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Abstract

Swing options give contract holders the right to modify amounts of
future delivery of certain commodities, such as electricity or gas. In this
paper, we assume that these options can be exercised at any time before
the end of the contract, and more than once. However, a recovery time
between any two consecutive exercise dates is incorporated as a constraint
to avoid continuous exercise. We introduce an efficient way of pricing these
swing options, based on the Fourier cosine expansion method, which is
especially suitable when the underlying is modeled by a Lévy process.

1 Introduction

A swing option usually consists of two contract parts: a future part and a
swing part. The future contract guarantees that the option seller delivers cer-
tain amounts of a commodity (base load) to the option buyer at certain times,
T0 < T1 ≤ T2 · · · ≤ TN ≤ T , with T the maturity time. The swing part gives the
option buyer the right to order extra or deliver back amounts. Usually, the mo-
tivation behind the purchase of a swing option is to hedge away the uncertainty
in the future demand of a commodity. The future part of a swing option can
be priced as the discounted expected price of the underlying commodity at the
delivery times, whereas the swing part, the focus of the present paper, can vary
in contract complexity and is most interesting from a numerical point-of-view.

In the literature the swing option is often modeled as a Bermudan-style
option with swing actions being allowed at the (fixed) delivery times of the base
load, combined with some constraints. Pflug and Broussev [8] model the bid
and ask prices as the least acceptable contract price and the maximal expected
profit over demand patterns, respectively, and those prices are determined by
stochastic programming. They present an algorithm to find the equilibrium
prices from a game theoretic point-of-view.

Jaillet, Ronn and Tompaidis [10] use a trinomial forest model where a so-
called usage level is discretized. Their model is a multiple layer tree which
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captures the information of the number of exercise rights remaining, the total
amount exercised, and the price scenario. By a swing action one moves from
one tree to another. A discrete binomial methodology is also applied by Lari-
Lavassani, Simchi and Ware [14], where a transition probability matrix is used
to calculate the expected profit, to be maximized over different swing actions
at each time step.

Carmona and Touzi [13] view swing options as American-style contingent
claims with multiple exercise opportunities and address the problem from the
perspective of multiple optimal stopping problems, dealt with by means of
Monte Carlo methods and Malliavin calculus. They focus on the Black-Scholes
dynamics. Zeghal and Mnif [12] extend that method to Lévy processes.

Unlike the models in which swing actions are only allowed at discrete times,
Dahlgren [1] proposes a continuous time model to price the commodity-based
swing options. Here the option buyer can exercise the swing option any time
before expiry, and more than once, with an upper bound for the maximum
amount of additional commodity that can be ordered or delivered back (specified
in the contract). After a swing action, the option buyer cannot exercise again
unless a recovery time, τR(D, t), has elapsed, where D represents the amount
of commodity and t is the exercise time. This recovery time can be constant,
or dependent on the amount of the last swing action. Dahlgren [1] connects
the price of the swing option to a system of discrete variational inequalities of
Hamilton-Jacobi-Bellman-type, that are solved by means of finite elements and
a projected successive over-relaxation (PSOR) algorithm [15]. A combination
of dynamic programming and a finite difference approximation of the resulting
partial integro-differential equation (PIDE) under Lévy jump processes has been
presented in [11].

The purpose of the present paper is to develop an efficient alternative solu-
tion method for the continuous time model in [1], which is at least competitive
with PIDE solvers or Monte Carlo methods in terms of efficiency, accuracy and
flexibility. Our solution method for the swing option is based on dynamic pro-
gramming, backward recursion and Fourier cosine expansions, as in [2, 3]. For
the dynamics of the underlying prices, we employ the Ornstein-Uhlenbeck mean-
reversion process, commonly used in commodity derivatives, and the CGMY
Lévy jump process [7]. The present work can be seen as a generalization, in
terms of the financial products, of the work in [2, 3].

The paper is organized as follows. Details of pricing swing options are pre-
sented in Section 2. In Section 3, our contribution to pricing swing options is
described in detail. We consider both constant and state-dependent recovery
times. Numerical results are presented in Section 4. We focus in this paper
on the algorithmic description, which is somewhat technical at places. An er-
ror analysis is not included here, but it is included in [2, 3] for European and
Bermudan options, which are the building blocks of the present swing option
algorithm.

2 Details of the Swing Option

In our discussion, we ignore the future part of the swing option and concentrate
on the swing part. Whenever we mention the term ’swing option’, it indicates
the swing part of the option.
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2.1 Contract Details

As a start, our assumptions for the swing option are listed below.

• We adopt the concept of recovery time, denoted by τR(D), which means
that if the option buyer has already exercised the swing option with an
amount D at time point t, he/she has to wait τR(D) time before a next
swing action can be conducted. Two different models of recovery time will
be discussed:

– Constant recovery time: If D 6= 0, τR(D) ≡ C, where C is constant.

– State-dependent recovery time: Here the recovery time is assumed
to be an increasing function of D and independent of time t, i.e.
τR(D) = f(D).

Moreover, τR(D) = 0 if and only if D = 0, and this statement holds for
both types of recovery time.

