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Abstract

European and American option prices under the VG process are com-
puted with high accuracy by numerically solving the corresponding partial
Integro-Differential equation (PIDE) on a stretched grid.
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1 Introduction

The numerical computation of financial derivatives when the underlying process
is a Lévy process has received significant attention in the recent years. Several
useful methods have been proposed in the literature [3, 4, 5, 6, 14, 16, 18,
22]. Common theme in these citations is the numerical solution of a Partial
Integro-Differential Equation (PIDE) satisfied by the option prices. The present
paper also aims at numerically computing prices, but differs from the existing
literature by the fact that we mimic the success of grid transformations applied
to the Black-Scholes PDE [12, 25, 28], to obtain a high order accurate numerical
method for Variance Gamma (VG) vanilla option prices.

In previous work [3, 4, 5], we computed the integral term by the trapezoidal
rule, a choice that produces at best second order accurate convergence, but
usually resulted in first order accuracy. The reason for this lies in the lack of
differentiability of the initial condition. The main idea of this paper is to use
an analytic stretching of the grid that renders the payoff function smooth. If
we transform the convolution integral by a non-linear change of variables, it is
not directly possible to apply the fast Fourier transform (FFT) algorithm to
expedite the computation of the convolutions. On one hand we loose in the
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speed of computation, but on the other hand, a high order method is obtained
and therefore fewer grid points will suffice to achieve a similar accuracy. That
is, we show numerically how a simple transformation results in higher accuracy
in the process of numerical integration. Of special interest for the VG process
is the family of transformations having zero velocity exactly at the kink (or
discontinuity in the case of a Binary option) of the payoff, since these are the
mappings that produce a smoothed transformed payoff function.

The equation satisfied by options, when the underlying asset follows a geo-
metric Lévy process has in general a non-zero convection term originating from
the drift of the driving Lévy process. It is however possible under the VG
process to transform the PIDE so that the convection term disappears. One
later recovers the solution by a convenient shift and interpolation. This idea is
fundamental to the method discussed in this paper.

The paper is organized as follows: In Section 2 we briefly summarize the
Variance Gamma based option pricing, focusing on the PIDE interpretation.
We give the main ideas of the stretching method in Section 3, along with a
theoretical study of the effect of the proposed transformation on the integrand.
A series of numerical experiments in Section 4 illustrates the numerical conver-
gence improvements on examples of European and American options.

2 The put option under the VG model

The VG process is obtained by replacing the deterministic time in the classical
Samuelson’s model by a random business time given by a Gamma process. The
resulting process turns out to be a Lévy process of infinite activity and finite
variation; see the pioneering papers [11, 21] for further details on the VG process
and [13, 26] for general information on Lévy processes in Finance.

Throughout this paper we work with the logarithmic prices = log(.5).
All the ideas may be adapted to solve in terms of the asset price, if desired.
By a generalization of Ito’s Lemma, it is possible to prove that the price of a
European put under the Variance Gamma model satisfies the following Partial
Integro-Differential Equation (PIDE) [13]:

Wi+ (g =7 — w)wy + 1w = /IR (w(z +y.1) — w(z, O)k@)dy, (1)

with initial condition
Y(z) = w(z,0) = (K —e*)*. (2)
Here
e g and r are the continuous dividend yield and the interest rate respectively;

e w is a so-called "compensation constant", that is, a constant such that
discounted prices become martingales. For w we have the following ex-
pression

v /IR(l — e")k(y)dy = Clog|(1 +1/G)(1 — 1/M))]. (3)

In order for w to be defined, M > 1 must be satisfied in (3);



e ¢ denotes the time to expiration, that is, the equation is written forward
in time;

e k(y) denotes the Lévy density associated to the Variance Gamma process:

67M|y| 67G|y|
k(y) =C Tl[y>0] + Tl[y<0] , (4)

where C, G and M are positive quantities.

The constant C' controls the intensity of all the jumps, G and M model the
decay rate of large positive and negative jumps respectively. That is, the larger
the value of C, the greater the activity of the jumps. From the exponential
decay of the Lévy density we deduce that for large values of GG, large positive
jumps become less probable, increasing therefore the presence of small positive
jumps. We assume throughout the paper that these constants are such that we
are in a risk-neutral world. The notation employed here resembles that of [1§]
and note the use of the letters C, G and M to remind us that the VG process is
a particular case of the so-called CGMY process [10].

