the

largest error estimates in absolute value will be chosen for subdivision. Be-
sides, the (local) error estimates for each subregion can be aggregated over
the whole integration region Cd to attain a global error estimate. The global
absolute/relative error can serve as a termination criterion for subdivision. Sub-
division will continue until either the global absolute/relative error falls below
a level or a maximum number of function evaluations has been reached, or a
combination of them.

4.2 The Genz-Malik rule

The Genz & Malik (1980) rule is a fully symmetric degree 7 rule. It gives an
integration rule in the square [−1, 1]d but can be readily generalized to any
rectangular region by an affine transformation. The degree 7 rule is given as
follows

I7(f) =u1f(0, 0, . . . , 0) + u2

∑

FS

f(λ2, 0, 0, . . . , 0) + u3

∑

FS

f(λ3, 0, 0, . . . , 0)+

+ u4

∑

FS

f(λ4, λ4, 0, 0, . . . , 0) + u5

∑

FS

f(λ5, λ5, . . . , λ5), (8)

where
∑

FS denotes a fully symmetric summation over all permutations of co-
ordinates including sign changes and

λ2
2 =

9

70
, λ2

3 = λ2
4 =

9

10
, λ2

5 =
9

19
,

u1 = 2d(12824− 9120d + 400d2)/19683,

u2 = 2d(980/6561),
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u3 = 2d(1820− 400d)/19683,

u4 = 2d(200/19683),

u5 = 6859/19683.

All integration nodes are inside the integration domain. The degree 7 integration
rule requires 2d +2d2 +2d+1 integrand evaluations for a function of d variables
and is thus known to be most advantageous for problems with d ≤ 8. We remark
that, by contrast, a Gauss-Legendre quadrature rule of degree 7 would require
4d integration evaluations, which is significantly larger for d ≥ 3.

Example 2. The Genz-Malik rule in the square [−1, 1]2 evaluates a function at

the following 17 points, (0, 0), (±
√

9
70 , 0), (0,±

√

9
70 ), (±

√

9
10 , 0), (0,±

√

9
10 ),

(±
√

9
10 ,±

√

9
10 ), (±

√

9
19 ,±

√

9
19 ).

The Genz-Malik rule distinguishes itself from other multiple integration rules
in that it has an embedded degree 5 rule for error estimation. The degree 5 rule
uses a subset of points of the degree 7 rule, which means that no additional
integrand evaluations are necessary. This is highly desirable for multidimensional
problems. The embedded degree 5 rule is given by

I5(f) =u′
1f(0, 0, . . . , 0) + u′

2

∑

FS

f(λ2, 0, 0, . . . , 0) + u′
3

∑

FS

f(λ3, 0, 0, . . . , 0)+

+ u′
4

∑

FS

f(λ4, λ4, 0, 0, . . . , 0), (9)

with
u′

1 = 2d(729− 950d + 50d2)/729,

u′
2 = 2d(245/486),

u′
3 = 2d(265 − 100d)/1458,

u′
4 = 2d(25/729).

As pointed out in the preceding section, an error approximation for each
subregion is simply the difference of these two rules, i.e.,

ε = I7 − I5. (10)

Starting from the whole integration region, in every step the (sub)region with
the largest error estimate in absolute value will be chosen for subdivision. The
division rule used to determine along which direction to divide is due to van
Dooren & de Ridder (1976). To avoid an exponential explosion in the number
of subregions, the chosen region is not divided into 2d subregions but only into
two. In particular, the direction that has the largest fourth divided difference is
halved. Five points are used in the direction i = 1, . . . , d,

xi = −λ3,−λ2, 0, λ2, λ3, and xj = 0 for j 6= i.
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And the fourth divided differences are given by

Difi = [f(−λ3) − 2f(0) + f(λ3)] −
λ2

2

λ2
3

[f(−λ2) − 2f(0) + f(λ2)]. (11)

Note that no additional integrand evaluations are required here either.
It follows that after K − 1 subdivisions, the integration region Cd is divided

into K non-overlapping rectangular subregions. For any subregion k, the Genz-

Malik rule gives a local integral estimate I
(k)
7 , a local error estimate ε(k) and a

direction s(k) that has the largest fourth divided difference given by (11), which
is then chosen for the next subdivision. Aggregating the local information over
Cd we obtain a global integral estimate to I(f) as follows,

I7(f) =
K
∑

k=1

I
(k)
7 (f), (12)

where I
(k)
7 (f) is calculated by (8) with suitable affine transformation. Meanwhile

the K local error estimates sum to a global error estimate i.e., ε =
∑K

k=1 ε(k).
A remark is that when a region is subdivided, integrand values evaluated

in this region are discarded and the integration rule is applied in both new
subregions. Roughly this means that in the long run only half of the integrand
evaluations is used for the calculation of the integral, the other half is wasted
in the process of subdivision.