• A swing option can be exercised at any time after a recovery time delay
until the expiry date T . It implies that we deal with an American-style
continuous problem.

• With the constraint of recovery time, a swing option can be exercised more
than once before expiry.

• The amount of commodity at each swing action, D, is assumed to range
from −L, · · · ,−1, 0, 1, · · · , L, where a negative amount implies back de-
livery and a positive amount means ordering. The upper bound, L, is
necessary as otherwise it may be optimal to order or deliver back an infi-
nite amount of commodity, and thus receive an unrealistic profit.

• The price the option holder has to pay for ordering extra units of the
commodity is given by: S if S ≤ Ka

Ka if Ka ≤ S ≤ Smax

S − (Smax −Ka) if S ≥ Smax,

Here S is the price of the underlying commodity, based on a Stochastic
Differential Equation (SDE) for St, and the values of the strikes Ka and
Smax are specified in the contract.

• The price the option holder will receive for delivering back units of the
commodity is  Kd − Smin + S if S ≤ Smin

Kd if Smin ≤ S ≤ Kd

S if S ≥ Kd,

where the values of the strikes Kd and Smin are also specified in the
contract.
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Based on the last two assumptions the payoff function of a swing option is of
the form:

g(S, T,D) = D · (max(S −Ka, 0)−max(S − Smax, 0)
+ max(Kd − S, 0)−max(Smin − S, 0)) , (1)

with S = S(T ). This implies that there can be no profit unless the price
of the underlying fluctuates below or above the thresholds Kd or Ka. The
two other thresholds, Smin and Smax, are defined to protect an option writer
against extreme fluctuations, see [1]. Figure 1 shows an example of the payoff
for varying S and D.

Figure 1: Example of a payoff of a swing option with Smin = 20,Kd = 35,Ka =
45, and Smax = 80, and S and D varying.

2.2 Pricing Details

Assume that the first possible time at which a swing action is allowed 1 is T0:
0 < T0 < T . Let

ns := min{n|n ∈ IN+, n ≥ (T − T0)/τR(1)}, (2)

where τR(1) is the recovery time when D = 1. Then ns represents the maximum
number of swing actions that can be performed in the interval [T0, T ].

We set t∗k := T − kτR(1), so that t∗k is the last point in time for which we
can have k + 1 swing actions, k = 1, · · · , ns − 1. Moreover, let Ik = (t∗k, T ] and
Ins = [T0, T ] as shown in Figure 2 2.

On I1, there is only one chance left for a swing action, which implies that the
recovery time has no further influence for the future. Hence, if it is profitable
to exercise the swing option during (t∗1, T ] one should exercise the maximum

1If T0 > T we deal with a futures contract, and with T0 = T the price of the swing option
is just the payoff, g(S, T, 0), if a swing action is not profitable, and g(S, T, L) otherwise.

2A division of the time interval into portions Ik+1\Ik was first proposed by M. Dahlgren
in [1]. Our analysis is based on the appendix in [1].
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Figure 2: Notation for the division of the time axis and the maximum remaining
number of swing rights.

possible amount, L. In this time interval the only issue which needs to be decided
is the optimal exercise time. So, the problem is equivalent to an American-style
option pricing problem, and the swing option value for any t ∈ (t∗1, T ] is equal to
the value of an American option, starting from t and expiring at T , with payoff
g(S, t′, L), t′ ∈ (t, T ].

At any time t ∈ Ik+1\Ik, where t 6= t∗k, k = 1, · · · , ns − 1, see Figure 2, the
option holder basically has two choices: Either exercise the swing option at any
time in [t, t∗k] or not exercise until t+k , the time point directly after t∗k:

t+k = lim
δ↓0

t∗k + δ.

Note here that the length of interval Ik+1\Ik equals τR(1), the recovery time
forD = 1. It is therefore not possible to exercise more than once within Ik+1\Ik.
In the case of exercise, the problem reduces to the decision of the optimal exercise
time within Ik+1\Ik. So, for each possible amount, D, the problem is equivalent
to an American-style option problem, starting at t ∈ Ik+1\Ik and ending at t∗k,
with payoff

g(S, t′, D) = g(S, t′, D) + φt′

D(S, t′), t′ ∈ [t, t∗k], t ∈ Ik+1\Ik (3)

where
φt′

D(S, t′) = e−rτR(D)ES,t′(v(S, t′ + τR(D))), (4)

and ES,t′ represents the conditional expectation of v(S, t′ + τR(D)) given S(t′).
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For each possible value of D, i.e., D = −L, · · · , L, we compute the corre-
sponding values of the swing option at t, assuming that D commodities are
bought/sold within Ik+1\Ik, by an American-style option pricing method. Af-
ter taking the maximum over all values of D, we obtain the swing option value
at t ∈ Ik+1\Ik with t 6= t∗k if exercise takes place before t+k . We denote the
corresponding option value by v1(S, t).

On the other hand, if the option holder decides not to exercise before t+k
he/she has an option worth the discounted expected value:

v2(S, t) = e−r(t+k −t)ES,t(v(S, t+k )), t ∈ Ik+1\Ik (5)

where
v(S, t+k ) = lim

δ↓0
v(S, t∗k + δ).

