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Summary. For the simulation of biomolecular systems in an aqueous sol-
vent a continuummodel is oftenused for the solvent. Theaccurate evaluation
of the so-called solvation energy coming from the electrostatic interaction
between the solute and the surrounding water molecules is the main issue
in this paper. In these simulations, we deal with a potential problem with
jumping coefficients and with a known boundary condition at infinity. One
of the advanced ways to solve the problem is to use a multigrid method
on locally refined grids around the solute molecule. In this paper, we focus
on the error analysis of the numerical solution and the numerical solvation
energy obtained on the locally refined grids. Based on a rigorous error anal-
ysis via a discrete approximation of the Greens function, we show how to
construct the composite grid, to discretize the discontinuity of the diffusion
coefficient and to interpolate the solutions at interfaces between the fine
and coarse grids. The error analysis developed is confirmed by numerical
experiments.

Mathematics Subject Classification (1991):65N06, 65N15, 65N50, 65N55

1. Introduction

We perform error analysis for a potential problem arising from modeling
biomolecular systems with aqueous solvent. One of the major effects me-
diated by the aqueous solvent is a screening of electrostatic interaction. A
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Fig. 1. The molecular surface (MS) is represented by the thick line curves. The Van der
Waals surface is composed of the two surfaces of the atoms.A is the shaded volume which
is enclosed by the MS

quantitative description of this screening can be formulated by a potential
equation:

−∇ · (ε(x)∇ψε(x)) =
∑
i

qiδpi(x),(1)

whereε is the dielectric constant which depends on the positionx. The
charge distribution in the solute molecule is represented by a set of point
charges{qiδpi} in the right hand side of (1). Usually, twoε regions are
distinguished: the aqueous solvent has anε-value of about 80 which models
the orientational and electronic polarizability of water, whereas the solute
molecule has anε-value of about 1. Thus, we assume:

ε(x) =
{

ε0 for x ∈ A
ε1 for x ∈ AC ,

(2)

whereA is the open set corresponding to the solute molecule. The boundary
of A is the so-called Molecular Surface[13] (MS) defined as the inward-
facing surface generated by a sphere of radius 0.14 nm (the size of a water
molecule) as it rolls over the Van der Waals surface of the solute molecule,
which is the joint set of spheres with the Van der Waals radii. The volume
enclosed by the MS (= A) is the volume from which water is excluded.
From the definition of the MS, we can assume∂A ∈ C1. An example of a
MS is depicted in Fig. 1, where the solute molecule is composed of 2 atoms.
Since all the point charges{qiδpi} are included in the solute molecule, we
have:

pi ∈ A, ∀i.(3)
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One of the major interests in this area (for example see [8]) is the so
called solvation energy defined by

WS :=
1
2

∫
(ψε − ψε0)(x)

(∑
i

qiδpi(x)

)
dx,(4)

whereψε0 is the potential in vacuum:

−ε0∆ψε0(x) =
∑
i

qiδpi(x).(5)

WS is the difference in energy of the solute molecule in vacuum and in the
solvent. Our goal is to find a fast and accurate way to compute the solvation
energy confirmed by error analysis.

One of the important topics in this paper is the treatment of the Dirichlet
boundary condition at infinity:

ψε(x) → 0 and ψε0(x) → 0 as |x| → ∞(6)

imposed on (1) and (5). A natural way to handle this boundary condition is
by using locally refined grids around the solute molecule. Namely, we start
with a fine grid around the solutemolecule and construct a coarse grid with a
larger domain size than the fine grid.We continue this process until we reach
a satisfactorily large domain. Then, we impose a zero Dirichlet boundary
value on the boundary of the coarsest grid. This technique is discussed in
detail in Sect. 2, where we define a scalar value (the so-called grid extension
rate) which characterizes the composite grid.

Another important topic is the treatment of the discontinuity of diffusion
coefficientε on∂A in a finite volume discretization on a rectangular grid. In
several papers dealing with jumping diffusion coefficients, for example in
[1], [9] and [15], the discretization is given assuming that the jumps occur
on grid points. However, since the MS is curved in our case, this can not
be assumed here. We investigate the influence of a discretization of the
ε-discontinuity on the accuracy of the numerical solutions in Sect. 3.2.

The discrete equations of (1) and (5) are solved on the composite grid,
for example by theMultilevel Adaptive Technique (MLAT)[6] or by the Full
AdaptiveComposite (FAC)[12]method, in such away that the discretization
on the composite grid is guaranteed to be conservative. In this paper, we
investigate a way to construct an optimal composite grid in the sense that
the difference between the analytical and numerical solutions is reasonably
small and thecomputationalwork isnot too large.Asimilar topic isdiscussed
in [3] and [4]. We also propose an interpolation method at the interfaces
between the fine and coarse grids based on a conservative discretization of
the diffusion term in (1). The proposed conservative interpolation results
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in more accurate numerical solutions for our application than conventional
interpolations like the cubic interpolation.

Basedon theerror analysis of thediscreteGreens function inSect. 3.2,we
discuss the accuracy of the solvation energy in Sect. 3.3. The error estimate
for this potential problem on a locally refined grid and the results obtained
with this analysis are new. Based on this analysis, we obtain quantitative
information about optimal grid coarsening towards infinity and on the size
of the finest grid.

We summarize the notation used in this paper in Sect. 1.1 and introduce
basic concepts to perform the error analysis.

1.1. Notation, definitions and basic concepts

Here,x = (x1, x2, x3),y = (y1, y2, y3) are points in the three dimensional
space.

