Previously

We have already seen the market:

dBt = I’det7

Whereas under Q measure 1 = r, i.e.
dS. = rS.dt + 0 S, dW2.

In an alternative process we aim to generalize the assumptions about
constant parameters r and o.
We can choose:

Q Constant: r,o.
@ Deterministic- Piecewise constant: r;, o, on [T;—1, T;].
@ Stochastic- time dependent: r, = f(t, W[), o = g(t, W7).
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Stochastic Volatility: Model of Heston

Let us start with a stochastic volatility:

For the state vector X; = [S;,0¢]” let us fix a probability space (€, F, P)
and a filtration F, = {F; : t > 0} which satisfies the usual conditions,
and X; is assumed to be Markov relative to (F;). The model that we are
consider next is the so-called Heston Stochastic Volatility model:

ds; = rS:dt + \/J_tStths Heston Equity process
doy = —k(or—0)dt + v /o dW7 CIR process
dB; = rB;dt bank account

And:
dW? dW? = pdt

August 2009
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Stochastic Volatility: Model of Heston

Parameters interpretation.
@ r is the rate of the return,
@ 7 is the long vol, or long run average price volatility
(limi— oo Eoy =)
@ x is the rate at which o; reverts to 7,

@ + is the vol- vol, or volatility of the volatility; as the name suggests,
this determines the variance of o;.

August 2009 3/65
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Stochastic Volatility: Model of Heston

Letusset: T=2; vg=0.1; r=0.05, So=1;, x =0.2; 7 = 0.3;
v=0.1; p=-0.8;

1 1
—— Heston Model —— Heston Model
09 Black-Scholes 09) Black-Scholes
08 08
07 07,
06 08
2 o5 305
04 04
03 03
02 02
01 01
o o5 1 1s 2 25 3 a5 4 o o5 1 15 2 25 3 35 4
suike suike

Figure: LEFT: 05 = vp, RIGHT: 05 = 60%
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Stochastic Volatility: Model of Heston

Sample paths of a geometric Brownian motion and the spot process in
the Heston's model obtained with the same set of random numbers.
Despite the fact that the volatility in the GBM is constant, whereas in
Heston's model it is driven by a mean reverting process the sample paths
are indistinguishable by mere eye.
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Stochastic Volatility: Model of Heston

A closer inspection of Heston's model does, however, reveal some
important differences with respect to GBM.

@ the probability density functions of (log-)returns have heavier tails -
exponential compared to Gaussian

@ they are similar to hyperbolic distributions (Weron; 2004), i.e. in the
log-linear scale they resemble hyperbolas (rather than parabolas)

Gaussian vs. Heston densities Gaussian vs. Heston log densities
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Stochastic Volatility: Model of Heston

clear all; ele; close allr

T=2; w_0=0.1; r=0.05; 5_0=1; kappa=0.Z:; sigwsbar=0.3; gamwa=0.1; rho=-0.8; sicmwaz=0.3;
N=10000; snumber of paths

M=200; number of steps

de=T/H;

Vol=zeros (M, M+1)

G=zeros (N, M+1)

SZ=zeros (M, M+1)

Voli:,1)=v_0;

S(:,1)=8_0;
sz(:,1)=5 0:
for i=1:HM
Sicma= 1, rho 5T

rho, 1,]%de; &5
W=random('normal',0,1, [N,2]1);
C=chol (Sigma, ' lower'):
W= (CH g0
Voli:,i+1)=Voli(:,i)-kappa*(Vol(:,i] -sigmabar) *dt+ ganma¥sgre (Vol(:, 1)) . %Wz, 1)
Sl i+1)=50:,1)4r¥3 ([, 1) *de+sgqre (Vol(:, 1)) . *3(:, 1) .%W(:,2);
S2(:,i41)=52{:,i)+c*32 (:, 1) *de+sigmas . *32 (:, 1) . *W(:,2);
end
VALUE=[]:
VALUEZ=[]:
Strikes=0:0.1:4;
for k=Strikes
VALUE(end+1]=mean(exp(—r“T].*max(s(:,ehd)—k,U)]; %% CALL PRICE
VALUEZ (end+1) =blsprice (3 0, k, © , T, 0.6):
end
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Financial mathematics aspects

o Knowledge: What product are we dealing with?
o Contract specification (contract function),
o Early-Exercise product, or not,
o Product’s lifetime,
= Determines the model for underlying asset (stochastic interest
rate, or not...)