5 A tailor-made adaptive Genz-Malik rule

We restate our problem as calculating

I(f) =

∫

· · ·
∫

Cd

f(Yd)φ(Yd)dY1 · · · dYd, (13)

where f(Yd) = P (L > x|Yd) is bounded in [0, 1] and φ(Yd) is the probabil-
ity density function of d-dimensional normal distribution with zero mean and
identity covariance matrix.

A major problem with the Genz-Malik rule is that the weights ui can be
negative: u1 < 0 for 2 ≤ d ≤ 21 and u3 < 0 for d ≥ 5. Consequently even
though our integrand is always positive in some subregions a straightforward
Genz-Malik rule may give negative results for the integral. This however can be
rather easily dealt with in our context. Recall from Prop. 1 that f(Yd) should
be bounded in any rectangular (sub)region [a1, b1] × [a2, b2] . . . × [ad, bd], more
specifically,

f(b) ≤ f(Yd) ≤ f(a), (14)

where a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd). As a result we have for I (k)(f),
superscript (k) indicating subregion k, both an upper bound and a lower bound,

10



i.e.,

f(b(k))

d
∏

i=1

(

Φ(b
(k)
i ) − Φ(a

(k)
i )
)

≤ I(k)(f) ≤ f(a(k))

d
∏

i=1

(

Φ(b
(k)
i ) − Φ(a

(k)
i )
)

.

(15)
Denote by U (k), L(k) the upper bound and lower bound respectively for sub-
region k. Positivity of the integrand can be easily preserved by the following
correction,

I
(k)
7 (f) = I

(k)
7 (f)1{L(k)≤I

(k)
7 (f)≤U(k)} + L(k)1{I

(k)
7 (f)<L(k)} + U (k)1{I

(k)
7 (f)>U(k)}.

(16)
The last term in Eq. (16) in addition corrects possible overshooting of the in-
tegration rule to some extent. More importantly, the local bounds over all sub-
regions can be aggregated to a global upper bound and a global lower bound
for the whole integration region Cd. It follows that the estimate to the integral
should asymptotically converge to I(f) if we continue the subdivision until the
global upper bound and lower bound coincide.

It is also important to recognize that the integral can be calculated exactly
for subregions where the integrand is constantly 0 or 1. These subregions can
be identified by simply evaluating the integrand at the end points a(k) and b(k).
By bounded monotonicity we have

I(k)(f) =

{

0 if f(a(k)) = 0,
∏d

i=1

(

Φ(b
(k)
i ) − Φ(a

(k)
i )
)

if f(b(k)) = 1.
(17)

In these subregions we should set ε(k) = 0 .
We are now in a position to present our adaptive integration algorithm based

on a tailor-made Genz-Malik rule. It is presented as Algorithm 2. For clarity in
notation we use superscript l for local estimates in any subregion. s denotes the
subdivision direction of a subregion.

The error estimate ε deserves further investigation. Typically it not only
determines the region for subdivision in each step, but it is also used to check
whether the termination criteria are met. According to Lyness & Kaganove
(1976), Berntsen (1989), error estimates based on differences of two rules can in
general be unreliable. The inequality (7) is not necessarily satisfied, thus it is
possible that, while the actual error is very large, the estimated error is marginal.
Schürer (2001) shows that in particular the Genz-Malik rule performs rather
poor in terms of error estimation. Various ways of improving the reliability
of error estimates can be found in Berntsen (1989), Berntsen et al. (1991),
among which a simple approach is to use more than two integration rules for
error estimation. Following this we take a parsimonious change by including the
degree 1 midpoint rule for the square [−1, 1]d,