– |x| := max(|x1|, |x2|, |x3|).
– Dr(x) := {y ∈ R3 : |x − y| ≤ r}.

– For any setA of points in the three dimensional space, we define

AC := {x ∈ R3 : x /∈ A}.
– For a domainB ⊂ R3, |B| stands for the volume ofB.
– For a surfaceS ⊂ R3, |S| stands for the surface area ofS.
– |f |A := the upper bound of|f | onA (f is a function,A ∈ R3)
– ForA, B ⊂ R3, d(A,B) := min{|x − y| : x ∈ A, y ∈ B}.
In this section, it will be shown that basic properties like Gauss’s diver-

gence theorem and Green’s identity of analytical functions hold also on the
discrete space with the discrete operators. These properties are frequently
used in the error analysis in Sect. 3.

Let u be a discrete function on a uniform rectangular 3D grid with a
grid spacingh. We can define a discrete flux∇hu at each center of a face
connecting two neighboring grid points.

(∇hu)i+1/2,j,k :=
ui+1,j,k − ui,j,k

h
, etc.(7)

Assume that a discrete diffusion coefficientε̂ defined on the central points
of cell faces is given. Then, the diffusion operator associated withε̂ is given
by

−∇h · (ε̃∇hu)i,j,k := − 1
h2 (ε̂i+1/2,j,k(ui+1,j,k − ui,j,k)

+ε̂i,j+1/2,k(ui,j+1,k − ui,j,k)
+ε̂i,j,k+1/2(ui,j,k+1 − ui,j,k)).(8)
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LetΩ be an arbitrary domain composed of finite volume cells. Then, we see
that the following formula holds from Gauss’s divergence theorem.∫

Ω
∇h · (ε̂(x)∇hu(x)) dx =

∮
∂Ω

ε̂(s)∇hu(s) · �n ds,(9)

where�n is the outward unit normal vector on∂Ω, and the integrands are
regarded as step functions which are constant in each volume and on each
cell face.

We can also prove Green’s identity for any discrete functionsu andv.∫
Ω

[u(∇h · (ε̂∇hv)) − (∇h · (ε̂∇hu))v] dx̄

=
∮
∂Ω

ε̂ (u(∇hv) − (∇hu)v) · �n ds.(10)

Note thatu andv are not defined at the centers of cell faces. Therefore,
the expression of the integrand in the right hand side of (10) is not precise.
However, (10) holds if we defineu and v at the center of each face by
averaging two neighboring unknowns.

2. Discretization of the potential problem

In order to compute the solvation energy, we perform the following proce-
dure. First, we solve two discrete equations,

−∇h · (ε̂∇hψε̂,h) =
∑
i

qiδpi,h,(11)

−ε0∇h · (∇hψε0,h) =
∑
i

qiδpi,h,(12)

of (1) and (5). Here,̂ε is ε0 or ε1 depending on the position in the grid.
If a line segment intersects∂A as shown in Fig. 2,̂ε is determined by the
well-known weighted harmonic average [2]:

ε̂ = εhar :=
ε0ε1

(1 − ω)ε0 + ωε1
.(13)

Here, (x + ωh, y, z) is the intersection point between two adjacent grid
points(x, y, z) and(x + h, y, z). The basic idea of this discretization tech-
nique is similar to the idea of the Shortley-Weller discretization [10]. Ifε̂ is
determined by (13), the following truncation error estimate is obtained by
the Taylor expansion ofψε at (x + ωh, y, z):

|(ε̂(s)∇hψε(s) − ε(s)∇ψε(s)) · e1| ≤ ε̂
∣∣∇2ψε

∣∣
I(s\∂A) O(h).(14)
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Fig. 2. Two grid points around∂A. The broken lines represent the cell boundaries
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Fig. 3. The charge at• is distributed to the neighboring grid points◦

Here,s = (x+h/2, y, z), e1 = (1, 0, 0) andI(s) is a line segment between
(x, y, z) and(x + h, y, z), which intersects∂A (see Fig. 2).|∇2ψε|I(s) is
the upper-bound of|∇2ψε| on I(s). Note that for the line segments that do
not intersect∂A, a smaller truncation error is obtained,

|(ε̂(s)∇hψε(s) − ε(s)∇ψε(s)) · e1| ≤ ε̂
∣∣∇3ψε

∣∣
I(s) O(h2).(15)

In the right hand side of (11) and (12), the discrete delta functionδp,h for a
given pointp is obtained as follows. Pointp included in a cubewith vertices
(i0, j0, k0) and(i0 +1, j0 +1, k0 +1) corresponds to(i0 +a, j0 +b, k0 +c)
in the space of the indices as depicted in Fig. 3.δp,h is now defined by

(δp,h)i,j,k :=



(1 − a)(1 − b) on (i, j, k) = (i0, j0, k0),
×(1 − c)/h3

a(1 − b)(1 − c)/h3 on (i, j, k) = (i0 + 1, j0, k0),
. . . . . . ,

abc/h3 on (i, j, k) = (i0 + 1,
j0 + 1, k0 + 1),

0 otherwise.

