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Multigrid line smoothers for higher order upwind discretizations of
convection-dominated problems
C.W. Oosterlee, F.J. Gaspar, T. Washio and R. Wienands

Abstract:

In this paper we present new multigrid line smoothers for the solution of higher order dis-
cretizations of scalar convection-dominated problems directly. The behavior of the smoothers is
analyzed theoretically with Fourier smoothing and two-grid analysis. A parallel tri-line variant
is presented and evaluated. The smoothers are applied to scalar convection-diffusion problems,
discretized with limiters and systems of incompressible Navier-Stokes and Euler equations.



1 Introduction

Multigrid methods are generally accepted as fast efficient solution methods, especially for elliptic
problems when the discretization results in an M-matrix [22]. For these problems, basic iterative
methods, like point or line Gauss-Seidel methods are not satisfactory solvers, but they are
efficient smoothers. This means that instead of solving all frequencies of the error components,
they efficiently reduce the high frequency components and therefore smooth the error between
numerical and exact solution. A smoother is one essential part of a multigrid method. The
other part is the coarse grid correction, which is based on the knowledge that a smooth error
can be well represented on coarser grids. On a coarser grid a smoother can then reduce the
“high” frequencies corresponding to this grid. By repeating this procedure on several grids,
the multigrid solution method is obtained. More details on multigrid can be found in [2], [10],
[20] and [24]. The multigrid method is also commonly used for singularly perturbed problems,
like convection-dominated (systems of) equations. Here, the error is not only smoothed, it is
also reduced along the characteristic direction of a convection operator. For these problems,
however, good smoothers are not necessarily the same ones as in the full elliptic case. Basic
iterative methods with grid point ordering “against the flow”, for example, do not smooth the
error. Also the quality of a smoother depends on the discretization used for the convection
terms. Efficient smoothers for convection-dominated problems are the main topic of this paper.

Higher order finite difference or finite volume discretizations of convection-dominated prob-

lems, on the basis of van Leer’s k-schemes [21], do not result in M-matrices and their multigrid
treatment is not as efficient as for Poisson-like problems.
Usually, x-scheme discretizations are solved indirectly with a defect correction technique, where
multigrid is used for solving the first order discretization. The higher order discretization scheme
is then used as an outer iteration. In the defect correction approach often the outer iteration
determines the convergence speed, which can be slow if the first and higher order discretizations
are very different.

A second popular approach, in which higher order discretizations are solved directly in multi-
grid, is with the help of multistage smoothers [12], [24]. These smoothers are point smoothers
of Jacobi type and are therefore limited in their robustness with respect to problems discretized
on grids with stretched cells.

In this paper, instead of the two approaches mentioned above, a robust alternative is presented,
in which the higher order upwind discretization is also solved directly in multigrid. We present
line smoothers based on a splitting of the operator into a ‘positive’ part on the left-hand side
and the remaining part on the right-hand side. Positive parts (a positive main diagonal and
nonpositive off diagonal elements) are required in the left-hand side, in order to assure a split-
ting to have smoothing properties. The smoothers based on this splitting can be of alternating,
symmetric or zebra type and are called KAPPA smoothers here.

The resulting splitting is analyzed with Fourier smoothing analysis [2] for a linear convection
diffusion equation discretized with the x-scheme, similar to Wesseling [24] (for the standard
upwind discretization). Furthermore, two-grid Fourier analysis [20], [5] is applied.

A parallel variant is a tri-line zebra smoother, due to the fact that a higher order 1D upwind
stencil contains 4 elements. It is evaluated, whether the parallel smoother is an interesting com-
petitor for the robust (non parallel) symmetric alternating line smoother. In Section 2.1 we will
briefly describe the discretization of the convective terms. In Section 2.2 the multigrid solution
method with the new splitting for the line smoothers is introduced. The theoretical results are



compared to the actual multigrid convergence for model problems in Section 3. In the two-grid
analysis we observe the discrepancy between the scaling of convection and diffusion on fine and
coarse grids, as is studied in [4], [3] and mentioned in [5]. For the ‘inflow/outflow’ problems eval-
uated here we will not see the negative effect of the different scaling on the multigrid convergence,
due to the influence of the combination of Dirichlet boundary conditions and the line smoothers,
which reduce not only high frequency, but also low frequency error components. Overweighting
of residuals [4], or a Krylov acceleration [15] as a way to improve the convergence (mainly for
rotating convection-dominated problems) is not needed here and therefore not adopted.

The multigrid solution method used here is the nonlinear FAS [2] scheme, because we will also
investigate the influence on the multigrid convergence of discretization schemes with limiters.
Discretizations with limiters lead to nonlinear discretizations, even for linear problems. Numer-
ical tests for linear and nonlinear convection-dominated scalar problems are performed on fine
grids in Section 5, where the new method is compared with the defect correction approach. Fur-
thermore, the smoothers are tested for systems of incompressible Navier-Stokes and compressible
Euler equations.

2 The discretization and the solution method

2.1 Higher order upwind discretization of a convection term

We consider a linear variant of the convection-diffusion equation:

Lé=(a)s+ (b0), — A= f (1)

where 0 < € << 1, A denotes the Laplacian, a, b and f are given functions possibly depending on
z and y. We discretize (1) on a grid with mesh size h, = h, = h. The diffusion term is approx-
imated with the standard five point approximation. For the convection terms (a¢), and (a¢),,
we distinguish between a different upwind approximations. In general a good discretization for
convection should obey two important requirements:

1 The discretization should be O(h?) accurate (at least for “smooth” parts of a solution).

2 The discretization should be monotone. This means that a solution should not contain
wiggles, spurious oscillations that results in local unphysical extrema.

The standard upwind discretization for (a¢), looks (for a = const > 0) like:
a
(ad)s = 3 (bij = di—1) =t Ln (2)

However, it is well-known that this discretization scheme is only O(h) accurate. A first choice
for obtaining second order accurate schemes with a linear discretization is the class of x-schemes,
which work satisfactorily for a large class of CI'D problems including the incompressible Navier-
Stokes equations. The k-schemes are, however, not monotone, which means that they have to be
modified (with limiters) for CFD problems containing strong gradients or boundary layers. &-
schemes result in a linear discretization, which enables them to be easily analyzed (for example
with Fourier analysis). The discretization of (a¢), with van Leer’s x-scheme [21] looks (for
a = const > 0) like:

1 1-—
(ag); = %[(¢i,j — ¢i—1,j) — g(¢i,j — ¢i1,5) + ZR(@HJ — ¢ij) — Tﬁ(@—m — ¢i—2,;)]

= L, + L,+ Lg+ L, (3)




For a < 0 similar formulae are found, and the evaluation of ¢, is straightforward. Furthermore, if
a = a(z,y) # const, (3) is easily changed by introducing a;1,/5; and a;_; 5 ; in a standard finite
difference or volume discretization. The resulting discretization obtained with the k-scheme is
denoted by Ls. The stencil for (1) with (3), (¢,b = const > 0) and x = 0 (called Fromm’s
scheme) looks like:

0
. y|1/4 cfo -1
Lol = (1/4 =5/43/4 1/4 0]+ | 3/4 | 455 | -1 4 -1 (4)
—5/4 0 -1 0
1/4

The Fromm scheme is second order accurate, whereas the Cubic Interpolation Upwind (CUI)
scheme (k = 1/3) [1] is formally third order accurate in space, which can be confirmed by Tay-
lor’s expansion.

It can be seen from (4) that s-discretizations in general do not result in M-matrices [22], for
which it is well-known that basic iterative methods, like Gauss-Seidel, are convergent methods.
Using the basic iterative methods as a smoother directly on L; leads actually to a diverging
method. For multigrid smoothers it is essential that the discretization is taken into account.
Positive parts Ly + L, of the second order discretization (3) will be used in the left-hand side.
Positive parts (a positive main diagonal and nonpositive off diagonal elements) are required in
the left-hand side, in order to assure it to be invertible. Positivity is the point of departure for
every smoothing method known.

