# Early Exercise Option Valuation



• With  $V(t_M, S(t_M)) = E(t_M, S(t_M))$  we find the option price via backward induction:

$$\begin{cases} V(t_{M}, S(t_{M})) = E(t_{M}, S(t_{M})) \\ C(t_{m}, S(t_{m})) = e^{-r\Delta t} \mathbb{E}_{t_{m}} [V(t_{m+1}, S(t_{m+1}))] \\ V(t_{m}, S(t_{m})) = \max\{C(t_{m}, S(t_{m})), E(t_{m}, S(t_{m}))\}, \end{cases} m = M - 1, \dots, 1, \\ V(t_{0}, S(t_{0})) = C(t_{0}, S(t_{0})), \end{cases}$$

### Discounted Expected Payoff

• Write, in the case of deterministic interest rates, as an integral:

$$C(t_m, S(t_m)) = e^{-r\Delta t} \int_{-\infty}^{\infty} V(t_{m+1}, y) f(y|S(t_m)) dy$$

- O'Sullivan(2005): Generalization to exponential Lévy processes, as the density can be recovered via Fourier inversion.
- With the midpoint rule, the density can be approximated and resolved by the FFT. Overall complexity of  $O(MN^2)$  for M-times exercisable Bermudan options.

### The CONV method (Carr-Madan extended)

• The main premise of the CONV method is that f(y|x) depends on x and y via

$$f(y|x) = f(y-x).$$

Assumption is clearly satisfied in exp. Lévy models, where x and y
then represent log-asset prices. The assumption means that
log-returns are independent.

$$C(t_m, x) = e^{-r\Delta t} \int_{-\infty}^{\infty} V(t_{m+1}, y) f(y|x) dy$$
$$= e^{-r\Delta t} \int_{-\infty}^{\infty} V(t_{m+1}, x+z) f(z) dz.$$

• The key insight is the notion that, apart from the discounting, the equation is a cross-correlation of V with the density function f.

### Early Exercise Option Valuation

• Premultiplying by  $\exp(\alpha x)$  and taking its Fourier transform, gives:

$$e^{r\Delta t} \mathcal{F}\{e^{\alpha x} C(t_m, x)\} = e^{r\Delta t} \int_{-\infty}^{\infty} e^{iux} e^{\alpha x} C(t_m, x) dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{iux} e^{\alpha x} V(t_{m+1}, x+z) f(z) dz dx$$

$$= \int_{-\infty}^{\infty} e^{i(u-i\alpha)y} V(t_{m+1}, y) dy \int_{-\infty}^{\infty} e^{-i(u-i\alpha)z} f(z) dz dx$$

$$= \widetilde{V}(t_{m+1}, u-i\alpha) \phi(-(u-i\alpha)).$$

- A computation for resolving the (conditional) density function is avoided, only the characteristic function  $\phi$  is involved.
- The option price is recovered by the inverse Fourier transform and undamping.

#### Some Details

The extended characteristic function

$$\phi(x+yi)=\int_{-\infty}^{\infty}e^{i(x+yi)z}f(z)dz,$$

is well-defined when  $\phi(yi) < \infty$ , as  $|\phi(x+yi)| \le |\phi(yi)|$ .

- $\Rightarrow$  This puts a restriction on the damping coefficient  $\alpha$ , because  $\phi(\alpha i)$  must be finite.
  - The damping factor is necessary when considering e.g. a Bermudan put, as then  $V(t_{m+1},x)$  tends to a constant when  $x\to -\infty$ , and as such is not  $L^1$ -integrable.
  - The difference with the Carr-Madan approach is that we take a transform with respect to the log-spot price instead of the log-strike price.
- $\Rightarrow$  The idea for GBM is already present in a presentation by Eric Reiner (2000)

# $\mathsf{Algorithm}$

The algorithm may now be clear, with  $E(t_0, x) = 0$ :

- $V(t_M, x) = E(t_M, x)$  for all x
- For m = M 1 to 0
- Dampen  $V(t_{m+1}, y)$  and take its Fourier transform
- Multiply with  $\phi(-u+i\alpha)$
- Apply Fourier inversion and undamp
- $V(t_m, x) = \max\{E(t_m, x), C(t_m, x)\}$
- Next m

### Expressions for hedge parameters

• The CONV formulae for two hedge parameters,  $\Delta$  and  $\Gamma$ , defined as,

$$\Delta = \frac{\partial V}{\partial S} = \frac{1}{S} \frac{\partial V}{\partial x}, \ \Gamma = \frac{\partial^2 V}{\partial S^2} = \frac{1}{S^2} \left( -\frac{\partial V}{\partial x} + \frac{\partial^2 V}{\partial x^2} \right). \tag{1}$$

