Early Exercise Option Valuation
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o With V(tm, S(tm)) = E(tm, S(tm)) we find the option price via
backward induction:

V(tM,S(tM)) = E(tM,S(tM))
Cltm, S(tm)) = e By, [V(tmi1, S(tmr1))] M1 1
V(tm, S(tm)) = max{C(tm, S(tm)), E(tm, S(tm))}, B
V(to, S(to)) = C(to, S(t0)),
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Discounted Expected Payoff

@ Write, in the case of deterministic interest rates, as an integral:

Cltm, S(t)) = e /°° V(tmir, y)F(y]S(tm))dy

— 00

@ O'Sullivan(2005): Generalization to exponential Lévy processes, as
the density can be recovered via Fourier inversion.

@ With the midpoint rule, the density can be approximated and
resolved by the FFT. Overall complexity of O(MN?) for M-times
exercisable Bermudan options.
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The CONV method (Carr-Madan extended)

@ The main premise of the CONV method is that f(y|x) depends on x
and y via
Flylx) = fly —x).
@ Assumption is clearly satisfied in exp. Lévy models, where x and y
then represent log-asset prices. The assumption means that
log-returns are independent.

Cltm,x) = e "t / V(tmi1, y)f(y|x)dy

e At / V(tmi1,x + z)f(z)dz.

— 00

@ The key insight is the notion that, apart from the discounting, the
equation is a cross-correlation of V' with the density function f.
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Early Exercise Option Valuation

@ Premultiplying by exp(ax) and taking its Fourier transform, gives:
oo
erAt]-'{eo‘XC(tm,x)} — rAt/ elux aXC(tm, )dX

/ eltx eV (tmi1, x + 2)f(z)dzdx

_ / I(U Ia)yv(tm+1’ )dy/ e—i(u—ia)Zf(z)(

= V(tmi1,u— i) (—(u—ia)).

@ A computation for resolving the (conditional) density function is
avoided,
only the characteristic function ¢ is involved.

@ The option price is recovered by the inverse Fourier transform and
undamping.
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Some Details

@ The extended characteristic function

o0

o (x+yi) = / e/ Oz f(7)dz,

—00
is well-defined when ¢(yi) < 00, as |¢(x + yi)| < |o(yi)|.

= This puts a restriction on the damping coefficient «, because ¢(«i)
must be finite.

@ The damping factor is necessary when considering e.g. a Bermudan
put, as then V/(tm1,x) tends to a constant when x — —o0, and as
such is not Ll-integrable.

@ The difference with the Carr-Madan approach is that we take a
transform with respect to the log-spot price instead of the log-strike
price.

= The idea for GBM is already present in a presentation by Eric Reiner
(2000)
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Algorithm

The algorithm may now be clear, with E(tp, x) = 0:
o V(ty,x) = E(tm, x) for all x
@ Form=M-1to0
Dampen V/(tmt1,y) and take its Fourier transform
Multiply with ¢(—u + i)
Apply Fourier inversion and undamp
V(tm, x) = max{E(tm, x), C(tm, x)}
Next m

¢ & ¢ ¢ ¢
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Expressions for hedge parameters

@ The CONV formulae for two hedge parameters, A and I, defined as,

2 2
A9V 1oV _a_v_1<av av>. O

95 “Sox  Tosm s\ ok T on
@ Define, F{e®*V(tg,x)} = e At A(u), where

A(u) = F{eV(tr,y)} - o(—u+ ia).
@ CONYV formula for A and T,

—rAt

A= E T T inAw)) - aF AW,
r= S T WPAW) - (1 20)F 7 (—ivA(w)

+ aa+ 1)f-1{A(u)}]
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CONV Method, FFT

@ Step 1 - The payoff transform

F{eV(tmir,y)Hu) = / " e V(tmy1,y)dy
N-1

~ Ay Z W, e e\ (tm i1, Yn)
n=0

@ Can be evaluated using the FFT, use the Trapezoidal rule, for
example.

@ Need uniform grids for u, x (log-asset price at t,,) and y (log-asset
price at tmy1).