As already mentioned, discretizations with k-schemes produce unphysical oscillations near sharp
gradients or discontinuities in a solution. Therefore, Total Variation Diminishing (TVD) con-
cepts have been introduced, preventing a solution from oscillating. An overview of the TVD
schemes is given in [11] and also in [25]. The basis for the so-called monotone TVD discretiza-
tions is the introduction of limiters. Limiters result in nonlinear discretizations even for linear
problems. We will evaluate the multigrid convergence for discretizations with different limiters.
A good starting point for the discretization with limiters is the discretization of (1) with (3) and
k = —1, the second order upwind scheme, which looks (for @ > 0) like:

1 1
(ag) = %[(@,j —¢i—1;) + 5(@,]‘ — ¢i—1;) — 5(@—1,]' —¢i—2;)|=L1+ Lo+ L, (5)

The second order upwind scheme is introduced as a first order upwind scheme L plus additional
terms L, and L,. (Again a similar splitting is found for ¢ < 0 or for ¢ and b functions depending
on z and y.) To satisfy TVD conditions the additional terms L, and L. are multiplied by
limiters, which are functions of the ratio of local differences of unknowns:

(@) = F1615 = bi1) 39 (Rics2) 5 = dic15) = 3U(Rizyps) (G115 — D1
= L+ L, + L, (6)

Here, R;_y/2 = (it1,j — 0i)/ (Bij — bi=1,5) and B;_3/9 = (¢ij — bi-1,5)/(Pi-1,j — i=2,5)-

It is well-defined in which region in a (R, ¥(R))-diagram the limiting function W(R) should
lie, so that the resulting convection discretization is monotone and higher order accurate ([11],
[25]) (also shown in Figures 1 and 2). In recent years many limiters have been proposed and
evaluated, since for every problem (compressible equations with shocks, turbulence modeling,



etc.) a corresponding best limiter can be constructed. Here we sum up some of these limiters
for which we investigate the multigrid convergence. Investigations on accuracy with limiters for
model problems and applications is done in many other papers.

We distinguish two classes of limiters. For the first class of limiters we will present a robust
convergence improvement in Section 4. The limiters in this class do not follow parts of the line
U(R) =2R in the (R, V(R))-plane. Some well-known limiters in this class are:

R*+R .
U(R) = 1 Van Albada limiter (7)
V(R) = |1;|:||:1R Van Leer limiter (8)
(|R|+ R)BR+1) .
U(R) = 2B+ 1) ISNAS limiter [25] 9)

(The limiters for which we do not give an explicit reference are well-known and can be found
n [11], [25]). The limiters (7), (8) and (9) are presented in a (R, V(R))-diagram in Figure 1. It

van Albada ——
vanLeer ..
W (R) ISNAS . __.
1~ T T —
08 WY=2R
0.6 _,--""/’/
W=R
0.4
0.2
0
0 0.2 0.4 0.6 0.8 R 1

Figure 1: Three limiters and the monotonicity region in a (R, ¥(R))-diagram.

can be seen that for all the limiters examined (6) is identical to (5) for R = 1, which ensures
second order accuracy in smooth regions.

The second class of limiters is the class of strong compressive limiters, whose function values are
2R near the origin in the (R, V(R))-diagram. Examples are the Superbee limiter, the SMART
limiter and the limited x = 1/3 scheme:

U (R) = max[0, min(2R, 1), min(R,2)] Superbee limiter (10)
U(R) = max[0, min(4, 3R+ §,2R)]  SMART limiter [8] (11)
U (R) = max[0, min(2, %R + %, 2R)] Kk =1/3 limiter [14] (12)

These limiters are shown in Figure 2. When the values from 2R are chosen the resulting dis-



cretization for ¢ > 0 becomes:
a
(@d)s = +[=dij + dit1j] (13)

The negative main diagonal element already indicates that fast convergence with iterative meth-
ods for the steady equation discretized with a limiter from class 2 might not be trivial.

SMART —

¥ (R) Superbee ------

Figure 2: Three ‘2R’-limiters (they follow the function ¥ = 2R near the origin) and the mono-
tonicity region in a (R, ¥(R))-diagram.

Asin (5), it can be seen from (6) and from the definition of the limiters, that L, in (6) is always
positive.

Boundary discretization. The schemes used here employ more than nearest neighbors, which
means that special care is needed near boundaries. We discretize the first line of cells near a
boundary with the central difference scheme (x = 1). In the numerical experiments, it was
found really necessary to use second order accurate schemes near boundaries in order to keep
the overall accuracy. Wiggles, spurious oscillations due to the central differencing were never
observed in the test examples evaluated.

2.2 The multigrid solution method
A general representation of Ly¢ looks like:
Lep = > al, itueituy (14)
#EGJ ,[LyEJ

(2)

with coefficients a,;,, coming for the second order x formulation or from a linearization (in our
case Picard) of the limited formulation and a set of indices .J = {-2,—1,0,1,2}. By using the



stencil notation Ly can be rewritten as

(2) 2 @2 )

2
Ly = a(_2)0 A g Gog Qg Gy (15)

‘182—)2
We will solve the discretization from (15) directly with a multigrid solution method. Here, we
will introduce two splittings for which it will be shown in the next section that they are robust
smoothers for discretizations with (3).
The first splitting introduced is a robust smoother for large x-range (linear x-scheme): —1 <
x < 0.8;
The second splitting is robust for a smaller k-range —0.3 < x < 0.5, but it is easier to program
for systems of equations. Both splittings are not good smoothers for values of x near 1 (the
central difference scheme).
All multigrid components, except the smoother, are standard components, which we will not
discuss in detail. The restriction operator is the Full Weighting operator ([20]); the prolongation
is bi-linear interpolation. The discretization on the coarse grids is the direct discretization
from the differential equation on the coarse grid. For problems with discontinuities and the
discretization with limiters we will see that it is worth comparing the L, discretization on coarse
grids, called full second order formulation in [7], [19] with the L; discretization on coarse grids,
called mized discretization formulation [7].

Smoother. The robust smoother we will introduce is of alternating symmetric type. Lines
are processed in z- and y-directions in forward and backward lexicographical ordering. This
smoother is denoted as S = SYS5Yf 5% S%f For particular problems it is of course possible to
choose the direction of line smoothing ‘with the flow’. A parallelizable variant is explained at
the end of this subsection.

A part of the robust smoother, the z-line sweep for a forward ordering of grid lines, 5”7, is
explained in detail. The derivation of the other parts is straightforward. For S¥f, Ly (15) is
split as follows:

Ly=1Li)y = (Li)y—La) =LY+ L° = (=L7)  with (16)
0 0
0
L= LT L0 =0 0 0 0 0f 4 g g0/ D 0172 (17)
al), 0
2
aé—)Q 0
= L{)y¢" " = (LY — Lo)d™ + f (18)

The a{)/? elements in (17) are the positive parts Ly 4+ L, or Ly in the discretizations (3),(6) to
be discussed below. The two splittings differ in the way that coefficients aﬁﬂ) are defined. We
call the smoothers based on both splittings “KAPPA smoothers” here.

Splitting 1: The coefficients a&ﬂ) include the first order upwind operator Ly, plus a ‘positive’
part of the second order operator: L, in (3), (5) or (6) plus the parts of the diffusion operator.



Splitting 2: The coefficients agl*ﬂ) correspond only to the first order upwind operator L; (2) of

a discretized equation (plus the parts of the diffusion operator). The smoother from Splitting
2 is less robust, but it is more general applicable, since a first order upwind discretization is in
the left-hand side and the remaining part is in the right-hand side. Other (point) smoothers
in the literature (for example in [19]) for second order discretizations are more often based on
Splitting 2.

