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Summary. For the simulation of biomolecular systems in an aqueous sol-
venta continuum model is often used for the solvent. The accurate evaluation
of the so-called solvation energy coming from the electrostatic interaction
between the solute and the surrounding water molecules is the main issue
in this paper. In these simulations, we deal with a potential problem with
jumping coefficients and with a known boundary condition at infinity. One
of the advanced ways to solve the problem is to use a multigrid method
on locally refined grids around the solute molecule. In this paper, we focus
on the error analysis of the numerical solution and the numerical solvation
energy obtained on the locally refined grids. Based on a rigorous error anal-
ysis via a discrete approximation of the Greens function, we show how to
construct the composite grid, to discretize the discontinuity of the diffusion
coefficient and to interpolate the solutions at interfaces between the fine
and coarse grids. The error analysis developed is confirmed by numerical
experiments.

Mathematics Subject Classification (1996%N06, 65N15, 65N50, 65N55

1. Introduction

We perform error analysis for a potential problem arising from modeling
biomolecular systems with aqueous solvent. One of the major effects me-
diated by the aqueous solvent is a screening of electrostatic interaction. A
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Fig. 1. The molecular surface (MS) is represented by the thick line curves. The Van der
Waals surface is composed of the two surfaces of the atdrissthe shaded volume which
is enclosed by the MS

guantitative description of this screening can be formulated by a potential
equation:

(1) —V - (e(x) Vipe(x)) = Z Gi0p, (%),

wheree is the dielectric constant which depends on the positoifhe
charge distribution in the solute molecule is represented by a set of point
charges{¢;dp, } in the right hand side of (1). Usually, tworegions are
distinguished: the aqueous solvent has-a&alue of about 80 which models

the orientational and electronic polarizability of water, whereas the solute
molecule has aa-value of about 1. Thus, we assume:

_Jefor xeA
(2) e(x) = {61 forx € A |

whereA is the open set corresponding to the solute molecule. The boundary
of A is the so-called Molecular Surface[13] (MS) defined as the inward-
facing surface generated by a sphere of radius 0.14 nm (the size of a water
molecule) as it rolls over the Van der Waals surface of the solute molecule,
which is the joint set of spheres with the Van der Waals radii. The volume
enclosed by the MS={ A) is the volume from which water is excluded.
From the definition of the MS, we can assut € C'. An example of a

MS is depicted in Fig. 1, where the solute molecule is composed of 2 atoms.
Since all the point charggg;;dp, } are included in the solute molecule, we
have:

(3) p; € A, Vi.
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One of the major interests in this area (for example see [8]) is the so
called solvation energy defined by

@ W= 5 [ (= va)x (qu x>da:,

wherev),, is the potential in vacuum:
(5) _eoAdjeo Z Qz pl

W is the difference in energy of the solute molecule in vacuum and in the
solvent. Our goal is to find a fast and accurate way to compute the solvation
energy confirmed by error analysis.

One of the important topics in this paper is the treatment of the Dirichlet
boundary condition at infinity:

(6) e(x) — 0 and 9, (x) — 0 as |x| — o0

imposed on (1) and (5). A natural way to handle this boundary condition is
by using locally refined grids around the solute molecule. Namely, we start
with a fine grid around the solute molecule and construct a coarse grid with a
larger domain size than the fine grid. We continue this process until we reach
a satisfactorily large domain. Then, we impose a zero Dirichlet boundary
value on the boundary of the coarsest grid. This technique is discussed in
detail in Sect. 2, where we define a scalar value (the so-called grid extension
rate) which characterizes the composite grid.

Another important topic is the treatment of the discontinuity of diffusion
coefficiente on 9 A in afinite volume discretization on a rectangular grid. In
several papers dealing with jumping diffusion coefficients, for example in
[1], [9] and [15], the discretization is given assuming that the jumps occur
on grid points. However, since the MS is curved in our case, this can not
be assumed here. We investigate the influence of a discretization of the
e-discontinuity on the accuracy of the numerical solutions in Sect. 3.2.

The discrete equations of (1) and (5) are solved on the composite grid,
for example by the Multilevel Adaptive Technique (MLAT)[6] or by the Full
Adaptive Composite (FAC)[12] method, in such away that the discretization
on the composite grid is guaranteed to be conservative. In this paper, we
investigate a way to construct an optimal composite grid in the sense that
the difference between the analytical and numerical solutions is reasonably
small and the computational workis nottoo large. A similar topic is discussed
in [3] and [4]. We also propose an interpolation method at the interfaces
between the fine and coarse grids based on a conservative discretization of
the diffusion term in (1). The proposed conservative interpolation results
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in more accurate numerical solutions for our application than conventional
interpolations like the cubic interpolation.

Based onthe error analysis of the discrete Greens functionin Sect. 3.2, we
discuss the accuracy of the solvation energy in Sect. 3.3. The error estimate
for this potential problem on a locally refined grid and the results obtained
with this analysis are new. Based on this analysis, we obtain quantitative
information about optimal grid coarsening towards infinity and on the size
of the finest grid.

