
MAPLE for Jump–Diffusion Stochastic
Differential Equations in Finance

S. Cyganowski
Tipperary Institute, Cashel Road, Clonmel Co.,

Tipperary, Ireland

e-mail: scyganowski@tippinst.ie

L. Grüne and P. E. Kloeden
Fachbereich Mathematik, Johann Wolfgang Goethe–Universität

D–60054 Frankfurt am Main, Germany

e-mail: gruene / kloeden@math.uni-frankfurt.de

February 5, 2002

Abstract

The occurrence of shocks in the financial market is well known
and, since the 1976 paper of the Noble Prize laureate R.C. Merton,
there have been numerous attempts to incorporated them into finan-
cial models. Such models often result in jump–diffusion stochastic
differential equations. This chapter describes the use of maple for
such equations, in particular for the derivation of numerical schemes.
It can be regarded as an addendum to the chapter in this book by
Higham and Kloeden [5], which can be referred to for general back-
ground and additional literature on stochastic differential equations
and maple. All the maple code in this paper as well as additional
material can be obtained from the web site

www.math.uni-frankfurt.de/∼numerik/kloeden/maplesde/

following the link related to this paper.

1

Contents

1 Introduction 2

2 Jump–diffusion SDEs 4

3 Numerical schemes for jump–diffusion SDEs 5
3.1 Scalar jump–diffusion SDEs 6
3.2 Vector jump–diffusion SDEs 8

4 Numerical Simulations 10

1 Introduction

A simple model which includes jumps in a financial model is described in
the text book of Lamberton and Lapeyre [7], Chapter 7. Essentially, it
consists of the usual Black–Scholes model described by the the scalar linear
Ito stochastic differential equation (SDE)

dXt = µXt dt+ σXt dWt, (1)

within a time interval [τn, τn+1) between jumps, with the jump in Xt at τn
having magnitude

∆Xτn = Xτn −Xτ−n
= Xτ−n

Un, (2)

with Xτn = Xτ−n
(1 +Un), where Xτ−n

= limt→τ−n
Xt is the limit from the left,

i.e., with t < τn, and Un is the relative magnitude of the jump.
The SDE (1) has the explicit solution

Xt = Xt0 e
(µ−σ2/2)(t−t0)+σ(Wt−Wt0).

on a time interval [t0, t] without jumps. In particular,

Xt = X0 e
(µ−σ2/2)t+σWt

for t ∈ [0, τ1), so by continuity Xτ−1
= X0 e

(µ−σ2/2)τ1+σWτ1 ,which gives

Xτ1 = X0 e
(µ−σ2/2)τ1+σWτ1 (1 + U1)

and consequently

Xt = Xτ1 e
(µ−σ2/2)(t−τ1)+σ(Wt−Wτ1) = X0 e

(µ−σ2/2)t+σWt (1 + U1)

2

for t ∈ [τ1, τ2). This procedure can be repeated to obtain an explicit solution
after a finite number of jumps. Let Nt is the number of jumps that occur
between time 0 and t, i.e.,

Nt =

 0 if 0 ≤ t < τ1,∑
n≥1 n1I{τn≤t<τn+1} if t ≥ τ1,

Then the Black–Scholes SDE (1) with jumps at times τn of relative magni-
tudes Un has the explicit solution

Xt = X0 e
(µ−σ2/2)t+σWt

Nt∏
n=1

(1 + Un) , (3)

with the convention that
∏0

n=1 = 1. Further details can be found in [7],
pages 143–144 and pages 167–168.

The explicit solution (3) contains three stochastic processes as inputs.
The continuous time Wiener process Wt has already been discussed in the
Higham and Kloeden chapter [5], where the reader can find its definition and
properties. The others are the jump times τn (or alternatively, the continu-
ous time stochastic process Nt indicating the number of jumps until time t)
and the relative jump magnitudes Un. These three processes are assumed to
be independent of each other.