I1 = f(0, 0, . . . , 0),

11



Algorithm 2 adaptive integration for 2 ≤ d < 10

Apply the GM rule over the integration region,
return I l

7, εl and subdivision direction s, impose (16)
while termination criteria not met do

Choose the (sub)region with largest εl and divide along direction s.
Compute f(a) and f(b) for the resulting two subregions.
if f(a) = 0 or f(b) = 1 then

Apply (17), let εl = 0.
else

Apply the GM rule to both subregions, return I l
7, εl and s, impose (16).

end if

Update I7, ε and the subregion collection.
end while

which is also embedded in the degree 7 rule, as a second check on error. Thus
the error estimate is defined to be

ε = (I7 − I5)1{|I7−I5|≥|I7−I1|} + (I7 − I1)1{|I7−I5|<|I7−I1|}. (18)

The new error estimate is more reliable but also conservative. In fact I7 −
I5 is already too conservative an error estimate for the degree 7 rule since it
is rather an error estimate for the degree 5 rule. A stop rule based on such
absolute/relative errors can consequently be ineffective. It may well happen
that while the integration rule is giving accurate results, the error estimate
remains above a given precision level and the subdivision carries on more than
necessary, see e.g. Genz & Kass (1997). Hence a stop rule that does not rely on
ε is desirable. In return, when an error estimate is not used as a termination
criterion for subdivision, it no longer needs to provide a good approximation
for I(f)− I7(f). Instead, an error estimate is of sufficient quality if for any two
subregions k1 and k2, ε(k1) > ε(k2) implies

∣

∣

∣
I(k1)(f) − I

(k1)
7 (f)

∣

∣

∣
>
∣

∣

∣
I(k2)(f) − I

(k2)
7 (f)

∣

∣

∣

with a great probability. In this sense (18) is likely to outperform (10) as the
former will more often than not magnify the error estimate for subregions in
which the integrand varies substantially but provides little change in smooth
subregions.

An alternative termination criterion is suggested in Genz & Kass (1997).
They propose to compare the integral estimate after every h subdivision and
the algorithm is stopped when there is negligible change in successive results.
This is not difficult to understand. We have a converging sequence of integral
estimates in the process of subdivision. For K ′ < K, the relative error estimate
|ÎK′ − ÎK |/ÎK provides an indication whether the approximation has converged.
When the changes become sufficiently small it is reasonable to stop further
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division. A similar criterion is also adopted by Paskov & Traub (1995) to control
the generation of quasi-Monte Carlo sequences. The algorithm however has the
disadvantage that it can only be stopped after a multiple of h divisions. To
make the stop rule more flexible it is possible to define a moving window with
bandwidth h and replace |IK − IK−h| by

max
K−h≤K′<K

|IK − IK′ | ,

where K need not to be a multiple of h. In this way the algorithm can be
terminated for all K > h, and is also somehow more robust since the maximum
of the differences is used.

Variants of the stop rule can be further explored. Unfortunately these stop
rules share a common disadvantage that a practical error bound is lacking.
Therefore we would rather stay with the simplest termination criterion: max-
imum number of integrand evaluations or similarly, maximum number of sub-
divisions. This also saves us from the delicate problem of choosing suitable
parameters such as h, which can be quite arbitrary.

6 Numerical results I

Here we first illustrate by a two-factor model example how the adaptive inte-
gration algorithm works. For some arbitrary portfolio and suitable loss level x,
Figure 2(a) gives the conditional tail probability P (L > x|Y1, Y2) for (Y1, Y2)
truncated to the square [−5, 5]2. The integrand turns out to contribute nothing
to the integral value in almost 7/8 of the area, which suggests that an adaptive
algorithm should be favored. Figure 2(b) shows a scatterplot of the subregion
centers generated by the adaptive integration algorithm 2. It is clearly seen that
the adaptive algorithm does focus its integrand evaluation in the subregions
where the integrand values vary rapidly.