@ Further, the Nyquist relation must be satisfied: Au-Ax = 27/N.
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Error analysis of the CONV method

@ Rederive discretized CONV formula by a Fourier series expansion of
continuation value.
@ This reveals that
@ Only moment restriction on « is necessary (L:l integrability is
replaced by L'-summability);
o If ¢ decays faster than a polynomial, the discretized CONV formula
converges as O(1/N?) for continuous payoff functions;
o If ¢ decays as x7, the order is O(1/N™" 152} for continuous
payoff functions.
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Dealing with discontinuities for Bermudan Options

Discretization | Discretization I
thM e e S S Sy Sy 3 o—o o o o o o
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@ Consider two discretizations:
o Discretization |: x = y throughout, and In S(0) lies on the grid;
@ Discretization Il: At each time, tn,, we place dm, on the x-grid.
1. Estimate dp, in C(tm,dm) = E(tm, dm);
2. Place dp, on the x-grid and recalculate C(tn);
3. Re-evaluate exercise decision and continue.
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Bermudan option , Discretization Il

@ Pricing 10-times exercisable Bermudan put under GBM and VG

@ So=100,K=110,T=1,r=0.1,q = 0;

@ For GBM: o = 0.25, reference= 11.1352431;
@ For VG: 0 =0.12,0 = —0.14,v = 0.2, reference= 9.040646114;

(N=2m) GBM VG
n time(msec) | abs. error | conv. || time(msec) | abs. error | con\
7 0.23 -2.7-02 - 0.28 -9.6e-02 -
8 0.46 -7.4-03 3.7 0.55 -1.1e-02 9.0
9 0.90 -2.0e-03 3.7 1.09 -2.3e-03 4.7
10 2.00 -5.2e-04 3.8 2.15 -6.1e-04 3.8
11 3.85 -1.3e-04 4.0 4.38 -1.6e-04 3.8
12 7.84 -3.3e-05 4.0 9.29 -4.1e-05 3.9
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Approximation of American option

@ The value of an American option can be approximated
o either by a Bermudan with many exercise dates,
@ or, by Richardson extrapolation on a series of Bermudan options
with an increasingly number of exercise dates

@ To this end assume that the Bermudan price V/(At), with At the

time step between two consecutive exercise moments, can be written

as:
o)

V(At) = V(0)+ ) ai(At)”

Computational Finance (Summerschool) Hitotsubashi University August 2009



American option under GBM

@ limpy— o P(M) = American option value
o Approximate the American option value by P(M) with a big M.
¢ Reconstruct a faster converging series P'(M) by
@ 5=100,K=110,T =1,0 =0.25,r=0.1,9g = 0;
o Reference value: Ve (0, 5(0) = 12.169417 (Black-Scholes)
@ Richardson extrapolation with 128, 64 and 32 exercise opportunities

(N =2") P(N/2) Richardson

n time(msec) error conv. || time(msec) error | conv.
7 0.97 -5.9e-02 - 3.3 -3.1e-02 -

8 3.7 -2.2e-03 2.6 6.6 -7.8e-03 | 3.9
9 14.8 -9.3e-03 2.4 14.0 -2.1e-03 | 3.8
10 60.0 -4.16e-03 | 2.2 28.4 -5.2e-04 | 4.0
11 251.7 -2.0e-03 2.1 66.4 -1.2e-04 | 43
12 1108.1 -9.4e-04 21 151.9 -2.1e-05 | 5.8
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Yet Another Method: Fourier-Cosine Expansion

@ The COS method:

o Exponential convergence;
o Greeks are obtained at no additional cost.
o For discretely-monitored barrier and Bermudan options as well;

@ The basic idea:
@ Replace the density by its Fourier-cosine series expansion;
o Series coefficients have simple relation with characteristic function.