It is typically assumed that the jump times τn are independent of each
other and are identically exponentially distributed with parameter λ > 0,
i.e., with density 1I{t>0} λe

−λt. This means that the stochastic process Nt is
a Poisson process, so

P(Nt = n) = e−λt
(λt)n

n!
with mean value E(Nt) = λt and variance Var(Nt) = λt. Moreover, Nt is
stationary and has independent increments. See e.g., see [3, 6].

The relative jump magnitudes Un are also assumed to be independent
and identically distributed. As indicated in Exercise 42 on page 159 of [7],
there are several useful possible distributions for Un, such as two-point or
lognormal distributed on [−1,∞). In the first case the Un take just two
possible values a and b, with probabilities

P(Un = a) = p, P(Un = b) = 1− p,

3

while in the second case the Un have the same distribution as eGn−1 whereGn

is Gaussian distributed with some mean µG and variance σ2
G. For lognormal

distributed relative jump magnitudes, Gn = ln(1 +Un) and thus the explicit
solution (3) can be written alternatively as

Xt = X0 e
(µ−σ2/2)t+σWt+

∑Nt
n=1 Gn . (4)

Section 4 contains an implementation of this formula in maple.

2 Jump–diffusion SDEs

The simple example discussed in the Introduction contains the basic features
of financial models which include jump effects that have been investigated
since the pioneering work of Merton [11]. It is often more convenient, theo-
retically at least, to include the jump mechanism in the differential equation
itself. For models like that in the Introduction this gives rise to a jump–
diffusion SDE. In the scalar case, the general form of a jump-diffusion SDE
reads

dXt = a(t,Xt) dt+ b(t,Xt) dWt + c(t,Xt−) dNt, (5)

where a(t, x) is the drift coefficient , b(t, x) the diffusion coefficient and c(t, x)
the jump magnitude coefficient. As before Wt is Wiener process and Nt is
an inhomogeneous Poisson counting process.

The jump–diffusion SDE (5) is interpreted as a stochastic integral equa-
tion

Xt = Xt0 +

∫ t

t0

a (s,Xs) ds+

∫ t

t0

b (s,Xs) dWs(w) +

∫ t

t0

c (s,Xs−) dNs, (6)

where the first integral is a deterministic Riemann integral, the second is a
stochastic Ito integral and the third is a stochastic integral with respect to
a Poisson counting process or, more generally, Poisson random measure [4].
The existence and pathwise uniqueness of a solution process Xt of (5) fol-
lows under the usual growth restriction, uniform Lipschitz, and smoothness
conditions on the coefficient functions a, b and c, see [4].

Essentially, the jump–diffusion SDE (6) acts as a normal Ito SDE between
jumps. Since the solutions are continuous from the left, one obtains

Xt− = Xt0 +

∫ t

t0

a (s,Xs) ds+

∫ t

t0

b (s,Xs) dWs(w),

4

and hence
Xt = Xt− + c (t,Xt−) ∆Nt

where ∆Nt is the integer jump in Nt at time t, if any, and c (t,Xt−) is the
magnitude of the jump.

As an example, consider the linear jump–diffusion SDE

dXt = µXt dt+ σXt dWt + γXt− dNt, (7)

which, from the discussion above, has the explicit solution

Xt = X0 e
(µ−σ2/2)t+σWt (1 + γ)Nt , (8)

Here γ is the nonrandom constant relative jump magnitude. Generalizations
of the jump–diffusion (5) allow random jump coefficient c(t, x), i.e., a random
relative jump magnitude coefficient γ in (7) as occurs in the Black–Scholes
model with jumps considered in the introduction.

Since explicit solutions jump-diffusion stochastic differential equations are
rarely known, numerical schemes are required. These can be derived system-
atically as in the jump free case [5, 6] from stochastic Taylor expansions.
Such expansions have been obtained for jump–diffusion SDEs by Mikulevi-
cius and Platen [12], based on iterated applications of the Ito formula for
jump–diffusion SDEs.

3 Numerical schemes for jump–diffusion SDEs

maple procedures for various numerical schemes proposed by Maghsoodi [8]
for jump–diffusion SDE of the type (5) will be presented in this section. Ad-
ditional maple procedures for other schemes including some of even higher
order can be found in [2].