- Define,  $\mathcal{F}\{e^{\alpha x}V(t_0,x)\}=e^{-r\Delta t}A(u)$ , where  $A(u)=\mathcal{F}\{e^{\alpha y}V(t_1,y)\}\cdot\phi(-u+i\alpha)$ .
- CONV formula for  $\Delta$  and  $\Gamma$ ,

$$\Delta = \frac{e^{-\alpha x}e^{-r\Delta t}}{S} \Big[ \mathcal{F}^{-1} \{ -iuA(u) \} - \alpha \mathcal{F}^{-1} \{ A(u) \} \Big],$$

$$\Gamma = \frac{e^{-\alpha x}e^{-r\Delta t}}{S^2} \Big[ \mathcal{F}^{-1} \{ (-iu)^2 A(u) \} - (1 + 2\alpha) \mathcal{F}^{-1} \{ -iuA(u) \} \Big]$$

$$+ \alpha(\alpha + 1) \mathcal{F}^{-1} \{ A(u) \} \Big].$$

### CONV Method, FFT

• Step 1 - The payoff transform

$$\mathcal{F}\lbrace e^{\alpha y}V(t_{m+1},y)\rbrace(u) = \int_{-\infty}^{\infty} e^{iuy}e^{\alpha y}V(t_{m+1},y)dy$$

$$\approx \Delta y \sum_{n=0}^{N-1} w_n e^{iu_j y_n} e^{\alpha y_n}V(t_{m+1},y_n)$$

- Can be evaluated using the FFT, use the Trapezoidal rule, for example.
- Need uniform grids for u, x (log-asset price at  $t_m$ ) and y (log-asset price at  $t_{m+1}$ ).
- Further, the Nyquist relation must be satisfied:  $\Delta u \cdot \Delta x = 2\pi/N$ .

### Error analysis of the CONV method

- Rederive discretized CONV formula by a Fourier series expansion of continuation value.
- This reveals that
  - Only moment restriction on  $\alpha$  is necessary ( $L^1$  integrability is replaced by  $L^1$ -summability);
  - If  $\phi$  decays faster than a polynomial, the discretized CONV formula converges as  $O(1/N^2)$  for continuous payoff functions;
  - If  $\phi$  decays as  $x^{\beta}$ , the order is  $O(1/N^{\min\{1+\beta,2\}})$  for continuous payoff functions.

### Dealing with discontinuities for Bermudan Options



- Consider two discretizations:
  - Discretization I: x = y throughout, and In S(0) lies on the grid;
  - Discretization II: At each time,  $t_m$ , we place  $d_m$  on the x-grid.
  - 1. Estimate  $d_m$  in  $C(t_m, d_m) = E(t_m, d_m)$ ;
  - 2. Place  $d_m$  on the x-grid and recalculate  $C(t_m)$ ;
  - 3. Re-evaluate exercise decision and continue.

## Bermudan option, Discretization II

- Pricing 10-times exercisable Bermudan put under GBM and VG
- $S_0 = 100, K = 110, T = 1, r = 0.1, q = 0$ ;
- For GBM:  $\sigma = 0.25$ , reference= 11.1352431;
- For VG:  $\sigma = 0.12, \theta = -0.14, \nu = 0.2$ , reference= 9.040646114;

| $(N=2^n)$ |            | GBM        |       |            |            |      |
|-----------|------------|------------|-------|------------|------------|------|
| n         | time(msec) | abs. error | conv. | time(msec) | abs. error | conv |
| 7         | 0.23       | -2.7-02    | _     | 0.28       | -9.6e-02   | -    |
| 8         | 0.46       | -7.4-03    | 3.7   | 0.55       | -1.1e-02   | 9.0  |
| 9         | 0.90       | -2.0e-03   | 3.7   | 1.09       | -2.3e-03   | 4.7  |
| 10        | 2.00       | -5.2e-04   | 3.8   | 2.15       | -6.1e-04   | 3.8  |
| 11        | 3.85       | -1.3e-04   | 4.0   | 4.38       | -1.6e-04   | 3.8  |
| 12        | 7.84       | -3.3e-05   | 4.0   | 9.29       | -4.1e-05   | 3.9  |

### Approximation of American option

- The value of an American option can be approximated
  - either by a Bermudan with many exercise dates,
  - or, by Richardson extrapolation on a series of Bermudan options with an increasingly number of exercise dates
- To this end assume that the Bermudan price  $V(\Delta t)$ , with  $\Delta t$  the time step between two consecutive exercise moments, can be written as:

$$V(\Delta t) = V(0) + \sum_{i=1}^{\infty} a_i (\Delta t)^{\gamma_i}$$

### American option under GBM

- $\lim_{M\to\infty} P(M) = \text{American option value}$ 
  - Approximate the American option value by P(M) with a big M.
  - Reconstruct a faster converging series P'(M) by
- $S_0 = 100, K = 110, T = 1, \sigma = 0.25, r = 0.1, q = 0$ ;
- Reference value:  $V_{ref}(0, S(0) = 12.169417$  (Black-Scholes)
- Richardson extrapolation with 128, 64 and 32 exercise opportunities

|   | $(N=2^n)$ | l I        | P(N/2)    | Richardson |            |          |       |
|---|-----------|------------|-----------|------------|------------|----------|-------|
|   | n         | time(msec) | error     | conv.      | time(msec) | error    | conv. |
| _ | 7         | 0.97       | -5.9e-02  | _          | 3.3        | -3.1e-02 | _     |
|   | 8         | 3.7        | -2.2e-03  | 2.6        | 6.6        | -7.8e-03 | 3.9   |
|   | 9         | 14.8       | -9.3e-03  | 2.4        | 14.0       | -2.1e-03 | 3.8   |
|   | 10        | 60.0       | -4.16e-03 | 2.2        | 28.4       | -5.2e-04 | 4.0   |
|   | 11        | 251.7      | -2.0e-03  | 2.1        | 66.4       | -1.2e-04 | 4.3   |
|   | 12        | 1108.1     | -9.4e-04  | 2.1        | 151.9      | -2.1e-05 | 5.8   |
| _ |           |            |           |            |            |          | _     |