August 2009
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Series Coefficients of the Density and the Ch.F.

o Fourier-Cosine expansion of density function on interval [a, b]:

o0 —
f(x) = Zlnzan cos (mrz — z) ,

with x € [a, b] C R and the coefficients defined as

2 b X —a
Fp o= f .
b—a/a (x)cos(mrb_a> dx

o F, has direct relation to ch.f., ¢(u) := [; f(x)e™dx
( fR\[a,b] f(x) = 0),

For~ A, = bié)/ﬂ{{f(x)cos(mrz:z) dx

2 nm . kam
= —b_aRe{(b <—b—a> exp (—Ib_a>}.
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Recovering Densities

@ Replace F, by A,, and truncate the summation:

2 JN—1
f(x) ~ 5 az o Re{qﬁ (bn

T e j —2 cos x—2
—a'X Xp Imrb—a mrb—a

o Example: f(x) = —t=e~ 2, [a, b] = [~10,10] and

V2n
X = {_57_47"' 7475}'
N 4 8 16 32 64
error 0.2538 | 0.1075 | 0.0072 | 4.04e-07 | 3.33e-16

cpu time (sec.) | 0.0025 | 0.0028 | 0.0025 0.0031 0.0032

Exponential error convergence in N.
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Pricing European Options

@ Start from the risk-neutral valuation formula:
Vixito) = e B2 [V(y, T = [ Vi, T)(ylx)dy.
R
@ Truncate the integration range:

V(x, to) = e "¢ /[ VO Ty e

@ Replace the density by the COS approximation, and interchange
summation and integration:

~ N—-1 o
) = oo () e o

where the series coefficients of the payoff, V,, are analytic.
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Pricing European Options

@ Log-asset prices: x :=In(So/K) and y :=In(57/K),
@ The payoff for European options reads

V(y, T)=[a-K(e¥ —1)]".

@ For a call option, we obtain

yal = 2 /bK(ey 1) cos k¥ —2 dy
b—a /g b—a

— rK(xk(O b) — ¥x(0, b)),

@ For a vanilla put, we find

¢ 2
Vit = 55 K (=xu(@,0) + ¥ (a,0))-
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Characteristic Functions Heston Model

@ The characteristic function of the log-asset price for Heston's model:
. oo 1— e DAt i
vhes(U; 00) = exp </urAt + ? <m (k —ipyu— D)) -

Ko . 1 — Ge DPAt
exp <? (At(n —ipyu—D) -2 Iog(ﬁ)>),

i = i ; _ k—ipyu—D
with D = (F =i aP + (@ F ) and G = S=imul.

@ For Lévy and Heston models, the ChF can be represented by

d(U;X) = Py (u)- ™ with @, (v) == é(u;0),
P(u;%,00) = @hes(u;00) - €,

Computational Finance (Summerschool) Hitotsubashi University August 2009 19 / 51



Characteristic Functions Lévy Processes

@ For the CGMY/KoBol model:

1
Pl (1) = exp(iu(r — )ALt = SuP0*At) -
exp (AtCT (= Y)[(M — iu)Y — MY + (G + iu)¥ — G]),
where T'(-) represents the gamma function.

@ The parameters should satisfy C >0,G >0,M >0and Y < 2.
@ The characteristic function of the log-asset price for NIG:

O exp(iuu+5(\/a2 — Va2 — (8 + iu) ))

with ,6 > 0,8 € (—a,a — 1)
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Heston Model

@ We can present the Vi as Vi = UK, where

U — 72 (x«(0,b) — 1 (0,b))  for a call
- b%a (=x«(a,0) + 9x(a,0)) for a put.

@ The pricing formula simplifies for Heston and Lévy processes:

/N—1 o
v(x, tg) ~ Ke ™At . Re {Z o (%) U, - e’”“b—a} ,

where o(u) := ¢(u; 0)
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Numerical Results

Pricing for 21 strikes K = 50, 55,60, - - - , 150 under Heston's model.
Other parameters: So =100,r =0,g=0,T =1,k = 1.5768,v =
0.5751,5 = 0.0398, 09 = 0.0175, p = —0.5711.