The value v(S, t+k ) with t+k ∈ Ik\Ik−1, is already obtained at the latest step
in the backward recursion. After another, European-type, backward recursion
procedure (5), value v2(S, t) is obtained. From the view of a profit maximizing
agent, we find that

v(S, t) = max (v1(S, t), v2(S, t)), t ∈ Ik+1\Ik

Moreover, at each t∗k, the last time point to perform k+ 1 swing actions, which
is also in Ik+1\Ik, the option value is the maximum of the payoff g(S, t∗k, D)
from (3), over all values of D, and the value of v(S, t+k ).

Finally, for t ∈ [0, T0), a time interval in which swing actions are not yet
allowed, we have

v(S, t) = e−r(T0−t)ES,t(v(S, T0)),

which is computed by one step of a European option pricing algorithm.
This concludes the global description of the algorithm for the swing option

pricing method.
Summarizing, we can distinguish two major parts in the pricing algorithm:

• For t ∈ (t∗1, T ], we are faced with an American option pricing problem
with payoff g(S, t,D), given by (1), which can take five different forms in
five different regions of the spot price of the underlying (see Figure 1).
As mentioned, if it is profitable to exercise the swing option in this time
interval, then Dopt = L. Hence the swing option price is the maximum of
g(S, t, L) and the continuation value.

• For the other time regions t ∈ [T0, t
∗
1), we compute the following two

quantities and compare them within each time region Ik+1\Ik:

– The value of an American option, v1(S, t), with payoff ḡ(S, t,D) :=
g(S, t,D) + φt

D(S, t), as in (3), and φt
D as in (4).

– The discounted value v2(S, t) = ES,t(v(S, t+k )).

For the values v(S, t+k ) we only have to calculate the value of v1(S, t+k ).
This is due to the fact that the discounted value of ES,t(v(S, t+k−1)) equals

φ
t+k
D=1(S, t

+
k ) which is less than (or equal to) the payoff with D = 1 (since

g is non-negative), and thus less than (or equal to) the corresponding
American option value, v1(S, t+k ).
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2.3 Commodity Processes

The commodity underlying for the swing option is modeled by a stochastic
differential equation for x(t) = lnS(t). State variables x and y are defined as
the logarithms of the asset price, S(t):

x := ln(S(tm−1)) and y := ln(S(tm)),

respectively. Consequently, (1) can be rewritten (keeping the same notation, g,
for the function based on x(t)) as

g(x, t,D) := D · (max(ex −Ka, 0)−max(ex − Smax, 0)
+ max(Kd − ex, 0)−max(Smin − ex, 0)) , (6)

with x = x(t). Function g from Equation (3) can be generalized accordingly,
also keeping the same notation, ḡ, for the function based on x(t).

Two underlying processes are considered in this section, an exponential
Ornstein-Uhlenbeck (OU) mean-reverting process and a CGMY Lévy jump pro-
cess.

For the exponential OU process, the log-asset process x(t) = log(S(t)) is
assumed to be mean-reverting:

dx(t) = κ(x(t)− x̄)dt+ σdW (t), (7)

where κ is speed of mean-reversion, x̄ is long term mean and σ is the volatility.
Moreover, under the risk-neutral measure, we should adjust x̄ by subtracting a
market price of risk parameter λ from x̄, as in [1].

The characteristic function, ϕ(ω;x), of the conditional probability density
function, f(y|x), is defined as:

ϕ(ω;x) = E(eiωy|x). (8)

The well-known characteristic function for the OU process reads:

ϕOU (ω; τ) = exp (x0Bx(ω, τ) +A(ω, τ)),

with {
Bx(ω, τ) = iωe−κτ ,
A(ω, τ) = 1

4κ
(
e−2κτ − e−κτ

) (
ω2σ2 + ωeκτ

(
ωσ2 − 4iκx

))
.

(9)

The CGMY process, as defined in [7], is a Lévy jump process, a generalization
of the Variance Gamma process, with as the characteristic function:

ϕCGMY = exp(iωx0)ψCGMY (ω, t) (10)

with

ψCGMY (ω, t) = exp(tCΓ(−Y )[(M − iω)Y −MY + (G+ iω)Y −GY ]). (11)

It is governed by four parameters. Parameter Y < 2 controls whether the
process has finite (Y < 1) or infinite (1 < Y < 2) activity. Parameter C > 0
controls the kurtosis of the distribution and the non-negative parameters G,M
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give control over the rate of exponential decay on the right and left side of the
density, respectively.

So, we deal with general characteristic functions of the form:

ϕ(ω; t) = exp(βiωx0) · ψ(ω, t), (12)

in which, for the OU process β takes the value e−κ∆t whereas for Lévy processes
β = 1. So, the first term in the expression of the characteristic function for the
OU process contains the term β = exp−κ∆t, which is not equal to one. As a
result, the Fast Fourier Transform cannot be implemented in a straightforward
way (as explained in Section 3 below).