o Financial sub-problem: Product pricing or parameter calibration,
= All this determines the choice of numerical method.
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Semi-Exact Solutions for option pricing

o It is generally difficult to find an analytic solution for
multi-dimensional correlated stochastic differential equations;
@ Monte-Carlo methods are straightforward but:
o Depends on the sampling seed;
o Involves sampling error;
o Requires powerful computing machines;

Alternative methods need to be used!

@ Although for complicated models, the distribution is unknown
analytically, the corresponding characteristic function can be often
derived analytically/semi-analytically;

o Alternatives to Monte-Carlo methods for pricing derivatives are
Fourier based algorithms, which are based on determining
characteristic function.
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A pricing approach

V(S(to), to) = e "T-®IEQ{V(S(T), T)|S(to) }

Quadrature:
V(S(to), to) = e~ (T~ /R V(S(T), TYF(S(T)IS(t0))dS

e Trans. PDF, f(5(T)|S(t)), typically not available, but the
characteristic function, ¢, often is.
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Motivation Fourier Methods

@ Derive pricing methods that

are computationally fast
are not restricted to Gaussian-based models
should work as long as we have a characteristic function,

o(u) = /j:o e f(x)dx;

(available for Lévy processes and also for Heston's model).
In probability theory a characteristic function of a continuous random
variable X, equals the Fourier transform of the density of X.
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Fourier Transformation

@ The continuous Fourier transform is one of the most important
transforms in the signal analysis.

@ It transforms one function into another, which is called the
frequency domain representation of the original function (where the
original function is often a function in the time-domain).

@ In this specific case, both domains are continuous and unbounded.

@ There are several common conventions for defining the Fourier
transform of a complex-valued Lebesgue integrable functions.

@ In communications and signal processing,
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Fourier Transformation

Suppose we have given a function f : R — R which isin L!, ie.,

+oo

/ [f(x)] dx < o0,

and if f(x) is continuous, then the Fourier transform of f(x) is defined as:
—+o0

o(u) = E () = / e F(x)dx = / e dF (x),

— 00 — 00

—+o0

where x € R.
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Class of AJD processes

Suppose we have given a following system of SDEs:
dXt = /,L(Xt)dt + U(Xt)th —+ dZt,

Moreover, for processes in the affine jump diffusion (AJD) class it is
assumed that drift, volatility, jump intensities and interest rate
components are of the affine form, i.e.

w(Xy) = ag+ aiX; for (ap,a1) € R" x R™",

A(X¢) = bo+b{ X, for (bo, b1) € R x R”,
o(Xe)o(Xe)" = ()i + (Cl),-JT-Xt, (co, c1) € R™T x RV

r(Xe) = rn+r X, for (ro,rn1) € R x R".
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Characteristic function for AJD

Duffie, Pan and Singleton (2000) have shown that for affine jump
diffusion processes the discounted characteristic function defined as:

d(Xe, t, T, u) = EQ (e_ )T ’(XS)dsei“XT|.7-'f) for u e C",
with boundary condition:
¢(Xr, T, T,u) = &' X7,
has a solution of a following form:
(X, t, T,u) = eA(u7t7T)+B(u,t,T)TXt’

How to find the coefficients A(u, t, T) and B(u,t, T)T ?
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Characteristic function for AJD

The coefficients A(u, t, T) and B(u,t, T)T have to satisfy the following
system of Riccati-type ODEs!:

d 1
EA(U,T) = —rn+BTa+ EBTCOB
dB(u ) r+aTB+1BTcB
— T) = — = .
dr 1A 2 !