N 96 128 160
COSs (msec.) 2.039 2.641 3.220
max. abs. err. 4.52e-04 2.61e-05 4.40e — 06
N 2048 4096 8192
Carr-Madan (msec.) 20.36 37.69 76.02
max. abs. error | 2.61e-01 | 2.15e — 03 2.08e-07

Error analysis for the COS method is provided in the COS paper.
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Pricing Bermudan Options

R J‘R V(y, tme1)f(y|x)dy
max (E(x, tm), C(x, tm))

—
<9
x X
~ o~
ii/
[l

and V(X7 tO) = e—rAt f]R V(Y? tl)f(Y|X)dy
o Use Newton's method to locate the early exercise point x,,, which is
the root of E(x, tm) — C(x, tm) = 0.
o Recover V,(t1) recursively from Va(tm), Va(tm—1), -+ , Va(t2).
o Use the COS formula for V(x, to).
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Vi-Coefficients

@ Once we have x7,, we split the integral, which defines Vi(ty):
Ci(a,x}, tm) + Gk(x}, b), for a call,
Viltm) = { Gr(a, x%) + Ck(x%, b, tm), for a put,
foorm=M-—-1M—2,.-- 1. whereby

Gr(x1, x2) == 2 / E(x, tm) cos (sz_ a) dx.

b—a —a

x1

and

C(x, tm) cos <k7rX — a) dx.

Ci(x1, x2, tm) 1= b—a_/x P

The Gk (x1,x2) are known analytically and the Cy(x1, %2, tm) can be
computed in O(N log,(N)) operations with the Fast Fourier Transform.
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Bermudan Details

@ Formula for the coefficients Cx(x1, X2, tm):

yN—-1

Ci(x1, X0, tm) = e "ARe {ijo Plevy (%) Vi(tms1) - Mk,j(XLXQ)} ‘

where the coefficients M j(x1, x2) are given by

2 x jiwx=2 X —a
M j(x1, %) = - a/ eV 5= cos (kﬂ'b_ a) dx,

X1

@ With fundamental calculus, we can rewrite M, ; as

My j(x1, x2) = (Mi’j(Xl,XQ) + Mi’j(X]_,XQ)) ,

i
T
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Hankel and Toeplitz

@ Matrices M. = {MkJ(Xl,XQ)}kJ o and M, = {Mi)j(Xl,XQ)}Q{fio
have special structure for which the FFT can be employed: M. is a

Hankel matrix,

and Mg is a Toeplitz matrix,

Computational Finance (Summerschool)
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Bermudan puts with 10 early-exercise dates

Table: Test parameters for pricing Bermudan options

Test No. Model So K T r o Other Parameters
2 BS 100 110 1 0.1 | 0.2 —
3 CGMY | 100 80 1 0.1 0 C=1,G=5M=5Y=15
BS cGMY
-1 -1
—8— COS, L=8, N=32d, d=1:5 —8— COS, L=8, N=32*d, d=15
2K - % = CONV,3=20, N=2%, d=8:12 - % = CONV,3=20, N=2%, d=8:12
-3 » =
- e TS
-4 TwesLLLl i S TR SRR R St A
& -6 &
8 Ei
-7
-8
-9
10 -10
10 20 30 40 50 10 20 30 40 50 60
milliseconds milliseconds
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Pricing Discrete Barrier Options

@ The price of an M-times monitored up-and-out option satisfies

Clx,tm1) = e "tn=tnm1) foV(x, ty)f(y|x)dy
—r(T—tm_1)Rb > h
e , X2
Vix,tn-1) = { C(x, tm-1), x<h

where h = In(H/K), and
V(X7 tO) = e_r(tm_tmil) f]R V(X7 tl)f(y|X)dy
@ The technique:
o Recover V,(t1) recursively, from Va(tm), Va(tm—1), -« , Va(t2) in
O((M — 1)N log,(N)) operations.
@ Split the integration range at the barrier level (no Newton required)
o Insert V,(t1) in the COS formula to get V(x, to), in O(N) operations.
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Monthly-monitored Barrier Options

Table: Test parameters for pricing barrier options

Other Parameters

Test No. | Model So K T r q
1 NIG 100 | 100 | 1 | 0.05 | 0.02 | a=158= -5, =0.5

Option Ref. Val. N time error

Type N | (milli-sec.)