Other splittings, based on rewriting (6) like [11]:

1V (R;i_3/2)

1
+ 9 (RZ—I/Q) 9 R1_3/2 (¢ 3J ¢ 1,])

a

(00): =

did not lead to better line smoothers, although the coefficient between square brackets is also
guaranteed to be positive by the properties of limiters.

Choosing the 7 £ 2 variables also in L° gives us another alternative, which does not satisfy
the positivity rule. This smoother, resulting in a pentadiagonal solver instead of the tridiagonal
solver, is not considered here.

The meaning of the superscripts {—,0,+} in (16) is clear when we consider (18) for a fixed
line (2, jo)1<i<n:

1047 = f 4 106" — (L™ + L0)g™ + L¥¢™+1) (19)

LY corresponds to the unknowns which are smoothed simultaneously. L~ is applied to the old
approximation ¢™ and for LT new values are already available ([20]), which is dictated by the
ordering of the grid lines. Inserting an underrelaxation parameter w in (19) leads to:

" = we* + (1 —w)o™ (20)

With w = 1 we regain (18). We can rewrite (19) in the correction formulation, where during
the smoothing iteration a correction d¢™*! is calculated, which is then added to the current
approximation with underrelaxation parameter w:

L%¢m+ = f = (L7 +L%)¢™ + LTe™ T
LO6¢™ T = f — Lyg™ /2 (21)
G = o g wdemH (22)
In (21) operator Ly is appearing in the right-hand side, and ¢ F/2 denotes ¢™ or ¢™T1: it is
the latest value available.
As an example and in order to explain the difference between Splitting 1 and Splitting 2, we

determine L%, L=¢ and L*¢ for a > 0 and b > 0in (1), (the example we discussed in detail in
Section 2.1). For the z-line KAPPA smoother S7f from Splitting 1, we then find with (2), (3):

o = [ (55) onnss [ (55) ¢ b (55 o
o = (5ot £ (52) e
o= B [ (e [ ()

¢ () o[£ (52) - ]
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From Splitting 2 we obtain:

0. _ [ a € a de b €
L¢ = |-~ ﬁ} Gi-1,j + [E toat ﬁ] Gij + [—ﬁ} Pit1,j
(6 /1 —£k\] [ b (5 -3k €
+ _ .. .
LT¢ = E( 1 ) @i j—2 + _E( 1 )_ﬁ] i -1
_ . la(1=rY\] o [ a (1-3k o a+b (143 N
o = [ mao |5 (55| oonst [0 (5550wt
a
h

1 i A
( ZH) Pir1i+ | (#) - %] ®ij+1 (24)

Notice that both splittings are identical for x = 0.

Remark: Note that the smoothers explained here for diffusion-dominant problems, or for prob-
lems with diffusion and convection of the same size are well-known line smoothers, resulting in
excellent multigrid convergence rates.

A parallel variant. The symmetric alternating line smoother is a sequential smoother. The
right-hand side of a new line jo (19) to be processed depends on just updated ¢ values of lines
jo— 1 and jo — 2 (or jo+ 1 and jop + 2). In order to have a parallel smoother, it is desirable
that this dependency is minimized. One possible way is by processing the lines in a Jacobi type
iteration: only old values ¢™ are then appearing in the right-hand side of (19) and L* is empty.
However, experience has shown that Jacobi smoothers are often less efficient than smoothers in
which recent values are used for new lines.

Another (more efficient) possibility, which is investigated here, is to use a ‘zebra type’ smoother
in order to achieve parallelism. With the longer stencils (3), (14) each third line is independent
and can be processed at the same time. This means that a parallel zebra type variant is a tri-line
zebra smoother, see Figure 3.

1

Figure 3: The z-lines that can be processed independently at the same time by a tri-line zebra
smoother.

In case of a tri-line smoother the ordering of processing the three lines influences the smoothing
behavior. A 1-2-3-processing (see Figure 3) results in other convergence rates than a 1-3-2-
processing of lines. In order to obtain a robust smoother for many convection directions, we
adopt an ordering of 1-2-3, followed by 1-3-2 as one iteration of the (z-line) tri-line smoother.

11



Note that the alternating tri-line smoother which we will evaluate, is now as expensive as the
alternating symmetric line smoother.

Generalization to 3D. One possible generalization for the smoother presented above to 3D
problems is by means of multiple semicoarsening. Instead of keeping the standard multigrid
sequence, in which then an alternating symmetric line smoother in three directions or for some
problems a plane smoother is necessary, one might change the coarsening sequence and include
semicoarsening in one or two directions only, as is done in [23]. By using the flexible multiple
coarsening grid sequence from [23], it is possible to obtain a 3D robust solution method based
on line smoothing.

3 Fourier analysis

3.1 General definitions, remarks

Fourier analysis is used to study the smoothing and convergence properties of the 2D multigrid
solution method, like in [2], [20], [24]. It is valid, if we deal with linear (or linearized) operators
with constant (or frozen) coefficients, (assume “periodic” boundary conditions) and extend all
occurring operators to an infinite grid Gy, := {@& = (kzh, kyh) : ks, ky € Z}. On G}, we consider
infinite-grid functions, which are linear combinations of the Fourier components (0, z) = ek —
et(ke021ky0y) with grid points @ € G, k = (k, k,) and Fourier frequencies 8 = (6,,6,) € R

Fourier components with |@] := max{|6;|,|,|} > 7 are not visible on G/, since they coincide

with components ¢™*® wwhere § = 0(mod 7). Therefore, the Fourier space " = span{e’*? : 0 ¢

© = (—m,7]?} contains any infinite grid function on GJ, ([20]). The basis functions e*® ¢ &”
are orthogonal with respect to the inner product:
. 1 — .
(vn, wp) 1= lim_—— > vn(kh) wy(kh) with h = (h,h); vy, w, € &" (25)

|k|<m

h

The Fourier space " can be divided into four-dimensional sub-spaces, the harmonics [20] (see

Figure 4):
eg = span{p(0”°7 @) = ey, 0y € {0, 13}, (26)
where x € Gp; 8°° € 0% = (—7/2,7/2)?
and 07 = (0, — agsign(0;)m, 0, — a,sign(6,))

The discrete solution ¢, and the current approximation ¢;* can be represented as linear combi-
nations of the basis functions e**¢ € €. This carries over to the error v = ¢ — ¢}, before and
vl = ¢t _ 4, after a relaxation step or a two-grid cycle.

3.2 Smoothing analysis

In case of Fourier smoothing analysis we look at the influence of a smoothing operator S to
the high frequency error components. The multigrid idea consists of the assumption that high
frequency error components are smoothed by the relaxation and the low frequency compo-
nents are reduced by the coarse grid correction. If standard coarsening is selected (H = 2h)

the components ¢(6°,z) € e" are also visible on the coarse grid G whereas the other com-
ponents (6°*°v, ) with (as,ay,) = (1,0),(0,1),(1,1) aliase with the ©(6°°,z) ([20]). This

12
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Figure 4: High and low frequency regions of ¢* with four harmonics

observation leads to the distinction between high frequencies 8 € ©" = {8**%v : (a,,,) €
{(1,1),(1,0),(0,1)}} and low frequencies 8 € ©' := 0% with @ = ©' U©" (see Figure 4). The
distinction obviously depends on the coarsening strategy.