The schemes considered here will be for an t ∈ [t0, T] and a partition t0
< t1 < · · · < tn < tn+1 < · · · < tNT = T with stepsize ∆n = tn+1 − tn for the
nth subinterval [tn, tn+1]. Let Yn denote the approximation to the solution
Xt at tn and let ∆Wn and ∆Nn denote the increments of the Wiener process
Wt and the Poisson counting process Nt, respectively, over the subinterval

5

[tn, tn+1].

Note that in [2, 8, 9] the increments ∆Wn and ∆Nn are written ∆Wn+1

and ∆Nn+1, i.e., with index n+ 1 instead of n. The change made here is for
consistency with usual practice, in particular with the the notation used in
the Chapter [5] of this book

3.1 Scalar jump–diffusion SDEs

Maghsoodi [8] generalized the Euler scheme, the simplest numerical scheme,
to scalar jump–diffusion SDE (5), obtaining

Yn+1 = Yn + a(tn, Yn)∆n + b(tn, Yn)∆Wn + c(tn, Yn)∆Nn (9)

for n = 0,1, . . .,NT − 1. He showed that it is of first order in the mean
square sense, i.e. O(h) where h = maxn=0,...NT−1 ∆n, which is equivalent to
the strong order γ = 1

2
used in [5, 6].

A maple procedure which returns a stochastic Euler scheme with con-
stant time stepsize ∆t the scalar jump–diffusion SDE (5) is given below. Here
∆t, ∆W etc. are denoted by dt, dW etc.

Euler_jump:=proc(a::algebraic,b::algebraic,c::algebraic)

local soln,h;

soln:=Y[n+1]=Y[n]+a*dt+b*dW[n]+c*dN[n];

soln:=subs(x=Y[n],soln)

end:

In this procedure the input functions a, b and c are required to be func-
tions of a variable x. An example for the usage of this procedure can be
found in Section 4.

Maghsoodi [8] also derived schemes of higher mean square order than
the above Euler scheme (9). These are in principle based on appropriate
stochastic Taylor expansions. He proposed several schemes of second mean
square order, i.e., strong order γ = 1, which generalize the Milstein scheme
to jump–diffusion SDEs. The first of these for the scalar jump–diffusion SDE
(5) is

Yn+1 = Yn +

(
a−

1

2
b
∂b

∂x

)
∆n + b∆Wn +

1

2
b
∂b

∂x
(∆Wn)

2

6

+
1

2
(3c − cc) ∆Nn + (bc − b)∆Wn∆Nn (10)

+
1

2
(cc − c) (∆Nn)

2 +

(
b
∂c

∂x
− bc + b

)
∆Zn,

where all functions are evaluated at the point (tn, Yn). Here fc(t, x) for a
function f (either b or c) is defined by

fc(t, x) = f(t, x+ c(t, x))

and the random variable ∆Zn as the mixed multiple stochastic integral

∆Zn =

∫ tn+1

tn

∫ s

tn

dWt dNs =

∫ tn+1

tn

(Ws −Wtn) dNs. (11)

See [10] for the simulation of such integrals.
A maple procedure for the above Milstein–Maghsoodi scheme (10) with

constant time step size ∆t for scalar jump-diffusion SDE (5) is given below.
Again in the maple code we write “d” instead of “∆”.

Milstein_jump:=proc(a::algebraic,b::algebraic,c::algebraic)

local soln;

soln:=Y[n+1]=Y[n]+(a-(1/2)*b*diff(b,x))*dt+b*dW[n]

+(1/2)*b*diff(b,x)*(dW[n])^2+(1/2)*(3*c-subs(x=Y[n]+c,c))*dN[n]

+(subs(x=Y[n]+c,b)-b)*dW[n]*dN[n]

+(1/2)*(subs(x=Y[n]+c,c)-c)*(dN[n])^2

+(b*diff(c,x)-subs(x=Y[n]+c,b)+b)*dZ[n];

subs(x=Y[n],soln):

end:

Section 4 includes an example for using this scheme.
Simpler schemes, which are also of second mean square order, can be

derived by incorporating the jump times into the partition. In this case the
new partition of [t0, T] is given by t0 = τ0 < τ1 < · · · < τNT = T such that
maxn=0,...,NT−1 (τn+1 − τn) ≤ ∆t, w.p.1. Note that not all of the partition
times τn need be random here, but could be specified to ensure that the
upper bound on stepsize length holds, e.g. a deterministic step of stepsize
∆t is used unless a jump occurs within that time. A jump adapted version
of the Milstein–Maghsoodi (10) is given by

Yn+1 = Yn +

(
a−

1

2
b
∂b

∂x

)
∆τn + b∆Wτn +

1

2
b
∂b

∂x
(∆Wτn)

2

+c∆Nτn + (bc − b) ∆Wτn∆Nτn. (12)

7

Here Yn is the approximation to Xτn and

∆τn = τn+1 − τn, ∆Wτn = Wτn+1 −Wτn, etc.

The maple procedure for the jump adapted Milstein–Maghsoodi (12) for
a scalar jump-diffusion SDE (5) is given in figure 4.

Adaptive_jump:=proc(a::algebraic,b::algebraic,c::algebraic)

local soln;

soln:=Y[n+1]=Y[n]+(a-(1/2)*b*diff(b,x))*dt[n]

+b*dW[n]+(1/2)*b*diff(b,x)*(dW[n])^2+c*dN[n]

+(subs(x=Y[n]+c,b)-b)*dW[n]*dN[n];

subs(x=Y[n],soln)

end:

In Section 4 we illustrate the usage of this procedure and also show how
a suitable sequence τn can be computed.

3.2 Vector jump–diffusion SDEs

An N–dimensional jump–diffusion Ito SDE with an M–dimensional Wiener
process Wt and a scalar inhomogeneous Poisson counting process Nt has the
componentwise form

dXi
t = ai(t,Xt) dt+

M∑
j=1

bi,j(t,Xt) dW
j
t + ci(t,Xt−) dNt, (13)

for i = 1, . . ., N . Note that superscripts are used for the indices of vectors
and matrices. In particular, Xt = (X1

t ,. . .,X
N
t)> and Wt = (W 1

t ,. . .,W
M
t)>,

where the components W j
t of Wt are scalar Wiener processes which are pair-

wise independent. Moreover, as in [5], the coefficient bi,j is the (i, j)th com-
ponent of the N×M-matrix B = [b1| · · · |bM] with bj as its jth column vector.

The counterpart of the Euler scheme (9) for the vector jump–diffusion
SDE (13) reads

Y k
n+1 = Y k

n + ak(tn, Yn)∆n +
m∑
j=1

bk,j(tn, Yn)∆W j
n + ck(tn, Yn)∆Nn, (14)

8

where ∆W j = W j
tn+1
− W j

tn is the N(0; ∆n) distributed increment of the

jth component W j
t of the M-dimensionalWt on subinterval [tn, tn+1] and

∆Nn is as in the scalar case. Note in particular that ∆W j1
n and ∆W j2

n are
independent for j1 6= j2.

Below we give a maple procedure for the above Euler scheme (14) with
a constant time stepsize for the vector jump-diffusion SDE (13).

Euler_jump_vector:=proc(a::array,b::array,c::array)

local i,u,soln,h;

for i to rowdim(a) do

soln[i]:=Y.i[n+1]=Y.i[n]+a[i,1]*dt

+sum(’b[i,j]*dW.j[n]’,’j’=1..coldim(b))+c[i,1]*dN[n];

for u to rowdim(a) do

soln[i]:=subs(x[u]=Y.u[n],soln[i]) od

od;

RETURN(eval(soln)):

end:

The input variables a, b, and c in procedure ‘Euler_jump_vector’ must be
matrices of appropriate order, i.e., a and c are considered as N × 1 matrices
and the diffusion matrix b is an N ×M matrix. Thus, the maple package
‘linalg’ must be initially read into the worksheet. Also, any variables present
in the elements of the matrices must be given in the form x[1], x[2],. . . ,x[N],
where N is the dimension of the system. An example for the application of
this scheme can be found on the web page indicated in the abstract.