### Yet Another Method: Fourier-Cosine Expansion

- The COS method:
  - Exponential convergence;
  - Greeks are obtained at no additional cost.
  - For discretely-monitored barrier and Bermudan options as well;
- The basic idea:
  - Replace the density by its Fourier-cosine series expansion;
  - Series coefficients have simple relation with characteristic function.

# Series Coefficients of the Density and the Ch.F.

• Fourier-Cosine expansion of density function on interval [a, b]:

$$f(x) = \sum_{n=0}^{\infty} F_n \cos\left(n\pi \frac{x-a}{b-a}\right),$$

with  $x \in [a, b] \subset \mathbb{R}$  and the coefficients defined as

$$F_n := \frac{2}{b-a} \int_a^b f(x) \cos\left(n\pi \frac{x-a}{b-a}\right) dx.$$

•  $F_n$  has direct relation to ch.f.,  $\phi(u) := \int_{\mathbb{R}} f(x)e^{iux}dx$   $(\int_{\mathbb{R}\setminus[a,b]} f(x) \approx 0)$ ,

$$F_{n} \approx A_{n} := \frac{2}{b-a} \int_{\mathbb{R}} f(x) \cos \left( n\pi \frac{x-a}{b-a} \right) dx$$
$$= \frac{2}{b-a} \operatorname{Re} \left\{ \phi \left( \frac{n\pi}{b-a} \right) \exp \left( -i \frac{ka\pi}{b-a} \right) \right\}.$$

### Recovering Densities

• Replace  $F_n$  by  $A_n$ , and truncate the summation:

$$f(x) \approx \frac{2}{b-a} \sum\nolimits_{n=0}^{\prime N-1} \operatorname{Re} \left\{ \frac{\phi}{b} \left( \frac{n\pi}{b-a}; \mathbf{x} \right) \exp \left( in\pi \frac{-a}{b-a} \right) \right\} \cos \left( n\pi \frac{x-a}{b-a} \right)$$

• Example:  $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$ , [a, b] = [-10, 10] and  $x = \{-5, -4, \dots, 4, 5\}$ .

| N               | 4      | 8      | 16     | 32       | 64       |
|-----------------|--------|--------|--------|----------|----------|
| error           | 0.2538 | 0.1075 | 0.0072 | 4.04e-07 | 3.33e-16 |
| cpu time (sec.) | 0.0025 | 0.0028 | 0.0025 | 0.0031   | 0.0032   |

Exponential error convergence in N.

# Pricing European Options

• Start from the risk-neutral valuation formula:

$$V(x,t_0)=e^{-r\Delta t}\mathbb{E}^{\mathbb{Q}}\left[V(y,T)|x\right]=e^{-r\Delta t}\int_{\mathbb{R}}V(y,T)f(y|x)dy.$$

Truncate the integration range:

$$V(x,t_0)=e^{-r\Delta t}\int_{[a,b]}V(y,T)f(y|x)dy+\varepsilon.$$

 Replace the density by the COS approximation, and interchange summation and integration:

$$\hat{V}(x,t_0) = e^{-r\Delta t} \sum_{n=0}^{N-1} \operatorname{Re} \left\{ \phi \left( \frac{n\pi}{b-a}; x \right) e^{-in\pi \frac{a}{b-a}} \right\} \mathcal{V}_n,$$

where the series coefficients of the payoff,  $V_n$ , are analytic.

# Pricing European Options

- Log-asset prices:  $x := \ln(S_0/K)$  and  $y := \ln(S_T/K)$ ,
- The payoff for European options reads

$$V(y,T) \equiv [\alpha \cdot K(e^y - 1)]^+$$
.

For a call option, we obtain

$$\mathcal{V}_{k}^{call} = \frac{2}{b-a} \int_{0}^{b} K(e^{y} - 1) \cos\left(k\pi \frac{y-a}{b-a}\right) dy$$
$$= \frac{2}{b-a} K\left(\chi_{k}(0, b) - \psi_{k}(0, b)\right),$$

• For a vanilla put, we find

$$\mathcal{V}_k^{put} = \frac{2}{b-a} K\left(-\chi_k(a,0) + \psi_k(a,0)\right).$$

### Characteristic Functions Heston Model

• The characteristic function of the log-asset price for Heston's model:

$$\begin{split} \varphi_{\textit{hes}}(\textit{u};\sigma_0) &= \exp\left(\textit{iur}\Delta t + \frac{\sigma_0}{\gamma^2}\left(\frac{1-e^{-D\Delta t}}{1-\textit{Ge}^{-D\Delta t}}\right)\left(\kappa - \textit{i}\rho\gamma\textit{u} - D\right)\right) \cdot \\ &\exp\left(\frac{\kappa\bar{\sigma}}{\gamma^2}\left(\Delta t(\kappa - \textit{i}\rho\gamma\textit{u} - D) - 2\log(\frac{1-\textit{Ge}^{-D\Delta t}}{1-\textit{G}})\right)\right), \end{split}$$

with 
$$D = \sqrt{(\kappa - i\rho\gamma u)^2 + (u^2 + iu)\gamma^2}$$
 and  $G = \frac{\kappa - i\rho\gamma u - D}{\kappa - i\rho\gamma u + D}$ .