The relaxation process S applied to an error component v™(8) = A™e'*® results in v™*1(0) =
Sv™(8), which follows from (19), (20) and the identity Lo¢p = f. Then, (19) and (20) for the

forward z-line smoother S*7 lead to:

S71e*0 = [(1 — w)L0(8) — wL~=(0)] - [L°(8) + wI+(8)]~1e*®
— A o [(1 - W)~ WD) L0+ wlt]T AT (27)

This means that the error amplitude is reduced by the factor u(8):
n(0) = [(1=w)L°(6) — wL™(8)] - [L°(8) + wL*(0)] 7", (28)

which is called the amplification factor for the frequency 8. L°(8), L~ (6) and Lt (8) are the
Fourier symbols of the corresponding operators.
The definition of the smoothing factor is now given for the z-line smoother by:

p= max |(6)] (29)
If v relaxation steps are performed the smoothing factor is given by p”. The definition of the
smoothing factor for the symmetric alternating line smoother is straightforward.
As mentioned above Fourier analysis cannot take special boundary conditions into account. It
has been observed that sometimes in connection with Dirichlet boundary conditions a more
realistic prediction of the smoothing factor is obtained by leaving out the Fourier frequencies
with 8, = 0 or 6, = 0 (see [24] and the references therein). This leads to a definition of the
smoothing factor in case of Dirichlet boundary conditions ([24]).

pp = max |11(6)] with ©p :=0"\{0:6, =00r6, =0} (30)
€0p
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3.3 Two-grid analysis

Analogous to Fourier smoothing analysis we also perform Fourier two-grid analysis, so that the
effect of the coarse grid correction and the transfer operators is taken into account theoretically.
Error v™ is transformed by a two-grid cycle as follows:

pmtl — S (I — Ph(LH)_thLh)Sl’lvm; pmtl — 5”20}?5”11}7”; pmtl = M}fl ™ (31)

The spectral radius p(M,fI) of the linear two-grid operator M{I is an indication of the asymptotic
speed of the multigrid convergence.

The coarse grid correction operator C{! leaves the (4 dimensional) space of harmonics €} (26)
with an arbitrary 8 € % = @\ {0 : Ly (26%) = 0} invariant, CJ : e — €l (see [20]).
This is a consequence of the following relations of the transfer and coarse grid operators:

Ly :eh — e, Ly : span{p(8,2)} — span{p(8,2)}, (32)
Ry : eb — span{p(8,2)}, P, : span{p(8,2)} — eb, With: 8 € O (33)

The same invariance property is true for each of the above line smoothers (except the tri-line

smoother) : S : el — el (8 € ©°). Hence M/ is orthogonally equivalent to a block matrix

consisting of 4 x 4 blocks, which will be denoted by M} () := M |€Z (6 € ©°) [20]. We can
determine the spectral radius ,o(M}fI) by calculating the spectral radii of 4 X 4 matrices:

p* = p(M}") = max p(M;!(6)) = max p(6) (34)
96900 96900

To obtain the representation of the 4 x 4—blocks M/T(8) = S*2(I — P,(Ly)~"RiL)S" the
Fourier symbols of the multigrid operators for each harmonic in e(}; have to be calculated.

1(6%) o) Y Li(6%) o)
Sy U 910 . L, (0
" p(0”) s ey |
p(e') Pn(0")
Ry = (Ry(6°), Ry(0"), Ru(6°"), Ru(6")), Py = (Pu(6°), Pu(6"), Pu(6°"), Pu (")),
Ly = Ly (26%) (35)

These symbols are calculated, as is done in [20] for the transfer operators.

) = Y et 36)

MzEJ ﬂyEJ

~ ;0400 ;0000

Li(20%) = 37 37 e reeii (37)
MJEGJ ﬂyEJ

for @  LH(Q2)
O Gyyys Quyy, Se€ (3).

The relation between smoothing and two-grid analysis becomes clear by comparing the definition
of the smoothing factor (29) and the definition of p* (34). Smoothing analysis can be regarded
as a simplified two-grid analysis, where we replace the actual coarse grid operator C}fl (31) by
an ideal operator Qf, which annihilates the low frequency error components and leaves the high

frequency components unchanged ([20]). With Q| obviously the coupling between the high

14



and low frequencies is neglected. It is a projection operator onto the space of high frequencies.

H can also be represented as a block matrix consisting of 4 x 4 diagonal blocks Qi—[(O) Re-

garding standard coarsening Q1 (8) looks for all 6 € O like:

0
- 1
o = ) (39)
1
Then definition (29) is equivalent to
= max p(5(0)Qf (8)) = max p(6) (39)
96900 96(..)00

3.4 Fourier analysis results

The equation on which we perform the Fourier analysis is equation (1) with fixed directions a
and b: @ = cosf, b = sinf3. Angle  and parameter € are to be varied. This test problem is also
used in [24], where Fourier smoothing analysis is done for many smoothers on the first order
upwind discretization of (1). Here, we use s-scheme discretizations, like (3), and mainly present
results of Splitting 1.

We will give results for the symmetric alternating line smoother S, which was also shown to be
robust in [24] for the standard upwind discretization. In many cases (for many angles ) the
alternating line smoother is already showing very satisfactory convergence, but the symmetric
smoother is necessary for robustness over all angles 3. Three values of k are tested: x = 0,
£ = 1/3 and kK = —1. Two cases for ¢ are evaluated: ¢ = 1072, a relatively easy test case,
and € = 107°, where the convection is really dominating. For underrelaxation parameter w we
also evaluate two values: w =1 and w = 0.7. We show three representative values for angle g3
for the symmetric alternating line smoother: g = 0°, 3 = 45° and 8 = 60°. Other angles
(> 90° for example) lead to identical results for the smoother under consideration. We compare
Fourier smoothing and two-grid analysis results with numerical calculations for which we take
W(0,1)-cycles (meaning no pre-smoothing, 1 post-smoothing iteration). In the numerical calcu-
lations Dirichlet boundary conditions are set. The discrepancy in boundary conditions between
the analysis (infinite grid “periodic” boundary conditions) and the numerical experiments is
reduced by the very fine grid used. In some cases up (30) gives a better prediction than u. An
example, where yp (removing the eigenmodes belonging to 6, = 0 or §, = 0) gives a better
prediction of the actual convergence is the test case: ¢ = 1075, 3 = 0%, kK = 0 and w = 0.7.
Figure 5 shows p(8), V8 € ©° from Fourier smoothing analysis, where p(8) is the maximum
of the amplification factors for the corresponding three high frequency harmonics. It can be
seen that only for 8, = 0 a local maximum appears, which is not observed in the multigrid
convergence. The convergence with Dirichlet boundary conditions is better predicted by up.
In such a case we will mark the value of p in the tables below with a D.

First we would like to mention that applying standard line-Gauss-Seidel smoothers directly on
(3) leads to smoothing factors larger than 1 (and multigrid divergence). This follows from
Fourier analysis and it is also observed in the numerical experiments.

An important observation follows from the two-grid Fourier analysis results. We observe, as in
the standard upwind case considered in [4], [5], that the characteristic components, which are
constant along the characteristics of the advection operator, are not correctly approximated on
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Eigenmodes from Fourier smoothing analysis

"eigenmodes” — “contour” ----
0.138 --- 015---8

0.114 - 014 ---- 7
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01--3

009 -2

0.08 -1

Figure 5: An example of local maximum eigenvalues from Fourier smoothing analysis due to
infinite grid “boundary conditions” h = Z; (Splitting 1).

the coarse grid. This phenomenon can be seen from the visualization of the eigenvalues from
the two-grid Fourier analysis. For 3 = 45° these eigenvalues are shown in Figure 6 for ¢ = 1073,
where a maximum radius of 0.45 is observed along the characteristic direction, and in Figure 7
for € = 1076 where maxima of 0.9 can be seen.

However, we do not observe this bad convergence predicted by the two-grid analysis in our ex-
periments (as in [5]), since we are studying ‘inflow/outflow’ channel problems and we are using
line smoothers. The smoother on the finer grids then also takes care of these problematic error
components. (In convection-dominant recirculating flow problems we would use a Krylov accel-
eration technique ([15]) to improve the multigrid convergence.)