The Milstein–Maghsoodi scheme for the vector jump-diffusion SDE (13)
reads

Y k
n+1 = Y k

n +

(
ak −

1

2

m∑
j=1

∇xb
j bj

)
∆n +

m∑
j=1

bk,j ∆W j
n

+
1

2

m∑
j=1

m∑
l=1

∇xb
j bl ∆W j

n ∆W l
n +

1

2

(
3ck − (ck)c

)
∆Nn (15)

+

m∑
j=1

(
(bk,j)c − b

k,j
)

∆W j
n ∆Nn +

1

2

(
(ck)c − c

k
)

(∆Nn)
2

+
m∑
j=1

(
∇xc

k bk,j − (bk,j)c + bk,j
)

∆Zj
n,

9

where ∇xb
k is the matrix with (i, j)-th component given by ∂bi,k

∂xj
and ∆Zj

n is

the mixed multiple stochastic integral

∆Zj
n =

∫ tn+1

tn

∫ s

tn

dW j
t dNs =

∫ tn+1

tn

(
W j
s −W

j
tn

)
dNs.

A maple procedure for this scheme, along with an example for its appli-
cation, can be found on the web page given in the abstract.

4 Numerical Simulations

In this section we illustrate the schemes for scalar equations presented in this
paper. An illustration of the schemes for vector valued SDEs can be obtained
from the web page indicated in the abstract. The reader can also obtain all
of the maple code described below via this page.

We are going to illustrate the schemes for two jump–diffusion SDEs, one
of type (1), (2), the other of type (5), where we restrict ourselves to linear
coefficients because in this case we are able to compare the numerical results
to the exact solution (3).

In order to perform simulations we first need maple routines for simu-
lating the stochastic processes involved in the solutions. In order to generate
the needed random variables it is convenient to use maple’s “stats” pack-
age, for a description see the chapter in this book by Ombach and Jarnicka
[13], as well as [3]. Furthermore, for plotting the results we will need the
“plots” and “plottools” packages. All these packages should be loaded into
the worksheet at the beginning of the session. In addition, it is convenient to
read the “randomize” function, which enables us to initialize maple’s ran-
dom number generator and thus allows us to do repeated simulations for the
same path and jump times. All these preliminary operations are done by the
following commands.

> with(stats): with(plots): with(plottools):

> readlib(randomize)():

The following routine taken from [3] generates a discrete approximation
of a Wiener process on [0, T] with n steps.

W_path := proc(T,n)

10

local w, h, t, alist:

w := 0:

t := 0:

h := T/n:

alist := [0,w]:

from 1 to n do

t := t + h:

w := w + random[normald[0,sqrt(h)]](1):

alist := alist,[t,w]:

od:

[alist]:

end:

Note that for schemes with constant step size ∆t (like Euler or Milstein–
Maghsoodi) it is sufficient to generate paths of the Wiener process for n =
T/∆t. Since we want to compare these schemes to the jump adapted scheme
we will simulate a path for a finer discretization, allowing for the evaluation
of the path for different sequences of discretization times. The following
routine evaluates a path W generated by W_path with parameters T and n
at arbitrary time instances t using interpolation.

Wt := proc(W,t,T,n)

local i, dt:

i := floor(n*t/T):

if (i=n) then W[n+1,2]

else

dt := t*n/T -i:

dt*W[i+2,2] + (1-dt)*W[i+1,2]:

fi:

end:

Next we describe the procedures used for generating a sequence of jump
times and—for jump SDEs of type (1), (2)—jump magnitudes.