INote that we do not consider jumps any more.
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An example: Black-Scholes

For a given stock-process
dS. = rS.dt + o S.dW,2,
with the money savings account B; :
dB; = rB,dt,
the pricing PDE is given by:

oV ov 1
2o W =0. 1
6t+r565+20 552 r 0 (1)
We know that the stock process S; is not affine, therefore we define a

transform:
Xt = |0g St'
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Black Scholes Model

For GBM we have the following SDE:
dS; = rS;dt + oS, dWQ,
The process is not affine because of
o(St)o(S;) = 0252,
To consider the process into the affine class we define:
x; = log S,

which gives following SDE

1
dlog S = (r - 502) dt + odW2
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Black Scholes Model

The model is in the AJD class of processes, moreover we have:

1
w(xe) =r— -0’4+ 0 x,

2 ~~
SN—— a
a0

o(xt)o(xt) = o> + 0 x,
c0 (=]

and
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Black Scholes Model

In order to find the characteristic function:

¢(T) — eA(T)+BX(T)Xg

we set up the system of ODEs

dBJiT) = —n+aB(r) + 3Bx(1)aB(7)
dé(TT) = —ro+a0Bu(7) + 3 Bx(T)c0Bx(7)

which reads:
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Black Scholes Model

By taking the boundary conditions:
B«(0,u) = iu,

and
A(0,u) =0,

we finally obtain:

The characteristic function for GBM is now given by:

_iulog So+iu r—162)r—120%r
o(r) = e Hlir)r
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An example: Black-Scholes Case

With this substitution we have:

Vi(xe, t) = V(S t).

So:
v oV,
ot 0,
v aV,ox 19V,
s ox S S Ox’
2V 1av, 18V,
952 - T2 ox TS ox

The pricing PDE now reads:
oV, 10V, 1 ,,, 10V, 108%V,

~ G5 > - Vu: 3
ot t5 0 5(528x+528x2 vy =0
which simply becomes:

5Vu+ oV, 12 _8Vu+32Vu W0
ot r@x 20 Ox 0x? o=
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An example: Black-Scholes Case

By setting
T=T—t,

we have:

Ve Ve 1, 0V PV o
or r@x 27 Ox 0x? Mo =75

By the results of Duffie-Pan-Singelton, we know that the discounted
characteristic function has the following form:

¢(U, 7_) _ eA(U,T)-‘rB(LI,T)X,

with boundary condition: ¢(u,0) = e™*. By partial differentiation we

have: 96 oA 9B
or = ¢ (E +XE> ’
.= ¢B, (2)
¢
e ?E".
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An example: Black-Scholes Case

Now, by substituting these quantities in the pricing PDE we have:

0A | 0B 1, 1, 0
—¢( aT)+(r—§a>¢B+§a¢B —r¢ =0,

_<8_A+B_B>_|_<r_102>8+2o'282—r—0

or ot 2
From above we obtain the set of ODEs in the following way:
0B
- = 0
or ’

(3)
3_A = (r - 102> B+ %0232 —r.
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An example: Black-Scholes Case

By using the boundary conditions we find
B(u,7) = iu,

4
Alu,7) = (r — —02> iut — 102u27' —rT. “)

So the discounted characteristic function is given by

¢(u 7_) J— e(l’—*(T )ILIT—*O' U T— rT+ILlX
s =
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Heston Model

From definition of Heston we have:

dS; = rSidt+ /oS dW}
do, —#(0¢ —T) dt + /T dW?
Is it affine?
S? 5t0
X X T O3 t t'YPXﬁ
U( t)U( t) |: StO't’)/px,a Pyzo—t

IT IS NOT AFFINE!
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Heston Model

Let us define the log transform:

x; = log S,
dx; = (rt — %at) dt + \/U_tthl,
doy = —k(o¢—7)dt+/o:dW2.

Is it affine?? Let us have a look at the instantaneous covariance matrix:

o Tt YPx.0
"X X = | o A,
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Fourier Transformation

Suppose we have given a function f : R — R which isin L!, ie.,

+oo

/ [f(x)] dx < o0,

and if f(x) is continuous, then the Fourier transform of f(x) is defined as:
—+o0

o(u) = E () = / e F(x)dx = / e dF (x),

— 00 — 00

—+o0

where x € R.
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Fourier Transformation

Assuming that ¢(u) is in L, the original function can be recovered from
its Fourier transform by inversion:

+oo .
f(x) = %/_ e " ¢(u)du.