We summarize the notation used in this paper in Sect. 1.1 and introduce
basic concepts to perform the error analysis.

1.1. Notation, definitions and basic concepts
Here,x = (z1,x2,23),y = (y1, Y2, y3) are points in the three dimensional
space.

= [x| := max(la1], |22, |23]).
- D,(x):={yeR?®: x—y|<r}.

For any setA of points in the three dimensional space, we define
A =[x ecR® : x ¢ A}.

For a domainB C R3, | B| stands for the volume dB.

For a surface&s C R3, | S| stands for the surface area®f

| f|a := the upper bound dff| on A (f is a function,A € R?)

ForA, BCR3,d(A,B) :==min{|x—y| : x€ A, y € B}

In this section, it will be shown that basic properties like Gauss's diver-
gence theorem and Green'’s identity of analytical functions hold also on the
discrete space with the discrete operators. These properties are frequently
used in the error analysis in Sect. 3.

Let u be a discrete function on a uniform rectangular 3D grid with a
grid spacingh. We can define a discrete floX;,u at each center of a face
connecting two neighboring grid points.

Uitk — Wijk

(7) (vhu)i+1/2,j,k = h )

Assume that a discrete diffusion coefficierdefined on the central points
of cell faces is given. Then, the diffusion operator associatedanstigiven

by

etc.

1
~Vi - (EVa)ijik = =5 Eprjagh (Wi — tijn)

+€i 172,k (Wi g1,k — Uijk)
(8) €5 kr1/2(Ui g k1 — Wigik))-
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Let 2 be an arbitrary domain composed of finite volume cells. Then, we see
that the following formula holds from Gauss’s divergence theorem.

©) / V) (€x)Vpu(x)) do = 7{ () Vuls) - 7 ds,
00
whereri is the outward unit normal vector ai?, and the integrands are
regarded as step functions which are constant in each volume and on each
cell face.
We can also prove Green’s identity for any discrete functioasdo.

/Q (Vs - (EVh0)) — (Vi - (€V4u))o] di
(10) = fgg?(u(vhv) — (Vpu)v) - i ds.

Note thatu andwv are not defined at the centers of cell faces. Therefore,
the expression of the integrand in the right hand side of (10) is not precise.
However, (10) holds if we define and v at the center of each face by
averaging two neighboring unknowns.

2. Discretization of the potential problem

In order to compute the solvation energy, we perform the following proce-
dure. First, we solve two discrete equations,

(11) —Vh Avthh Z QZ pi,h>
(12) —Govh vhweo, Z Qzépl h»

of (1) and (5). Here¢ is ¢y or ¢; depending on the position in the grid.
If a line segment intersect&A as shown in Fig. 2¢ is determined by the
well-known weighted harmonic average [2]:

€0€1

13 €= €par = .
(13) cTh (1 —w)eg + weg

Here, (x + wh, y, z) is the intersection point between two adjacent grid
points(z, y, z) and(x + h,y, z). The basic idea of this discretization tech-
nigue is similar to the idea of the Shortley-Weller discretization [10q.i$f
determined by (13), the following truncation error estimate is obtained by
the Taylor expansion af. at (z + wh, y, 2):

(14)  [(@S)Vatl(s) — c(8)Viels)) - ea| < €[V ) OB).
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= (x,y,z) s=(x+h2yz)  (x+hy,2)

Fig. 2. Two grid points aroun@A. The broken lines represent the cell boundaries

(io+1, jo+1, kot+l)
O

Fig. 3. The charge a# is distributed to the neighboring grid points

Heres = (z+h/2,y,2),e1 = (1,0,0) andI(s) is aline segment between
(z,y,z) and(z + h,y, z), which intersect$ A (see Fig. 2).|V21/16|,—(S) is
the upper-bound ofV21| on I(s). Note that for the line segments that do
not intersecb A, a smaller truncation error is obtained,

(15) |(€(S)Vh¢e(5) - E(S)sz(s)) : el’ < E‘v:gws‘](s) O(h2)

In the right hand side of (11) and (12), the discrete delta funatjgnfor a
given pointp is obtained as follows. Poiptincluded in a cube with vertices
(i0, jo, ko) and(ip + 1, jo + 1, ko + 1) corresponds t6iy + a, jo + b, ko + ¢)
in the space of the indices as depicted in Figis3, is now defined by

(16)
(].—Cl)(l—b) on (Z7j7k) = (i07j07k0)7
x(1—c¢c)/h?
a(l1—-b)(1—c)/h®  on  (i,4,k) = (io + 1, jo, ko),
(6p,h)i,j,k = e ey
abe/h? on (1,5, k) = (ig + 1,
jo+1,ko+1),

0 otherwise.
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Ly

Ly

Fig. 4. The extended coarse grids around the finest grid

This distribution is necessary to obtain @h?) accurate numerical solu-
tion. From the solutions of (11) and (12), we compute an approximation of
Wgin (4) by

(17) Wsp = /(m — Yeo,n) (%) (Z Qi(spi,h(X)) dx.

