Options

Definition (Option)

Is a contract written by a seller, that gives the right (but not the
obligation) to the holder to trade in the future the underlying asset at a
previously agreed price.

Option styles:
@ European option- an option that may be only exercised on expiration;
@ American option - an option that may be exercised on any trading
day (also on the expiration);
@ Bermudan option - an option that may be exercises only on specified
dates;

@ Barrier option - option which is exercised, for example, only if
security's price reaches some trigger level;

/ 45

Computational Finance (Summerschool) Hitotsubashi University August 2009 1



Options cont.

Most popular options are Call and Put options: At a prescribed time in
the future, (maturity: T):

o Call Option: The holder of the option may purchase a prescribed
asset (shares, stocks : S) for a prescribed amount (strike: K) and
the writer of the contract must sell the asset, if the holder decides to
buy it.

@ Put Option: The holder of the option may sell a prescribed asset
(shares, stocks : S) for a prescribed amount (strike: K) and the
writer of the contract must buy the asset, if the holder decides to
sell it.
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Options & Payoffs

The value of European call option at the expiry T is given by:
C(T,S7) =max (St — K,0).

The value of European put option at the expiry T is given by:
P(T,S7) =max(K — 57,0).

A CALL Option PUT Option
PayOr PayCWJ

50 S=K

w

50 S=K

o

Figure: payoff diagram for European Call (left), and European Put (right).
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Terminology

During this course we will use the following terminology:
@ Premium: The amount paid for the contract initially;

@ Underlying (Asset): The financial instrument on which the option
value depends. Stocks, commodities, currencies are all denoted
by St;

@ Strike (price), Exercise price: The amount for which the underlying
can be bought (call) or sold (put), denoted by K;

@ Maturity or Expiry date: Date on which the option can be exercised.
This will be denoted by T;

@ Intrinsic Value: The payoff that would be received if the underlying
is at its current level when the option expires.
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Terminology cont.

The option can be:

@ In the money: An option with a positive intrinsic value. A call
option when the asset price is above strike; a put option when the
asset price is below the strike;

@ Out of the money: An option with no intrinsic value;

@ At the money: A call or a put that is close to the current asset level.
Owning/Selling Options:

@ Long position: A positive amount of a quantity, or a positive

exposure to a quantity. The holder, holding the option in the future,
takes a long position by buying the derivative;

@ Short position: A negative amount of a quantity, or a negative
exposure to a quantity. The writer sells the option — He goes
"short” in the option.
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The value of an option

What determines the value of an option?
@ what is the asset price today S;?
@ how long there is until expiry T — t?
@ how volatile is the asset S;7

General principles:

@ The longer the time to expiry, the more time there is for the asset to
rise or fall;

@ The more the asset is volatile the higher the chance that it will rise
or fall;

How are options traded?
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The value of an option (Bloomberg L.P. 09.02.09)
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The value of an option Example:

S$=120

S$=100

§=80

time

For K = 100 which call option is more expensive C4 < Cg, Ca > Cg,
Ca= (g7
To find the answer we follow the reasoning of an option writer...
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The value of an option Example cont.:

Writers, in order to hedge their short call option position buy some (A)
stocks, so their position equals:

ﬂ(t) = Ct—A'St,

Now, we consider two scenarios:
o Stock goes UP:

My = Ce—AS,+ASy,—Sp+K (1)
C.— AS, + AS,, — 20 (2)

@ Stock goes DOWN:
Ny = G — AS; + ASy; (3)
Since writers don’t want to take any risk:

Ct - ASt + ASUP - 20 - 0 (4)
Ct - ASt + ASd = O,
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The value of an option Example cont.:

Simple algebra gives:

20
A =
Sup — Sdq
So now we have:

o Case A: 1
A==

2)

which gives C; = 10

o Case B: 4
A= —

97

which gives C; = 11.1.

How does a writer make money?7?
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Pricing Techniques

There are several different approaches for obtaining information on the
prices of options:

Pricing
Exact Solutions Semi-Exact Numerical Methods
Perturbations Monte Carlo  roos  ppps  FFT based
Simulation methods
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Put-Call Parity

We seek for a relation between value V/(t,S;) of European call and put
options with the same strike price K and expiry T. Suppose we have
given two portfolios:

rT

@ [, : one call option plus Ke™"" cash (invested in the bank);

@ [1g : one put option plus one unit of the asset.
At expiry portfolio 4 is worth:

max(St — K,0) + K = max(St, K),
The portfolio Mg is worth on expiry:

max(K — St,0) + St = max(K, St).
So, we conclude:

C(t,Se) + Ke T~ = P(t,S,) + S,

This relationship is the so-called Put-Call Parity.
Note that we did not make any assumptions about stock S;!
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Upper-Lower bounds on option values

Similar arguments can be used to obtain simple upper/lower bounds on
the values of call & put options. Suppose we have given two portfolios:

@ [, : one call option plus Ke™"" cash (invested in the bank);

@ [1g : one unit of the asset S;.
We see that portfolio g has a value St, which is never greater than the
payoff 4. So we can write:

C>Sr—Ke (771,

since the call option cannot have a negative value, we may write:

C > max (ST — Ke_’(T_t),O) )

on the other hand, the call option can never be worth more than the
underlying asset, so:
Cc<Ss.