For Lévy and Heston models, the ChF can be represented by

$$\phi(u; \mathbf{x}) = \varphi_{levy}(u) \cdot e^{iu\mathbf{x}} \text{ with } \varphi_{levy}(u) := \phi(u; 0), 
\phi(u; \mathbf{x}, \sigma_0) = \varphi_{hes}(u; \sigma_0) \cdot e^{iu\mathbf{x}},$$

### Characteristic Functions Lévy Processes

• For the CGMY/KoBol model:

$$\varphi_{levy}(u) = \exp(iu(r-q)\Delta t - \frac{1}{2}u^2\sigma^2\Delta t) \cdot \exp(\Delta t C\Gamma(-Y)[(M-iu)^Y - M^Y + (G+iu)^Y - G^Y]),$$

where  $\Gamma(\cdot)$  represents the gamma function.

- The parameters should satisfy  $C \ge 0, G \ge 0, M \ge 0$  and Y < 2.
- The characteristic function of the log-asset price for NIG:

$$\varphi_{NIG}(u) = \exp\left(iu\mu + \delta(\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + iu)^2})\right)$$
 with  $\alpha, \delta > 0, \beta \in (-\alpha, \alpha - 1)$ 

#### Heston Model

• We can present the  $\mathcal{V}_k$  as  $\mathbf{V}_k = \mathcal{U}_k \mathbf{K}$ , where

$$\mathcal{U}_k = \begin{cases} \frac{2}{b-a} \left( \chi_k(0,b) - \psi_k(0,b) \right) & \text{for a call} \\ \frac{2}{b-a} \left( -\chi_k(a,0) + \psi_k(a,0) \right) & \text{for a put.} \end{cases}$$

• The pricing formula simplifies for Heston and Lévy processes:

$$v(\mathbf{x}, t_0) \approx \mathbf{K} e^{-r\Delta t} \cdot \operatorname{Re} \left\{ \sum_{n=0}^{N-1} \varphi\left(\frac{n\pi}{b-a}\right) \mathcal{U}_n \cdot e^{in\pi \frac{\mathbf{x}-a}{b-a}} \right\},$$

where  $\varphi(u) := \phi(u; 0)$ 

#### Numerical Results

Pricing for 21 strikes  $K = 50, 55, 60, \cdots, 150$  under Heston's model. Other parameters:  $S_0 = 100, r = 0, q = 0, T = 1, \kappa = 1.5768, \gamma = 0.5751, \bar{\sigma} = 0.0398, \sigma_0 = 0.0175, \rho = -0.5711.$ 

|            | N               | 96       | 128        | 160                |
|------------|-----------------|----------|------------|--------------------|
| COS        | (msec.)         | 2.039    | 2.641      | 3.220              |
|            | max. abs. err.  | 4.52e-04 | 2.61e-05   | 4.40 <i>e</i> — 06 |
|            | N               | 2048     | 4096       | 8192               |
| Carr-Madan | (msec.)         | 20.36    | 37.69      | 76.02              |
|            | max. abs. error | 2.61e-01 | 2.15e - 03 | 2.08e-07           |

Error analysis for the COS method is provided in the COS paper.

## Pricing Bermudan Options



#### The pricing formulae

$$\left\{ \begin{array}{lcl} C(x,t_m) & = & e^{-r\Delta t} \int_{\mathbb{R}} V(y,t_{m+1}) f(y|x) dy \\ V(x,t_m) & = & \max(E(x,t_m),C(x,t_m)) \end{array} \right.$$

and 
$$V(x,t_0)=e^{-r\Delta t}\int_{\mathbb{R}}V(y,t_1)f(y|x)dy$$
.

- Use Newton's method to locate the early exercise point  $x_m^*$ , which is the root of  $E(x, t_m) C(x, t_m) = 0$ .
- Recover  $V_n(t_1)$  recursively from  $V_n(t_M)$ ,  $V_n(t_{M-1})$ ,  $\cdots$ ,  $V_n(t_2)$ .
- Use the COS formula for  $V(x, t_0)$ .

### $\mathcal{V}_k$ -Coefficients

• Once we have  $x_m^*$ , we split the integral, which defines  $\mathcal{V}_k(t_m)$ :

$$\mathcal{V}_k(t_m) = \left\{ \begin{array}{l} \mathcal{C}_k(a,x_m^*,t_m) + \mathcal{G}_k(x_m^*,b), & \mathrm{for~a~call}, \\ \\ \mathcal{G}_k(a,x_m^*) + \mathcal{C}_k(x_m^*,b,t_m), & \mathrm{for~a~put}, \end{array} \right.$$

for  $m = M - 1, M - 2, \dots, 1$ . whereby

$$\mathcal{G}_k(x_1,x_2) := \frac{2}{b-a} \int_{x_1}^{x_2} E(x,t_m) \cos\left(k\pi \frac{x-a}{b-a}\right) dx.$$

and

$$C_k(x_1,x_2,t_m):=\frac{2}{b-a}\int_{x_1}^{x_2}\hat{C}(x,t_m)\cos\left(k\pi\frac{x-a}{b-a}\right)dx.$$

#### Theorem

The  $G_k(x_1, x_2)$  are known analytically and the  $C_k(x_1, x_2, t_m)$  can be computed in  $O(N \log_2(N))$  operations with the Fast Fourier Transform.