2.1. Construction of extended coarse grids

In order to deal with the unbounded domain and with boundary condition (6),
we start with a finest grid around the solute molecule and construct extended
coarse grids around the finest grid, as shown in Fig. 4. We continue this
process until a large enough domain size is reached, so that a zero boundary
value can be imposed on the boundary of the coarsest grid. The ratio of the
coarse grid domain sizd ¢;) to the fine grid domain sizd4,) is fixed in all
of the extensions, see Fig. 4. We call this ratio the grid extension rate and
denote it by,
(18) = Li (< 2).

Ly
In this situation, the number of coarse grid points in one direction is ap-
proximatelyan /2 if the number of fine grid points along this direction is
n. Hence, the number of grid points on the coarser grids tends to zero if we
continue this process. We choose a grid extension ra2e afice the grid
size reaches a small number in the far field.
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Fig. 5. The computational complexity with respect to the grid extensiontate

The grid extension rate is an important factor for the accuracy of the
solution and for the computational complexity. Since we adopt a multigrid V-
cycle on the composite grid, the computational complexity is proportional to
the sum of the grid points on all the levels, which is approximately estimated
as

No
a)3’
1-(3)

with Ny the number of points on the finest grid. He¢k, stands for the
set of all grid points in the composite grid. In Fig. 5, the functre#r

(19) Gn(a) ~ No + (5) N0+(2)3X2N0+...:

2

is depicted. It can be seen that the growth of the function is gentle up to
a = 1.6. However, it rapidly increases for > 1.6.

In Sect. 3, the best in terms of both, the accuracy and the computational
complexity is determined.

2.2. Conservative discretization and interpolation on interior boundaries

Here, we construct an interpolation technique on the interior boundary points
of the composite grid based on a conservative finite volume discretization
(see, for example, [7]) of the diffusion termV - (V). The interpolation
technique is explained for the 2D case. However, the technique is applied
in 3D without any difficulty.

Figure 6 (a) shows some cells around interior boundary points of a composite
grid. Except for the fine grid boundary points, all grid points are covered
by standard square cells. At the fine grid boundary points, the cells are
extended in such a way that they neighbor the coarse cells. We consider
the finite volume discretization for the shaded a@ll, in Fig. 6 (a). For

all standard cells, we apply a standard conservative discretization. For the
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shaded cell, the fluxes per unit length at three faces ((w) west, (e) east and
(n) north ) are given by the standard discretization :

(20) fuw = €m7h/2,y(¢x,y - %_h,y)/h, , etc.

In order to keep the compatibility of the flux at the interface between the
fine and coarse grid cells, the flifx at the southern face is determined by
Js = %(Fz + F,), where F; and F,. are the fluxes of the coarse grid cells
computed by

F = fx—h,y—h(wx—luy - ¢x—h,y—2h)/(2h)v
F, = 6x+h,yfh(¢z+h,y - ww+h,y72h)/(2h)-

Then the net flux of the shaded céll, , is given by

(21) FluX(Qx,y) = (3/2)h(f6 - fw) + h(fn - fs)

We now present an equivalent discretization, however, with Dirichlet bound-
ary values on the interior boundary points, that are obtained by interpolation.
This leads to a simple multilevel solution method on locally refined grids
without losing the conservation property of the discretization on the com-
posite grid. We only have to deal with simple stencils (5-point in 2D and
7-point in 3D) on a uniform mesh at each level with interpolated Dirichlet
boundary values. Related formulations of the interpolation at the interior
boundaries can be found in [5], [12] and [14]. An equivalent discretization
is done in the following way. Figure 6 (b) shows the same situation as Fig. 6
(a).

In the situation presented in Fig. 6 (b), the net flux of standardfa@y
is given by

(22) Flux(2s4) = h(fe = fu) + h(fa — fs)-

Here, the fluxesf,, f. and f,, are the same fluxes as the ones defined in
(20). fs is defined by

(23) f~8 = €x,y—h/2 (wx,y - wz,yfh)/hv

wherey, ,_ is the Dirichlet boundary value on the grid point represented
by o at (z,y — h) in Fig. 6 (b). In order to obtain identical discretizations
in both situations in Fig. 6 (a) and (b), we equate the two net fluxes per unit
volume (21) and (22):

Flux($2;,) B Flux(§2;,)

(24) 3n2/2 h?
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Fig. 6a,b.Two variants of a locally refined grid discretization wétfine grid points coarse
grid points which are not included in the fine grid, anfihe grid Dirichlet boundary points,
where interpolation takes placa.A conservative discretization at the interior boundary
points andb The situation with Dirichlet interior boundary points

From this equality, we obtain the interpolation formula for the ffyx

(25) st: fn'ngs.