Let Z(u) denote the integral operator on the right-hand side of (1). The
price of an American put option is given as the solution to the following Linear
Complementarity Problem [13, 18]:

wy + aw, + 1w > T(w) in (0,7] x IR,
w > in [0,7] x R,
(5)
(wt + owy + 1w —Z(w)) (w—1) =0 1in (0,7] x R,
w(z,0) = ¥(z),
Here, and in the rest of the paper, we write
a=q—r—w. (6)

Existence and uniqueness of solutions to the Cauchy problem (1)-(2) and to the
LCP (5) are beyond the scope of this paper. A discussion of this issue may be
found in [13], where the concept of viscosity solution is employed to interpret
the solution in absence of diffusion component. Our objective with this paper
is to provide an accurate numerical scheme to solve these problems.

Two possible approaches to handle the convection term in (1) and (5) arise:
keep the convection term, and discretize it by some upwind scheme, or simply
eliminate it by transforming the equation. We opt for the second approach, since
this gives accurate numerical results easily and enables us to use a particular
form of grid stretching. The convection term may be removed using a change
of variables. Indeed, note that the new function

u(z, t) == w(z + at, t), (7

is such that u; = w; + aw,. Therefore, u satisfies the equation

we +ru = / (u(a + y,1) — ua, 1) k(y)dy, ()
R



which does not contain the convection term.
In a similar way, if we apply the shift transformation (7) on problem (5), we
obtain the following LCP formulation in terms of u:

ug +ru > I(u) in (0,7] x IR,
u > P(z + at) in [0,7] x R,

(ug +ru—Z(uw)) (u—yY(x+at))=0 in (0,7] x R,

u(z,0) = ().

So, (8) and (9) replace (1) and (5) respectively.

3 Stretched grid discretization

3.1 Smoothing the payoff

This paragraph contains the core of the proposed method. The methodology
here is not new, it has been used with great success to treat integral equations
with weakly singular kernels [9, 7, 24]. To our knowledge it has not yet been
used in handling integro-differential equations in finance. Briefly, the method
consists in applying a convenient non-linear change of variable to smooth the
input function, either at points of singularity or at the end points of the interval.
Since we are considering integrals over the whole real line, we need only apply
the smoothing at one point, namely at x = log K. The advantage of carrying out
such transformation is the increase in the order of accuracy when using either
quadrature rules, or some other numerical integration procedure that normally
demands on smoothness of the integrand.
Consider a one-to-one function H(t) : R — IR belonging to C”/(IR) such
that:
H(k)=r, HU(k)=0, j=1,...,J (10)

This function will be used to define a new grid in the form of an analytic grid
stretching. Define now

p(a) =¢(H(a)), for (z)=(K —e")". (11)
The following result describes the regularity of .
Proposition 1. The transformed payoff ¢ belongs to C7(IR).

Proof. For a > « the function ¢ vanishes together with all its derivatives. At
a = K, the right derivative vanishes as well. It is thus sufficient to consider
a < k. The chain rule together with the product rule yields

o =3O (H)p,(HD, ... H) (12)
j=1

for certain polynomials p; without zero degree terms. From this expression and
(10) follows the claim. O



That is, the only possibility for the new payoff function to become smooth
is that we match both the right derivative and the left derivative at . This
is possible if the derivative is zero at k. The degree of smoothness of the new
payoff is determined by the number of derivatives vanishing at x. The following
straightforward example will be our preferred choice due to its simplicity.

Example: Consider the function

H(t)=r+sgn(t —r)|t —s[f, R>1. (13)

Here, the parameter R controls the degree of stretching. The transformed payoff
function ¢(a) is displayed in Figure 1 for different degrees of stretching. The
grid in the variable a is uniform.
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Figure 1: Transformed payoff function for different values of R.

The advantage of this transformation is two-fold: on one hand, more points
are situated around the kink of the payoff, and on the other hand, fewer points
describe the growth at infinity. As a consequence, the integral is now localized
on a smaller interval.

Remark 1. This kind of transformation is useful if no convection and diffusion
terms are present in the equation, otherwise it would give rise to coefficients
with singularities. For equations with convection and diffusion terms as in the
Merton’s model [23], we recommend the use of mappings with a non-vanishing
derivative ot the kink, such as the variable change employed in [12].