DOP | 2.139931117 | 27 3.7 1.28e-3
28 5.4 4.65e-5
29 8.4 1.39e-7
210 14.7 1.38e-12

DOC | 8.983106036 | 27 3.7 1.09e-3
28 53 3.99e-5
29 8.3 9.47e-8
210 14.8 5.61e-13
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Credit Default Swaps

o Credit default swaps (CDSs), the basic building block of the credit
risk market, offer investors the opportunity to either buy or sell
default protection on a reference entity.

@ The protection buyer pays a premium periodically for the possibility
to get compensation if there is a credit event on the reference entity
until maturity or the default time, which ever is first.

@ If there is a credit event the protection seller covers the losses by
returning the par value. The premium payments are based on the
CDS spread.
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CDS and COS

@ CDS spreads are based on a series of default/survival probabilities,
that can be efficiently recovered using the COS method. It is also
very flexible w.r.t. the underlying process as long as it is Lévy.

@ The flexibility and the efficiency of the method are demonstrated via
a calibration study of the iTraxx Series 7 and Series 8 quotes.

August 2009 31/
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Lévy Default Model

@ Definition of default: For a given recovery rate, R, default occurs
the first time the firm’'s value is below the “reference value” RVj.

@ As a result, the survival probability in the time period (0, t] is

nothing but the price of a
digital down-and-out barrier option without discounting.

Pan(t) = Pg(Xs>InR forall0<s<t)

Po ( min X5 > In R)
0<s<t

= Eg {1 < min Xs > InR)}
0<s<t

August 2009
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Survival Probability

@ Assume there are only a finite number of observing dates.
Pan(r) = g [1(Xy € NR,0)) - 1(Xs, € [N R, o)) -+ 1(X, € IR,

where 74 = kA7 and AT :=7/M.
@ The survival probability then has the following recursive expression:

Psurv('r) = P(X =0, To)
POGTm) = fior B X VX)P(Ys T dy, m=M—1,--- 2,
p(x,7m) = 1(x >InR) and equals 0 otherwise

fx,. .. 1%, (|) denotes the conditional probability density of X;
given X, .

m+1
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The Fair Spread of a Credit Default Swap

@ The fair spread, C, of a CDS at the initialization date is the spread
that equalizes the present value of the premium leg and the present
value of the protection leg, i.e.

(1-R) (fOT exp(—r(S)S)dee,—(s)>
fOT exp(_r(s)s)Psurv(S)dS

@ It is actually based on a series of survival probabilities on different
time intervals:

C:

J
(1= R Lo Hlep(— 1) + (= 1841 Poun(8) = Paun(511)]
S 3 1exp(— 18 Peuns () + xp(—1751812)Peuns (1) At
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The COS Formula for Survival Probabilities

@ Replace the conditional density by the COS (semi-analytical)
expression, the survival probability then satisfies

Psurv(T) = p(X = 077—0)'
22 no n(X) - Pn(71),

N—1
p(XvTO) !

@ The only thing one needs is {P,(m1) nNz_ol, which can be recovered

from {P,(mm)} -3 via backwards induction.
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Backwards Induction

@ Starting from the definition of P,(7,), we apply the COS
reconstruction of p(y, 7m) to get

P(tm) = Re {Q A} P(Tmi1),
@ Applying this recursively backwards in time, we get
P(m1) = Re {Q AN P(7m)

@ For this recursive matrix-vector-product, there exists a fast
algorithm, e.g.

P(1) =Re{Q [A Re{Q [N Re{Q [APB)}]1}]}.

@ The FFT algorithm can be applied because Q = H + T, where H is
a Hankel matrix and T is a Toeplitz matrix.
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Convergence of Survival Probabilities

@ ldeally, the survival probabilities should be monitored daily, i.e.
A7 =1/252. Thatis, M = 252T, which is a bit too much for
T =5,7,10 years.

@ For Black-Scholes' model, there exist rigorous proof of the
convergence of discrete barrier options to otherwise identical
continuous options [Kou,2003].