Now, suppose that we discretize the domain for x, and u into N grid
points, then we consider the vectors f, ¢ € CV:

f é1
f ¢2
f= : ¢ = : (5)
fn—1 dN-1
fn oy
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Fourier Transformation

If we let

_2mi
wy =€ N,

the discretized -Fourier Transform- matrix M € CN*N s then defined as:

1 1 1 ... 1
1 w,lv lev - w,l\\,lfl
M=11 w3 wiy .. w,2V(N_1)

' N—1)(N—1
M- )
that is,
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Fourier Transformation

Now, the discrete Fourier transform f of ¢ is given by the matrix
multiplication:
f= Mo,

or equivalently:

N N
fom > gpe TN Z 57 g =D,
n=1

n=1
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Fourier Transformation

Lemma (Inversion Lemma)

Let ¢(u) be a characteristic function and f(x) be a probability density
function of some continuous variable X. Then we have:

f(x) = %éﬁ‘t < /0 h e""qu(u)du)

Computational Finance (Summerschool) Hitotsubashi University August 2009 32 /65



From Fourier inverse we have:
1 +o0 ) 1 0 .
flx) = —/ e "p(u)du = — (/ e " ¢(u)du
21 J_ o 2w oo
+oo .
+ / e'“X¢>(u)du) .
0
where the first integral on the RHS can be written as:
0 ) oo
/ e "¢(u)du = / e p(—v)dv
—o0 0
/ e~ ¢(u)du
0

+o0
= / e~ ¢(u)du
0
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(/OOO e " p(u)du + /OJFOO e_i”xqb(u)du>
( /0 - e " p(u)du + /0 - e—fUqu(u)du) ,
R ( /0 h e—""X¢(u)du> .

The lemma above shows that we need to find the integral

/000 e” " p(u)du = /000 ~(u)du.

TRl

3| -
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Fourier Transform Derivations

Now, we define a trapezoidal integration over domain [0, 7], for which we

have:
- A N—1
/0 y(udu ~ == ['7(”1) +2> y(up) +7(UN)]
N—1 "
- &, [Z 1) + 5 (1) +7(uN))]

If we set

T=NA,,

u,=(n—-1)A4,
X = —b+ Ay (k—1),

where: k=1,..., N to be the grid in the x-domain.
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Fourier Transform Derivations

The constant b is a tuning parameter which can be freely chosen, but

here we take:
NA,

b:2

So now, we have:

N
Z e—i[(n—l)Au][—b-‘rAx(k—l)]¢(u)

n=1

[e™ ™1 g(u) + e"X"”Qﬁ(UN)ﬂ

/’y(u)du ~ A,
0

1
2

N
Z e—iAxAu(n—l)(k—l)ei(n—l)bAu(b(u)

n=1

/'y(u)du = A,
0

[e—ixu1¢(u1) + eiXUN¢(uN)]:|
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Fourier Transform Derivations

If we set

we obtain

/ o (u)du

Q
>

N
) lz e—i%’(n—l)(k—l)ei(n—l)bAu¢(u)

n=1

(e ¢(uy) + e g (un)] |

N =

Computational Finance (Summerschool) Hitotsubashi University August 2009 37 / 65



FFT Implementation

So finally we obtain:

f(x) = %?R </000 e_i”ng(u)du)

N
1 i = (n— - i(n— 1
= ;%{Au d e~ Hn= Dkl PR () = (v +72)
where

} |

n=1

Y1 = e M1g(uy),

and '
Y2 = ™" p(un).

Why this kind of representation?
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FFT Implementation

e This is a matrix multiplication, which requires about N? (complex)
multiplications and N2 (complex) additions. The number of
arithmetic operations is of order N2, i.e., O(N?).

@ In 1965 Cooley and Tukey showed that it is possible to have the
DFT evaluated in O(N log, N) operations.

@ The algorithm was called the Fast Fourier Transform, FFT. Standard
routines are available in many computer languages.

10000

* logl) —— 7|
o

onoo |- 2

6000 S
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FFT Implementation

Let us have a look at the FFT algorithm in Matlab!