3.2 Transforming the integral term

The convolution form of the integral term of (1), though convenient for FFT
purposes, does not easily allow the change of variables from the grid stretching.
An alternative form is preferable, so we first change to the variable z = x + vy,
and then we set z = H(b), v = H(a). Thus, the a-grid will be the computational



grid and the b-grid is used for the integration. This yields

+oo
/ (uz + y) — u(@))k(y)dy

— 0o

“+o0
_ / (u(2) — u(@))k(z — )d=

— 0o

“+o0
= /_ (v(b) — v(a)k(H(b) — H(a))H'(b)db
:/a Ga(b)kl(a,b)db—s—/w Go(b)r(a,b)db  (14)

where v(b) := u(H (b)) and we have introduced the functions
and kq(a,b) := k(H(b) — H(a))H'(b)(b—a). (15)

For ease of notation, we sometimes omit the variable ¢ in v(a,t). The reason for
the splitting at b = a is because the integrand changes sign at this point. Note
that each term in (14) has now the form of a Volterra integral operator of the
first kind, as the variable a appears in the integration limit. The corresponding
integral equations have been studied numerically, see for example [9]. For the
discretization of these operators we use a direct quadrature method, see §3.4
below.

In the following result we state that G, loses one degree of smoothness, as
compared to the transforming function H itself.

Proposition 2. The derivatives ng)’ fork=0,...,J—1, admit a continuous
extension at b = a.

Proof. We prove that

(k+1)
lim G0 (p) = L (@)

fraio T—H’ k:07,J—1 (16)

The proof is by induction. Assume we have proved (16) for £ < j < J — 1.
For j = 0 this statement is evident. It is easy to prove (also by induction,
differentiating on both sides of the identity G(b)(b — a) = v(b) — v(a)) that

GUTD®B) (b —a) + (j + 1)GY (b) = v (b). (17)
By the induction hypothesis
GIDB)(b — a) + ( + DED 1) ~ 6P(@) = oI b) o0 (a). (18)
Dividing by b — a and letting b — a yields
(7 +2)GY D (a) = 00 (a), (19)
which proves our claim for £ = j + 1. O

On the other hand, we would like to draw a similar conclusion about the ker-
nel k1. This new kernel is obviously smooth for b # a, and may be differentiated



J — 1 times. However it is not smooth at the point b = a. To see this, let for
instance b > a (b < a goes similarly) and consider the family of functions H (¢).
Observe first that it is sufficient to examine the smoothness of the function

_HO)(b—a)

Fall) = o (20)

It is straightforward to check that F,(b) is continuous for all a # k, with
F,(a™) = 1. Let us verify that F,(b) (F(b) for short) is not differentiable
at b = a. Differentiating the identity

F(b)(H(b) — H(a)) = H'(b)(b - a) (21)
with respect to b and using F'(a) = 1, produces the second identity
F'(b)(H(b) — H(a)) + H'(b)(F(b) — F(a)) = H"(b)(b — a). (22)

Dividing by b — a and letting b — a yields

H"(a)
F'(a) = . 2
@)= 3 ot (23)
. . — R—-1
We deduce from this expression that F'(a™) = a—r)’ thus the first

derivative does not exist at a = k. Note also that F,(b) is well defined also
for b = k, and therefore F,(b) is continuous for all a as a function of b.

We conclude that each of the integrands in (14) with the transformation (13)
is a product of a C!f1=1 function ([-] denotes the integer part) and a continuous
function. However, this lack of smoothness of the integrand is only at the end
point b = a, while for points inside (—o0,a) U (a,0), the integrand may be
differentiated [R] — 1 times.

3.3 Truncating the integral

In this section we determine a bound for the error when truncating the integrals
(14) to a finite domain. To this goal, we restrict the domain of variable z to a
bounded interval of the form Q5 = [Bg + p, By — p|, for a certain p > 0, and
consider the error

B(z) = / (u(2) — u(@)k(z — 2)dz, (24)
R/Q"

where Q* is the enlarged interval Q* := [Bf, Bf]. Our objective is to show that
this error may be bounded uniformly for = belonging to (27.