(16)
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Fig. 4. The extended coarse grids around the finest grid

This distribution is necessary to obtain anO(h2) accurate numerical solu-
tion. From the solutions of (11) and (12), we compute an approximation of
WS in (4) by

WS,h :=
∫

(ψε̂,h − ψε0,h)(x)

(∑
i

qiδpi,h(x)

)
dx.(17)

2.1. Construction of extended coarse grids

In order to dealwith theunboundeddomainandwith boundary condition (6),
we start with a finest grid around the solutemolecule and construct extended
coarse grids around the finest grid, as shown in Fig. 4. We continue this
process until a large enough domain size is reached, so that a zero boundary
value can be imposed on the boundary of the coarsest grid. The ratio of the
coarse grid domain size (LH ) to the fine grid domain size (Lh) is fixed in all
of the extensions, see Fig. 4. We call this ratio the grid extension rate and
denote it byα,

α :=
LH

Lh
(≤ 2).(18)

In this situation, the number of coarse grid points in one direction is ap-
proximatelyαn/2 if the number of fine grid points along this direction is
n. Hence, the number of grid points on the coarser grids tends to zero if we
continue this process. We choose a grid extension rate of2, once the grid
size reaches a small number in the far field.
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Fig. 5. The computational complexity with respect to the grid extension rateα

The grid extension rateα is an important factor for the accuracy of the
solutionand for the computational complexity. Sinceweadopt amultigridV-
cycle on the composite grid, the computational complexity is proportional to
the sumof the grid points on all the levels, which is approximately estimated
as

(Gh(α) ≈ N0 +
(α

2

)3
N0 +

(α
2

)3×2
N0 + · · · =

N0

1 − (α2 )3 ,(19)

with N0 the number of points on the finest grid. Here,Gh stands for the
set of all grid points in the composite grid. In Fig. 5, the function1

1−(α
2 )3

is depicted. It can be seen that the growth of the function is gentle up to
α = 1.6. However, it rapidly increases forα > 1.6.

In Sect. 3, the bestα in terms of both, the accuracy and the computational
complexity is determined.

2.2. Conservative discretization and interpolation on interior boundaries

Here,weconstruct an interpolation techniqueon the interior boundarypoints
of the composite grid based on a conservative finite volume discretization
(see, for example, [7]) of the diffusion term−∇ · (ε∇ψ). The interpolation
technique is explained for the 2D case. However, the technique is applied
in 3D without any difficulty.
Figure 6 (a) showssomecells around interior boundary points of a composite
grid. Except for the fine grid boundary points, all grid points are covered
by standard square cells. At the fine grid boundary points, the cells are
extended in such a way that they neighbor the coarse cells. We consider
the finite volume discretization for the shaded cellΩx,y in Fig. 6 (a). For
all standard cells, we apply a standard conservative discretization. For the
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shaded cell, the fluxes per unit length at three faces ((w) west, (e) east and
(n) north ) are given by the standard discretization :

fw = εx−h/2,y(ψx,y − ψx−h,y)/h, ,etc.(20)

In order to keep the compatibility of the flux at the interface between the
fine and coarse grid cells, the fluxfs at the southern face is determined by
fs = 1

2(Fl + Fr), whereFl andFr are the fluxes of the coarse grid cells
computed by

Fl = εx−h,y−h(ψx−h,y − ψx−h,y−2h)/(2h),
Fr = εx+h,y−h(ψx+h,y − ψx+h,y−2h)/(2h).

Then the net flux of the shaded cellΩx,y is given by

Flux(Ωx,y) = (3/2)h(fe − fw) + h(fn − fs).(21)

Wenowpresent an equivalent discretization, however, withDirichlet bound-
ary values on the interior boundary points, that are obtained by interpolation.
This leads to a simple multilevel solution method on locally refined grids
without losing the conservation property of the discretization on the com-
posite grid. We only have to deal with simple stencils (5-point in 2D and
7-point in 3D) on a uniform mesh at each level with interpolated Dirichlet
boundary values. Related formulations of the interpolation at the interior
boundaries can be found in [5], [12] and [14]. An equivalent discretization
is done in the following way. Figure 6 (b) shows the same situation as Fig. 6
(a).

In the situation presented in Fig. 6 (b), the net flux of standard cellΩ̃x,y

is given by

Flux(Ω̃x,y) = h(fe − fw) + h(fn − f̃s).(22)

Here, the fluxesfw, fe andfn are the same fluxes as the ones defined in
(20). f̃s is defined by

f̃s = εx,y−h/2(ψx,y − ψx,y−h)/h,(23)

whereψx,y−h is the Dirichlet boundary value on the grid point represented
by ◦ at (x, y − h) in Fig. 6 (b). In order to obtain identical discretizations
in both situations in Fig. 6 (a) and (b), we equate the two net fluxes per unit
volume (21) and (22):

Flux(Ωx,y)
3h2/2

=
Flux(Ω̃x,y)

h2 .(24)
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Fig. 6a,b.Twovariants of a locally refinedgrid discretizationwith• finegrid points,✷ coarse
grid points which are not included in the fine grid, and◦ fine grid Dirichlet boundary points,
where interpolation takes place.a A conservative discretization at the interior boundary
points andb The situation with Dirichlet interior boundary points

From this equality, we obtain the interpolation formula for the fluxf̃s:

f̃s =
fn + 2fs

3
.(25)

Once the fluxf̃s is obtained from (25), it is possible to compute the boundary
valueψx,y−h by solving (23),

ψx,y−h = ψx,y − f̃sh

εx,y−h/2
.(26)

When the diffusion coefficientε is constant, the interpolation (26) results
in a quadratic interpolation. Hence, the order of the interpolation (O(h3)) is
lower than the cubic interpolation (O(h4)), which is frequently used for sec-
ond order elliptic problems on locally refined grids. However, the numerical
experiments in Sect. 4 confirm the superiority of the conservative interpo-
lation over the cubic interpolation even in the case ofε ≡ 1 at the interior
boundaries in our applications with many refinement levels. In Sect. 3.2, we
also see that the conservative interpolation is sufficient to properly bound
the error.