Once the fluxf; is obtained from (25), itis possible to compute the boundary
value, , by solving (23),

(26) 7#:z:,y—h = ww,y - ﬂ
€x,y—h/2

When the diffusion coefficientis constant, the interpolation (26) results
in a quadratic interpolation. Hence, the order of the interpolatitit)) is
lower than the cubic interpolatio®(*)), which is frequently used for sec-
ond order elliptic problems on locally refined grids. However, the numerical
experiments in Sect. 4 confirm the superiority of the conservative interpo-
lation over the cubic interpolation even in the case ef 1 at the interior
boundaries in our applications with many refinement levels. In Sect. 3.2, we
also see that the conservative interpolation is sufficient to properly bound
the error.

In preparation for the error analysis in Sect. 3.2, we estimate the trun-
cation error of the conservative discretization at the interior boundaries.
Assume(z, y) is a fine grid cell center at levé] which neighbors a coarse
grid cell at(x,y — h;). Here,h; is the grid spacing at the levelLet ¢ be
an arbitraryC? function. Since all cell faces are located at the centers of
two adjacent grid points, we obtain the following estimates of the truncation
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error at cell faces of?, ,

@7) 'wm g2y - e - hl/2,y>\

ox
0%

< | —
ox3

O(h12)7
([x—hi,z],y)

(28) 'Vh%/)(l‘Jrhz/Zy) - aw(fﬂJrhz/?vy)‘

ox
Y
oz3

<

([x,x—i—hl],y)
0
(29) 'vmx,y )= Dy — )

y
%y
oy3

<

O(hl2)7
(z,[y—2h,y])

‘vhwx,y +hf2) - Sy + mm‘

i

<

O(h?).
(z,[y,y+hi])

An inequality similar to (30) holds even {fc,y — h;) is located at an in-
tersection of two coarse grid cell faces as in Fig. 6 (a). This follows from
Taylor’s expansion

1,00 oY o
0%
(Bl < |—— O(h?),
ax28y ([x_hlvx"'_hLy_hl)

and with the definition oWy at (z,y — hy):

(32)
Vib(z,y —h) = %(Vlﬂﬁ(l“ —hi,y —h) + V(e + h,y — ).
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From the Taylor expansion 2 and 5% at (z, ), we then find

0% 1 /oy oY
w(%y) T <am($ +hi/2,y) — %(95 - hl/l?J))‘
83
@ <[5y Olh)
L7 (le—he/2,2+01 /2 9)
0% 2 (o 0
Tyg(l‘ay) T3 <8y(y +hi/2,y) — a*y(fﬁ — hlﬂ))'
3
@y  <|2V ).
oy3
(,[y—hy,y+hi /2])

From (27-30), (33) and (34), we obtain the following estimate at the interior
boundaries
(35)

|AY(z, ) = Vi Vet (@, 9)| < V2| gmny i) x [y—2h,5+h) O (1)
Note that, for the grid points, that are located at the cell center, a better upper
bound can be found as
(36)

|AY(2,y) = Vi - Vet (@, y)| < IVl mhy ath] < [y—he,g-th) O ().
Equation (36) holds also at the interior boundaries if we d&¥ipév;, based
on cubicinterpolation. However, we will see in the numerical experimentsin

Sect. 4 that the conservative interpolation proposed provides a much better
accuracy than cubic interpolation.

3. Error analysis

Inthis section the error of the numerical solvation energyin (17) is estimated.
The size of the error depends on several important choices: the grid extension
rate from Sect. 2.1, the interpolation method at the interior boundaries in
Sect. 2.2 and the discretization at the discontinuity.ikVe start with the

error analysis of the Green function inside the finest grid in Sect. 3.2. In
Sect. 3.3, we estimate the error of the numerical solvation energy based on
the results obtained in Sect. 3.2.

3.1. Definition of Green functions
Let G(y, p) be the Green function for the operatek/ - (eV ),
(37) ~V - (e(y)VG(y,p)) = dp(y) for y,p € R®.
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Here,V acts on variablg . Letb(A) be the set of cells, whose central grid
pointy satisfies

with hg the grid spacing on the finest grid. As in the case ¢ [11], let
there be given constantg(k = 0, 1,2, - - - ) such that

Ck

39) |V, Vv, "G(y,p)| < ————,
( ) ‘ Y p (y p)‘ ‘y_p|k+1

(m <k)fory,p ¢ 0A.
Here,V, andV, act on variabley andp, respectively. Leyj, be the set
of all grid points of the composite grid. For givgne R3 andp € G, we
define the cell averaged Green functi@fy, p) by

~ 1

(40) G(y,p) = TAA G(y,z) dz.
p P

Here, (2, represents the cell, which includes grid pagint(2,| is its volume.
Let D; (I =0,1,2...) be the domain composed of the cubic cells of grid
g, atlevell andb(D;) be the set of non-cubic cells (Fig. 6 (a)) covering the
boundary grid points ofj;.
From (39), we can also assume

~ c
(41) V,£G(y,p)| < W fory,p ¢ b(A).
For a given grid poiny € Gy, h(y) is the grid spacing at,

(42) hy)=2'hgify € Gandy ¢ G_1.