#### Bermudan Details

• Formula for the coefficients  $C_k(x_1, x_2, t_m)$ :

$$\mathcal{C}_{\textit{k}}(\textit{x}_{1},\textit{x}_{2},\textit{t}_{\textit{m}}) = e^{-r\Delta t} \mathrm{Re} \left\{ \sum\nolimits_{j=0}^{\prime N-1} \varphi_{\textit{levy}} \left( \frac{j\pi}{b-a} \right) \mathcal{V}_{\textit{j}}(\textit{t}_{\textit{m}+1}) \cdot \mathcal{M}_{\textit{k},\textit{j}}(\textit{x}_{1},\textit{x}_{2}) \right\}$$

where the coefficients  $\mathcal{M}_{k,j}(x_1,x_2)$  are given by

$$\mathcal{M}_{k,j}(x_1,x_2) := \frac{2}{b-a} \int_{x_1}^{x_2} e^{ij\pi \frac{x-a}{b-a}} \cos\left(k\pi \frac{x-a}{b-a}\right) dx,$$

ullet With fundamental calculus, we can rewrite  $\mathcal{M}_{k,j}$  as

$$\mathcal{M}_{k,j}(x_1,x_2) = -\frac{i}{\pi} \left( \mathcal{M}_{k,j}^c(x_1,x_2) + \mathcal{M}_{k,j}^s(x_1,x_2) \right),$$

### Hankel and Toeplitz

• Matrices  $\mathcal{M}_c = \{\mathcal{M}_{k,j}^c(x_1,x_2)\}_{k,j=0}^{N-1}$  and  $\mathcal{M}_s = \{\mathcal{M}_{k,j}^s(x_1,x_2)\}_{k,j=0}^{N-1}$  have special structure for which the FFT can be employed:  $\mathcal{M}_c$  is a Hankel matrix,

$$\mathcal{M}_{c} = \begin{bmatrix} m_{0} & m_{1} & m_{2} & \cdots & m_{N-1} \\ m_{1} & m_{2} & \cdots & \cdots & m_{N} \\ \vdots & & & & \vdots \\ m_{N-2} & m_{N-1} & \cdots & & m_{2N-3} \\ m_{N-1} & \cdots & & m_{2N-3} & m_{2N-2} \end{bmatrix}_{N \times N}$$

and  $\mathcal{M}_s$  is a Toeplitz matrix,

$$\mathcal{M}_{s} = \begin{bmatrix} m_{0} & m_{1} & \cdots & m_{N-2} & m_{N-1} \\ m_{-1} & m_{0} & m_{1} & \cdots & m_{N-2} \\ \vdots & & \ddots & & \vdots \\ m_{2-N} & \cdots & m_{-1} & m_{0} & m_{1} \\ m_{1-N} & m_{2-N} & \cdots & m_{-1} & m_{0} \end{bmatrix}_{N \times N}$$

### Bermudan puts with 10 early-exercise dates

Table: Test parameters for pricing Bermudan options

| Test No. | Model | $S_0$ | K   | T | r   | $\sigma$ | Other Parameters             |
|----------|-------|-------|-----|---|-----|----------|------------------------------|
| 2        | BS    | 100   | 110 | 1 | 0.1 | 0.2      | _                            |
| 3        | CGMY  | 100   | 80  | 1 | 0.1 | 0        | C = 1, G = 5, M = 5, Y = 1.5 |





# Pricing Discrete Barrier Options

• The price of an *M*-times monitored up-and-out option satisfies

$$\begin{cases}
C(x, t_{m-1}) = e^{-r(t_m - t_{m-1})} \int_{\mathbb{R}} V(x, t_m) f(y|x) dy \\
V(x, t_{m-1}) = \begin{cases}
e^{-r(T - t_{m-1})} Rb, & x \ge h \\
C(x, t_{m-1}), & x < h
\end{cases}$$

where 
$$h = \ln(H/K)$$
, and  $V(x, t_0) = e^{-r(t_m - t_{m-1})} \int_{\mathbb{R}} V(x, t_1) f(y|x) dy$ .

- The technique:
  - Recover  $V_n(t_1)$  recursively, from  $V_n(t_M)$ ,  $V_n(t_{M-1})$ ,  $\cdots$ ,  $V_n(t_2)$  in  $O((M-1)N\log_2(N))$  operations.
  - Split the integration range at the barrier level (no Newton required)
  - Insert  $V_n(t_1)$  in the COS formula to get  $V(x, t_0)$ , in O(N) operations.