FFT Discrete Fourier transform.
FFT(¥) is the discrete Fourier transform (DFT) of wvector H. TFor
matrices, the FFT operation is applied to each colwmm. For N-Ir
arrays, the FFT operation operates on the first non-singleton

dimension.

FFT(X,H) is the N-point FFT, padded with =zeros if X has less
than N points and truncated if it has more.

FFT(X,[],DIM) or FFT(XZ,N,DIM) applies the FFT operation across the
dimension DIN.

For length N input wvector ®, the DFT is a length N wvector X,
with elements

B I R R I U

o
Zik) = Suw xin) Texp(-3172%piT (k-1)*(n-1)/N), 1 <= k <= M.
n=1
The inwverse DFT [(cowputed by IFFT) is giwven by
ol
®in) = [(1/W) sum  E(k) Fexpl 372%pi*(k-11*%(n-1)/M), 1 <= n <= HN.
k=1

Let us make an experiment!
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FFT Implementation

We take the characteristic function of the normal distribution:
. 15,
o(t) = exp | pit — S0t

and we take =1, 0 = 1. Now, we compare the original pdf and the
FFT approximation, with Simpson'’s rule,

N 24 26 28 210 212
time [ms] | 0.98 | 1.1 | 1.4 29 10.0
SSE 5.6 43| 7.8E-4 | 5.7E-7 | 5.TE-7
F(0) 6.6 4.3 | 9.9922 | 1.000 1.000
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Pricing

How to get price of a Call Option if the CHF of the asset is known?
@ Gil-Palaez Inverse theorem,
= Carr-Madan Pricing,
— CONV method for early-exercise Bermudan options
= COS Method
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Carr-Madan Pricing Technique

Let us assume that the discounted characteristic function is found. To
price plain vanilla options, we define: St denote the price at maturity of
the underlying asset of a European call with strike K, moreover

S = log(St) with associated risk neutral density given by fr(s) under
measure Q. Then the Fourier transform of f(s), or equivalently the
characteristic function of S, can be written as

+oo
b7 () = / e £y (s)ds
If we take k = log K, risk neutral valuation then yields:

+o00 -
ni,T,K) = / e Jo rds (e° — e")Jr fr(s)ds.

—0o0
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Carr-Madan Pricing Technique

Since
}I(lmol"l(t, 7,K)—kI|m_ n(t, T,e*) = So,

N(t, T,eX) is not in L1, as MN(t, T, ) does not tend to zero for
k — —oo0.
Let us therefore consider the modified call price

m(t, T, k) = e N(t, T,e")

for o > 0 assuming existence of Fourier transform of 7(t, T, k) we have:

o +oo
or(v)=7(t, T, k):/ e r(t, T, k)dk.

—00

Inverting gives:
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Carr-Madan Pricing Technique

We see that the last expression is equivalent with

e—clogK  ptoo .
nit,7,K) = T/ e~ VIos Ky (v)dv
e—alogK +o0 .
— T‘SR </ e_IV|OgK'l/JT(V)dV) ,
0
where
1 T .
= EQ (e Ji rdsgSr(i+a+iv))
vr(v) a+a?—v2+iv(2a+1) (e € )
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Carr-Madan Pricing Technique

To simplify computations we follow Duffie, Pan and Singleton and derive
a discounted characteristic function of equity under the risk neutral
measure:

QS(U, 5T7 t7 T) == EQ (e_ ftT rsdseiusT)
SO: ) |
o ((V — I(l + a)) ,S1,t, T) — EQ (e— J; rsdse(1+a+,v)5.r) '
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Carr-Madan Pricing Technique

So finally the call price is:

e—alogK +oo .
rl(t’ T, K) = R </ e—lvlongT(v)dv) ,
0

s

where:
B d((v—i(l+a)),St,t, T)

vrlv) = at+o?2—v2+iva+1)

We know that this can be approximated by the trapezoidal or the
Simpson rule
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Carr-Madan Pricing Technique

The approximation is given by:

—aky N .
ﬂ(t, T, ku) ~ € - R (AV (Z wﬁl)(kl)e’vnbﬁbT(Vn)-) >

= (alw) +g<::Nl)))) ,

with the condition:

2w
AvAk = N

and where:

g(v) = e pr(v), ky = —b + Ak(u — 1).
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Example: Black-Scholes model

Example The characteristic function for the Black-Scholes asset price is
given by:

o(u) = exp (i(log(So) +(r— %02)7—)u _ %02 Tu2> 7

TR

T RRIK RIS

TR KX

ST
A

RN
i

Figure: Characteristic Function for lognormal distribution
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Example- Black, Scholes model

Weset: 0 =0.3, T =1, r =0.06 and Sg = 1. We have generated 10000
paths with step 1000, Time needed for calculation:

Monte Carlo: 5][s],

Car Madan- FFT: 0.1[s],
Exact Solution: 0.06[s].

Table: Comparison of the results.

Strike K 0.01 0.3 0.5 1 1.5 2
Error MC | -7TE-4 | -TE-4 | -7TE-4 | -0.03 | -7TE-4 | -2E-3
Error FFT | 9E-6 | 8E-6 | 2E-6 | 1E-5 | -4E-5 | 3E-5

How the results ar influenced by the Maturity 77
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Example: Black-Scholes model

clear all; clec; close all;

T=1; sigma=0.3; r=0.08; 5_0=1;
N=10000; %number of paths

M=10
de=T/M:Strikes=0.01:0.1:10:
%Monte Carlo

; inumber of steps

tic
noise=random('normal',0,sqrtide), [N, M]);
S=zeros (N, H) ;
5(:,1)=5_O%*ones (N, 1):
for i=1:1:M-1
S0

Li41)=S(:,i)+r*S(:, i) *dt+3(:,1) *sigma. *noise (:,1);
=nd

Call MC=zerosilength(Strikes),1);

for k=1:length(Strikes)

Call_MC (k) ==xp (-r*T) *mean (max (5 (:, =nd) -Strikes (k) ,0) ) ;

end
o
$FFT- CAR Madan
tic

CallValus= =xpi(-r*T)*B3(r,5_0,T,sigwa,Strikss); %$5FFT MODEL
toc
plot (Strikes,Call_MC, 'k','Lin=Uidth',1.5)
hold on;
plot (Strikes,CallValue,'r','LineWidth',1.5)%, Strikes,VALUEZ,'c')
%$Exact Solution
tic
[ExactCall] =blsprice ($_0, Strikes, r, T, sigma, 0):
toc
plot (Strikes,ExactCall,'—-b','Lin=Uidth',1.5)
legend('MC','FFT', 'Exact')
xlabel (' Strikes [K]')
ylabel('Call Valus')
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Example: Black-Scholes model

function [CallValus=]= ES(r,5_0,tau,sigma,striks)

cF=20; N=409&; i=complex(0,1); alphaF=0.75;

etaF = oF/N; % discretization grid on the frequency axis = delta omega

bF =pi/etaF; % the log strike ranges from -b to b where b = N*lanbda/Z=pi/=ta
Ul = [0:M-1]'*etaF;

2= (Ul - (alphaF+1)*1i): % shifting the frequency because of the carr-madan derivation
lambdaF = 2*pi/ (N*etaF);

u="Uz;

Bx=1i*u;

phi=i*u*r*tau+Bx*log(3_0)-1*0.5%sigma”2 *tau*u-0.5%sigma™2 *tau*u."Z;

value=exp (phi); %CHF

psi=value./ (alphaF*2 + alphaF - U1."2 + i*(2*alphaF +1) *U1];
13 + (-1).~[1:N] - [1, zeros(i,N-1)1);

Simpsonl
SimpsonWill) =0;

SimpsonWill-1)=1;

FftFunc = exp (i*bF*Ul) .*psi.*Simpsonll’';

payoff = real (ecaF*ffc(FfcFunc)/3);

K=exp (-bF: lambdaF :bF-lambdaF) ;

intepolated payoff= spline(K, payoff);%splin= interpolation
cT=ppval int=polated payoff,strike);

CallValus = exp(-log(striks)*alphaF).*cT/pi;
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Black-Scholes-Hull-White Model

@ Generalization to stochastic interest rates

@ We have already derived the discounted characteristic function for
the Black-Scholes model and can make a next step, defining a
simple hybrid model.