Let G}, be the discrete Green function of the discrete operaldy, - (¢ V, )
on the composite grid,

(43) =V (€(¥y)VrGr(y,P)) = dpn(¥)-

Here, V- andV,, act on variabley, anddy, 5, is the discrete delta function
defined in (16).

If we apply the conservative discretization at the interior boundaries as

explained in Sect. 2.2, Green'’s identity (10) holds for discrete functions on
Gr. Hence, we have

; Gn(x,¥)[=Vh - (€y)Van(y))l dy

— () — 74 a)[C(x, 8)(Vitn(s)
oD,
(44) —(VGL(x,8))n(s)] - 7 ds
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for any discrete functiony, and! > 0. In particular, if we assume the
following asymptotic behavior of the discrete functions:

C
45 G (x, < |VLGh(x, < 7
@8 1GheY)| < e VaGneey)l < o=
1 1
(46) [Yn(y)l <O ()  Van(y)| <O <2> 7
ly| ly|
we obtain

Jim €(8)[Gr(x,8)(Vrin(s)) — (VaGhr(x,8))¢n(s)] - 7i ds = 0.
—o0 Jap,

Therefore, the following formula holds as in the analytic case.

(47) / Ga(x, ¥)[= Vi - @y)Vaton(y))] dy = $n(x).

3.2. Error estimate of Green functions on the finest grid

In this section, we estimate the difference betwéks, p) andG, (x, p).
From (43) and (47), the difference can be represented by

G(X, p) = é(X, p) - Gh(X, p)
- / G (%, Y){=V - [E(y)Va(G(y, p) — Galy,p))]} dy

48) = / Gh(x,¥)[=Vh - @¥)VrC(y. ) — bon(y)] dy.

In order to also estimate the difference of the finite differenégé(x, p)
andV G}, (x, p) with respect to variablg, we estimate the quantig(x, p;
dx) for a small displacementx,

e(x,p;0x) := e(x + 0x,p) — e(x, p)
— [(Gatx+ 5x3) = Galx.y)) (V- @3)ViGly.p)
(49) — Op,n(y)) dy.

The estimate of the error ¥, G}, is necessary for the error analysis of the
solvation energy in Sect. 3.3. We estimate these errors under the following
conditions (depicted in Fig. 7).

A C Dy,
(50) {ijeAandx,p¢b(A) (x # p)-
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Fig. 7. Two pointsx, pin A

Since our interests are the influences on the errors of the configuration of
the composite grid and the discretization at the discontinuity ofe only
estimate the partial integrals of (48) and (49) over the following regions:

Ry := D" N (IEJOO b(D;))¢ : Outside the finest grid
excluding the interior boundaries.
Ry := l?ﬂ b(Dy) : The non-cubic cells on
the interior boundaries as in Fig. 6 (a).

Rs :=b(A) : The cells around A

In the following, we represent the partial integrals Bnby e;. Regarding
the relation between the errors and the composite grid configuration, the
following theorem holds.

Theorem 3.1. Let « be the grid extension rate of the composite grid (18),
|Do| and|0Dy| be the volume and the surface area of the finest grid domain
Dy, respectively, ané be the grid spacing on the finest grid. Let us assume
that (45) holds. Then the partial integrads ande, are bounded as follows.

o® —1 |Dglho®

. 2/3
(52) le1(x,p)| < Cl 5708 dmdpE’ if o > 2%/ ,
OZS -1 |6X||D0|h02 . 1/2
(52) Jei(x,p: dx)| §01722/a4 2,24, if o > 212,
1 Dolho?
(53) lea(x,p)| < ¢ [9Dolho” 1¢ , + 9213,

1— 22/03 dxdp4
1 |(5X|’8D0‘h02

if 21/2,
1—22/a4 dedp4 o>

(54) |ea(x,p:dx)| <c
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Here, ¢ is a constant depending only on some of the variabjdé =
0,1,2,...)in (41),cin (45) and on the diffusion coefficieat. d, andd,
are the distances, respectively, froomand p to the boundary of the finest
grid defined byl, := d(x,9Dy), d, := d(p, dDy).

Proof. First, we estimatée;|. From (36) and (41) wittk = 4, we obtain
(55)

h(y)?
ly —p|°

From (45) and (55), we obtain

Vi - Vhé(y,p)‘ <c fory € Ry = Do N (;LCJ)Ob(Dl))C.

les(x,p)| = | [ Gr(x,¥)e1 Vi - ViG(y,p) dy
Ry
2
(56) < c/ Lﬁ)
Do¢ |y = x[ly — p|
Regardinge; (x, p : 0x): from (45), we obtain
ox
57) Gl + 0%, y) — Gulx.y)| < °‘|y|_ )'dg.