3 Fourier Cosine Algorithm for Swing Options

In Section 2, we argued that the price of a swing option can be obtained by a
series of Bermudan- and American-style option pricing procedures. In [2, 3] an
efficient algorithm, based on the Fourier cosine series expansion (called the COS
algorithm), for European and Bermudan early-exercise options was developed.
The COS algorithm can be applied to processes for which the characteristic
function is available. In this section, we briefly review the COS algorithm, and
extend it to pricing swing options.

3.1 Fourier Cosine Expansions

Starting from the risk-neutral valuation formula

v(x, t0) = e−r∆t

∫ ∞

−∞
v(y, T )f(y|x)dy,

where v(x, t) is the option value, and x, y can be any increasing functions of the
underlying, S(t), at t0 and T , respectively, and ∆t = T − t0. We truncate the
integration range to [a, b], so that

v(x, t0) ≈ e−r∆t

∫ b

a

v(y, T )f(y|x)dy, (13)

with |
∫

R f(y|x)dy −
∫ b

a
f(y|x)dy| < TOL.

We take the following integration range, from [2]:

[a, b] :=
[
c1 − 10

√
c2 +

√
c4, c1 + 10

√
c2 +

√
c4

]
, (14)

where cn denote the nth cumulant of logS.
The conditional density function of the underlying is approximated via the

characteristic function by a truncated Fourier cosine expansion, as follows:

f(y|x) ≈ 2
b− a

∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x) exp (−i akπ

b− a
)) cos (kπ

y − a

b− a
), (15)

where Re denotes taking the real part of the input argument.
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The prime at the sum symbol in (15) indicates that the first term in the
expansion is multiplied by one-half. Replacing f(y|x) in (13) by its approxi-
mation in (15) and interchanging integration and summation gives us the COS
algorithm to approximate the value of a European option [2]:

v(x, t0) = e−r∆t
∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x)e−ikπ a

b−a )Vk, (16)

where

Vk =
2

b− a

∫ b

a

v(y, T ) cos (kπ
y − a

b− a
)dy

is the Fourier cosine coefficient of v(y, T ), which is available in closed form for
several European option payoff functions.

Formula (16) can be directly applied to calculate the value of a European
option, but it also forms the basis for the pricing of Bermudan options.

For a Bermudan option the COS algorithm was generalized in [3] as follows:
Choose tm, m = 1, 2, · · · ,M, as the “early-exercise dates”. The backward
recursion dynamic programming scheme for a Bermudan option withM exercise
dates and T = tM then reads:

For m = M,M− 1, . . . , 2,{
c(x, tm−1) = e−r∆t

∫
R v(y, tm)f(y|x)dy,

v(x, tm−1) = max (payoff, c(x, tm−1)) ,
(17)

followed by

v(x, t0) = e−r∆t

∫
R
v(y, t1)f(y|x)dy. (18)

Functions v(x, t), c(x, t) and “payoff” are the option value, the continuation
value and the payoff at time t, respectively.

The Fourier cosine series expansion coefficients, Vk, are now time-dependent
and their computation requires an efficient algorithm. The algorithm to compute
Vk for swing options is discussed in detail in Sections 3.2 and 3.3.

The value of an American option can be obtained by the backward recur-
sion procedure for discrete Bermudan options, explained above, in combination
with a Richardson extrapolation procedure. In particular, a four-point repeated
Richardson extrapolation scheme using the prices of Bermudan options for four
different numbers of exercise dates, M, 2M, 4M, 8M,

v̂AM (M) =
1
21

(64v̂(8M)− 56v̂(4M) + 14v̂(2M)− v̂(M)) , (19)

has been successfully applied in [4, 3]. Here, v̂(M) denotes the Bermudan option
value, v(x, t0) from (18) with M exercise dates; v̂AM (M) is the approximation
for the American option price with the extrapolation based onM exercise dates.

The COS algorithm exhibits an exponential convergence rate for European
and Bermudan options, for asset processes whose conditional density f(y|x) ∈
C∞((a, b) ⊂ R).

In the following subsections we generalize the COS algorithm to pricing
swing options.
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Remark 3.1. Subscript k in t∗k, as well as in t+k , decreases, from ns−1 to 1, if
we move forward in time, with t from 0 to T , see Figure 2. In contrast, subscript
m, denoting the early-exercise dates, in tm increases and goes from 1 to M if
we move forward in time. Further, there are NR = τR(1)/∆t ≡ τR(1)M/T
early-exercise dates in each time interval Ik+1\Ik, i.e. between time points t∗k+1

and t∗k.

3.2 Algorithm for the Last Time Interval, t ∈ I1

We start the detailed description of our pricing algorithm for swing options by
considering the last time interval, defined as I1, see Figure 2.

As mentioned in Subsection 2.2, in I1, the swing option is equivalent to an
American option. We can thus generalize the algorithm based on the Fourier
cosine expansions for Bermudan options to the swing option payoff and combine
it with a 4-point repeated Richardson extrapolation to obtain an approximation
of an American option price.