In preparation for the error analysis in Sect. 3.2, we estimate the trun-
cation error of the conservative discretization at the interior boundaries.
Assume(x, y) is a fine grid cell center at levell, which neighbors a coarse
grid cell at(x, y − hl). Here,hl is the grid spacing at the levell. Letψ be
an arbitraryC3 function. Since all cell faces are located at the centers of
two adjacent grid points, we obtain the following estimates of the truncation
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error at cell faces ofΩx,y

∣∣∣∣∇hψ(x − hl/2, y) − ∂ψ

∂x
(x − hl/2, y)

∣∣∣∣(27)

≤
∣∣∣∣∂3ψ

∂x3

∣∣∣∣
([x−hl,x],y)

O(hl2),∣∣∣∣∇hψ(x + hl/2, y) − ∂ψ

∂x
(x + hl/2, y)

∣∣∣∣(28)

≤
∣∣∣∣∂3ψ

∂x3

∣∣∣∣
([x,x+hl],y)

O(hl2),∣∣∣∣∇hψ(x, y − hl) − ∂ψ

∂y
(x, y − hl)

∣∣∣∣(29)

≤
∣∣∣∣∂3ψ

∂y3

∣∣∣∣
(x,[y−2hl,y])

O(hl2),∣∣∣∣∇hψ(x, y + hl/2) − ∂ψ

∂y
(x, y + hl/2)

∣∣∣∣
≤
∣∣∣∣∂3ψ

∂y3

∣∣∣∣
(x,[y,y+hl])

O(hl2).(30)

An inequality similar to (30) holds even if(x, y − hl) is located at an in-
tersection of two coarse grid cell faces as in Fig. 6 (a). This follows from
Taylor’s expansion

∣∣∣∣12(
∂ψ

∂y
(x − hl, y − hl) +

∂ψ

∂y
(x + h, y − hl)) − ∂ψ

∂y
(x, y − hl)

∣∣∣∣
≤
∣∣∣∣ ∂3ψ

∂x2∂y

∣∣∣∣
([x−hl,x+h],y−hl)

O(hl2),(31)

and with the definition of∇hψ at (x, y − hl):

∇hψ(x, y − hl) =
1
2

(∇hψ(x − hl, y − hl) + ∇hψ(x + hl, y − hl)).

(32)
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From the Taylor expansion of∂ψ∂x and ∂ψ∂y at (x, y), we then find∣∣∣∣∂2ψ

∂x2 (x, y) − 1
hl

(
∂ψ

∂x
(x + hl/2, y) − ∂ψ

∂x
(x − hl/2, y)

)∣∣∣∣
≤
∣∣∣∣∂3ψ

∂x3

∣∣∣∣
([x−hl/2,x+hl/2],y)

O(hl),(33) ∣∣∣∣∂2ψ

∂y2 (x, y) − 2
3hl

(
∂ψ

∂y
(y + hl/2, y) − ∂ψ

∂y
(x − hl, y)

)∣∣∣∣
≤
∣∣∣∣∂3ψ

∂y3

∣∣∣∣
(x,[y−hl,y+hl/2])

O(hl).(34)

From (27–30), (33) and (34), we obtain the following estimate at the interior
boundaries

|∆ψ(x, y) − ∇h · ∇hψ(x, y)| ≤ |∇3ψ|[x−hl,x+hl]×[y−2hl,y+hl]O(hl).
(35)

Note that, for the grid points, that are located at the cell center, a better upper
bound can be found as

|∆ψ(x, y) − ∇h · ∇hψ(x, y)| ≤ |∇4ψ|[x−hl,x+hl]×[y−hl,y+hl]O(hl2).
(36)

Equation (36) holds also at the interior boundaries if we define∇h ·∇h based
on cubic interpolation. However, wewill see in the numerical experiments in
Sect. 4 that the conservative interpolation proposed provides a much better
accuracy than cubic interpolation.

3. Error analysis

In this section theerror of thenumerical solvationenergy in (17) is estimated.
Thesizeof theerror dependsonseveral important choices: thegrid extension
rate from Sect. 2.1, the interpolation method at the interior boundaries in
Sect. 2.2 and the discretization at the discontinuity inε. We start with the
error analysis of the Green function inside the finest grid in Sect. 3.2. In
Sect. 3.3, we estimate the error of the numerical solvation energy based on
the results obtained in Sect. 3.2.

3.1. Definition of Green functions

LetG(y,p) be the Green function for the operator−∇ · (ε∇ ),

−∇ · (ε(y)∇G(y,p)) = δp(y) for y,p ∈ R3.(37)
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Here,∇ acts on variabley. Let b(A) be the set of cells, whose central grid
pointy satisfies

d(y, ∂A) ≤ h0,(38)

with h0 the grid spacing on the finest grid. As in the caseε ≡ ε0 [11], let
there be given constantsck(k = 0, 1, 2, · · · ) such that

|∇y
k−m∇p

mG(y,p)| ≤ ck
|y − p|k+1 , (m ≤ k) for y,p /∈ ∂A.(39)

Here,∇y and∇p act on variablesy andp, respectively. LetGh be the set
of all grid points of the composite grid. For giveny ∈ R3 andp ∈ Gh, we
define the cell averaged Green functionG̃(y,p) by

G̃(y,p) :=
1

|Ωp|
∫
Ωp

G(y, z) dz.(40)

Here,Ωp represents the cell, which includes grid pointp, |Ωp| is its volume.
LetDl (l = 0, 1, 2...) be the domain composed of the cubic cells of grid

Gl at levell andb(Dl) be the set of non-cubic cells (Fig. 6 (a)) covering the
boundary grid points ofGl.