Using the same arguments for the put option we have:

P> max (Ke™(T=0 — 5,0} and P < Ke ™70,
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@ There is never an opportunity to make a risk-free profit that gives a
greater return than that provided by a bank.

Example: Suppose we have given a portfolio:
ﬂ = P(t, St) — C(t,St) + Sh

with P(t,S;) and C(t,S;) having expiry date T,and strike K.

Question: What is the "fair” price of this portfolio ?
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Modeling Asset Prices

When investing, the main concern is that the return on the investment is
satisfactory. Suppose we have given asset S;, then

Stock tomorrow — Stock today  Siys5, — St
Return = =

Stock today S

Lets see it in practicel We take S&P index from 30-04-2002 to
09-11-2007 daily monitored.

1100

800

o 200 400 600 800 1000 1200 1400

Figure: Left: S&P Index, Right: Index Return
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Modeling Asset Prices

@ From the data in this example we find that the mean is -0.000172
and the standard deviation is 0.0121;

@ The distribution of the returns has been scaled and translated to
give it a mean of zero, a standard deviation of one and an area

under the curve of one.
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Randomness of the stock prices

Daily returns for a certain asset look like noise!
@ What can be then done?

@ We can model the noisel!
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Wiener Process

Definition (Wiener Process)

A stochastic process W, for t € [0, 00) is called a Wiener Process (or
Brownian motion) if the following conditions are satisfied:

o [t starts at zero: Wy = 0,
@ [t has stationary, independent increments,

@ For every t > 0, W, has a normal distribution with mean 0 and
variance t,

@ [t has a.s. continuous paths with NO JUMPS.
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Process trajectories

Figure: Sample paths of Brownian motion on [0, 1]. Left: 1 path, Right: 100
paths.
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Stochastic Processes

Suppose we observe the stock price of Company Y at every fixed
instance t since some initial time ty and known T.
@ We can interpret the observed stock values as a realization X;(w) of
the random variable X;.
@ We need a model which takes into account almost continuous
realizations of the stock prices.

Definition (Stochastic Process)

A stochastic process X; is a collection of random variables

(X, t € T) = (Xe(w),t € T,w € Q)

We note that a stochastic process X; is a function of two variables:
o for a fixed instant t it's a variable:

X = Xi(w) for w € Q,
@ for a fixed random outcome w € Q, it's a function of time

Xt = Xt(LL)), forteT.
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Modeling the returns:

The most popular Stochastic Process for generating prices is the
Geometric Brownian Motion process (GBM):

dSt = /,tstdt + O'Stth,

which can be translated to:

5t+6t — St

S = b + o(Wiys, — We),
t

where:
@ udt is a deterministic return,

@ odW,; is the random change with dW; a sample from a normal
distribution with mean 0 and variance §t.
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Modeling the returns: Cont

trajectories for GBM
20 T T T T

0 0.2 0.4 0.6 0.8 1
time
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Types of processes

We compare the behaviour of the following SDEs:
@ Arithmetic Brownian motion (ABM)

dX; = pdt + odW,
e Geometric Brownian Motion (GBM)
dXe = pXedt + o XedW,,
@ Ornstein-Uhlenbeck mean reverting processes (OU)
dX; = k(0 — X;)dt + odW,

where: p, o, k and 6 are known constants, and W; is a Wiener
process.

We also cover multidimensional extensions. What is the difference
between these processes?
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Process trajectories

trajectories for SDEs
10 T T T T T T T T T

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
time

Figure: Process trajectories generated from the same random path. The
parameters are: 4 =0.05, 0 =0.7, k =15and 0 = 1.
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ABM: example

Consider the ABM process:
dS; = pdt + odW;,
which is a Gaussian process with expectation and covariance functions:
E(S:) = pt,
and covariance function

cov(S:, S) = o? min(t,s), with s, t > 0.

trajectories for ABM
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[to's Lemma

Ito’s Lemma is most fundamental for stochastic processes. It helps in
deriving solutions to stochastic differential equations (SDE).