3.2.1 Fourier Cosine Coefficients

At tM = T , we have for the Fourier cosine coefficients of the swing option value:

Vk(tM) = Gk(a, ln(Kd), D) +Gk(ln(Ka), b,D), (20)

with D = L, and a, b as in (13). Here

Gk(x1, x2, D) =
2

b− a

∫ x2

x1

g(x, tM, D) cos(kπ
x− a

b− a
)dx (21)

is the Fourier cosine coefficient of the swing option payoff.
In detail, we find, with D = L:

Vk(tM) =
2L
b− a

((Kd − Smin)ψk(a, ln(Smin))

+ Kdψk(ln(Smin), ln(Kd))− χk(ln(Smin), ln(Kd))
+ χk(ln(Ka), ln(Smax))−Kaψk(ln(Ka), ln(Smax))
+ (Smax −Ka)ψk(ln(Smax), b)) , (22)

with

χk(x1, x2) =
1

1 + ( kπ
b−a )2

(
cos(kπ

x2 − a

b− a
)ex2 − cos(kπ

x1 − a

b− a
)ex1

+
kπ

b− a

(
sin(kπ

x2 − a

b− a
)ex2 − sin(kπ

x1 − a

b− a
)ex1

))
, (23)

and

ψk(x1, x2) =
(

sin(kπ
x2 − a

b− a
)− sin(kπ

x1 − a

b− a
)
)
b− a

kπ
, (k 6= 0), (24)

and for k = 0, ψk(x1, x2) = x2 − x1.
At each time step, tm, m = M−1, · · · , 2, as in the case of a regular Bermu-

dan option, the log-asset values for which the payoff equals the continuation
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value are determined by Newton’s method. Based on these values we can deter-
mine the maximum of the two, as in (17). In the case of the swing option, there
are two early-exercise points at each time step, as it is profitable to exercise the
option when the underlying is less than Kd or larger than Ka. We denote the
lower and upper early-exercise points for time tm by xd

m and xa
m, respectively.

To determine the two early-exercise points by Newton’s method, we need the
values of c(x, tm), g(x, tm, D), ∂c(x, tm)/∂x, and ∂g(x, tm, D)/∂x with the help
of the following formulae:

c(x, tm) = e−r∆t
∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x)e−ikπ a

b−a )Vk(tm+1). (25)

∂c(x, tm)
∂x

= e−r∆t
∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x) · i kπ

b− a
· e−ikπ a

b−a )Vk(tm+1), (26)

with ϕ(ω;x) in (25) and (26) defined in (8). Function g is defined in (6) and its
derivative is given by the following expression:

∂g(x, tm, D)
∂x

=

 −Dex, if ln(Smin) ≤ x ≤ ln(Kd),
Dex, if ln(Ka) ≤ x ≤ ln(Smax),
0, otherwise.

(27)

Once xd
m and xa

m are determined, we split the Fourier coefficients Vk into three
parts, for m = M− 1, · · · , 1:

Vk(tm) = Gk(a, xd
m, D) + Ck(xd

m, x
a
m, tm) +Gk(xa

m, b,D),

with the Fourier cosine coefficient of the continuation value given by:

Ck(x1, x2, tm) =
2

b− a

∫ x2

x1

c(x, tm) cos(kπ
x− a

b− a
)dx, (28)

and c(x, tm) defined in (25), so that the value of Vk(tm) is obtained from
Vk(tm+1).

From basic calculus we have that, if xd
m < ln(Smin),

Gk(a, xd
m, D) = D · 2

b− a
(Kd − Smin)ψk(a, xd

m), (29)

and otherwise,

Gk(a, xd
m, D) = D · 2

b− a
((Kd − Smin)ψk(a, ln(Smin))

+ Kdψk(ln(Smin), xd
m)− χk(ln(Smin), xd

m)). (30)

If xa
m > ln(Smax), we have

Gk(xa
m, b,D) = D · 2

b− a
(Smax −Ka)ψ(xa

m, b), (31)

and otherwise,

Gk(xa
m, b,D) = D · 2

b− a
(χk(xa

m, ln(Smax))−Kaψk(xa
m, ln(Smax))

+ (Smax −Ka)ψk(ln(Smax), b)), (32)
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where χk and ψk are defined by (23) and (24), respectively.
Next we discuss the computation of Ck(xd

m, x
a
m, tm) in (28). To determine

the value of Ck(x1, x2, tm), we have to compute:

Ck(x1, x2, tm) = − i

π
· e−r∆t

∑′N−1

j=0
Re(φ(

jπ

b− a
)Vj(tm+1) ·

(M c
k,j(x1, x2) +Ms

k,j(x1, x2))). (33)

We can write the equations (33) as a matrix-vector product representation, i.e.,

C(x1, x2, tm) =
e−r∆t

π
Im {(Mc +Ms)u} , (34)

where Im {·} denotes taking the imaginary part of the input argument, and

u := {uj}N−1
j=0 , uj := ϕ

(
jπ

b− a

)
Vj(tm+1), u0 =

1
2
ϕ (0)V0(tm+1). (35)

Based on the general characteristic function from (12), the matrix elements of
M c

k,j(x1, x2) and Ms
k,j(x1, x2) read:

M c
k,j(x1, x2) =



(x2 − x1)πi
b− a

, if k = j = 0,

1

(jβ + k)

[
exp

(
((jβ + k)x2 − (j + k)a)πi

b− a

)
−

exp
(

((jβ + k)x1 − (j + k)a)πi
b− a

)]
, otherwise.