From (39), we can also assume

|∇y
kG̃(y,p)| ≤ ck

|y − p|k+1 , for y,p /∈ b(A).(41)

For a given grid pointy ∈ Gh, h(y) is the grid spacing aty,

h(y) = 2lh0 if y ∈ Gl and y /∈ Gl−1.(42)

LetGh be the discreteGreen function of the discrete operator−∇h ·(ε̂ ∇h )
on the composite grid,

−∇h · (ε̂(y)∇hGh(y,p)) = δp,h(y).(43)

Here,∇h· and∇h act on variabley, andδp,h is the discrete delta function
defined in (16).
If we apply the conservative discretization at the interior boundaries as
explained in Sect. 2.2, Green’s identity (10) holds for discrete functions on
Gh. Hence, we have∫

Dl

Gh(x,y)[−∇h · (ε̂(y)∇hψh(y))] dy

= ψh(x) −
∮
∂Dl

ε̂(s)[Gh(x, s)(∇hψh(s))

−(∇hGh(x, s))ψh(s)] · �n ds(44)
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for any discrete functionψh and l ≥ 0. In particular, if we assume the
following asymptotic behavior of the discrete functions:

|Gh(x,y)| ≤ c̄

|x − y| , |∇hGh(x,y)| ≤ c̄

|x − y|2 ,(45)

|ψh(y)| ≤ O

(
1

|y|
)

, |∇hψh(y)| ≤ O

(
1

|y|2
)

,(46)

we obtain

lim
l→∞

∮
∂Dl

ε̂(s)[Gh(x, s)(∇hψh(s)) − (∇hGh(x, s))ψh(s)] · �n ds = 0.

Therefore, the following formula holds as in the analytic case.∫
Gh(x,y)[−∇h · (ε̂(y)∇hψh(y))] dy = ψh(x).(47)

3.2. Error estimate of Green functions on the finest grid

In this section, we estimate the difference betweenG̃(x,p) andGh(x,p).
From (43) and (47), the difference can be represented by

e(x,p) := G̃(x,p) − Gh(x,p)

=
∫

Gh(x,y){−∇h · [ε̂(y)∇h(G̃(y,p) − Gh(y,p))]} dy

=
∫

Gh(x,y)[−∇h · (ε̂(y)∇hG̃(y,p)) − δp,h(y)] dy.(48)

In order to also estimate the difference of the finite differences∇hG̃(x,p)
and∇hGh(x,p)with respect to variablex, we estimate the quantitye(x,p;
δx) for a small displacementδx,

e(x,p; δx) := e(x + δx,p) − e(x,p)

=
∫

(Gh(x + δx,y) − Gh(x,y))
(
−∇h · (ε̂(y)∇hG̃(y,p))

− δp,h(y)) dy.(49)

The estimate of the error in∇hGh is necessary for the error analysis of the
solvation energy in Sect. 3.3. We estimate these errors under the following
conditions (depicted in Fig. 7).{

A ⊂ D0,
x,p ∈ A and x,p /∈ b(A) (x �= p).(50)
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x

p

A

D 0

d p

d x

Fig. 7. Two pointsx, p in A

Since our interests are the influences on the errors of the configuration of
the composite grid and the discretization at the discontinuity ofε, we only
estimate the partial integrals of (48) and (49) over the following regions:

R1 := D0
C ∩ (

∞∪
l≥0

b(Dl))C : Outside the finest grid

excluding the interior boundaries.

R2 :=
∞∪
l≥0

b(Dl) : The non-cubic cells on

the interior boundaries as in Fig. 6 (a).

R3 := b(A) : The cells around∂A

In the following, we represent the partial integrals onRi by ei. Regarding
the relation between the errors and the composite grid configuration, the
following theorem holds.

Theorem 3.1. Letα be the grid extension rate of the composite grid (18),
|D0| and|∂D0| be the volume and the surface area of the finest grid domain
D0, respectively, andh0 be the grid spacing on the finest grid. Let us assume
that (45) holds. Then the partial integralse1 ande2 are bounded as follows.

|e1(x,p)| ≤ c
α3 − 1

1 − 22/α3
|D0|h0

2

dxdp
5 if α > 22/3,(51)

|e1(x,p : δx)| ≤ c
α3 − 1

1 − 22/α4
|δx||D0|h0

2

dx
2dp

5 if α > 21/2,(52)

|e2(x,p)| ≤ c
1

1 − 22/α3
|∂D0|h0

2

dxdp
4 if α > 22/3,(53)

|e2(x,p : δx)| ≤ c
1

1 − 22/α4
|δx||∂D0|h0

2

dx
2dp

4 if α > 21/2.(54)
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Here, c is a constant depending only on some of the variablesck(k =
0, 1, 2, . . . ) in (41), c̄ in (45) and on the diffusion coefficientε1. dx anddp
are the distances, respectively, fromx andp to the boundary of the finest
grid defined bydx := d(x, ∂D0), dp := d(p, ∂D0).

Proof. First, we estimate|e1|. From (36) and (41) withk = 4, we obtain

∣∣∣∇h · ∇hG̃(y,p)
∣∣∣ ≤ c

h(y)2

|y − p|5 , for y ∈ R1 = D0
C ∩ (

∞∪
l≥0

b(Dl))C .