@ We observe similar convergence under NIG, CGMY:

°
i
8

—e—AT> 1252
= = = A1=1/252, Daily-monitored|

°
©
8
&
&

Survivial Probabilities under NIG
°
©
8
3

0.987, —e— AT> 1252
= = = A1 = 1/252, Daily-monitored|

jvial Probabilities under CGMY
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Error Convergence

@ The error convergence of the COS method is usually exponential in

N

Figure: Convergence

Computational Finance (Summerschool)

Log,  of the absolute erors

d, N=2!

of Poun (AT = 1/48) w.r.t. N for NIG and CGMY
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Calibration Setting

@ The data sets: weekly quotes from iTraxx Series 7 (S7) and 8 (S8).
After cleaning the data we were left with 119 firms from Series 7
and 123 firms from Series 8. Out of these firms 106 are common to
both Series.

@ The interest rates: EURIBOR swap rates.

@ We have chosen to calibrate the models to CDSs spreads with
maturities 1, 3, 5, 7, and 10 years.
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The Objective Function

@ To avoid the ill-posedness of the inverse problem we defined here,
the objective function is set to

Fopj = rmse + 7 - [| X2 — Xq|[2,

where

rmse — Z (market CDS spread — model CDS spread)?
B number of CDSs on each day

)
CDS

|| - ||2 denotes the Ly—norm operator, and X, and X; denote the
parameter vectors of two neighbor data sets.
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Good Fit to Market Data

Table: Summary of calibration results of all 106 firms in both S7 and S8 of iTraxx

quotes
RMSEs NIG in S7 | CGMY in S7 | NIGin S8 | CGMY in S8
Average (bp.) 0.89 0.79 1.65 1.54
Min. (bp.) 0.22 0.29 0.27 0.46
Max. (bp.) 2.29 1.97 4.27 3.52
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A Typical Example

Evolution of CDSs of ABN Amro Bank NV with maturity T = 1 year

120
T T T @
L \ i
100 - = = Market CDSs o' ®
2 sol O CGMY calibration results l% i
£ o + NIG ion results
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8 a0 0 W i
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5 0200505695
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Evolution of CDSs of DSG International PLC with maturity T = 1 year
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NIG Parameters for “ABN AMRO Bank”
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“DSG International PLC”
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Both Lévy processes gave good fits, but

@ The NIG model returns more consistent measures from time to time
and from one company to another.
@ From a numerical point of view, the NIG model is also more
preferable.
o Small N (e.g. N = 2'°) can be applied.
@ The NIG model is much less sensitive to the initial guess of the
optimume-searching procedure.
o Fast convergence to the optimal parameters are observed (usually
within 200 function evaluations). However, averagely 500 to 600
evaluations for the CGMY model are needed.
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Truncation Range
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Table: Cumulants of In(S¢/K) for various models.

BS c = (/J, — %Uz)t, C = 021_“, =0
NIG clz(p—%02+w)t+6t,6’/\/a2—,6’2
o= 6to¢2(o¢2 _ ﬁQ)_3/2
c = 38ta?(a? + 48%)(a? — BR)7/?
w=—5(v/a2 — 2 — /a2 — (B +1)?)
Kou clzt(p—l—%—l—%) c2:t(02+2i‘]—§’+2/\(1]—§p))
Ca = 24t (er;‘ + 1;—3") w=2 (551 - )
Merton | c1 = t(p + M) 2 =t (0% + A% + 5%)\)
ca = tA (@* 4+ 65202 + 35%))
VG a=(p+0o)t o = (02 + vt
c = 3(c*v + 2048 + 402020t w= %In(l—@y—a2y/2)
CGMY [ ¢ =pt+ CtI(1—Y)(MY~1 - G¥Y1)
=02t+ Ctr(2—-Y) (MY~2 4+ GY~2)
ca=Ctlh(4—Y)(MY~=4+ GY—%)
w=—Cr(=Y)[(M-1)Y =MY +(G+1)Y —G"]

where w is the drift correction term that satisfies exp(—wt) = p(—i, t).
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American Options and Extrapolation

Let v(M) denote the value of a Bermudan option with M early exercise
dates, then we can rewrite the 3-times repeated Richardson extrapolation

scheme as

vam(d) = 5 (64v(2%%) — 56v(2*) + 14v(2) ~ v(2%)),  (2)

where vam(d) denotes the approximated value of the American option.
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