The following routine returns a (possibly empty) sequence of two dimen-
sional arrays. The first components contains the jump times 0 ≤ τ1 ≤
. . . ≤ τl ≤ T , where τi+1 − τi is exponentially distributed with parameter
lambda> 0. If sigma> 0, then the second components of the arrays in the
list contain a sequence Ui of jump magnitudes which are lognormally dis-
tributed on [−1,∞), i.e., Gi = ln(1 +Ui) is Gaussian distributed with mean
value mu and variance sigma2. These values are needed for the simulation of

11

(1), (2). If sigma= 0 then the second components of the arrays are all set to
1.

jumps:=proc(lambda::algebraic, T::algebraic,

mu::algebraic, sigma::algebraic)

local i, j, tau, t, again, U, Ulist;

again:=true;

t[0]:=0;

for i from 0 while again=true do

tau:=stats[random, exponential[1]](1):

if (t[i]+tau<=T) then

t[i+1]:=t[i]+tau:

else

again:=false:

fi:

od:

for j from 1 to i-1 do

if sigma=0 then U:=1:

else U:=exp(stats[random, normald[mu,sigma]](1)-1): fi:

if (j=1) then Ulist:=[t[j],U]:

else Ulist:=Ulist, [t[j],U]: fi:

od;

if (i=1) then []:

else [Ulist]: fi:

end:

Both for the explicit solution and for the evaluation of the numerical
schemes we need procedures which compute the necessary information from
the sequence of jumps generated by jumps. For the explicit solution we need
to evaluate the sum

∑Nt
n=1 Gn in (4). The following routine works simul-

taneously for equations of type (1), (2) and for equations of type (5) with
c(t,X) = γX. In the first case gamm has to be set to 1 and U has to be
generated by jumps with sigma> 0, while in the second case one has to set
gamm= γ and U has to be generated by jumps with sigma= 0. In both cases,
the parameter t is the time for which the sum in (4) is evaluated.

jumpsum:=proc(t::algebraic, U::list, gamm::algebraic)

local i, j, nj, sum, again;

sum:=0: j:=0:

nj:=nops(U):

12

if (nj>0) then

again:=true:

for i from 1 while (again) do

if (t>=U[i,1]) then j:=i:

else again:=false: fi:

if (i=nj) then again:=false: fi:

od:

fi:

for i from 1 to j do

sum:=sum+ln(1+gamm*U[i,2]):

od:

sum:

end:

For the evaluation of the numerical schemes we need to compute the
increments ∆Nn = Nn∆t − N(n−1)∆t and ∆Nτn = Nτn − Nτn−1 (written as
dN[n] and dN[tau[n]], respectively, in our maple notation) of the Poisson
process Nt related to a sequence of jumps. This is done by the following
routine, which computes Nt2 − Nt1 from the sequence U generated by the
routine jumps, above, for arbitrary times t2 > t1 ≥ 0.

djump := proc(t1::algebraic, t2::algebraic, U::list)

local i, sum:

sum:=0:

for i from 1 to nops(U) do

if (U[i,1]>=t1) and (U[i,1]<t2) then

sum:=sum + U[i,2]:

fi:

od:

sum:

end:

Now we have all the necessary routines in order to start our simulations.
The first set of examples is for the SDE of type (1), (2) with µ = 2, σ = 1 and
initial value X0 = 1. The jumps are constructed according to the description
in the Introduction with λ = 1, µG = 0 and σG = 2. We compute the solution
on the interval [0, 1] with n = 100 discretization steps, i.e., ∆t = 1/100.

We first generate a discrete path of a Wiener process on [0, 1] with n =
1000 steps by

13

> rand1:=50: T:=1: W_steps:=1000: randomize(rand1):

W:=W_path(T,W_steps):

and then specify the desired variables as

> X0:=1: steps:=100: mu:=2: sigma:=1:

gamm:=1: lambda:=1: muG:=0: sigmaG:=2:

Now we generate a jump sequence by

> rand2:=1: randomize(rand2): U:=jumps(lambda,T,muG,sigmaG):

lines:=[seq(line([U[i,1],0], [U[i,1],gamm*U[i,2]],

color=black, linestyle=1), i=1..nops(U))]:

The “randomize” commands here initialize maple’s random number gen-
erator. With this construction each call of the above commands produces
the same path W and the same jump sequence U for the same values of
rand1 and rand2, respectively. The maple list lines contains graphical
information for plotting the jumps, which is used below.