It means, however, that we cannot use p* (34) as a reliable prediction of the multigrid conver-
gence. Since the spectrum is continuous, as can be seen in Figures 6 and 7, it is not possible to
remove some modes in order to estimate p*. Therefore, we will give for p* in the tables below
an ‘intuitive estimation’ of the maximum of p(M?) away from the characteristic direction. We
look for a local maximum at the boundary of the frequency domain, not in the characteristic
direction. It will be seen that this estimation is often a good prediction for a multigrid conver-
gence factor. A fine equidistant grid with mesh size h = 1/256 is chosen in Q = (0,1)%
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Eigenmodes from two-grid Fourier analysis
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Figure 6: Large error components corresponding to low frequency harmonics along the charac-
teristic components of the advection operator (a,b)” = (%, %)T for € = 1073, following from

two-grid Fourier analysis for Splitting 1, h = 61—4.

The results from Fourier analysis are compared for the test cases mentioned with the multigrid
convergence in Tables I and II. In Table I results are presented for ¢ = 1073, in Table II for
€ = 1075, The results from these tables are obtained with the alternating symmetric KAPPA
smoother from Splitting 1. With Splitting 2 results with k = 0 are identical, with k = 1/3 are
similar, but the results with Kk = —1 are not robust: For angles f = 20° and 8 = 70° smoothing
(and convergence) factors much larger than 1 are always obtained. An average reduction factor
over 100 iterations is taken as multigrid convergence rate.

Also results from Fourier smoothing analysis with pointwise KAPPA smoothers, based on Split-
ting 1, show a very satisfactory smoothing behavior: Pointwise smoothers in the flow direction
will lead to very fast optimized multigrid methods for specific problems, and four-direction point
smoothers, where each step starts in a different corner of a rectangular grid, will be robust for
the convection-diffusion problem with respect to all angles f.

Tables I and Il show that the smoothing factor p (up) and the (intuitive) two-grid factor p*
give a very good indication of the actual asymptotic multigrid convergence on the fine grid. The
dependence of the convergence on different values of k, € or w is very well predicted by Fourier
analysis. Furthermore, the convergence of the W(0,1)-cycle is very satisfactory. For ¢ = 1073
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Figure 7: Large error components corresponding to low frequency harmonics along the charac-
teristic components of the advection operator (a,b)” = (%, %)T for € = 107%, following from

two-grid Fourier analysis for Splitting 1, h = 61—4.

all convergence factors are smaller than 0.3, for kK = —1 and x = 0 and w = 1 even smaller
than 0.1. Also for the difficult test case € = 107° the convergence rates are small, especially for
k = —1. It appears that w = 1 (no underrelaxation) is best for the test cases considered with
the alternating symmetric KAPPA smoother.

Remark: Note that for the convection-dominated scalar problems the single grid line solvers
(using the smoother as a solver) also give a very satisfactory convergence. For scalar problems
with regions of dominating convection and diffusion, of course, multigrid is again necessary for
good convergence. We will show the benefits of multigrid (compared to single grid) by analyzing
the convergence of problems with a nonconstant convection direction in the the next section.
Remark: The spectral radius p is, of course, a measure of the asymptotic convergence of a so-
lution method. In case of convection-dominated problems (resulting in nonsymmetric matrices)
it might take a long time before asymptoticity is observed. As an alternative it makes sense to
consider norms of the iteration matrix, as in [20], or half-space FMG estimates as a practical
measure of convergence, as is done in [3]. We again refer to the problems in the next section to
observe the actual convergence for some representative test problems.
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e =103

K=-1 k=0 K= %

Jé; w=07 w=10|w=07 w=10]|w=07 w=1.0
I 0.117 0.050 0.101 0.048 0.123 0.050
0 p* 0.124 0.051 0.113 0.059 0.140 0.060
wi(0,1) | 0.122 0.055 0.110 0.041 0.120 0.053
I 0.128 0.025 0.155 0.043 0.170 0.056
45 P 0.139 0.028 0.162 0.10 0.173 0.047
wi(0,1) | 0.093 0.060 0.220 0.093 0.187 0.050
I 0.156 0.033 0.161 0.046 0.166 0.054
60 p* 0.194 0.027 0.185 0.058 0.164 0.046
wi(0,1) | 0.183 0.053 0.200 0.094 0.168 0.058

Table I: A comparison of Fourier analysis results with multigrid convergence for the convection-

diffusion equation for ¢ = 1072 (Splitting 1), h = 21@.

We do not perform Fourier analysis for the alternating tri-line smoother from Section 2.2, but we
apply this smoother to the same problems, that are presented in the Tables I and II. In Table
IIT we show the multigrid convergence for the alternating tri-line smoother with w = 0.7 for
k = 0, ¢ = 1076 for different numbers of pre- and post-smoothing iterations. The first column
of Table I1I can be compared to the results in Table II. In Table III we also evaluate 5 = 225°,
since for this smoother the results obtained are not angle-independent, as mentioned in Section
2.2. It is found that for all angles satisfactory convergence results are obtained also with the
alternating tri-line smoother. From Table III it can be seen that the convergence obtained with
the tri-line smoother is a bit worse than the convergence with the symmetric alternating line
smoother in Table II (which is to be expected). Furthermore, it can be seen that the multigrid
convergence strongly improves, when more smoothing iterations are performed. The addition
of one smoothing iteration has more than doubled the multigrid convergence speed in the cases
considered.

We would like to conclude with two pictures of the eigenvalue spectra of multigrid iteration
matrices for a problem investigated in this section (¢ = 1076, 8 = 0°, x = 0) on a 32 x 32
grid. The first picture, Figure 8 shows the spectrum obtained with the W(0,1)-cycle and the
alternating tri-line KAPPA smoother with w = 0.7. One sees the clustering around the origin
and a spectral radius of 0.1 on this relatively coarse grid.

The second picture, Figure 9, is the spectrum found for the same problem with the classical
defect correction iteration. The first order discretization, which is inside the defect correction
technique, is solved with a high accuracy by a multigrid solver. In Figure 9 a completely differ-
ent spectrum is found without a clustering around the origin and a spectral radius of 0.5. The
difference in spectra of Figures 8 and 9 is remarkable.

4 Numerical results

The problems in this section are solved with the multigrid methods described in Section 2.2. In
some of the experiments we compare the convergence with the defect correction convergence.
The initial iterand ¢9 is mostly obtained with the full multigrid method (FMG). We fix the
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e =106

k=-1 k=20 K= %

Jé; w=07 w=10|w=07 w=10]|w=07 w=1.0
L 0.283  0.0017 | 0.104”  0.079 | 0.1527  0.175
0 p* 0.283  0.004 | 0.104  0.080 | 0.153  0.175
W(0,1) | 0.277  0.001 | 0.100  0.080 | 0.145  0.176
L 0.226  0.057 | 0.365  0.177 | 0.432  0.289
45 p* 0.236  0.053 | 0.360  0.165 | 0.452  0.308
W(0,1) | 0.320  0.050 | 0.420  0.180 | 0.407  0.277
L 0.347  0.107 | 0.473  0.220 | 0.567  0.326
60 p* 0.334  0.083 | 0.455  0.152 | 0.560  0.327
W(0,1) | 0.356  0.050 | 0.360  0.140 | 0.452  0.330

Table I1: A comparison of Fourier analysis results with multigrid convergence for the convection-
diffusion equation for ¢ = 107% (Splitting 1), h = 21@.

g | w(,1) | wW(0,2) | w(,2) |

0 0.18 0.036 0.008
45 0.58 0.22 0.055
60 0.57 0.16 0.048
225 0.49 0.13 0.056

Table I11: Multigrid convergence for the alternating tri-line smoother for the convection-diffusion
problem with x =0, ¢ = 1076,

underrelaxation parameter w for the different smoothers that are evaluated here: The symmetric
alternating KAPPA smoother based on Splitting 1 is always used without damping (w = 1),
the symmetric alternating KAPPA smoother based on Splitting 2 uses underrelaxation w =
0.7, as both alternating tri-line KAPPA smoothers. These values showed the best multigrid
performance for the problems in the previous section.