Hence, we find the following upper bound

le1(x, p : 6x)| =

/ (Ga(x.y) — Ga(x + 5%, 7)1 V4 - VaG(y, p) dy
Ry

h(y)®
P |y —x2ly — p|°
From the definitions ofl, andd,, and from the way in which the coarse
grids are defined in Sect. 2.1, the following conditions are fulfilled

(58) < clox|

(59) h(y) = 2'hg fory € D;N DY |,
(60) |y —x|>a/dy, [y —pl > o' 'd, fory € DN DY,
(61) DN D€ = (o = o® D) Dy,

where| D; N D;_,“| and| Dy | stand for the volumes db; N D;_,¢ andDy,
respectively.
From (59), (60) and (61), we obtain

/ h(y)? du < (2'ho)?
D

nD_ 1€ |y — X’k’y - P|5 B (alildx)k(alildp)S

><(0[3! o Oé3(l_1))|D0|

6  4ho*|Dol(a® —1) [ 22\
( ) - dxk’dpf) a2+k




Error analysis for a potential problem on locally refined grids 555

From (56) and (62) witlk = 1, finally, we find the upper-bound ¢f; (x, p)|:

Jho’[Do(o® = 1) <~ 22\
d:vdp5 a3 '

|€1 (X7 p)’ S
=1

Regardinge; (x, p : 6x)|: from (58) and (62) wittk = 2, it can be bounded
as

2 3 _ o0 2 1—1
le1(x, p : 0% < o|9%[ho”|Dol(a” — 1) (2 ) |

275 4
dz"dy =1\

The integrals over the interior boundary cdllg can be estimated similarly
to the estimate foR;. From (35) and (41) wittk = 3, we obtain

~ h
(63) Vi ViGly.p)| < e pory € Ry
ly —pl
Hence,es(x, p)| and|ez(x, p, dx)| can be bounded as follows
h
(64) ’62(X7 p)| < C/ % Y,
R ly —x[ly —p
h
(65) lea(x, p, 0x)| < c|0x] (v) 1 dy.

Ry ly — x|y — p|
From (59) and (60) and the fact:

(66) [b(Dy)| < 2 holdDy| =~ 2" hoa [0Dy|
with |0D,| the area obD;, we obtain
h(y) 2% hg 141y, 21
dy < 2 hoa? 10D
/b(Dz) ly = x[¥y - p[* (@i, (aldyyi” o100l
4h0210Do| (22 '
67) =— k| 40’ 24k | -
d."d, a?t
From (64), (65) and (67), we find the upper boundseof. 0

For the relation between the errors and the discretization of the discon-
tinuity of ¢, the following theorem holds.

Theorem 3.2. Let us assume that the weighted harmonic averaging (13) is
applied to determin& and (45) holds. Then the partial integralg around
the discontinuity are bounded as follows:

(68) I%&mﬂéa¥WAmm£( 12+ 1 )7

agap?  az’ay

(69) !es<x,p:5x>|sCs2<aA,p>|6x|h02< L, )

az2a,®  azdap
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L] L] L]
Z3

Sz

Fig. 8. A two dimensional image df(A). The area surrounded by the thick solid lines is
b(A). The broken lines represent the cell faces shared by two cél(sdin

Here, ¢ is a constant depending only on some of the variabjdé =
0,1,2,...)in (41), ¢ in (45) ande; (i = 0,1). a, anda, are distances,
respectively, fronx andp to the boundary ol defined by, := d(x,dA),
a, = d(p,0A). S*(0A, p) is defined by
(70) S%(0A,p) = ]{ %ds.
o4 |s — p|
Proof. In order to obtain an optimal upper bound feg|, the cancellation
of truncation errors of- v}, - (€V,,G(y, p)) between neighboring cells must
be exploited. This is done by showing the cancellation of the error on a cell
face shared by two neighboring cellgif¥) after the application of Gauss’s
divergence theorem.
For any grid poink € b(A), letz; (i = 1,2, ---) be the grid points ih(A),
that share a cell face withas depicted in Fig. 8.
From _
V- (e(y)VG(y,p)) = 0fory € b(A)
and Gauss’s divergence theorem (9), we obtain the following equality for a
cell 2, C b(A).

[ Guxy) Vi @) V4Gly.p) dy
— Gh(x,2) /Q V1 (@) VG (y.p)) - V- (e(y)VE(y, p))] dy
— Gy(x,2) 7@ (e(5)VaGi(s, p) — e(s)VCi(s, D)) - 1. ds

(71)  +Gh(x.2 Z?{ )V Gi(s,p) — e(s)VG(s, p)) - 7. ds.
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Here,S(z, z;) denotes the cell face shared by the two cé&llsand(2,,, S,

the set of cell faces shared by the boundaridg 4f and(2, (see Fig. 8)i.

the outward normal vectors on the boundaryhf Note thate = ¢ holds

on the boundary af(A).

We estimate the two boundary integrals in (71) separately. From the defini-
tion of b(A) in (38), it is seen that (15) holds on its boundary. Hence, we
obtain the following upper bound of the former integral

(%, 2) 7{ (€(8)VrGi(s,p) — €(s)V (s, p)) - 7 ds

|9z ho®

(72) _.
z —x||z — p|*

with | S, | the surface area of,.