(55)

From (45) and (55), we obtain

|e1(x,p)| =
∣∣∣∣∫
R1

Gh(x,y)ε1∇h · ∇hG̃(y,p) dy

∣∣∣∣
≤ c

∫
D0

C

h(y)2

|y − x||y − p|5 dy.(56)

Regardinge1(x,p : δx): from (45), we obtain

|Gh(x + δx,y) − Gh(x,y)| ≤ c
|δx|

|y − x|2 .(57)

Hence, we find the following upper bound

|e1(x,p : δx)| =
∣∣∣∣∫
R1

(Gh(x,y) − Gh(x + δx,y))ε1∇h · ∇hG̃(y,p) dy

∣∣∣∣
≤ c|δx|

∫
D0

C

h(y)2

|y − x|2|y − p|5 dy.(58)

From the definitions ofdx anddp, and from the way in which the coarse
grids are defined in Sect. 2.1, the following conditions are fulfilled

h(y) = 2lh0 for y ∈ Dl ∩ DC
l−1,(59)

|y − x| ≥ αl−1dx, |y − p| ≥ αl−1dp for y ∈ Dl ∩ DC
l−1,(60)

|Dl ∩ Dl−1
C | = (α3l − α3(l−1))|D0|,(61)

where|Dl ∩Dl−1
C | and|D0| stand for the volumes ofDl ∩Dl−1

C andD0,
respectively.
From (59), (60) and (61), we obtain∫

Dl∩Dl−1
C

h(y)2

|y − x|k|y − p|5 dy ≤ (2lh0)2

(αl−1dx)k(αl−1dp)5

×(α3l − α3(l−1))|D0|

=
4h0

2|D0|(α3 − 1)
dx

kdp
5

(
22

α2+k

)l−1

.(62)
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From(56)and (62)withk = 1, finally,wefind theupper-boundof|e1(x,p)|:

|e1(x,p)| ≤ c
h0

2|D0|(α3 − 1)
dxdp

5

∞∑
l=1

(
22

α3

)l−1

.

Regarding|e1(x,p : δx)|: from (58) and (62) withk = 2, it can be bounded
as

|e1(x,p : δx)| ≤ c
|δx|h0

2|D0|(α3 − 1)
dx

2dp
5

∞∑
l=1

(
22

α4

)l−1

.

The integrals over the interior boundary cellsR2 can be estimated similarly
to the estimate forR1. From (35) and (41) withk = 3, we obtain∣∣∣∇h · ∇hG̃(y,p)

∣∣∣ ≤ c
h(y)

|y − p|4 for y ∈ R2.(63)

Hence,|e2(x,p)| and|e2(x,p, δx)| can be bounded as follows

|e2(x,p)| ≤ c

∫
R2

h(y)
|y − x||y − p|4 dy,(64)

|e2(x,p, δx)| ≤ c|δx|
∫
R2

h(y)
|y − x|2|y − p|4 dy.(65)

From (59) and (60) and the fact:

|b(Dl)| ≤ 2l+1h0|∂Dl| ≈ 2l+1h0α
2l|∂D0|(66)

with |∂Dl| the area of∂Dl, we obtain∫
b(Dl)

h(y)
|y − x|k|y − p|4 dy ≤ 2l+1h0

(αldx)k(αldp)4
2l+1h0α

2l|∂D0|

=
4h0

2|∂D0|
dx

kdp
4

(
22

α2+k

)l
.(67)

From (64), (65) and (67), we find the upper bounds of|e2|. ��
For the relation between the errors and the discretization of the discon-

tinuity of ε, the following theorem holds.

Theorem 3.2. Let us assume that the weighted harmonic averaging (13) is
applied to determinêε and (45) holds. Then the partial integralse3 around
the discontinuity are bounded as follows:

|e3(x,p)| ≤ cS2(∂A,p)h0
2
(

1
axap2 +

1
ax2ap

)
,(68)

|e3(x,p : δx)| ≤ cS2(∂A,p)|δx|h0
2
(

1
ax2ap2 +

1
ax3ap

)
.(69)
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z

S z
Ωz

Fig. 8. A two dimensional image ofb(A). The area surrounded by the thick solid lines is
b(A). The broken lines represent the cell faces shared by two cells inb(A)

Here, c is a constant depending only on some of the variablesck(k =
0, 1, 2, . . . ) in (41), c̄ in (45) andεi (i = 0, 1). ax and ap are distances,
respectively, fromx andp to the boundary ofA defined byax := d(x, ∂A),
ap := d(p, ∂A). S2(∂A,p) is defined by

S2(∂A,p) :=
∮
∂A

1
|s − p|2ds.(70)

Proof. In order to obtain an optimal upper bound for|e3|, the cancellation
of truncation errors of−∇h ·(ε̂∇hG̃(y,p)) between neighboring cells must
be exploited. This is done by showing the cancellation of the error on a cell
face shared by two neighboring cells inb(A) after the application of Gauss’s
divergence theorem.
For any grid pointz ∈ b(A), letzi (i = 1, 2, · · · ) be the grid points inb(A),
that share a cell face withz as depicted in Fig. 8.