The following maple code now computes the exact solution, which is
plotted to the variable a using a black solid line, the Euler solution (plotted
to b gray solid), the Milstein–Maghsoodi solution (plotted to c black dashed)
and the jump adapted solution (plotted to d gray dashed), which are finally
plotted onto the screen into one diagram by the display command.

For the jump adapted scheme we have to construct a suitable jump
adapted sequence of time steps τn, which here is accomplished by adding
the jump times from U to an equidistributed sequence of time–steps with
step size ∆t.

Due to the fact that the equation is linear, the coefficients in front of
the term ∆Zn in the Milstein–Maghsoodi scheme vanish and thus we do not
need to simulate this term. A maple routine zjump for its evaluation, which
is analogous to djump, above, using a formula from [10] is contained in the
worksheets related to this paper.

> X:=[0,X0]:

for n from 1 to steps do

t:=n*T/steps:

X:=X, [t, X0*exp((mu-sigma^2/2)*t

+sigma*Wt(W,t,T,W_steps)+jumpsum(t,U,gamm))]:

od:

a:=plot([X],color=black,linestyle=1):

14

> i:=’i’:

n:=’n’:

X:=[0,X0]:

X1:=X0:

scheme:=rhs(Euler_jump(mu*x,sigma*x,gamm*x)):

h:=T/steps:

for i from 1 to steps do

t:=i*T/steps:

jump:=djump(t-h,t,U):

wiener:=Wt(W,t,T,W_steps)-Wt(W,t-h,T,W_steps):

X1:=subs(Y[n]=X1,dt=h,dW[n]=wiener,dN[n]=jump,scheme):

X:=X,[t,X1]:

od:

b:=plot([X],color=gray,linestyle=1):

> i:=’i’:

n:=’n’:

X:=[0,X0]:

X1:=X0:

scheme:=rhs(Milstein_jump(mu*x,sigma*x,gamm*x)):

h:=T/steps:

for i from 1 to steps do

t:=i*T/steps:

jump:=djump(t-h,t,U):

wiener:=Wt(W,t,T,W_steps)-Wt(W,t-h,T,W_steps):

X1:=subs(Y[n]=X1,dt=h,dW[n]=wiener,dN[n]=jump,scheme):

X:=X,[t,X1]:

od:

c:=plot([X],color=black,linestyle=2):

> i:=’i’:

n:=’n’:

X:=[0,X0]:

X1:=X0:

scheme:=rhs(Adaptive_jump(mu*x,sigma*x,gamm*x)):

h:=T/steps:

adaptsteps:=steps+nops(U):

j:=1: k:=1:

tau[0]:=0:

15

for i from 1 to adaptsteps do

if (j<=nops(U)) and (U[j,1]<k*T/steps) then

tau[i]:=U[j,1]: j:=j+1:

else

tau[i]:=k*T/steps: k:=k+1:

fi:

od:

for i from 1 to adaptsteps do

t:=tau[i];

h:=tau[i]-tau[i-1];

jump:=djump(tau[i-1],tau[i],U):

wiener:=Wt(W,tau[i],T,W_steps)-Wt(W,tau[i-1],T,W_steps):

X1:=subs(Y[n]=X1,dt[n]=h,dW[n]=wiener,dN[n]=jump,scheme):

X:=X,[t,X1]:

od:

d:=plot([X],color=gray,linestyle=2):

> display(a,b,c,d,lines);

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1

Figure 1: maple output for SDE (1), (2) (solid = exact, gray solid = Euler,
dashed = Milstein–Maghsoodi, gray dashed = adapted)

16

Figure 1 shows the graphical output from these routines. In addition,
the jumps are indicated by vertical lines. The solution for the jump adapted
scheme is not visible because it almost coincides with the exact solution. We
would like to emphasize again that for these type of jump–diffusion SDEs
with a random jump coefficient c(t,X) a rigorous convergence analysis for
all of the numerical schemes under consideration does not exist. Nevertheless,
experiments with different time steps revealed that the Euler and the jump
adapted scheme show very promising results while the Milstein–Maghsoodi
scheme performs worse than expected.