4.1 Convection-diffusion with analytical solution

For the first example we consider the convection-diffusion equation (1) with the convective terms
coming from the Smith-Hutton problem ([17]):
—cAp+2y(1 - 2*) e — 22(1 - yP) b, = f (40)

where ¢ is a small positive number (¢ = 107%). This problem is interesting, since many angles are
encountered by the definition of a(z,y) and b(z,y). This means that (40) is a good indication
for the robustness of a solver. The domain is chosen as follows:

Q={(z,y);-1<2<1,0<y <1} (41)

In the first example right-hand side f and the Dirichlet boundary conditions are chosen such
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Figure 8: Spectrum of the multigrid iteration matrix with the alternating tri-line KAPPA
smoother, e = 1076, 3 =0k =0, h = %

that a smooth analytical solution results:

¢=at+y (42)

A limiter is not necessary for this problem, and we can compare the accuracy of the x-schemes.
The multigrid convergence is shown with the symmetric alternating KAPPA smoother (w = 1)
and the tri-line alternating zebra KAPPA smoother (w = 0.7) from Splitting 1 on a fine grid
(heyhy)T = (2/256,1/128)T. A multigrid V-cycle processing 7 levels is used with 2 pre- and
1 post-smoothing iterations. We present results for kK = 0 and k = —1. Furthermore, in the
Figures 10a and 10b the convergence of the classical defect correction iteration is presented.

The multigrid convergence with both KAPPA smoothers is very satisfactory: The best smoother
converges within 5 multigrid iterations. The symmetric alternating line smoother is twice as fast
as the tri-line smoother for this problem. For this smooth problem the improvement in the higher
order residual reduction compared to the classical approaches for k = 0 is very satisfactory. It
can be seen that the convergence of defect correction stops for the discretization with x = —1.
However, the difference in Lo-norm between the numerical solution and the analytical solution
for the defect correction iteration and the KAPPA smoothers is almost the same. Table IV
presents the number of iterations and the wall-clock time needed to reduce the initial residual
by 6 orders of magnitude. This can be seen as an indication for the convergence in the initial
stage of residual reduction, which is not indicated by a spectral radius. The wall-clock times
are relatively large, since the implementation is not done most efficiently. The emphasize has
been laid upon storage reduction, not on obtaining the best timings. Operator elements are re-
calculated on every grid, although the operator and the discretization are linear. It can be seen
that with the symmetric alternating line smoother a very fast and level independent convergence
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Figure 9: Spectrum of the defect correction iteration matrix with a multigrid solver for the inner
iteration, e =107%, 8 =0,k =0, h = %

is obtained for this test problem. (For these grid sizes, also the single grid solver is still very
fast and in wall-clock time comparable to the multigrid convergence.) The number of iterations
grows somewhat for increasing grid sizes with the tri-line smoother. In Table V, we can observe
the accuracy of the k-schemes by comparing the numerical to the analytical solution on fine grid
sizes. We present the difference in L.,-norm and Ly-norm and an estimation of the discretization
order p. It can be seen from Table V that second order accuracy is obtained for both k-values.

Further, it should be mentioned that the second order accuracy is already reached after one
FMG cycle.

grid alt. symmetric smoother | alt. tri-line smoother
k=0 k=—1 k=0 r=—1
64 x 32 3 (1.1) 3 (1.1) 5 (2.6) 6 (3.2)
128 x 64 3 (6.4) 3 (6.4) 6 (11.8) | 8 (15.0)
256 x 128 | 3 (24.9) 4 (32.8) 7 (54.5) 9 (70)
512 x 256 | 3 (102.5) 4 (136) 9 (286) 10 (320)

Table IV: Level independent convergence and corresponding wall-clock time in seconds (in brack-
ets) with two k-schemes for a convection-diffusion problem with an analytical solution.
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‘ k-scheme ‘ grid ‘ [|0|] oo ‘ Poo ‘ ||0]]2 ‘ P2 ‘
64 x 32 |5.7486 x 1073 | - | 1.5095 x 10=2 | -
k=0 128 x 64 | 1.5041 x 1072 | 1.93 | 3.1204 x 10~* | 2.27
256 x 128 | 4.0707 x 10~* | 1.88 | 7.1283 x 10~° | 2.13
64 x32 [9.1171x 1073 | - |2.8992x 1072 | -
k=—1 | 128 x 64 | 2.4513 x 103 | 1.89 | 6.3281 x 10=* | 2.19
256 x 128 | 6.5561 x 10~* | 1.90 | 1.4332 x 10~* | 2.14

Table V: The accuracy achieved with the s-scheme for a convection-diffusion problem with an

analytical solution.
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Figure 10: The multigrid convergence of three approaches for the Smith-Hutton problem with
analytical solution with (a): K = 0 and (b): kK = —1, 256 x 128-grid.
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4.2 Convection-diffusion with discontinuous boundary condition
The second problem is also based on equation (40), the Smith-Hutton problem with f = 0 on
domain (41). The difficulty comes from the boundary condition which looks like:

¢|89 = 2o0m0Q: ——<2<05,y=0 (43)

N | —

dlag = 0 elsewhere

The solution contains a step-like discontinuity which moves along the characteristics of the
advection operator. Limiters are really necessary to assure an accurate solution. Figure 11
presents the solution. Instead of investigating the sharpness of the discontinuity profile with
different limiters, as is done in many other papers like [17], or for other problems for example
in [16] or [14], we concentrate on the convergence of the multigrid solution methods. Again the

Figure 11: The solution of the Smith-Hutton problem with discontinuous boundary condition.

multigrid convergence on the fine grid (h,, h,)T = (2/256,1/128)7 is investigated with V(2,1)-
cycles. Here, we present results obtained with the alternating tri-line smoothers, and evaluate
the difference in convergence between the smoothers based on Splitting 1 and Splitting 2 for the
limited discretizations. Often for example for several systems of equations it is more expensive
to compute Ly¢ than Li¢ even on coarse grids. Therefore, we test whether for this problem
with a step discontinuity solution it makes sense to use a discretization based on L; on the
coarse grids as well. Figure 12 presents the multigrid convergence results with two limiters from
the first class of limiters, the ISNAS limiter (9), see Figure 12a, and the van Leer limiter (8),
see Figure 12b, and one limiter from the second class of limiters, the SMART limiter (11), see
Figure 12c.

Very satisfactory convergence is observed from the Figures 12a and 12b. Especially the ‘en-
gineering accuracy’ |(f — La¢™)|/|(f — L2¢")] < 1076 is reached very fast. Furthermore, it is
observed that the difference in convergence with L as the coarse grid discretization is not signif-
icant. Also we see that smoothers based on both Splitting 1 and Splitting 2 result in acceptable
convergence on this fine grid. These results were found to be representative for other limiters
from this first class.