From
∇ · (ε(y)∇G̃(y,p)) = 0 for y ∈ b(A)

and Gauss’s divergence theorem (9), we obtain the following equality for a
cellΩz ⊂ b(A).∫

Ωz

Gh(x,y)∇h · (ε̂(y)∇hG̃(y,p)) dy

= Gh(x, z)
∫
Ωz

[∇h · (ε̂(y)∇hG̃(y,p)) − ∇ · (ε(y)∇G̃(y,p))] dy

= Gh(x, z)
∮
Sz

(ε(s)∇hG̃(s,p) − ε(s)∇G̃(s,p)) · �nz ds

+Gh(x, z)
∑
i

∮
S(z,zi)

(ε̂(s)∇hG̃(s,p) − ε(s)∇G̃(s,p)) · �nz ds.(71)
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Here,S(z, zi) denotes the cell face shared by the two cellsΩz andΩzi , Sz
the set of cell faces shared by the boundaries ofb(A) andΩz (see Fig. 8),�nz
the outward normal vectors on the boundary ofΩz. Note that̂ε = ε holds
on the boundary ofb(A).
We estimate the two boundary integrals in (71) separately. From the defini-
tion of b(A) in (38), it is seen that (15) holds on its boundary. Hence, we
obtain the following upper bound of the former integral∣∣∣∣Gh(x, z)

∮
Sz

(ε(s)∇hG̃(s,p) − ε(s)∇G̃(s,p)) · �nz ds

∣∣∣∣
≤ c

|Sz|h0
2

|z − x||z − p|4 .(72)

with |Sz| the surface area ofSz.
For the latter integral, we have to exploit the cancellation with the integrals
from adjacent cellsΩzi . Letw be one of the adjacent grid points{zi}. Then,
we find the following estimate from (14).∣∣∣∣∣Gh(x, z)

∮
S(z,w)

(ε̂(s)∇hG̃(s,p) − ε(s)∇G̃(s,p)) · �nz ds

+Gh(x,w)
∮
S(z,w)

(ε̂(s)∇hG̃(s,p) − ε(s)∇G̃(s,p)) · �nw ds

∣∣∣∣∣
=

∣∣∣∣∣(Gh(x, z) − Gh(x,w))
∮
S(z,w)

(ε̂(s)∇hG̃(s,p)

− ε(s)∇G̃(s,p)) · �nz ds
∣∣∣

≤ c
h0

|z − x|2
h0

3

|z − p|3 ≤ c
|Ωz|h0

|z − x|2|z − p|3 .(73)

From these estimates, finally we obtain the following upper bound for|e3|

|e3(x,p)| =

∣∣∣∣∣∣
∑

z∈b(A)

∫
Ωz

Gh(x,y)∇h · (ε̂(y)∇hG̃(y,p)) dy

∣∣∣∣∣∣
≤ cS2(∂A,p)h0

2
(

1
axap2 +

1
ax2ap

)
Similarly, we also obtain (69). ��

Remark. If we do not take the weighted harmonic average from (13) to
determinêε(s), the truncation error at the discontinuity degrades. In that
case, we can achieve only first order (O(h0)) accuracy.
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3.3. Error estimate of the solvation energy

The main interest in this section is how the accuracy of the solvation energy
is related to the following quantities,

– The charge distribution of
∑

i qiδpi in A.
– The grid extension rateα.
– The size of the finest gridD0. In other words,

w := d(A, ∂D0).(74)

Theorem 3.3. From the results inSect. 3.2, it follows that for a secondorder
accurate solution of the solvation energyWS the following three conditions
must be fulfilled.

– Condition 1 : α must be at least22/3 ≈ 1.587.
– Condition 2 : It is sufficient to choosew comparable to

maxi,j{|pi − pj |}.
– Condition 3 : It is sufficient to choosew comparable to

maxi{api = d(∂A,pi)}.
In the following, we explain how these conditions are induced.

Proof. First, we split the solvation energy into simpler terms. LetGε and
Gε0 be theGreen functions of the diffusion operators−∇·(ε∇·)and−ε0∇2,
respectively. Then, the solutions of (1) and (5) are described as follows

ψε(x) =
∑
i

qiGε(x,pi),(75)

ψε0(x) =
∑
i

qiGε0(x,pi).(76)

Hence, the solvation energy in (4) is represented by

WS =
1
2

∑
i,j

qiqj(Gε(pi,pj) − Gε0(pi,pj)).(77)

AlthoughGε(pi,pi) andGε0(pi,pi) are infinite, their difference is well-
defined under the limit :

Gε(pi,pi) − Gε0(pi,pi) := lim
x→pi

(Gε(x,pi) − Gε0(x,pi)).

Hence, the error forWS can be estimated by estimating the error of

Gε(pi,pj) − Gε0(pi,pj)(78)

for i = j andi �= j. For simplicity, we assume that all points{pi} are just
grid points. With (16), the estimates in this section are also valid for more
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general cases.
The error for (78) withi �= j can be estimated by the error indicators
eε(pi,pj) andeε0(pi,pj) defined in (48) for the diffusion operators−∇ ·
(ε∇·) and−ε0∇2, respectively.

From estimates (51) and (53) in Theorem 3.1, we obtain

|e1(pi,pj)| ≤ c
α3 − 1

1 − 22/α3

( |pi − pj |
w

+ 1
)6 h0

2

|pi − pj |3
,(79)

|e2(pi,pj)| ≤ c
1

1 − 22/α3

( |pi − pj |
w

+ 1
)5 h0

2

|pi − pj |3
,(80)

for e = eε ande = eε0 . Hence, we find that Condition 1 and 2 are required
to bound this error term.

The error for (78) withi = j can be estimated by the following formula
obtained from Green’s identity.

Gε(x,y) − Gε0(x,y) = ε0

∮
∂Ω

[∇(Gε(x, s) − Gε0(x, s))Gε0(s,y)

−(Gε(x, s) − Gε0(x, s))∇Gε0(s,y)] · �n ds

∀ x,y ∈ Ω(⊂ A). In particular, by substitutingpi for x andy, we obtain

Gε(pi,pi) − Gε0(pi,pi) = ε0

∮
∂Ω

[∇(Gε(pi, s)

−Gε0(pi, s))Gε0(s,pi) − (Gε(pi, s) − Gε0(pi, s))∇Gε0(s,pi)] · �n ds.