Lemma (Ito’s Lemma)

Suppose X; follows an Ito process:
dX; = a(t, X;)dt + b(t, X;)dW;, with Xo = xo,

is the short form for:

t t
Xt:X0+/ a(s,Xs)ds—i—/ b(s, Xs)dWs,

to So

with a(t, X:) the drift term and b(t, X;) the diffusion term. Let now
g(t, X¢) be a function with continuous derivatives (up to second order).
Then Y; := g(t, X;) follows an lto process with the same Wiener process
W :

og og 10%

g
_ 2
dYt_<—a 2+ o 552 b)c/t+a bdW,.
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lto’s Lemma: Example

Example: Suppose we want find the dynamics for
g(t, 5¢) = log Sy,
where S; is given by:
dS: = uSidt + oS dW,

By the Ito formula we have:

og(t,S og(t,S 10%g(t, S
dg(t,s) = g(8t t)dt-i- gcht t)dst"‘ri%(dst)a ()
t
we have:
og(t,S:) 0 og(t,S) 1 and 0%g(t,5:) 1
ot 85, S, sz SY
SO:
dg(ts) = 0-dt+—dS:— == (dS.) (6)
g , S — St t 2St2 t) >
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lto's Lemma: Example cont.

Since
dSt = /,Lstdt"r‘ Ustth,
de(t,s) = —dS,— L1 (ds.)?
g ) - St t 2 52 t
_ 51 (uSedt + oS, dW,) — 1%(M5tdt+astdwt)2
t t

1
We have found that

1
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Black-Scholes model (19

We start with the assumption about the price stochastic process:

th dt—f—O’dep,

and Bank account:

where P represents real-world measure.

e We define V/(t,S;) which represents the value of the option at time
time t.

@ Further we consider a trading strategy under which one holds one
option and continuously trades in the stock in order to hold some A
shares.

We see that at time t, the value of the holdings will be:

I_I(t7 St) - V(t, St) - ASt
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Black-Scholes cont.

Since S; is stochastic, our portfolio is as well, the dynamics of our
portfolio I; we get from Ito’s lemma:

dn =dV — AdS. (7)

We need to find dV so once more time by applying Ito’s we have:

1 1
dV = VsdS+ Vidt + 5Fs,s(dS)2 + EFm(dt)z + Fs +dtdS
oV oV 102V
vV = — — =~ _dS?
d godS+ grdt+5o55dS
ov oV 102V | 5,
dv = EdS—i—Edt—i—iﬁ(o Szdt)
_ vV oV 1 , ,0%V oV
dv = (ﬂstas+at_ 50’ Stﬁ dt‘i’O'St%th

so now by using Equation (7) we have
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Black-Scholes cont.

dil = dV — AdS,

oV

2
ov. ov 1 252a V> dH—USt th—A (uSidt + oSedWs).

dn = ( uS Ead
<‘“as+at+ ‘952
Since we want the risk to be hedged (no noise involved), and to grow

with risk free rate, we firstly have

oV
A= —
oS’
and further:
B 8V BV 1 o2 2,07V oV
rMdt = <,u5t 25 T ot o°5; 852> dt — s (1Sedt) .
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Black-Scholes cont.

So finally:
ov 1 2 282V B
ar T2 g M = 0
Moreover we also know that:
oV
NM=V-—S§
0S8’
so:
ov 1 2 282V oV -~
9t T27 > gsE ’(V %) =0
And finally:
ov 1, 282V oV B
E 50'51,(,)52 57*/’\/70
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Alternative Approaches to Option Pricing

There are several different approaches for obtaining information on the
prices of options:

Pricing
Exact Solutions Semi-Exact Numerical Methods
Perturbations Monte Carlo  roos  ppps  FFT based
Simulation methods
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Feynman-Kac formula

Feynman-Kac have established a link between partial differential
equations (PDEs) and stochastic processes. It offers a method for solving
certain PDEs by simulating random paths of a stochastic process.
Suppose we are given the PDE:

oV OV 1,0 NPV
ST )+ S0, 0) 5 =

subject to the boundary condition V(x, T) = n(x), then the
Feynman-Kac formula reads:

V(x, t) = E(n(X7)|F)
where: X is an lto process driven by the equation:
dX = p(X, t)dt + o(X, t)dW(t),

with W(t) is a Wiener process, with initial for X(t), X(0) = x.
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proof of the Feynman-Kac formula.