## Monthly-monitored Barrier Options

Table: Test parameters for pricing barrier options

| Test No. | Model | <i>S</i> <sub>0</sub> | K   | Т | r    | q    | Other Parameters                        |
|----------|-------|-----------------------|-----|---|------|------|-----------------------------------------|
| 1        | NIG   | 100                   | 100 | 1 | 0.05 | 0.02 | $\alpha = 15, \beta = -5, \delta = 0.5$ |

| Option | Ref. Val.   | Ν              | time         | error    |
|--------|-------------|----------------|--------------|----------|
| Type   |             | N              | (milli-sec.) |          |
| DOP    | 2.139931117 | 2 <sup>7</sup> | 3.7          | 1.28e-3  |
|        |             | 2 <sup>8</sup> | 5.4          | 4.65e-5  |
|        |             | 2 <sup>9</sup> | 8.4          | 1.39e-7  |
|        |             | $2^{10}$       | 14.7         | 1.38e-12 |
| DOC    | 8.983106036 | 27             | 3.7          | 1.09e-3  |
|        |             | 28             | 5.3          | 3.99e-5  |
|        |             | 2 <sup>9</sup> | 8.3          | 9.47e-8  |
|        |             | $2^{10}$       | 14.8         | 5.61e-13 |

## Credit Default Swaps

- Credit default swaps (CDSs), the basic building block of the credit risk market, offer investors the opportunity to either buy or sell default protection on a reference entity.
- The protection buyer pays a premium periodically for the possibility to get compensation if there is a credit event on the reference entity until maturity or the default time, which ever is first.
- If there is a credit event the protection seller covers the losses by returning the par value. The premium payments are based on the CDS spread.

### CDS and COS

- CDS spreads are based on a series of default/survival probabilities, that can be efficiently recovered using the COS method. It is also very flexible w.r.t. the underlying process as long as it is Lévy.
- The flexibility and the efficiency of the method are demonstrated via a calibration study of the iTraxx Series 7 and Series 8 quotes.

# Lévy Default Model

- Definition of default: For a given recovery rate, R, default occurs the first time the firm's value is below the "reference value"  $RV_0$ .
- As a result, the survival probability in the time period (0, t] is nothing but the price of a digital down-and-out barrier option without discounting.

$$\begin{aligned} \mathrm{P}_{\mathit{surv}}(t) &=& \mathrm{P}_{\mathbb{Q}}\left(X_s > \ln R, \text{for all } 0 \leq s \leq t\right) \\ &=& \mathrm{P}_{\mathbb{Q}}\left(\min_{0 \leq s \leq t} X_s > \ln R\right) \\ &=& \mathbb{E}_{\mathbb{Q}}\left[\mathbf{1}\left(\min_{0 \leq s \leq t} X_s > \ln R\right)\right] \end{aligned}$$

## Survival Probability

Assume there are only a finite number of observing dates.

$$\mathrm{P}_{\mathit{surv}}(\tau) = \mathbb{E}_{\mathbb{Q}}\left[\mathbf{1}\Big(X_{\tau_1} \in [\ln R, \infty)\Big) \cdot \mathbf{1}\Big(X_{\tau_2} \in [\ln R, \infty)\Big) \cdots \mathbf{1}\Big(X_{\tau_M} \in [\ln R, \infty)\Big)\right]$$
 where  $\tau_k = k\Delta \tau$  and  $\Delta \tau := \tau/M$ .

• The survival probability then has the following recursive expression:

$$\begin{cases} P_{surv}(\tau) &:= p(x=0,\tau_0) \\ p(x,\tau_m) &:= \int_{\ln R}^{\infty} f_{X_{\tau_{m+1}}|X_{\tau_m}}(y|x)p(y,\tau_{m+1}) \ dy, \quad m=M-1,\cdots,2,1 \\ p(x,\tau_M) &:= 1(x>\ln R) \ \text{and equals 0 otherwise} \end{cases}$$

 $f_{X_{\tau_{m+1}}|X_{\tau_m}}(\cdot|\cdot)$  denotes the conditional probability density of  $X_{\tau_{m+1}}$  given  $X_{\tau_m}$ .

### The Fair Spread of a Credit Default Swap

• The fair spread, C, of a CDS at the initialization date is the spread that equalizes the present value of the premium leg and the present value of the protection leg, i.e.

$$C = \frac{(1 - R) \left( \int_0^T \exp(-r(s)s) dP_{def}(s) \right)}{\int_0^T \exp(-r(s)s) P_{surv}(s) ds},$$

 It is actually based on a series of survival probabilities on different time intervals:

$$C = \frac{(1-R)\sum_{j=0}^{J} \frac{1}{2} \left[ \exp(-r_{j}t_{j}) + \exp(-r_{j+1}t_{j+1}) \right] \left[ P_{surv}(t_{j}) - P_{surv}(t_{j+1}) \right]}{\sum_{j=0}^{J} \frac{1}{2} \left[ \exp(-r_{j}t_{j}) P_{surv}(t_{j}) + \exp(-r_{j+1}t_{j+1}) P_{surv}(t_{j+1}) \right] \Delta t}$$

### The COS Formula for Survival Probabilities

 Replace the conditional density by the COS (semi-analytical) expression, the survival probability then satisfies

$$\begin{cases}
P_{surv}(\tau) = p(x=0,\tau_0), \\
p(x,\tau_0) = \sum_{n=0}^{N-1} \phi_n(x) \cdot P_n(\tau_1),
\end{cases}$$

• The only thing one needs is  $\{P_n(\tau_1)\}_{n=0}^{N-1}$ , which can be recovered from  $\{P_n(\tau_M)\}_{n=0}^{N-1}$  via backwards induction.