(81)

The above equation indicates that the error forGε(pi,pi) − Gε0(pi,pi)
can be estimated by the errors ofGε(pi, s),∇Gε(pi, s),etc fors ∈ ∂Ω. By
choosingΩ = Dapi/2

(pi) forΩ in (81) and by applying the estimates from
Theorem 3.1 and 3.2, we find that Condition 1 and 3 are required to bound
this error term. ��

4. Numerical experiments

In this section, we perform several numerical experiments with a model
problem, where

ε0 = 1,
ε1 = 80,
A = {x : ‖x‖ ≤ 1},
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and a unit point charge is located at the origin. The analytical solution of
this problem is:

ψε(x) =

{
1

4πε0‖x‖ + 1
4π

(
1
ε1

− 1
ε0

)
if ‖x‖ ≤ 1

1
4πε1‖x‖ if ‖x‖ > 1

(82)

In Sect. 3, we have analyzed the relations between the numerical solution
error and the grid extension rate, the finest grid domain size, etc. We want to
determine whether the error analysis in Sect. 3 fits the results for this simple
test problem well.

With (82), the solvation energyWS for this simple problem is given by

WS =
1

8π

(
1
80

− 1
)

≈ −0.03929137...(83)

First, we investigate the influence of the discretization ofε at the discontinu-
ity on the accuracy of the solvation energy. We compare two discretization
methods to determinêε. One is the weighted harmonic average (WHA) de-
fined in (13), the other is the standard harmonic average (SHA) of sampled
ε-values on two adjacent grid points. For instance, between two grid points
x andx + (h0, 0, 0), the SHA is defined as

ε̂(x + (h0/2, 0, 0)) :=
2ε(x)ε(x + (h0, 0, 0))
ε(x) + ε(x + (h0, 0, 0))

.(84)

In this experiment, we apply the conservative interpolation and fix the fol-
lowing parameters.

D0 = [−2, 2]3,
α = 1.7,
m = int(logα 106).(85)

Here,m denotes the number of levels. (85) implies thatm is chosen in such
a way that the coarsest grid domain size is at least106 times larger than the
finest grid domain size. We have 26 grid levels in these calculations. On the
boundary of the coarsest grid, a zero Dirichlet boundary value is imposed.

In Fig. 9 the errors for the solution difference :ψε − ψε0 along the
line {(x1, 0, 0) : x1 ≥ 0.0} with the WHA (a) and with the SHA (b)
are presented. The errors are measured for three finest grid spacingsh0 =
0.25, 0.125 and0.0625. For the WHA, it is difficult to confirm theO(h2)
accuracy as analyzed in Sect. 3.2. However, the error near the origin is better
thanO(h2) in this example. On the other hand, it is obvious that the im-
provement of the error with the SHA is less thanO(h2). In particular, we
see that the error with the SHA for the grid spacing0.0625 is even larger
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Fig. 9a,b.The error forψε −ψε0 along a line{(x1, 0, 0) : x1 ≥ 0}with two discretizations
of ε

than that with the WHA for the grid spacing0.25. This result shows the im-
portance of the discretization of the diffusion coefficient at the discontinuity
to obtain an accurate solvation energy.

Next, we investigate the influence of the grid extension rateα on the
accuracy of the numerical solvation energy. Here,h0 = 0.125, D0 andm
are set as in the previous experiment and the weighted harmonic average is
used to determinêε. In Fig. 10 (a), the solvation energies computed with
α from 1.4 to 1.8 are plotted for the conservative and cubic interpolation.
For the conservative interpolation, the error curve is stable and close to
the analytical solution forα larger than 1.7. The error does not diverge at
α = 22/3 ≈ 1.587 as indicated in Theorem 3.1. This can be explained from
the fact that the grid extension rate is 2 in the far field as discussed in Sect.
2.1. For the cubic interpolation, we do not find a decrease of the error with
an increase ofα. This means that the error is not well defined bye in (48),
because (47) does not hold due to the lack of the conservation at the interior
boundaries.

In Fig. 10 (b), the solvation energies computed for various finest grid
domain sizes are depicted. Here,α is set to 1.7 and the domain size changes
from [−1.25, 1.25] to [−2.5, 2.5] in each direction. For the conservative
interpolation, an accurate solvation energy is obtained for the external size
w larger than 1, as indicated by Condition 3 in Sect. 3.3. With the cubic
interpolation, the decrease of the solvation energy error with the increase of
the size is again too small.

5. Conclusions and future work

In this paper, we have developed a theory to analyze the numerical errors in a
potential problemwith an unbounded domain, which arises in biomolecular
simulations with a continuum solvent model. In the error analysis, under
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Fig. 10a,b.The solvation energiesWS computed for various grid extension rates ina and
for various domain sizes inb. The broken horizontal line represents the analytic solvation
energy

basic assumptions on the Green function, we have shown the proper ways
to construct the composite grid around the solute molecule and to discretize
the diffusion operator−∇ · (ε∇ ) around theε-discontinuity.

Furthermore, we have proposed an interpolation technique on the inte-
rior boundaries of the composite grid based on a conservative discretization.
The conservative interpolation is proposed for the general situation, where
changingε is also allowed at the interior boundaries. The experimental re-
sults confirm the error analysis theory developed in this paper, and it is
found that the conservativeness of the discretization at the interior bound-
aries and a careful treatment of theε-discontinuity are important issues to
obtain accurate solutions.
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