In our second example, we apply the same routines as above to the SDE
(5) with a(t,X) = µX, b(t,X) = σX and c(t,X) = γX with µ = 2, σ = 1
and γ = 5. The initial value X0 = 1, the time interval [0, T] and the number
of discretization steps n = 100 were chosen as in our first example, above.

In order to simulate this equation we can use the same code as above
when we change the parameters as follows.

> X0:=1: steps:=100: mu:=2: sigma:=1:

gamm:=5: lambda:=1: muG:=0: sigmaG:=0:

With these parameters, the above code produces the graphical output
shown in Figure 2.

Here the Milstein–Maghsoodi scheme (black dashed line) produces a much
better result than for equation (1), (2). Again, however, the adapted scheme
gives the best solution, which in the diagram is almost indistinguishable from
the exact solution. We should, however, note that Maghsoodi [8] reports
that jump adapted schemes can be computationally inefficient for nonlinear
equations.

References

[1] S. Cyganowski, L. Grüne and P.E. Kloeden, maple for Stochastic Dif-
ferential Equations, in Theory and Numerics of Differential Equations ,
J.F. Blowey, J.P. Coleman, A.W. Craig, eds., Springer Verlag (2001),
127-178.

[2] S.Cyganowski and P.E. Kloeden, maple schemes for jump-diffusion sto-
chastic differential equations, in in Proc. 16th IMACS World Congress,
Lausanne 2000, M. Deville, R. Owens, eds., Dept. of Computer Science,
Rutgers University, (2000)., 2000, paper 216-9 on CD.

17

0

20

40

60

80

100

0.2 0.4 0.6 0.8 1

Figure 2: maple output for SDE (5) (solid = exact, gray solid = Euler,
dashed = Milstein–Maghsoodi, gray dashed = adapted)

[3] S. Cyganowski, P.E. Kloeden and J. Ombach, From Elementary Proba-
bility to Stochastic Differential Equations with maple, Springer–Verlag,
Heidelberg, 2002.

[4] I.I. Gikhman and A.V. Skorokhod, Stochastic Differential Equations,
Springer-Verlag, Berlin, 1972.

[5] D.J. Higham and P.E. Kloeden, maple and matlab for Stochastic Dif-
ferential Equations in Finance, in Programming Languages and Systems
in Computational Economics and Finance, S.S. Nielsen, ed., Kluwer
Academic Publishers, Amsterdam (2002).

[6] P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differen-
tial Equations, Springer–Verlag, Heidelberg, 1992; second revised print-
ing 1999.

[7] D. Lamberton and B, Lapeyre, Stochastic Calculus Applied to Finance,
Chapman & Hall, London, 1996.

18

[8] Y. Maghsoodi, Mean square efficient numerical solution of jump–
diffusion stochastic differential equations, Indian J. Statistics, 58 (1996),
pp. 25-47.

[9] Y. Maghsoodi, Exact solutions and doubly efficient approximation and
simulation of jump–diffusion Ito equations, Stoch. Anal. Applns., 16
(1998), pp. 1049–1072.

[10] Y. Maghsoodi and C.J. Harris, In-probability approximation and simu-
lation of non-linear jump-diffusion stochastic differential equations, IMA
Journal of Mathematical Control and Information, 4 (1987), pp. 65-92.

[11] R.C. Merton, Option pricing when underlying stock return rates are
discontinuous, J. Financial Econ., 3 (1976), pp. 141–183.

[12] R. Mikulevicius and E. Platen, Time discrete Taylor approximations
for Ito processes with jump component, Math. Nachr., 138 (1988), pp.
93–104.

[13] J. Ombach and J. Jarnicka, Statistics and Simulations with maple, in
Programming Languages and Systems in Computational Economics and
Finance, S.S. Nielsen, ed., Kluwer Academic Publishers, Amsterdam
(2002).

19