#### **Backwards Induction**

• Starting from the definition of  $P_n(\tau_m)$ , we apply the COS reconstruction of  $p(y, \tau_m)$  to get

$$\mathbf{P}(\tau_m) = \operatorname{Re}\left\{\Omega \; \Lambda\right\} \; \mathbf{P}(\tau_{m+1}),$$

Applying this recursively backwards in time, we get

$$\mathbf{P}(\tau_1) = (\operatorname{Re} \{\Omega \Lambda\})^{M-1} \mathbf{P}(\tau_M)$$

 For this recursive matrix-vector-product, there exists a fast algorithm, e.g.

$$\mathbf{P}(\tau_1) = \operatorname{Re} \left\{ \Omega \left[ \Lambda \operatorname{Re} \left\{ \Omega \left[ \Lambda \operatorname{Re} \left\{ \Omega \left[ \Lambda \mathbf{P}(t_3) \right] \right\} \right] \right\} \right] \right\}.$$

• The FFT algorithm can be applied because  $\Omega = H + T$ , where H is a Hankel matrix and T is a Toeplitz matrix.

### Convergence of Survival Probabilities

- Ideally, the survival probabilities should be monitored daily, i.e.  $\Delta \tau = 1/252$ . That is,  $M = 252\,T$ , which is a bit too much for T = 5,7,10 years.
- For Black-Scholes' model, there exist rigorous proof of the convergence of discrete barrier options to otherwise identical continuous options [Kou,2003].
- We observe similar convergence under NIG, CGMY:



### Error Convergence

The error convergence of the COS method is usually exponential in N



Figure: Convergence of  $\mathrm{P}_{\textit{surv}}(\Delta \tau = 1/48)$  w.r.t. N for NIG and CGMY

## Calibration Setting

- The data sets: weekly quotes from iTraxx Series 7 (S7) and 8 (S8). After cleaning the data we were left with 119 firms from Series 7 and 123 firms from Series 8. Out of these firms 106 are common to both Series.
- The interest rates: EURIBOR swap rates.
- We have chosen to calibrate the models to CDSs spreads with maturities 1, 3, 5, 7, and 10 years.

### The Objective Function

• To avoid the ill-posedness of the inverse problem we defined here, the objective function is set to

$$F_{obj} = \text{rmse} + \gamma \cdot ||\mathbf{X}_2 - \mathbf{X}_1||_2,$$

where

$$rmse = \sqrt{\sum_{CDS} \frac{(market \ CDS \ spread - model \ CDS \ spread)^2}{number \ of \ CDSs \ on \ each \ day}}$$

 $||\cdot||_2$  denotes the  $L_2$ -norm operator, and  $\mathbf{X}_2$  and  $\mathbf{X}_1$  denote the parameter vectors of two neighbor data sets.

#### Good Fit to Market Data

Table: Summary of calibration results of all 106 firms in both S7 and S8 of iTraxx quotes

| RMSEs         | NIG in S7 | CGMY in S7 | NIG in S8 | CGMY in S8 |
|---------------|-----------|------------|-----------|------------|
| Average (bp.) | 0.89      | 0.79       | 1.65      | 1.54       |
| Min. (bp.)    | 0.22      | 0.29       | 0.27      | 0.46       |
| Max. (bp.)    | 2.29      | 1.97       | 4.27      | 3.52       |

### A Typical Example



### An Extreme Case



#### NIG Parameters for "ABN AMRO Bank"



Figure: Evolution of the NIG parameters and densities of "ABN AMRO Bank"

### NIG Parameters for "DSG International PLC"



Figure: Evolution of the NIG parameters and densities of "DSG International PLC"

### NIG vs. CGMY

#### Both Lévy processes gave good fits, but

- The NIG model returns more consistent measures from time to time and from one company to another.
- From a numerical point of view, the NIG model is also more preferable.
  - Small N (e.g.  $N = 2^{10}$ ) can be applied.
  - The NIG model is much less sensitive to the initial guess of the optimum-searching procedure.
  - Fast convergence to the optimal parameters are observed (usually within 200 function evaluations). However, averagely 500 to 600 evaluations for the CGMY model are needed.