Let us consider again credit portfolio A with 1000 obligors with wi = 1,
pi = 0.0033, i = 1, . . . , 1000. However, we now move to a five-factor model such
that the obligors are grouped into 5 buckets of 200 obligors. Within each bucket,
the obligors have identical factor loadings

αi =











































(

1√
6
, 1√

6
, 1√

6
, 1√

6
, 1√

6

)

, i = 1, . . . , 200,
(

1√
5
, 1√

5
, 1√

5
, 1√

5
, 0
)

, i = 201, . . . , 400,
(

1√
4
, 1√

4
, 1√

4
, 0, 0

)

, i = 401, . . . , 600,
(

1√
3
, 1√

3
, 0, 0, 0

)

, i = 601, . . . , 800,
(

1√
2
, 0, 0, 0, 0

)

, i = 800, . . . , 1000.

We compute tail probabilities over a wide range of 20 loss levels from 75
to 550, with an increment of 25. These losses correspond to quantiles of the
portfolio loss distribution roughly from 99% to 99.99%. As a benchmark we
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Figure 2: Adaptive integration for a two-factor model. (a) integrand P (L >
x|Y1, Y2); (b) centers of the subregions generated by adaptive integration.

use simulation with a tremendous amount of scenarios. Integrand evaluation
is accomplished by the normal approximation and is considered to be exact.
We compare the results obtained by the adaptive Genz-Malik rule (ADGM),
the Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods with a similar
number of integrand evaluations, denoted by N . For the quasi-Monte Carlo
method we choose the SOBOL sequence. The sequence is generated by the GSL
library, which is based on Antonov & Saleev (1979).

We control the number of integrand evaluations rather than computation
time in the course of subdivision because the latter can vary substantially for
different portfolios, different methods for integrand evaluation and different data
structures of the subregion collection. The approximation error is measured by
the unsigned relative error (RE) defined as

|Î(f) − I(f)|
I(f)

,

where I(f) is the result given by the benchmark and Î(f) denotes any estimate
to I(f). The relative errors reported for the Monte Carlo method are averaged
over 100 different runs. Alongside the mean error we also show the 95% confi-
dence interval of the signed relative error. Since Monte Carlo simulation gives
an unbiased estimate, the confidence interval is simply ±1.96 times of the error
standard deviation.

We first show in Figure 3(a) the average performance of each method over
all 20 loss levels with different numbers of integrand evaluations N ranging from
50, 000 to 220. Note that for the adaptive integration, these correspond roughly
to K, the number of subregions, from 250 to 5, 000 because the Genz-Malik rule
samples in five dimensions around 100 points in each subregion. Apparently
the adaptive integration consistently outperforms both Monte Carlo and the
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quasi-Monte Carlo methods for all levels of N . Its relative errors are around
one-third of those obtained from plain Monte Carlo given the same amount of
integrand evaluations. Contrary to common knowledge, the quasi-Monte Carlo
method is here inferior to the Monte Carlo method, especially for low N ≤ 218.
The quasi-Monte Carlo method does show a higher convergence rate than the
plain Monte Carlo method, but that is only because it is so deviant for small
N . For example, the average relative error of quasi-Monte Carlo with 65, 536
(= 216) evaluations is more than 35%, while plain Monte Carlo and the adaptive
integration with around 50, 000 evaluations yield 12.4% and 5.8% respectively.

The poor performance of the quasi-Monte Carlo method, especially for small
N , is not unexpected. Let’s go back to the one-factor model example in section 3
and consider the binary van der Corput sequence, a one-dimension quasi-Monte
Carlo sequence, with the total number of points N = 2s−1 for some s ∈ Z+. We
concentrate on the interval Y ≤ −3 as this is the interval where the integrand
makes the most contribution according to Figure 1. In Figure 3(b) we show for
9 ≤ s ≤ 14 the percentages of quasi-Monte Carlo points falling in this interval
compared to Monte Carlo points. Note the more points are in this interval, the
more accurate the integration result will be. The percentage with the Monte
Carlo method is constantly Φ−1(−3) = 0.0013 by expectation. The van der
Corput sequence has no points at all in the interval with s = 9 and only catches
up with the Monte Carlo method for s ≥ 13.
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Figure 3: (a) Estimation relative errors of the adaptive Genz-Malik rule
(ADGM), Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods over 20
loss levels. The number of total integrand evaluations N ranges from 50, 000 to
220. (b) The percentages of Monte Carlo (MC) and quasi-Monte Carlo (QMC)
points that fall in the interval Y ≤ −3. The total number of points is N = 2s−1
with 9 ≤ s ≤ 14.