@ The hybrid consists of two parts: An equity part, modeled by
Black-Scholes Geometric Brownian Motion and a second part: The
stochastic interest rate part will be done via a Hull-White process.

o For the state vector X; = [S¢, rt]T let us fix a probability space
(2, F, P) and a filtration F,, = {F; : t > 0} which satisfies the
usual conditions, and X; is assumed to be Markov relative to (F%).
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Black-Scholes-Hull-White Model

dSt = rtStdt—FUStthS
drt = )\(Gt—rt) dt“"f]thr

The interest rate part can be decomposed into two parts: stochastic and
deterministic, i.e.: r; = + 1; where

dFt = _>\7tdt+7]thr
B =0

and

Y(t) =e” f0+)\/ Mt=9)g_ds.
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Black-Scholes-Hull-White Model

Let us define x; = log(S;), then by the lto formula we have
1 s
dXt: rt_za' dt+Uth

so the system of SDE's becomes:

- 1
dx; = (rt + Yy — 502> dt + odW,
JFt = —>\Ftdt + 'f]thr

In order to simplify the calculations we introduce a new variable
X = X + ®, where &, = [ 1)sds with

~ - 1
dXt = (rt—502> dt+0th
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Black-Scholes-Hull-White Model

Finally we obtain simplify the system of SDEs:

dx; = (E — %02> dt + ocdW,
d?t = —A7tdt + nthr

Following Duffie, Pan and Singleton we have the following form for the
discounted characteristic function

H(u, X(1),t, T) = e S vedstivT[O7.07]7 QAW )+ Bu(u7)%et B (u7)Fe

where X* = [x;, 7], where 7 = T — t.
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Black-Scholes-Hull-White Model

If we look at the chf at time T we got obvious boundary condition (price
at time T is already known so no randomness is involved):

HNu, X*(T), T, T)= EQ (i X (T)) — oiu" X*(T) _ giuxr
=

as a vector u we have taken u = [1,0] T_ we are only interested in one
dimensional characteristic function for equity. The boundary conditions
that we have to consider are following

e7=0,(t=T)= By(v,0) = iu, A(u,0) =0, B,(u,0) =0
We need to obtain the solution of:

%
dr
@
dr

1
= —n-+ BTao + EBTCOB

1
= —n+a B+ 5BTclB
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Black-Scholes-Hull-White Model

After some calculations we get:

dB, .

e = 0=B=1iu

dB, dB, .

= —14B.—AB,= — =—1+iu—\B,

dr dr

dA 1

— = —=c%iu+ B?0® 4 2B,Bonpx., + B*?
dr 2 ’

Simple calculations give following result:

B, = iu
B, = (iu—1)A11-e?)

1 2. 2 2 . . _1 e_TA -1
A = —50tiuT —utotT + 2iuonpy (1 + i)\ [ 7+ —

(14 iu)® (3+ e 2 — 4= —2)7)
23
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Black-Scholes-Hull-White Model

If one is assuming that 6, is just a constant, then we have:

dB, .

o = 0= B =1iu

dB, = —14B,—)\B, = dB; =—14iu—\B,

dr dr

dA

— = a-f(B +6B?

dr

where: a = —10%iu — 10?02, = =0 — iupno, v = 11 resulting:

B, = iu (M)
B, = (u—1)AY1—e?7) (8)

6—D< 1—e ™D > (9)
2y 1—e_TD(%)
where: a = 5+—D, b= B_D, D

2y

Computational Finance (Summerschool)

Hitotsubashi University

August 2009 59 / 65



Black-Scholes-Hull-White Model

09 - 4 —FFT

Figure: Call prices for a strip of strikes: Results for A\ =1, T =0.5, § = 0.1,
p=—-06,1=0.106=0.3rn=0.2 S =1 for 1000 paths with 100 steps.
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Black-Scholes-Hull-White Model

Figure: Difference between approaches (FFT-MC): Results for A =1, T = 0.5,

=01 p=-06,n1n=0.10=0.3,rn=02 S =1 for 1000 paths with 100
steps.
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Black-Scholes-Hull-White Model