### Truncation Range

$$[a,b] := \left[ (c_1 + x_0) - L\sqrt{c_2 + \sqrt{c_4}}, \quad (c_1 + x_0) + L\sqrt{c_2 + \sqrt{c_4}} \right],$$



Table: Cumulants of  $ln(S_t/K)$  for various models.

| BS     | $c_1 = (\mu - \frac{1}{2}\sigma^2)t,  c_2 = \sigma^2 t,  c_4$                                     | = 0                                                                                  |  |
|--------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| NIG    | $c_1 = (\mu - \frac{1}{2}\sigma^2 + w)t + \delta t\beta/\sqrt{\alpha^2 - \beta^2}$                |                                                                                      |  |
|        | $c_2 = \delta t \alpha^2 (\alpha^2 - \beta^2)^{-3/2}$                                             |                                                                                      |  |
|        | $c_4 = 3\delta t \alpha^2 (\alpha^2 + 4\beta^2)(\alpha^2 - \beta^2)^{-7/2}$                       |                                                                                      |  |
|        | $w = -\delta(\sqrt{\alpha^2 - \beta^2} - \sqrt{\alpha^2 - (\beta + 1)^2})$                        |                                                                                      |  |
| Kou    | $c_1 = t \left( \mu + rac{\lambda p}{\eta_1} + rac{\lambda (1-p)}{\eta_2}  ight)$               | $c_2=t\left(\sigma^2+2rac{\lambda p}{\eta_1^2}+2rac{\lambda(1-p)}{\eta_2^2} ight)$ |  |
|        | $c_4 = 24t\lambda \left(\frac{p}{\eta_1^4} + \frac{1-p}{\eta_2^4}\right)$                         | $w = \lambda \left( \frac{p}{\eta_1 + 1} - \frac{1 - p}{\eta_2 - 1} \right)$         |  |
| Merton | $c_1 = t(\mu + \lambda ar{\mu})$                                                                  | $c_2 = t \left( \sigma^2 + \lambda \bar{\mu}^2 + \bar{\sigma}^2 \lambda \right)$     |  |
|        | $c_4 = t\lambda \left( \bar{\mu}^4 + 6\bar{\sigma}^2\bar{\mu}^2 + 3\bar{\sigma}^4\lambda \right)$ |                                                                                      |  |
| VG     | $c_1 = (\mu + 	heta)t$                                                                            | $c_2 = (\sigma^2 + \nu \theta^2)t$                                                   |  |
|        | $c_4 = 3(\sigma^4 \nu + 2\theta^4 \nu^3 + 4\sigma^2 \theta^2 \nu^2)t$                             | $w = \frac{1}{\nu} \ln(1 - \theta \nu - \sigma^2 \nu/2)$                             |  |
| CGMY   | $c_1 = \mu t + Ct\Gamma(1 - Y) \left(M^{Y-1} - G^{Y-1}\right)$                                    |                                                                                      |  |
|        | $c_2 = \sigma^2 t + C t \Gamma(2 - Y) \left( M^{Y-2} + G^{Y-2} \right)$                           |                                                                                      |  |
|        | $c_4 = Ct\Gamma(4-Y)\left(M^{Y-4} + G^{Y-4}\right)$                                               |                                                                                      |  |
|        | $w = -C\Gamma(-Y)[(M-1)^{Y} - M^{Y} + (G+1)^{Y} - G^{Y}]$                                         |                                                                                      |  |

where w is the drift correction term that satisfies  $\exp(-wt) = \varphi(-i, t)$ .

### American Options and Extrapolation

Let v(M) denote the value of a Bermudan option with M early exercise dates, then we can rewrite the 3-times repeated Richardson extrapolation scheme as

$$v_{AM}(d) = \frac{1}{12} \left( 64v(2^{d+3}) - 56v(2^{d+2}) + 14v(2^{d+1}) - v(2^d) \right), \quad (2)$$

where  $v_{AM}(d)$  denotes the approximated value of the American option.

# Further Reading: Fourier Pricing

- [1] R. LORD, C. KAHL, Optimal Fourier inversion in semi-analytical option pricing. *J. Comp. Finance*, 10(4): 1-30, 2007.
- [2] R. LORD, F. FANG, F. BERVOETS AND C.W. OOSTERLEE, A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes. SIAM J. Sci. Comput. 30, 1678-1705 (2008).
- [3] C. O'SULLIVAN, Path dependent option pricing under Lévy processes EFA 2005 Moscow Meetings Paper, Available at SSRN: http://ssrn.com/abstract=6734241, Febr. 2005
- [4] E. REINER, Convolution methods for exotic options Conference on Computational Intelligence for Financial Engineering, 30 March, 1998, New York.
- [5] F. FANG AND C.W. OOSTERLEE, A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions. *SIAM J. Sci. Comput.* 31: 826-848, 2008.
- [6] F. FANG AND C.W. OOSTERLEE, *Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions.* Techn. Report. Delft 2008.

### Other Reading:

- [1] A.D. Andricopoulos, M. Widdicks, P.W. Duck and D.P. Newton, Universal option valuation using quadrature methods, *J. Fin. Economics*, 67: 447-471, 2003.
- [2] S.I. BOYARCHENKO AND S.Z. LEVENDORSKIĬ, Non-Gaussian Merton-Black-Scholes theory, Vol. 9 Advanced Series on Statist. Science & Appl. Probability., World Scient. Publ. Co. Inc., River Edge, NJ, 2002.
- [3] C-C CHANG, S-L CHUNG AND R.C. STAPLETON, Richardson extrapolation technique for pricing American-style options. *J. Futures Markets*, 27(8): 791-817, 2007.
- [4] L. FENG L. AND V. LINETSKY, Pricing discretely monitored barrier options and defaultable bonds in Lévy process models: a fast Hilbert transform approach, To appear in *Mathematical Finance*, 2008.