With around N = 106 evaluations, it seems that all three methods pro-
duce satisfactory results. Relative errors are, respectively, 0.9% (ADGM), 3.0%
(QMC) and 3.1% (MC). Figure 4 further compares the performance of the dif-
ferent methods with around 106 evaluations for various loss levels. Monte Carlo
and quasi-Monte Carlo methods are quite accurate for low loss levels but de-

15



teriorate notably as the loss level increases. An upward trend in the relative
error is conspicuous for both methods. In particular, for the loss level x = 550,
Monte Carlo has an error 8.8% and quasi-Monte Carlo gives 12.8%. By contrast,
the relative error of the adaptive integration for the same loss level is merely
0.5%. Even though at some low loss levels adaptive integration is not superior
to the other two methods, it dominates its two opponents for loss levels larger
than 300. The adaptive integration is remarkably distinct from Monte Carlo and
quasi-Monte Carlo methods in that it is not sensitive to the portfolio loss level
of interest. As a consequence, the adaptive integration becomes more and more
advantageous compared to Monte Carlo and quasi-Monte Carlo methods for in-
creasing loss levels. This is especially attractive for the purpose of determining
the portfolio VaR, which always involves large loss levels.
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Figure 4: Estimation relative errors of the adaptive Genz-Malik rule (ADGM),
Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods with around N =
106 evaluations for various loss levels.

A close-up look to the three methods for different loss levels is presented
in Figure 5. We show results for four loss levels, x = 75, 300, 400, 550, which
correspond to roughly quantiles 99%, 99.9%, 99.95% and 99.99%, respectively.
Two issues of the adaptive integration need to be addressed. First, increasing
the number of subregions K, generally improves the quality of an approximation
but it is not guaranteed. Second, as the accuarcy of an approximation is not
sensitive to the portfolio loss level, a stop rule seems to be less important. For
example, any K between 1, 000 and 2, 000 can serve as a reasonable termination
criterion.

7 Adaptive Monte Carlo integration

We have shown that adaptive integration based on the Genz-Malik rule provides
an efficient tool for calculating credit portfolio loss distribution in a multi-factor
framework. It is particularly advantageous in the tail of the loss distribution.
However the adaptive Genz-Malik rule still suffers from two problems. First, the
integration rule is only able to handle models with relatively low dimension, say
d ≤ 8. This is due to the fact that the number of integrand evaluations is fully
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(b) x = 300
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(c) x = 400
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(d) x = 550

Figure 5: Relative estimation error of P (L > x) by all methods for four different
loss levels x. PD= 0.0033, ρ = 0.2, d = 5.

determined by d and grows exponentially. Second, no practical error bounds are
available for the estimates. The second problem also applies to other multiple
integration techniques such as quasi-Monte Carlo methods and sparse grids.

A natural alternative that does not suffer from the above two problems
is Monte Carlo integration. A Monte Carlo integration embedded in a globally
adaptive algorithm is able to provide an unbiased estimate of the integral and
also probabilistic error bounds for the estimate. In the mean-time it has higher
accuracy and faster convergence than the plain Monte Carlo integration. The
idea of adaptive Monte Carlo integration is not new. Two well-known algorithms
can be found in Press & Farrar (1990) and Lepage (1990, 1980). It has how-
ever, to our knowledge, never been used in the context of credit portfolio loss
modeling.

Our adaptive Monte Carlo integration replaces the degree 7 Genz-Malik rule
with uniform random numbers as the integration rule. Let us go back to Eq. (13)
and write ξ = f ·φ. The tail probability as in Eq. (12) can then be approximated
by

Î(ξ) =

K
∑

k=1

Î(k)(ξ) =

K
∑

k=1

v(k)
M
∑

j=1

ξ
(k)
j

M
, (19)
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where K is the number of subregions, M is number of points in each subregion
and v(k) denotes the volume of subregion k. This estimate Î(ξ) is unbiased since
it is an independent sum of unbiased Monte Carlo estimates. The variance of
Î(ξ) is given by

V ar
(

Î(ξ)
)

=

K
∑

k=1

V ar



v(k)
M
∑

j=1

ξ
(k)
j

M



 =

K
∑

k=1

(

v(k)
)2

M
V ar

(

ξ(k)
)

, (20)

where V ar
(

ξ(k)
)

can be estimated from the simulated sample. If we use the un-
biased version of sample variance for each subregion, Eq. (20) gives an unbiased
estimate as well.