(36)
and

Ms
k,j(x1, x2) =



(x2 − x1)πi
b− a

, if k = j = 0,

1

(jβ − k)

[
exp

(
((jβ − k)x2 − (j − k)a)πi

b− a

)
−

exp
(

((jβ − k)x1 − (j − k)a)πi
b− a

)]
, otherwise.

(37)
The matrices Ms and Mc have a Toeplitz and Hankel structure, respectively,

only if Ms(i, j) = Ms(i+ 1, j + 1) and Mc(i, j) = Mc(i− 1, j − 1). In that case,
the Fast Fourier Transform can be applied directly for highly efficient matrix-
vector multiplication [3], and the resulting computational complexity 3 will be
O((M−1)N log2N). We obtain however terms of the form jβ−k, jβ+k in the
matrix elements in (36) and (37), in particular for the OU process with β 6= 1,
instead of terms with j − k, j + k as obtained for the Lévy jump processes,
with β = 1 in (12). Terms with β /∈ IN ∪ {0} hamper an efficient computation
of the matrix-vector products, leading to computations with O((M − 1)N2)
complexity. For the mean-reverting OU process and the parameter values of
interest here, however, we can resort to a reformulated process, as described in
Appendix A.

3To be precise, we need three times of the forward Fast Fourier Transform (FFT ) and
twice the Inverse Fast Fourier Transform (FFT−1).
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Since the computation of Gk(x1, x2) is linear in N , the overall complexity to
determine the Vk-coefficients is dominated by the computation of C(x1, x2, tm),
whose complexity is O(N log2N) with the FFT. As a result, the overall com-
putational complexity for pricing a Bermudan option with M exercise dates is
O((M− 1)N log2N), as the work needed for the final step, from t1 to t0, is
O(N).

Although the algorithm above is only the first step towards solving the pric-
ing problem, it can also be viewed as the complete algorithm for swing options
if the option holder is only allowed to conduct a swing action once.

3.3 Algorithm for Interval t ∈ Ins\I1

Recall that ns represents the upper bound for the number of swing rights that
can be exercised, as defined in (2). In the time interval Ins\I1, the option holder
has more than one possibility to exercise the swing option. Therefore, apart from
the exercise time, the optimal number of commodities to be exercised, D, should
also be determined, due to its influence on the recovery time.

Remark 3.2. In our discussion we deal with the following three functions:

• c(x, tm), the continuation value, which is typically continuous and differ-
entiable. Moreover, its derivative is usually also continuous.

• g(x, tm, D), the payoff, which is continuous and piecewise differentiable
(see Figure 1).

• v(x, tm), the option value, which is piecewise continuous in time. v(x, t)
jumps at t∗k where the number of swing rights is decreased by 1.

Note that for any k = 1, · · · , ns − 1, the equality v(t∗k) = v(t+k ) may not be
satisfied, since the number of possible exercise times is reduced by 1 from t∗k
to t+k . However, numerically we assume that t+k is “arbitrarily close” to t∗k.
They are considered to lie at the same discrete time point. So, we assume
t∗k − t = t+k − t, so that c(x, t∗k) = c(x, t+k ) and v(x, t∗k) ≥ v(x, t+k ).

Under these assumptions we have that

e−r(t∗k−t)Ex,t(v(x, t∗k)) ≥ e−r(t+k −t)Ex,t(v(x, t+k ))

3.3.1 Model Analysis

By Q and Qk we denote the continuous interval {(x, t)|x ≥ 0, t ∈ [T0, t
∗
1]} and

the discrete set {(x, t)|x ≥ 0, t ∈ [T0, t
∗
1], t ≡ t∗k := T−kτR(1), k = 1, · · · , ns−1},

respectively.
The swing option value for (x, t) ∈ Q\Qk is then given by

v(x, t) = max(max
D

ṽAM (ḡ(x, t,D)), e−r(t+k −t)Ex,t(v(x, t+k ))), (x, t) ∈ Q\Qk

(38)
where ṽAM (ḡ(x, t,D)) represents the value of an American-style option in any
interval Ik+1\Ik with payoff ḡ(x, tD) = g(x, t,D) + φt

D(x, t).
The quantity e−r(t+k −t)Ex,t(v(x, t+k )) represents the value of a European op-

tion, which cannot be larger than the American option. The term e−r(t+k −t)Ex,t(v(x, t+k ))
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is therefore implicitly already included in the first term in (38), so that we find,
for (38),

v(x, t) = max
D

ṽAM (g(x, t,D) + φt
D(x, t))

= max
D

(max(g(x, t,D) + φt
D(x, t), c(x, t)))

= max(max
D

g(x, t,D) + φt
D(x, t), c(x, t)), (x, t) ∈ Q\Qk, (39)

where c(x, t) is the continuation value. Therefore, the price for (x, t) ∈ Q\Qk

is reduced to the maximum of American option values over D, i.e. v1(x, t) as
defined in Section 2.2.