For the latter integral, we have to exploit the cancellation with the integrals
from adjacent cell$2,,. Letw be one of the adjacent grid poifts; }. Then,

we find the following estimate from (14).

G (x,2) fs ( )(z(swhé(s, p) — e(s)VG(s, p)) - . ds

G (%, w) j{g ( )(as)vhé(s,p) — e(5)VE(s,p)) - T ds

— |(Gu(x.) — Gu(x, w)) 7§ IGOMTS

— e(s)VG(s,p)) - 7t ds)
ho ho® < 1£2;|ho

z—x*lz—p|" ~ |z —x[’lz —p[*

(73) <c

From these estimates, finally we obtain the following upper boung:§or

les(x,p)| = | D Gh (%,¥)Va - (@y)VaGly,p)) dy
z€b(A)
< ¢S*(DA, p)ho? Lo,
>~ » P)o amap2 ax2ap
Similarly, we also obtain (69). a

Remark If we do not take the weighted harmonic average from (13) to
determinec(s), the truncation error at the discontinuity degrades. In that
case, we can achieve only first ordéx(¢()) accuracy.
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3.3. Error estimate of the solvation energy
The main interest in this section is how the accuracy of the solvation energy
is related to the following quantities,

— The charge distribution of , ¢;dp, in A.
— The grid extension rate.
— The size of the finest grid,. In other words,

(74) w :=d(A,0Dy).

Theorem 3.3. From the results in Sect. 3.2, it follows that for a second order
accurate solution of the solvation energys the following three conditions
must be fulfilled.

— Condition 1: o must be at least?/3 ~ 1.587.
— Condition 2: It is sufficient to chooser comparable to

max; ;{|p; — pj|}-
— Condition 3: It is sufficient to chooses comparable to
max;{ap, = d(0A,p;)}.

In the following, we explain how these conditions are induced.

Proof. First, we split the solvation energy into simpler terms. Ggtand
G., be the Green functions of the diffusion operatefg- (¢V-) and—¢ V2,
respectively. Then, the solutions of (1) and (5) are described as follows

(75) qu (x, pi);
(76) weo qu € X pl

Hence, the solvation energy in (4) is represented by

(77) ZQzQJ e(pi, P;) — Geo(Pi, P)))-

Although G¢(pi, pi) andG¢, (pi, pi) are infinite, their difference is well-
defined under the limit :

Ge(pisPi) — Geo(Pis Pi) == xlim (Ge(x,Pi) — Geo(x,P4))-

—Pi
Hence, the error folWg can be estimated by estimating the error of
(78) Ge(Pi; Pj) — Geo (Pis Pj)

fori = j andi # j. For simplicity, we assume that all poinfp; } are just
grid points. With (16), the estimates in this section are also valid for more
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general cases.

The error for (78) withi £ j can be estimated by the error indicators
ec(pi, pj) andec, (p;, p;) defined in (48) for the diffusion operatorsV -
(eV-) and—¢y V2, respectively.

From estimates (51) and (53) in Theorem 3.1, we obtain

od—1 (pi—pil  \°  ho
(79) ‘61(p7p)| SC ( . +1) R
o 1-22/a? w pi — p;[°

1 Ipi — Pyl P hy?
(80) lea(pi )| < c ( p1)
! J 1—22/a3 w |p2—pJ|3

for e = e ande = e.,. Hence, we find that Condition 1 and 2 are required
to bound this error term.

The error for (78) withi = j can be estimated by the following formula
obtained from Green'’s identity.

Go(%,y) — Geo(%,¥) = €0 f’g [V(Gu(x,5) = Gy (%.5) G (5.)

—(Ge(x,8) — Gey(%,8))VGe, (s,y)] - 7 ds

Vx,y € 2(C A). In particular, by substituting; for x andy, we obtain

Ge(pi, i) — Geo (D1 PY) = €0 fg [V(Gelpis)

_GEO (pi7 S))G€0(S7 pi) - (GG(piv S) - Geo (pia S))VGso (57 pz)] -1 ds.
(81)

The above equation indicates that the error@(p;, p;) — G¢,(pi, P:)

can be estimated by the errors@f(p;, s), VG(pi, s),etc fors € 012. By
choosing(? = Dapi/Q(pi) for 2 in (81) and by applying the estimates from
Theorem 3.1 and 3.2, we find that Condition 1 and 3 are required to bound
this error term. O

4. Numerical experiments

In this section, we perform several numerical experiments with a model
problem, where

€ =1,
€1 = 80,
A={x: |x[| <1},
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and a unit point charge is located at the origin. The analytical solution of
this problem is:

1 1 1 1 :
(82) be(x) = { Tl t (& -&) ik <a
‘ L if x| > 1
4dmeq || x||

In Sect. 3, we have analyzed the relations between the numerical solution
error and the grid extension rate, the finest grid domain size, etc. We want to
determine whether the error analysis in Sect. 3 fits the results for this simple
test problem well.