Additionally an upper bound for the variance can be derived. Recall that
for any subregion both an upper bound and a lower bound for the integral are
available. We denote them by U (k), L(k) respectively for subregion k and let
δ(k) = U (k) −L(k). It is immediate to see that

V ar
(

ξ(k)
)

= E
(

ξ(k) − E
(

ξ(k)
))2

≤ E
(

U (k) −L(k)
)2

=
(

δ(k)
)2

.

It follows that the upper bound for the variance is

V ar
(

Î(ξ)
)

≤
K
∑

k=1

(

v(k)δ(k)
)2

M
. (21)

To reduce the variance we minimize its upper bound. This is achieved by
simply choosing in each step the subregion with the largest vδ for subdivision.
A large vδ generally implies a large variance, but the converse does not hold due
to simulation noise in the sample variance, esp. for small M . In this sense it is
more robust to rely on vδ than on the estimated variance. In particular, given
any collection of subregions, the subregion chosen for the next subdivision is
deterministic and requires no simulation at all. Furthermore, the upper bound
of variance given by (21) is strictly decreasing in the process of subdivision but
this is not necessarily the case for the estimated variance. Similar to the adaptive
Genz-Malik rule, the integral estimate should asymptotically converge to I(f)
if we continue the subdivision until the upper bound and lower bound of I(f)
in Cd coincide and the variance vanishes.

We still need a subdivision rule replacing the fourth divided differences as in
(11), since simulated samples cannot be fully symmetric. Consider a subregion
centered at the origin. Let yi denote the element of y in direction i. A convenient
substitute in the spirit of divided differences is the following

Difi =
∣

∣

∣

∑

ξ(y)
(

1{yi>0} − 1{yi<0}
)

∣

∣

∣
, (22)

if along each direction, a simulated sample always contains the same number of
points in the positive and negative axes. For this purpose we generate random
numbers antithetically rather than randomly. Since antithetic variates are no
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longer independent, the variance estimated needs a slight modification. Suppose
that ξ and ξ̄ are obtained from antithetic pairs, then the variance should be
estimated by M/2 pairs of averaged antithetic pairs (ξ + ξ̄)/2, i.e.,

V ar
(

Î(ξ)
)

=
K
∑

k=1

(

v(k)
)2

M/2
V ar

(

ξ(k) + ξ̄(k)

2

)

. (23)

It is well-known that the variance is reduced by antithetic variates if ξ(y) is
monotonic. In our case ξ is a product of a monotonic function f and a unimodal
density φ and it is thus not monotonic in the whole integration region Cd. As
a consequence variance reduction is not theoretically guaranteed, although it is
usually found to be achieved in most subregions. This is mainly due to the local
monotonicity of ξ.

We should now be able to summarize the algorithm of adaptive Monte Carlo
integration for the calculation of tail probability in a multi-factor credit portfolio
loss model. This is presented as Algorithm 3. Note that constraint (15) used in
Algorithm 2 is dropped to ensure that (19) gives an unbiased estimate.

Algorithm 3 adaptive Monte Carlo integration

Generate M antithetic uniform random variables over the integration region,
return I l, V ar(I l), vl, δl and subdivision direction is
while termination criteria not met do

Choose the (sub)region with largest vlδl and divide along direction is.
Compute f(a) and f(b) for the resulting two subregions.
if f(a) = 0 or f(b) = 1 then

Apply (17), let V ar(I l) = δl = 0.
else

Generate M antithetic uniform random variables in both subregions,
return I l, vl, δl and is.

end if

Update I , V ar(I) and the subregion collection.
end while

Unlike the deterministic Genz-Malik rule, Monte Carlo integration allows
flexibility in the choice of M , the number of sample points in each subregion.
Suppose we would like to double the total number of integrand evaluations, we
can double either M or K.