On the other hand, for (x, t∗k) ∈ Qk, the value v(x, t∗k) is defined by

v(x, t∗k) = max(max
D

ḡ(x, t∗k, D), v(x, t+k )). (40)

After application of (39) to the right-hand side of (40), we can rewrite (40) as

v(x, t∗k) = max(max
D

ḡ(x, t∗k, D),max
D

ḡ(x, t+k , D), c(x, t+k )), (41)

where we assume c(x, t+k ) = c(x, t∗k), and ḡ is as in (3),(4).
If t∗k + τR(D) ∈ Q\Qk, with the number of exercise possibilities the same for

t∗k + τR(D) and t+k + τR(D), we have v(x, t∗k + τR(D)) = v(x, t+k + τR(D)). If
t∗k + τR(D) ∈ Qk, we have v(x, t∗k + τR(D)) ≥ v(x, t+k + τR(D)).

So, v(x, t∗k + τR(D)) ≥ v(x, t+k + τR(D)) for any x, thus from (4) we have

φ
t∗k
D (x, t∗k) ≥ φ

t+k
D (x, t+k ). Equation (41) is now given by:

v(x, t∗k) = max(max
D

g(x, t∗k, D) + φ
t∗k
D (x, t∗k), c(x, t∗k)) (42)

As a result, from (39) and (42), we find that for all t ∈ [T0, t
∗
1]:

v(x, t) = max(max
D

g(x, t,D) + φt
D(x, t), c(x, t)) (43)

Equation (43) tells us that the swing option is an American-style option with
recovery time and multiple exercise opportunities. Its pricing algorithm is there-
fore different from a standard American option. Instead of taking the maximum
of the payoff and the continuation value, we take the maximum over the result-
ing payoff for all possible values of D, and the continuation value from the
previous time step. Another difference is that for any amount, D, the payoff
also includes the term φt

D(x, t) from an earlier time step.
It is easy to determine the value of g(x, t,D) for any x, t,D according to (6).

We therefore focus on the values φt
D(x, t) and c(x, t), which are both obtained

in the recursion of Fourier cosine coefficients Vk. To calculate c(x, tm), one only
needs the value of Vk(tm+1), like in the case of a Bermudan option. However,
to compute the value of φt

D(x, t) we need the coefficients Vk(t + τR(D)), that
depend on the function for the recovery time.

Remark 3.3. In time interval t ∈ [0, T0] swing actions are not yet allowed.
Therefore, we have:

v(t, x) = e−r(T0−t)
∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x)e−ikπ a

b−a )Vk(T0),

where Vk(T0) is obtained by a backward recursion procedure.
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3.3.2 The Early-exercise Points

In this section we consider the state-dependent recovery time, τR(D), which is
assumed to be an increasing function of D.

The option value is obtained by means of a backward recursion on Vk(tm),m =
M−1, · · · , 1. At each time step, as shown in Section 3.3.1, the payoff, ḡ(x, tm, D),
for all possible values of D and the continuation value, c(x, tm), are compared.
The largest value represents the swing option value at tm. We therefore need
to identify the following regions in our pricing domain:

• AD, D = 1, · · · , L: the regions in which exercising the swing option withD
commodity units will result in the highest profit g(x, tm, D) + φtm

D (x, tm).

• Ac: The region in which c(x, t) is the maximum. In other words, with the
commodity price in Ac, it is profitable not to exercise the swing option.

With these regions determined, the Fourier cosine coefficients, Vk(tm), for the
swing option can be determined with a splitting, as follows,

Vk(tm) =
2

b− a

(∫
Ac

c(x, tm+1) cos(
kπ(x− a)
b− a

)dx

+
L∑

D=1

∫
AD

g(x, tm, D) cos(
kπ(x− a)
b− a

)dx

)
(44)

We now describe the procedure to locate the different regions Ac and AD, D =
1, · · · , L. As an example, let us first look at the payoff functions for two values
D = D1 and D = D2 where D1 > D2, shown in Figure 3. Points xd(D1, D2)

Figure 3: Payoff function g + φ for two different D.

and xa(D1, D2) denotes the “early-exercise points”, where the strategy of ex-
ercising D1 or D2 units results in the same ḡ-values. Between xd(D1, D2) and
xa(D1, D2), the value for D2 is largest, in other words, it is profitable to exer-
cise a smaller amount of commodity. Beyond xd(D1, D2) and xa(D1, D2), it is
profitable to exercise the larger amount D1.

Remark 3.4. A rough explanation of the behavior of the two payoff functions
in Figure 3 is as follows. The payoff is a sum of g(x, t,D) and φt

D(x, t). For
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D increasing, the true payoff g(x, t,D) increases, but the quantity φt
D(x, t) de-

creases because of the longer recovery time penalty. So, if g(x, t,D) is the largest
term in the sum, it is profitable to exercise with a larger value of D, whereas if
φt

D(x, t) is the dominating part, it is profitable to exercise the smaller amount.
From the payoff in Figure 1 we see that payoff g equals zero when asset price

S is between Kd and Ka, so that the quantity φt
D will be the main contribution.