In Figure 12¢ it is shown that for the 2R-based limiter SMART multigrid algorithms based
on Splitting 2 have convergence problems. The smoothers based on Splitting 1 do not show a
regular convergence, but the residual is reduced by 6 orders of magnitude after 30 iterations,
which is satisfactory. Further, we show for the ISNAS and the van Leer limiter, that for these
scalar convection-dominated problems, it is not so easy to beat the single grid solver (using
the smoother as a solver). Actually, only on very fine grids the benefits of multigrid (tri-line
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smoother, Splitting 2, full second order formulation) are clearly observed. The fastest multigrid
solver is here the V(0,1)-cycle in case of the van Leer limiter, which is not level independent in
convergence. The number of iterations of the single grid solver on the 256 x 128 grid with the
van Leer limiter until engineering accuracy is reached is 39, taking 110 seconds. The V(0,1)-
cycle took 26 iterations and 96.5 seconds. On a 4 times finer grid the single grid solver takes
72 iterations in 831 seconds, while 42 iterations in 645 seconds are needed by a V(0,1)-cycle
(without nested iteration). For the ISNAS limiter, we find that the single grid solver takes 44
iterations and 126 seconds; the V(0,1)-cycle 30 iterations and 110 seconds. On the 512 x 256
grid the difference is more pronounced: 76 iterations in 887 seconds for the single grid solution
method and 29 iterations in 758 seconds for the V(1,1)-cycle, which appeared to be fasted for
the ISNAS limiter on this fine grid. On coarser grids the solution times for single and multigrid
solvers based on this alternating symmetric line solver are more or less identical.
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Figure 12: The multigrid convergence with the two splittings for the

(c)

alternating tri-line

smoother, Smith-Hutton problem with discontinuous boundary condition, 256 x 128 grid. (a)
Convergence with the ISNAS limiter (9), (b) with the van Leer limiter (8), (¢) with the SMART

limiter (11).
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4.3 Nonlinear problem with a shock

We consider the following nonlinear convection-dominated conservation law:

¢2
Ao+ (7) gy =0. (44)

Again we put ¢ = 1076 and boundary conditions are given along the z-axis by

do = %(sm(m) +1) (45)

This scalar nonlinear problem is also studied and described in detail in [16]. The computational
domain is: Q= {(z,y);0< 2z <3,0<y <2},

The exact solution is constant along the characteristic lines (¢, 1)7. For every point (z,y) we can
find a boundary point (zg,0) where the characteristic line goes through by solving the implicit
equation: g = & — ¢o(zo)y. The solution becomes unique if we discretize by a conservative
finite volume discretization, i.e. if we satisfy the entropy condition for hyperbolic conservation
laws ([16]). The solution shown in Figure 13 will contain a shock wave along the line y = 2z — 2.
Limiters are necessary for an accurate solution of this problem.

Figure 13: Characteristic lines and shock wave for the nonlinear problem.

We will investigate the multigrid convergence for the ISNAS and van Leer limiters from class 1
and for the SMART limiter from class 2. Again a very fine grid is chosen to see asymptotic con-
vergence: (hg,hy)T = (3/384,2/256)T. The multigrid V(2,1)-cycle is performed on 8 multigrid
levels. We choose Ly as the coarse grid discretization in this test, and compare the alternating
symmetric KAPPA smoother from Splitting 1 with Splitting 2 and with the alternating tri-line
smoothers. (The underrelaxation parameters were given at the beginning of this section.) Figure
14a presents the convergence results for the discretization with the ISNAS limiter, Figure 14b
with the van Leer limiter and Figure 14c with the SMART limiter.

A similar convergence as for the previous Smith-Hutton problem can be seen in the Figures 14.
Splitting 2 gives a somewhat better convergence for the limiters from class 1 than Splitting 1.
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Furthermore, the behavior of the symmetric and the tri-line smoother is similar to the previous
problems. In the worst case 10 extra multigrid iterations are necessary for the parallel variant.

For the SMART limiter again the convergence stops with smoothers based on Splitting 2,
whereas better convergence is obtained with the smoother from Splitting 1. The difference in
convergence between discretizations based on limiters from class 1 and class 2 is remarkable.
The difference in accuracy with different limiters on these fine grids is relatively small. The
convergence until engineering accuracy is reached on several grids is presented in Table VI.
Although the convergence is not fully level independent, it is considered very satisfactory, es-

grid alt. symmetric smoother | alt. tri-line smoother
v. Leer ISNAS v. Leer ISNAS
96 x 64 12 10 12 10
192 x 128 14 14 16 15
384 x 256 16 21 22 26

Table VI: Convergence for the nonlinear problem with two limiters on different grids, Splitting
2, full second order formulation.

pecially for the symmetric alternating line smoother. Finally, the single grid solver behaves for
this convection-dominated nonlinear scalar problem similarly as for the Smith-Hutton problem
from the previous subsection.
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Figure 14: The multigrid convergence for the nonlinear problem containing a shock with the

two splittings for the alternating symmetric and the alternating tri-line smoother, 384 x 256

grid. (a) Convergence with the ISNAS limiter (9), (b) with the van Leer limiter (8), (c) with
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4.4 An incompressible Navier-Stokes driven cavity example

Next, an incompressible flow example is treated. The 2D steady incompressible Navier-Stokes
equations are written as a system of equations as follows,

of o0g o0fy Ogy

PP i (46)

where f and g are the components of the convective flux vector, and f, and g, are the viscous

fluxes:
u? +p U ﬁ(’)u/@x ﬁ@u/@y
f = uw , g=| vi+p , fu=| 30v/0x . 8= | 7:0v/dy
c2u ) 0 0

Here u and v are Cartesian velocity unknowns, p is pressure, ¢ is a constant reference velocity
and Re is the Reynolds number defined as: Re = U.L/v, with U a characteristic velocity, L a
characteristic length and v the kinematic viscosity.

We solve the incompressible Navier-Stokes equation in the primitive variables. The 2D vertex-
centered discretization of (46) (on a collocated grid) is Dick’s flux difference splitting, presented
in [6]. The resulting stencil from a first order discretization looks as follows:

where the three entries are for (u, v, p)T, respectively. Here 0 represents a central discretization,
the terms 0., and 0y, are artificial dissipation terms.

Second order accuracy is achieved by replacing the first order convective discretization, which
is implicitly in (47), by (3) with x = 0. Then, the resulting stencil is similar to (47) with higher
order artificial dissipation terms. For incompressible Navier-Stokes equations it is not necessary
to implement a limiter. For many different (2D and 3D) problems at low and high Reynolds
numbers oscillations (for example in the pressure distribution, as they occur near discontinuities
for compressible flow problems) did not appear.

A well-known 2D test case is the lid-driven cavity flow in a unit square. Although this problem
is a rotating flow problem, for which standard multigrid schemes might have convergence diffi-
culties, we do not observe these difficulties, since a moderate Reynolds number (Re = 1000) is
evaluated here. We solve this problem on a 1922 grid with stretching. With the 1922 stretched
grid the centerline velocity profiles agree very well with reference results from [9]. (A very sim-
ilar profile is already obtained by solving the problem on a 64 x 64 equidistant grid.) Figure 15
presents the u-velocity profile in the vertical centerline of the cavity.