We carry out the reasoning for the positive semiaxis, (for the negative semi-
axis the reasoning goes similarly), using the fact that the VG European option
in log-prices satisfies the inequality

lu(z) —u(z)| < Ke ™|z — x|, Vz,z€R. (25)

This is a consequence of the mean value theorem combined with the fact that the

absolute value of the Delta is bounded everywhere by Ke~"; see the appendix



for a proof. This yields

2 () — w@) ey,

|E(z)| < C
By |z — |
< KethCeMw/ e Mz,
B
oM(z—Bj)
=Ke ""C—«+—
¢ M
—Mp

< Ke*TtCeM , Vxe€ Q;.

That is, we find a bound that holds uniformly in the x variable, and that depends
on the parameter p: the larger p, the better the approximation by truncation.
However, a better estimate may be obtained in the new variable a that exploits
the fact that the transformed integrand is more ’localized’. Define the interval
Qs := [Bo + 8, B — 4], for a given number § > 0 and write x = H(a) and
B} = H(B;). By the mean value theorem, one obtains the following lower
bound

Bj —¢=H(B)) ~ H(a) > H(B:) — H(B, — 8) > H'(B, — 6)5.  (26)

provided H’ is increasing (which is the case for H given in (13)). We arrive at

the error estimate
—MH'(B1—6)8

E(a)| < Ke"CS
B0)| < Ke e

Observe that this upper bound decreases rapidly for values of R between 2 and
4, which we typically use in our computations.

We may now summarize the criterion. In order to determine the truncation
interval (25, one decides first a certain margin § and a tolerance e¢. Thereafter,
one computes the integration limits By and B; by solving the following two
inequalities

(27)

—MH'(By—-68)8

Ke_TtCeT < €,
(28)
—GH'(Bg+6)6
K@irtc% < €.

3.4 Simpson’s rule

We dedicate this part to explain how Simpson’s rule may be applied to obtain a
highly accurate evaluation of the integralsin (14). Let f(x) be a smooth function
in the interval [zg, z2,] and define the nodes x; = x¢ + ih, for i = 0,1,...,2n
and mesh width h = (22, — 2¢)/2n. The compound Simpson’s rule states that

[ i@ =R+ a4 fa o o)

and the error term E,, = O(h*), provided f € C*[zq, x2,]; see for example [15].
Note that an odd number of points xq, ..., T2, is necessary to use this rule.



We now apply Simpson’s rule to (14). Let amin := By and amax := B
according to the notation in §3.3. Next, consider a uniform grid for the variable
a as follows: let N be some integer and define the nodes a; = amin + (1 — 2)h
(i=1,...,N +2) where h = (@max — @min)/N. In particular this means a; =
Gmin — b and ag = api,. Once we know the sampling points a;, we approximate
the truncated integrals

nh:/m ) = vl@a) o by, (30)

b—-m

min

We use for the integration variable b the same grid spacing, namely, b; = amin +
jh (7 = 0,...). Hence, to be able to apply Simpson’s rule, one has to choose
even values of the index ¢ in (30), since the number of nodes b; in [amin, a;] has
to be odd. In other words, we cannot approximate (30) for ¢ odd. A remedy to
fill these gaps is to apply Simpson’s rule on the integrals

L:/m vO) = v@) s )b, i =13, (31)

b—-m

min—h

Another strategy could be to use the composite Simpson’s 3/8 rule for i odd, see
[9]. Special care should be taken at the end point b = a;, for each i, since there is
an avoidable singularity. To deal with this situation numerically, a second-order
one-sided discretization has been chosen.

The integrand is a continuous function in the closed interval [amin,a;] for
the family of functions (13); see Proposition 1 and the comment that follows.
In the open interval (amin, a;) this integrand belongs to C¥1=1 where [R] is the
degree of smoothness of the change of variable H. This is a crucial observation
that confirms the accurate results in the next section.

An important remark is that the method outlined here is computationally
intensive since it requires O(/N?) operations to compute all the integrals .J;. It is
the subject of current research to increase the speed of evaluation of these inte-
gral transforms, for which methods like Multilevel integration [8] or Hierarchical
matrices [17] may be suitable.

3.5 Time integration

We evaluate the explicit BDF2 method to solve (8) and (9), with initial condition
(2). It is observed that the equation is not stiff and therefore an explicit method
is appropriate.

First, we rewrite (8) in terms of the new function v(a,t) = u(H(a),t):

v+ v = /OO Wh(a, b)db. (32)

— 00

We denote now by J(v) the integral operator on the right hand side of (32).
The approximation of the integral operator described in §3.4 is denoted by
J(v). Let v} =~ v(aj,t,) be an approximation to the solution at times ¢, = nk
(n = 0,...,L) and spatial points a;. By v, we mean the vector of spatial
unknowns (v). Likewise, a stands for the vector (a;).