If we double M , then the new variance is

V ar
(

Î(ξ)
)

=

K
∑

k=1

V ar



v(k)
2M
∑

j=1

ξ
(k)
j

2M



 =

K
∑

k=1

(

v(k)
)2

2M
V ar

(

ξ(k)
)

, (24)

the convergence rate is thus O
(

1/
√

N
)

, the same as the plain Monte Carlo

simulation.
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It is more difficult to derive a variance estimate if we keep M unchanged and
double K. The new collection of subregions can vary from problem to problem
since the subregion for subdivision is chosen dynamically in each subdivision
step. The worst case in terms of error convergence seems to be that all subregions
are divided exactly once regardless of their v and δ. Suppose subregion k is
divided into two subregions k1 and k2. Its new variance becomes

V ar
(

Î(k)(ξ)
)

=

(

v(k1)
)2

M
V ar

(

ξ(k1)
)

+

(

v(k2)
)2

M
V ar

(

ξ(k2)
)

=

(

v(k)
)2

4M

[

V ar
(

ξ(k1)
)

+ V ar
(

ξ(k2)
)]

=

(

v(k)
)2

2M

[

V ar
(

ξ(k)
)

− 1

4

(

Eξ(k1) − Eξ(k2)
)2
]

. (25)

The last equality shows that subdivision gives an error convergence rate at least
1/

√
N . This is also a standard result on stratified sampling, see e.g., Glasserman

et al. (1999). It follows that

V ar
(

Î(ξ)
)

≤
K
∑

k=1

(

v(k)
)2

2M
V ar

(

ξ(k)
)

. (26)

We emphasize that by employing a subdivision rule based on (22) we al-
ways divide a region along the direction that is expected to give the largest
(

Eξ(k1) − Eξ(k2)
)2

, hence leading to maximal variance reduction. Consequently,
increasing the number of subregions is always more favorable than increasing
the number of samples in all subregions.

We should finally remark that, in terms of accuracy, the adaptive Monte
Carlo integration is not necessarily inferior to the adaptive algorithm based on
fully symmetric interpolation rules like the Genz-Malik rule, although the latter
is supposed to provide more accurate approximation for smooth integrands.
Since, with a fixed number of samples N = MK, the adaptive Monte Carlo
integration may choose an M much less than the samples required for the Genz-
Malik rule and may therefore obtain many more subregions K.

8 Numerical results II

We continue our numerical experiments with the five-factor model for portfolio A
in section 6 and compare adaptive Monte Carlo integration to plain Monte Carlo
integration. Rather than the relative error, we report the standard deviation

normalized by benchmark, i.e.,

√

V ar(Î(ξ))/I .

Figure 6(a) shows the estimated tail probability for the loss level x = 400 by
adaptive Monte Carlo integration along with the corresponding 95% confidence
interval. It is evident that the adaptive Monte Carlo integration indeed gives a
convergent estimate with reliable error bounds. By contrast, the error estimate
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given by adaptive Genz-Malik rule (based on Eq. (10)) can be less reliable. It
is shown by Figure 6(b) that for the same loss level, although the relative error
of the tail probability estimate given by the adaptive Genz-malik rule is only
around 2%, the estimated error by Eq. (10) is more than 20%.
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Figure 6: (a) Tail probability P (L > 400) computed by adaptive Monte Carlo
integration and their corresponding 95% confidence intervals (dotted lines). The
dashed line is our Benchmark. (b) Relative errors of the adaptive Genz-Malik
rule for P (L > 400) compared to its associated error estimates (dotted lines)
based on Eq. (10). The number of integrand evaluations ranges from 50, 000 to
106.

We have pointed out that Monte Carlo integration allows flexibility in the
choice of M , the number of sample points in each subregion. Figure 7(a) com-
pares performance of the adaptive Monte Carlo integration with M = 10 and
M = 100. It confirms that with a fixed number of samples N = MK, a large
K is favored over a large M . In Figure 7(b) we present the error convergence
of adaptive Monte Carlo integration by doubling M and doubling K. We also
include the error convergence rate of plain Monte Carlo method for reference.
The error convergence rate by doubling M and with K fixed at 5000 is similar to
the plain Monte Carlo method, whereas doubling K and fixing M = 10 displays
a better convergence than 1/

√
N . These results are in line with our analysis in

the previous section. After all, adaptive Monte Carlo integration consistently
outperforms plain Monte Carlo integration in terms of standard deviation.