With (82), the solvation energhy/s for this simple problem is given by

1 /1
— (= 1)~ —0.03929137...
(83) Ws 8F<80 ) 0.03929137

First, we investigate the influence of the discretizatioaatfthe discontinu-

ity on the accuracy of the solvation energy. We compare two discretization
methods to determin@ One is the weighted harmonic average (WHA) de-
fined in (13), the other is the standard harmonic average (SHA) of sampled
e-values on two adjacent grid points. For instance, between two grid points
x andx + (ho, 0, 0), the SHA is defined as

2¢e(x)e(x + (ho,0,0))

(84) e(x + (ho/2,0,0)) := e(x) + e(x + (ho,0,0))

In this experiment, we apply the conservative interpolation and fix the fol-
lowing parameters.

DU = [_27 2]37
a=1.7,
(85) m = int(log,, 10°).

Here,m denotes the number of levels. (85) implies thails chosen in such

a way that the coarsest grid domain size is at léé%times larger than the

finest grid domain size. We have 26 grid levels in these calculations. On the

boundary of the coarsest grid, a zero Dirichlet boundary value is imposed.
In Fig. 9 the errors for the solution difference). — v, along the

line {(z1,0,0) : z; > 0.0} with the WHA (a) and with the SHA (b)

are presented. The errors are measured for three finest grid spagiegs

0.25, 0.125 and0.0625. For the WHA, it is difficult to confirm theD(h?)

accuracy as analyzed in Sect. 3.2. However, the error near the origin is better

than O(h?) in this example. On the other hand, it is obvious that the im-

provement of the error with the SHA is less th@h?). In particular, we

see that the error with the SHA for the grid spacin@625 is even larger
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0.0002 ™ ™ ™ ™ ™ ™ 0.005 ™ ™ ™ ™ ™ ™
h0=0.25 —— =0.25 ——
0.00015 h0=0.125 -+-- A 0=0.125 -=+---
h0=0.0625 -= 0.004 h0=0.0625 -&-

0.0001

0.003
5e-05

Error

0

Error

0.002
N 2 N S
0.001

-0.0001

0

-0.00015

-0.0002 " " " " " " -0.001 " N N N N N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
x1 x1

(a) with the WHA (b) with the SHA

Fig. 9a,b.The error for). — 1, along aline{(z1,0,0) : 1 > 0} with two discretizations
of e

than that with the WHA for the grid spaciig25. This result shows the im-
portance of the discretization of the diffusion coefficient at the discontinuity
to obtain an accurate solvation energy.

Next, we investigate the influence of the grid extension taten the
accuracy of the numerical solvation energy. Hérge= 0.125, Dy andm
are set as in the previous experiment and the weighted harmonic average is
used to determiné. In Fig. 10 (a), the solvation energies computed with
« from 1.4 to 1.8 are plotted for the conservative and cubic interpolation.
For the conservative interpolation, the error curve is stable and close to
the analytical solution fore larger than 1.7. The error does not diverge at
o = 2%/3 ~ 1.587 as indicated in Theorem 3.1. This can be explained from
the fact that the grid extension rate is 2 in the far field as discussed in Sect.
2.1. For the cubic interpolation, we do not find a decrease of the error with
an increase ofv. This means that the error is not well defineddan (48),
because (47) does not hold due to the lack of the conservation at the interior
boundaries.

In Fig. 10 (b), the solvation energies computed for various finest grid
domain sizes are depicted. Heseis setto 1.7 and the domain size changes
from [—1.25,1.25] to [-2.5,2.5] in each direction. For the conservative
interpolation, an accurate solvation energy is obtained for the external size
w larger than 1, as indicated by Condition 3 in Sect. 3.3. With the cubic
interpolation, the decrease of the solvation energy error with the increase of
the size is again too small.

5. Conclusions and future work
In this paper, we have developed a theory to analyze the numerical errorsina

potential problem with an unbounded domain, which arises in biomolecular
simulations with a continuum solvent model. In the error analysis, under
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-0.039 - - - -0.039 - -
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0.0391 F the analytic solvation energy 1 10,0391 } the analytic solvation energy
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Fig. 10a,b.The solvation energied’s computed for various grid extension ratesaiand
for various domain sizes ib. The broken horizontal line represents the analytic solvation
energy

basic assumptions on the Green function, we have shown the proper ways
to construct the composite grid around the solute molecule and to discretize
the diffusion operator-V - (¢V ) around the-discontinuity.

Furthermore, we have proposed an interpolation technique on the inte-

rior boundaries of the composite grid based on a conservative discretization.
The conservative interpolation is proposed for the general situation, where
changinge is also allowed at the interior boundaries. The experimental re-
sults confirm the error analysis theory developed in this paper, and it is
found that the conservativeness of the discretization at the interior bound-
aries and a careful treatment of theliscontinuity are important issues to
obtain accurate solutions.
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