For the European option under the VG process, the explicit BDF2 method
reads

1
5% — 2U,_1 + 51]”_2 + krv, = kJ(0,), where o, =2v,_1—vp—2. (33)



This leads to a simple iteration of the form v,, = J (Un—1,Vn—2). The first input
to this iteration is the payoff vy and the second, v, is the result of one explicit
Euler iteration. Note that the update v,, is obtained by linear extrapolation.

The discrete solution to the American case is also straightforward, since for
BDF2 the corresponding discrete LCP may be written as

Un 2 j(Un717Un72)
vp > W(H(a) + aty)

A (34)
(vn, — J(Vn—1,Un—2),vn, — Y(H(a) + at,)) =0

vo = ¢(H(a)).

Here (-, ) is the standard inner product in IR?. The solution of this problem is

simply v, = max(J (vn—1,vn—2),¥(H(a) + aty)).

3.6 Computation of the Greeks

In the Black-Scholes model the Greeks are important to determine a hedging
portfolio. However, in the presence of jumps their importance is not as clear
as in general a hedging portfolio does not exists. This paragraph is included
mainly to illustrate the scope of the stretching method. We show that even with
a discontinuity at the initial condition, it is possible to compute accurate first
and second derivatives.

The Greeks may be obtained by numerically differentiating the solution
w. However, this may produce oscillations if differentiation is applied without
care. The remedy proposed in this section is to numerically solve an Integro-
Differential equation for the derivative, on which we may apply the same nu-
merical procedure.

If one formally differentiates equation (1) with respect to =, and defines the
derivative in log-prices as w := w,, one arrives at the same equation, namely

By + (g — 7 — W)ibs + 10 = / (@(x +y.t) — Bz, ))k(y)dy,  (35)
R
but with initial condition
’lD((E, 0) = - exp(x)l{r<log K} (36)

Here 1 4(z) denotes the indicator function of the set A. All the ideas explained
so far now apply to solve (35)-(36). When it comes to the second derivative,
it is more convenient to numerically differentiate w, rather than numerically
differentiating w twice.

4 Numerical experiments

4.1 A first numerical test

A first numerical test is presented that illustrates the numerical improvements
after the non-linear change of variables. We evaluate the following integral

+oo
() = / (W(z + ) — (@) k(y)dy, (37)

—00

10



where ¢(z) = (1 — e*)* and the constants defining the kernel k(y) (cf. (4)) are
chosen to be: C = G = M = 1. The analytic expression for 7(z) is given in the
appendix. In Figure 2 we show the effect of transformation (13) with R = 3.7
on the analytic solution. Notice that the kink in the analytic solution has been
smoothed out as well.

The results in Table 1 show the application of the compound Simpson’s rule
as described in §3.4. We observe a high rate of convergence as expected from
the application of Simpson’s rule on a smooth integrand, as compared with the
results from a uniform grid (R = 1) that only produce linear convergence.

R=37 R=1
N | ly-error | rate || {o-error | rate
10 | 0.097223 0.3742

20 | 0.004883 | 19.9 0.2060 1.8
40 | 0.000445 | 10.9 0.1091 1.8
80 | 0.000041 | 10.7 0.0573 1.9

Table 1: Stretching vs. uniform grid

The choice R = 3.7 is merely to show that it is possible to have a fractional
stretching factor. For values of R between 2 and 4 one has a high order of
convergence, and no significant differences are observed. By a trial and error
procedure it is also possible to find some optimal value for this particular test
problem.

Figure 2: Left picture: Transformed solution 7(H(a)) with R = 3.7. Right
picture: Analytic solution without transformation, i.e. R = 1.