1= clear all; cle; close all;
2= lembda=1; T=0.5; theta=0.1; rho=-0.6; eta=0.1; sigma=0.3; r_0=0.2; 3_0=1:
&

4 - N=1000; %nunber of paths

5 - M=100; snuwber of steps

6 —  dAn=T/H;

7 - IntegralOverR=[]:

§ - for i=1:

8- V=zeros(Z,M);

w0 - Vi1, 1)=r_0;

il = iz, 1)=5_0;

1z - for j=1:M

13 - c=[1, rho sx

14 rho, 1, 1rde; fx

15 - Noise=wwnrnd([0,0]',C):

16 - Vi1,3+1)=W(1, ])+lanbdat (theta-V(1,3)) *dr+erarioise (1) ;

ig[= Viz, 3410 =V (2, 3047 (1, 3) "W (2, 1) *detsigmatV (2, 3] Moise (2]

18 - end

13 - IntegralQverR=[IntegralOverR; sumiV(l,:)) vdt];

20 - Frate (i) =V{1,end); tFinal Interest Rate

(= Fasset (1] =V (2, end) ; %Final isset Price

2z = end

%3 = mean|exp(-IntegralOverR) ' . *Fasset)

24 ~  VALUE=[]:

25 —  VALUEZ=[]:

26 - Strikes=0.01: .5;

27 - for k=Strikes

28 - VALUE [end+1) =mean (exp (-IntegralGverR) ' . fmax (Fasset—k,0)); 3% CALL FRICE|
z8 SVALUEZ (end+1]=hlsprice (3 0, k,r 0, T, sigwal:

30 ~  end

31 - plot(Strikes,WALUE, 'k')%, Strikes,WALUEZ, 'r')

32 - [CallValue]= BSHU3 (r_0,5_0,T, lambda, theta, rho, eta, sigma, Strikes): =:FFT HODEL
33 - hold on:

34 - plot(Strikes,CallValue,'r'}%, Strikes,VALUEZ, 'r'|
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Black-Scholes-Hull-White Model

1 function [CallValue]= BSHW3 (r_0,5_0,tau, lawbdaH, theta, rho, etal, sigma, strike)
2 — cF=100; N=2+4086; i=complex(0,1}; alphaF=0.75;

3 - ewaF = cF/N; % discretization grid on the frequency axis = delta omega

4 - bF =pifetaF; % the log strike range frow -b to b where b = N¥lambda/Z=pi/eta
5= Ul = [0:N-1]'*etaF;

6 - U2= (UL - {alphaF+1)%i); 5 shifting the freguency hecause of the carr-wadan derivacion
7 - lawbdaF = 2+pif (N*etaF):

8 - u=uz;:

9 - x_O-logiS_0j;

10— betas (- lswbdaH*theta—iTutrhoretal*signa) ;

11 - theta=i(0.5%etall 2] ;

12 - alfa=(-0.5%zigma"Z#*itu-0.5%u.“2*zigma™2) ;0. 5% (i-u) . *ufsiomea”2;

13 - D=sgrti(beta.”zZ-4*alfa*theta) ;

14 — b=ibeta-D]./ (27theta) ;

15 — G=Ibeta-D) ./ (beta+D] :

16 — [valuel] =Bx {u,i};

17 — [value2]=Br {lambdaH, i, u,tau) ;

18 =  [value3)=4(D,G, b, tau) ;

19 =  wvalue=exp(valued+valueZ*r O+valuel®x 0); %CHF

an

21 — psi=value./(alphaF°2 + alphaF - ULl.”2 + i¥(27alphaF +1)%U1);

22z - SimpsonW = (3 + (-1).°[1:N] - [1, =zeros(1,M-1]]):

23 — SimpsonW (N} =0;

24 —  SimpsonW (N-1)=1;

25 — FEcFunc = exp(i*hF#lll].+psi.*Jimpsonl ;

26 — payoff = realletaF+<ffc(FLicFunc)/3);

27 - Keexp (-bF: labdaF :bf- lexbdaF) ;

a8 = intepolated payoff= spline (K, payoff);ispline interpolacion

29 — cT=ppval (intepolated payoff,strike];

30 - CallValue = exp(-log(strike) *alphaF) . eT/pis
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