We further demonstrate in Figure 8 the performance of the adaptive Monte
Carlo integration with M = 10 for four different loss levels as in section 6. It
comes with no surprise that, just like the adaptive Genz-Malik rule, the adaptive
Monte Carlo integration is not sensitive to the portfolio loss level. At the loss
level x = 300, the adaptive Monte Carlo integration with around 50 thousand
integrand evaluations is already comparable to the plain Monte Carlo integration
with 1 million integrand evaluations, which is a reduction of a factor of 20.

Finally, we would like to point out that the grid generated by the adaptive
Monte Carlo integration may also provide a good basis for the calculation of the
marginal VaR contributions (VaRC), i.e., wiE(Di|L = x). As an example we
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Figure 7: Adaptive Monte Carlo integration for loss level x = 400. (a) Nor-
malized standard deviation obtained from Adaptive Monte Carlo integration
with M = 10 and M = 100; (b) Error convergence of adaptive Monte Carlo
integration by doubling M and doubling K.

present in Table 1 the VaRC of the obligors in different buckets for the loss level
x = 300. The estimates obtained from the adaptive Monte Carlo integration
are based on 50 thousand integrand evaluations. The standard deviations (std)
are calculated with 20 independent trials and in parentheses are the standard
deviations as a percentage of their corresponding benchmark. Both the VaRC
estimates and standard deviations are similar to those given by plain Monte
Carlo integration with 1 million integrand evaluations. This is in line with the
performance regarding the tail probability.

bucket Benchmark MC std ADMC std
1 0.4331 0.4258 0.0239 (5.5%) 0.4293 0.0163 (3.8%)
2 0.4498 0.4504 0.0141 (3.1%) 0.4489 0.0127 (2.8%)
3 0.3467 0.3526 0.0167 (4.8%) 0.3475 0.0120 (3.5%)
4 0.2022 0.2037 0.0129 (6.4%) 0.2076 0.0157 (7.8%)
5 0.0683 0.0676 0.0089 (13.0%) 0.0667 0.0069 (10.1%)

Table 1: The VaR contributions of the obligors in different buckets for the loss
level x = 300. The adaptive Monte Carlo (ADMC) integration uses 50 thousand
integrand evaluations and plain Monte Carlo (MC) integration uses 1 million
integrand evaluations. The standard deviations (std) are calculated with 20
independent trials and in parentheses are the standard deviations normalized
by benchmark.

9 Conclusions

In this article we proposed algorithms of adaptive integration for the calcu-
lation of the tail probability in multi-factor credit portfolio loss models. The
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(c) x = 400
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Figure 8: Standard deviations of the tail probability estimates given by plain
Monte Carlo (MC) and Adaptive Monte Carlo (ADMC) for four loss levels.
Standard deviations are reported as a percentage of the respective tail probabil-
ities. For plain MC standard deviations are computed based on 100 independent
runs of simulation and for Adaptive MC, standard deviations are estimated by
Eq. (20.)

problem is important as the tail probabilities are essential for the determination
of the portfolio VaR. We showed that under mild conditions, the conditional
tail probability, as a function of the common factors, is monotone and differ-
entiable. Starting with an algorithm in one dimension, we devise an adaptive
Genz-Malik rule suitable for portfolio credit models with a number of factors
2 ≤ d ≤ 8. The algorithm based on the Genz-Malik rule is asymptotically con-
vergent and particularly attractive for large loss levels. An adaptive algorithm
differs fundamentally from Monte Carlo or quasi-Monte Carlo methods in that
it successively divides the integration region into subregions, detects the difficult
subregions for integration, i.e., those where the integrand is most irregular, and
places more points in those subregions. It consistently outperforms the plain
Monte Carlo and quasi-Monte Carlo methods in terms of approximation error.
Finally we arrive at the adaptive Monte Carlo integration, which simply replaces
the Genz-Malik rule by pseudo-random numbers. The algorithm is advantageous
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in that it can handle higher-dimensional models and is able to provide reliable
probabilistic error bounds. The error convergence rate of the adaptive Monte

Carlo integration is shown to be at worst O
(

1/
√

N
)

. In summary, especially

for higher-dimensional problems the adaptive Monte Carlo method seems the
clear favorite, whereas for lower-dimensional problems both adaptive methods,
the deterministic and the Monte Carlo version, work very well.
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