4.2 European and American option computation

We study first the order of convergence of the explicit BDF2 method, with the
following parameters

K=1 r=01 ¢=0 C=1, G=5 M=5 T=05  (38)

11



The effect of the stretching factor is tested by comparing R = 2 with R = 3.
For this set of parameters, criterion (28) for the truncation of the integral, with
§ = 0.2 and a tolerance of ¢ = 1078, gives —By = B; ~ 2.5. We compute the
solution u(z,T) of equation (8) (by solving on the stretched grid with (32)), and
later apply the shift (7) to recover the solution, i.e., w(x,T) = u(x —aT,T). An
interpolation is needed at this stage as the grid points x; —aT" will not necessarily
coincide with points in the z-grid. Cubic splines are used to interpolate to this
new grid. We present in tables 2 and 3 the errors and the empirical rates of
convergence in the infinity norm, with truncation to the interval By = —2.5,
By = 2.5. The composite Simpson’s rule as in §3.4 is compared with the well-
known composite Trapezoidal rule. The notation w"¢/ indicates the numerical
solution computed with a large number of spatial points.

Remark 2. The popular Fourier method to compute European prices requires
tuning a certain parameter 3. That is, if we define xg = log(Sy) and S; =
e Lt the put price may be found with the aid of the formula [20]:

—rT+Bxo S ) R
Cla,, 1) = o [ et )y, (39)

—0o0
where

Kiz+1
22 —iz’

z =y + B, eT®() = E[e“LT], and 1/3(z) = —

It is not trivial which choice of B will produce a desired level of accuracy; see
[19, 20, 27] for possible choices. The PIDE method with the stretching reaches
a high level of accuracy with only a few grid points, making this method an
alternative for pricing European options.

The numerical results for this example are displayed in Figure 3. The ana-
lytic solution in Figure 3 used for benchmarking was obtained by approximating
formula (39) using an adaptive Simpson quadrature. It turns out that the an-
alytic solution is prone to instabilities (visible on the derivatives) for small and
large values of the asset, contrarily to the numerical solution in which one does
not observe oscillations.

From tables 2 and 3, Simpson’s rule is clearly preferable over the Trapezoidal
rule, as already on coarse grids one digit in accuracy is gained. With moderate
stretching (R = 2), we confirm BDF2’s second order convergence in time. With
a more severe stretching (R = 3) a higher order convergence is observed. By
the combination of grid stretching (R = 3), explicit BDF2 and Simpson’s rule,
the tolerance set to 1078 is reached already with 160 x 80 points. This latter
combination is taken to evaluate an American option.

It is shown in Figure 5 that the stretching also works for a discontinuous
initial condition. We use the parameters from (38), with R = 3, and, in addition,
g =r+w (ie., a« = 0, generating a kink at s = 1). In this example the delta
of a European put option (in log-prices) has been computed. This graph was
generated by numerically differentiating the solution of problem (35)-(36), as
explained in §3.6.

In Table 4 we display the pointwise rates for an American put option with
parameters (38), R = 3 and explicit BDF2. With the chosen parameters we
encounter the case where the "smooth pasting" condition is not valid (see e.g.

12



N | L | Trapezoidal | rate | Simpson | rate
20 | 10 0.027 0.0044
40 | 20 0.014 2.0 0.0014 3.1
80 | 40 0.0038 3.6 | 0.00028 | 5.1
160 | 80 0.0011 3.5 | 0.000072 | 3.9

Table 2: Uniform errors ||w — w"®/ | for the Trapezoidal rule and Simpson’s
rule, European case, R = 2.

N | L | Trapezoidal | rate | Simpson | rate
20 | 10 0.045 0.0072
40 | 20 0.016 2.7 0.0011 6.3
80 | 40 0.0057 2.9 0.00011 | 10.0
160 | 80 0.0018 3.2 | 0.0000084 | 13.1

Table 3: Uniform errors |[w" — w"¢f||, for the Trapezoidal rule and Simpson’s
rule, European case, R = 3.

[2, 3, 5]). The reference value used for comparison was obtained with N =
1000 points. As we may observe, the rate of convergence is still high, but the
algorithm is more demanding on the time restriction. Therefore, we choose
N = L here, whereas L = N/2 could be chosen for the European case. The
loss in accuracy with respect to the European counterpart is due to the lack of
smooth fit, see Figure 4.

Remark 3. The PIDE approach requires the knowledge of the Lévy measure.
The explicit method suggested here gives however the freedom to choose Lévy
measures coming from the market, as soon as the underlying follows a finite
activity process.

Remark 4. This method does not however determine the free boundary ac-
curately on coarse grids, given the sparsity of the mesh points around the free
boundary. Thus, a large amount of spatial points are required, rendering this
method rather slow. Again, improved fast integration methods [8, 17] will enable
using a large number of points.