We know the PDE for V/(x, t), so the Ito's dynamics for V are given by:

oV oV 182

_ 2
dv = _axd Bz 579t 5 (d)
~_ [oVv av 1 ) o2V ov
dv = <at+“( )8 o a( )82>dt+o(x t)axdW(i)

oV
dV. = o(x,t) 6xdW(t)
Integrating both sides one gets
T T 3%
/ AV = V(X T) - V(x.t) = / olx, )52 dW(2)
t t

now by taking expectation we have
V(x,t) = E(V(Xr,T))=E(@n(Xr))
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Feynman-Kac in practice

Exercise: Solve the following PDE

oV 1LPV
at 27 2
Vix,T) = x?

where ¢ is a constant.
Answer: From Feynman-Kac we have:

V(x,t) = E(n(X:)|F:) =E (X'ﬂft)
where:

dX, = 0.dt+odW,
Xt = X

So we have: X7 = x4+ o (Wt — W;), and Xt has the distribution
N(x,ov/T —t). Finally V(t,x) = o?(T — t) + x>
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What about the drift? Which one to choose?

Risk Neutral probability and Option Pricing

@ There are two major approaches to pricing an option. The first one
is the PDE approach, the second one is the risk-neutral probability
approach.

@ The basic idea of the risk-neutral probability approach is the change
the probability measure from the true (statistical) probability to
risk-neutral probability.

@ The major difference of the two measures is the expected return of
the stock:

o In the true probability measure, the expected return is
o In the risk-neutral probability measure, the expected stock return is
risk-free rate r

Which one to choose i or r ?
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Definition of Risk-neutral measure

How Risk-neutral probability is used in asset pricing theory.

@ A risk neutral probability is the probability of an future event or
state that both trading parties in the market agree upon.
A simple example:

o For a future event, two parties A and B enter into a contract, in
which A pays B 1€ if it happens and 0€ if it doesn't.

e For such an agreement, there is a price for B to pay A. If they agree
that B pays 0.4€ to A, this means the two parties think that the
probability of the event that happens is 40%. Otherwise, they won't
reach that agreement and sign a contract.

o This price reflects the common beliefs towards the probability that
the event happens. 40% is the risk neutral probability of the event
that happens.
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Definition of Risk-neutral measure

@ It is not any historical statistic or prediction of any kind. It is not
the true probability, either.

@ One should ask what kind of information is offered from Risk-neutral
probability and where can we find this measure in the real world.

@ For the simple example mentioned above, once the price is
established, the risk-neutral measure is also determined.

@ Whenever you have a pricing problem in which the event is
measurable under this measure, you have to use this measure to
avoid arbitrage. If you don't, it's like you are simply giving out
another price for the same event at the same time, which is an
obvious arbitrage opportunity.
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Martingales

Definition (Martingale)

A stoch. process X = {X;; t > 0} is a martingale wrt the {F;} if
o X is adapted to the filtration Fi>o,
o forall t, E(|X:|) < oo,
o for all s and t with s < t we have E (X;|Fs) = X;.

Exercise: Show that W; is a martingale:

o W is FV-measurable

o E(IWi) = /2

e for any s < t we have

E (W FY) =E (W: — Ws + W|FY) = W,
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Martingales

Exercise: Suppose we have given a process

t
X: = exp (aWt — 0425) .

Simply first two conditions are satisfied, and the final condition reads:

t aW,
EOGIF) = ep(—a5) E(e|F)

exp (—azé + aW5>E (ea(Wr—s)U:S)

exp (—a2§ + aWS)E (eo‘(Wf—s)> .
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Martingales cont.

E(X:|Fs) = exp (—a2%—i—aWs)E(exp(a(Wt_s)))

We recall that if Y has a normal distribution with mean p and variance

02 5o exp (Y) has lognormal distribution with expectation

E(X) =exp (n+0%/2).

Finally we have

E(X:|Fs) = exp (—azé + aW5> exp <a2(t ; s))

= exp (onS — azg) = Xs.

So we have shown that process X; is a martingale with respect to
filtration F;
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Fundamental Theorem for Pricing

A stochastic integral process is a martingale

Theorem

Let g € L%, Foranyt >0

X - | g(s)aW(s). (®)

Then, the process X = X(t); t > 0 is a FW-martingale.
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Finding a risk-free drift

Suppose we have an asset process given by

dS;

—L = pdt + cdWF,
S
and a Bank account:
dB: _ rdt
B

We know that we would like to find discounted payoff under riskneutral
measure @, so the process %ﬁ has to be a martingale, i.e.

St S
E <— ]-‘) ==.
BT| t B,

Let us find a dynamics of %Z
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Finding a risk-free drift cont.

Dynamics of F = %ft we find from lto lemma:

1 1
d (%) = FsdS+ FedB + 5 Fs.s(dS) + 5 Fe.(dB)’ + FspdBdS
t

1 S
= —dS.—- 2tdB
5 45 grdBi +0+0+0

= —(MStdt—l-UStth)— %rBtdt
t

St
= B (b—r)dt+ EO‘Stth

. S .
In order to make the dynamics of Et driftless we need to have: u=r.
t
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