The multigrid FAS scheme used for solving this problem is the same as for the scalar problems.
The KAPPA smoother is now a coupled collective symmetric alternating line smoother, and a
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Figure 15: The u-centerline velocity profile for first and second order accurate discretizations
versus reference values from [9].

coupled collective alternating tri-line smoother, which means that the three unknowns belong-
ing to a grid point are smoothed simultaneously. For line smoothers this means that not only
a tri-diagonal system, but a system with more diagonals (referring to all unknowns on the line)
is solved in a smoothing iteration. (Since we choose x = 0 we have identical smoothers from
Splitting 1 and Splitting 2 and the discretization from (47) is in the left-hand side of the KAPPA
smoothers. The underrelaxation parameters are the same as presented above: w = 1 for the
symmetric and w = 0.7 for the tri-line smoother). Because of the rotating problem we perform
F-cycles. For the symmetric smoother F(1,0)-cycles are used, while for the tri-line smoother
F(1,1)-cycles are used. Note that the alternating tri-line smoother is now twice as expensive as
the alternating symmetric smoother. The convergence of the residual 3 i |r/0™)|, (where the
number of equations ieq = 3) is presented in Figure 16, where we also compare the coarse grid
discretization with L, and with L.
It can be seen that a very fast multigrid convergence is obtained for this test problem with the
alternating symmetric KAPPA smoother with Ly-coarse grid discretizations. Here, a difference
in convergence can be observed between choosing L; or Ly as coarse grid discretization: Choos-
ing Lo results in fastest convergence. Also the difference between the symmetric and the tri-line
smoother is clear, but the worst convergence presented here is still very satisfactory. We give the
wall-clock times needed to perform the computations that lead to the curves in Figure 16 which
is the time to perform 10 multigrid cycles plus FMG for the starting solution on the finest grid.
The timings are performed on a single RS6000 workstation. For 10 F'(1,0)-cycles (+ FMG) with
the symmetric collective smoother and the Ly coarse grid discretization 398 seconds are needed,
for 10 F(1,0)-cycles with L; coarse discretizations 322 seconds are needed; the 10 F(1,1)-cycles
with the tri-line collective smoother and L, coarse grid discretizations took 700 seconds and
with Ly coarse discretizations took 570 seconds.

Finally, we would like to show the convergence with increasing grid sizes for this problem with
the symmetric alternating line smoother and the full second order formulation. Therefore we here
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Figure 16: The multigrid convergence for the driven cavity problem (Re = 1000) with the
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alternating symmetric and the alternating tri-line smoother, 192 x 192 stretched grid.

consider the convergence on 642, 128% and 2562 grids without stretching. In Table VII the number
of iterations needed to reduce the initial residual by 6 orders of magnitude is presented, and
within brackets the corresponding wall-clock time (the FMG stage included). Due to improving

grid: | # its. wall-clock time (s)
647 15 (58.0)
1282 | 10 (156.0)
1922 8 (284.0)
2562 8 (505.0)

Table VII: Number of iteration and wall-clock time (s) for reducing the initial residual by 6

orders of magnitude, driven cavity problem at Re = 1000.

mesh-Reynolds numbers (local ratio between convection and diffusion) the convergence improves
for increasing grid sizes, as can be seen in Table VII. The single grid convergence for this problem

is very poor; the wall-clock times are not comparable to the multigrid wall-clock times.
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4.5 An Euler channel flow problem

A last example is compressible Euler flow in a channel with a bump. The 2D steady compressible
Euler equations are written in their differential form as follows,

pu pu
0f(w)  Og(w) _ 9 | pu’+p o pw |y
oz dy Oz puv oy | pvi+p |
(E+p)u (E+ p)v
1
p=(v=D(E = o’ +v7), (48)

p is the density, v and v the Cartesian velocity components, F the total energy, p the pressure,
and v (assumed to be constant) is the ratio of the specific heats at constant pressure and con-
stant volume.

The vertex-centered finite volume discretization adopted for the Euler equations is described
briefly. It is based on the cell-centered discretization in [18], [13]. For the finite volume dis-
cretization the domain € is divided into control volumes €; ;. For each quadrilateral (48) must
hold in integral form:

f (f(u)ng + g(u)ny)dS =0 (49)
o9

where (n,,1,)T = (cos¢, sing)T is the outward normal vector on 9€; ;, and u is the state vector.

The rotational invariance of the Euler equations is used, and the discretization results in:

Y Pt a™asg=0 (50)
(ik)€k(ik)

with k(ik) being the set of neighboring cells of €; ;; 3S;i is the length of the boundary between
Q; ; and Qp; F(u”,u®) is an approximate Riemann solver, which depends on the left, u”,
and right state, uf, along the cell boundary. The discretization requires a calculation of the
convective flux at each cell face 05; ;. The approximate solution F(uL7 uR) of the 1D Riemann
problem is solved with an approximate Riemann solver proposed by Osher in its P-variant (for
more details see [18], [13]):

(Fah) + Fa" = [ Ja(w)dw) 61

ul

F(ul, uft) =

DN —

where [A(u)|(= AT (u) — A~ (u)) is a splitting of the Jacobian matrix A into matrices with
positive and negative eigenvalues, and f is the one-dimensional flux along the normal vector.
State vector u = (u, v, ¢, z)7 is chosen, where ¢ = \/vp/p is the speed of sound and z = In(pp™)
is an unscaled entropy.

The states uf_l_%]. and ui%j in (51) are approximated by a discretization with van Leer limiter
(8), in order to2avoid oscilfations that may appear near shocks.

A transonic problem (Ma = 0.85) in a channel with a bump is evaluated. The bump in the
channel is a 4.2% circular bump, the height of the channel is 2.1. Tts length is 5, the bump
length is 1. The pressure distribution of the transonic test is presented in Figure 17. The
domain is discretized with 96 x 64 cells, which results in a multigrid method with 5 levels. With
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Figure 17: The pressure distribution for the transonic test Ma = 0.85, 96 x 64-grid.

the smoother from Splitting 2 the second order discretization for the Euler equations is solved
directly with V(2,1)-cycles. The smoother from Splitting 2 showed the best convergence results
for discretization with limiters from class 1. Again we compare the multigrid performance with
coarse grid discretizations based on Ly with L; and the alternating symmetric smoother with
the alternating tri-line smoother (w = 0.7). Figure 18 presents the convergence: 3i% ™)
with ieq = 4 and m the multigrid iteration.

For this Euler test, where a shock appears in the solution, similar convergence is obtained as for
the scalar problems with the van Leer limiter. It appears to be best for this test problem also to
adopt the Lg discretization on the coarse grids. The convergence is very satisfactory for both,
the alternating symmetric and the alternating tri-line smoother. Table VIII presents the number
of iterations to reduce the initial residual by 6 orders of magnitude plus corresponding wall-clock
time on different grids. Here we would like to mention that the flux difference splitting is not
implemented in the most efficient way, which strongly infuences the wall-clock times. One can

grid: # its.  wall-clock time (s)
48 % 32 10 (123.0)
96 x 64 1 (511.0)
192 x 128 10 (1844.0)

Table VIII: Number of iteration and wall-clock time (s) for reducing the initial residual by 6
orders of magnitude, transonic Euler channel problem at Ma = 0.85.

observe level independent convergence from Table VIII for this transonic Euler problem. Here,
the single grid convergence is poor and not comparable to the multigrid convergence.
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Figure 18: The multigrid convergence for a transonic Euler example (Ma = 0.85) with the
alternating symmetric and the alternating tri-line smoother, 96 x 64 stretched grid.

5 Conclusion

We have presented KAPPA smoothers for convection-dominated problems. The smoothers are
based on a splitting into a ‘positive’ part in the left-hand side and a remaining part in the right-
hand side. For linear x-discretizations, we have performed Fourier analysis for a convection-
dominated convection-diffusion equation in order to study the multigrid convergence behavior
theoretically. Furthermore, a parallel variant is presented and evaluated. In general, it is
preferable to use the line smoothers based on lexicographical ordering compared to the tri-line
variant. The KAPPA smoothers show a very promising multigrid convergence with linear «-
discretizations, not only for convection-diffusion problems, but also for an incompressible Navier-
Stokes flow problem. Next to linear k-discretizations also TVD discretizations with limiters are
evaluated for ‘difficult’ scalar equations and for a compressible Euler channel flow problem. Also
here the convergence presented is very satisfactory: The reduction of the residual from the higher
order discretization is remarkable. We could observe a fast and robust convergence for several
problems, especially for discretizations with limiters from class 1. The single grid convergence
for the scalar convection-dominated problems is also satisfactory on not too fine grids. Many
tests with two different splittings, choosing the coarse grid discretization with the first order or
the second order discretization, and the comparison between the alternating symmetric and the
alternating tri-line smoother gave much insight in the behavior of the smoothers.
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