N L error at x = 0 | rate
20 20 7.060e-03
40 40 7.129¢-04 9.9
80 80 1.437e-04 4.9
160 160 1.295e-05 11.0
value at £ =0 0.044865

Table 4: Pointwise convergence for BDF2, American case, amax = —Gmin = 3-
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Figure 3: Left picture: European put option on the stretched grid and analytic
solution. Right picture: Option Delta and numerical derivative of analytic
solution.

5 Conclusions

We have computed European and American vanilla option prices when the un-
derlying process is of VG type. It has been shown that working with a refined
grid around the kink x = x (or discontinuity) of the payoff function helps in-
crease the accuracy of the numerical integration, and in particular a higher
precision of the option price is reached with only a few points on the grid. The
method is easy to implement and can be extended to other types of infinite-
activity, finite-variation processes.

A Estimate for the option Delta in log-prices

In §3.3 we made use of the following estimate for the Delta in log-prices

‘g—ij(m,t)‘ < Ke ™. (40)

In fact, we used this bound on the shifted function u instead, but we derive it
here for the original function w. Recall that we are working with a put option
under the VG process.

The solution w of (1) has the following stochastic interpretation

w(z,t) = eirtEQ [I/J(CC + LT*t)]ﬂ (41)

where {L;}:>0 is the Lévy process defined in terms of the VG process {X;}+>0,
i.e., Ly := —at + X;. The expectation has been taken with respect to a risk-
neutral measure. Denoting by ¢(y) the probability density function of the vari-
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Figure 4: American put option on a uniform grid and option Delta. The non-
smooth fit situation is clearly observed in the Delta.

able Lr_;, we may write

log K—x
w(et) = f“/ (K — e"0)q(y)dy (42)

—00

log K—x log K—=x
- e*”{K/fg q(y)dy—ew/ g e’q(y)dy}.  (43)

Differentiation with respect to x on the last equality gives
0
8—;] =e "™ ~KqlogK — z)—
log K—z
[ ey - e qllog K~ o)) (44)
This expression simplifies into
B log K—x
3_1;} = —e e /700 eYq(y)dy. (45)
The upper bound (40) now follows since e¥ is less than Ke™* on the interval
(—o0,log K — z), and the integral of ¢(y) over this interval is less than one.

B Analytical formula for a particular case

The aim of this short appendix is to provide the derivation of the analytic
expression used to compare the numerical results from §4.

Let the parameters G, M and C be equal 1, i.e., k(y) = e~1¥//|y|. Recall
that the payoff function for K = 1 is by definition v (z) = (1 — e*)™T.

15



option Gamma

I I I I I I I I I
0.9 0.92 0.94 0.96 0.98 1 102 104 1.06 1.08
S

Figure 5: Option Gamma for ¢ = r + w.

Proposition 3.

—FEi(—x) — e*(y + log(z/2)) ifz <0

+oo
w0) = [ @lat)—o@)k(u)dy =  log(2 ife=0
- Ei(x) — e*Eq1(2x) ifc>0
(46)

where v = 0.577216... is the Euler constant and E; is the special function

oo —t

Proof. Start by defining the following function
+ = e’
@)= [+ y) o)y,
0
Observe that 77 (z) = 0 for z > 0. For < 0 we have

) = /Ow [(1 — ey (1— eg”)%dy} + /Oo . eg”)%dy,

—T

o Uom ¢ 1dy] + (€ —1)Er(—2)

Yy
= lim ” [E1(<) — Ea(~) — (log(~) — log(e))] + (¢* — 1)Ex(~a)
= lim ¢* [ (¢) + log(e)] — Fi(—x) — ¢” log(~2)

= —e”(v+log(—z)) — E1(—x).

We made use here of the asymptotic formula F;(z) = —y — logz + o(z), see [1]
Chapter 5.
Analogously, for the negative semiaxis one defines

0 (%)
() = / ((z +y) — (@)k(y)dy = / Wz — y) — (@) dy.

—o0 Y

16



For 2 < 0 one finds

7 () :ew/oo(l —e y)gdy
- U ]
=e" hm [E1(e) — F1(2¢)]

=e log( ).
And for x > 0, ¥(x) vanishes, so that

Y o0 ,—2y
ro = [ [

= FEi(x) — e"E1(2x).

Now the analytic expression (46) follows from adding 7+ and 7. O
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