With S goes beyond Kd and Ka, payoff g increases and contributes more to
the sum. Note that this explanation as well as the behavior of the two different
payoff functions in Figure 3, form the basis for any two payoff functions with
different D-values.

Based on the insight in Remark 3.4, let us look at a second simple example
with L = 4 and determine A2, i.e. the region where it is profitable to exercise
with D = 2. The example is detailed in Figure 4, where the relation between
the payoffs for any two different amounts of commodity is graphically sketched.

In the figure, a zero “0”, implies taking the continuation value c(x, t). xd(2, Dj),
xa(2, Dj), j = 0, 1, 3, 4 are the two sets of points where D = Dj returns the same
payoff value as D = 2. In order to determine the region A2, we need to find
the sub-regions in which D = 2 gives the largest payoff compared to the other
D-values.

Figure 4: An example to illustrate the exercise region A2 with L = 4.

The value D = 2 returns a larger value than c(x, t), if x < xd(2, 0) or
x > xa(2, 0); Similarly, D = 2 returns a larger value than D = 1, if x < xd(2, 1)
or x > xa(2, 1). So, D = 2 returns larger values than both c(x, t) and D = 1, if
x is either smaller than both xd(2, 0) and xd(2, 1), or larger than both xa(2, 0)
and xa(2, 1). To determine these regions we compute the following early-exercise
points (see again Figure 4 for the values of U and W for this example):

• U := min(xd(2, 0), xd(2, 1)) ≡ xd(2, 1),
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• W := max(xa(2, 0), xa(2, 1)) ≡ xa(2, 0).

D = 2 now returns a larger value for x < U or x > W .
We proceed in the same spirit: To make sure that D = 2 returns larger

values than D = 3 and D = 4, x should be larger than both xd(2, 3) and
xd(2, 4), or smaller than both xa(2, 3) and xa(2, 4). This is again related to the
global behavior of the payoff functions with D1 > D2, as in Figure 3. Therefore
we calculate

• P := max(xd(2, 3), xd(2, 4)) ≡ xd(2, 3)

• Q := min(xa(2, 3), xa(2, 4)) ≡ xa(2, 4)

Now D = 2 returns a larger value than D = 3 and D = 4 for x > P or x < Q.
So, D = 2 returns the largest value, if P < x < U or W < x < Q; Therefore,

A2 = [P,U ] ∪ [W,Q], as shown in Figure 4.
More generally, for each D = 1, · · · , L, we determine:

PD = max
j>D

xd(D, j), QD = min
j>D

xa(D, j), UD = min
j<D

xd(D, j), WD = max
j<D

xa(D, j),

and set AD = [PD, UD] ∪ [WD, QD]. Here PD, QD represent the early-exercise
interval boundaries, within which exercising D units of commodity returns a
larger payoff than exercising more units. UD,WD are the left and right bound-
ary, respectively, beyond which exercising D units returns a larger value than
when fewer or no units are exercised. Similarly, we have

AL = [a,min
j<L

xd(L, j)] ∪ [max
j<L

xa(L, j), b],

Ac = [max
j>0

xd(0, j),min
j>0

xa(0, j)]

All early-exercise points, xd(D, j), xa(D, j), j = 0, . . . , L, are computed by
Newton’s method.

With the regions Ac and AD, D = 1, · · · , L fixed, Equation (44) can be
rewritten as:

Vk(tm) = Ck( max
j=1,··· ,L

xd(0, j), min
j=1,··· ,L

xa(0, j), tm) +
L∑

D=1

Gk(PD, UD, D)

+
L∑

D=1

Gk(WD, QD, D) +Gk(a, min
j=0,··· ,L−1

xd(L, j), L)

+ Gk( max
j=0,··· ,L−1

xa(L, j), b, L). (45)

The computation of Ck(x1, x2, tm) in (45) is as in (34). The Gk differ from the
expressions (29) ,. . . , (32), which will be described in detail in Subsection 3.3.3.

In the Newton procedure to find the points xd(Di, Dj) and xa(Di, Dj) we
need to find the values of c(x, tm), g(x, tm, D), ∂c/∂x and ∂g/∂x as in Subsec-
tion 3.2. The values of φtm

D (x, tm) and ∂φtm

D /∂x are found by:

φtm

D (x, tm) = e−rτR(D)
∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x, τR(D))e−ikπ a

b−a )Vk(tm + τR(D)),

∂φtm

D

∂x
= e−rτR(D)

∑′N−1

k=0
Re(ϕ(

kπ

b− a
;x, τR(D)) · i kπ

b− a
e−ikπ a

b−a )

·Vk(tm + τR(D)).
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Remark 3.5 (Computation of Vk(tm + τR(D))). To calculate Vk(tm + τR(D)),
we determine a time step, ∆t, so that T − t and τR(D) are both time points.
So, we set M = T − t/∆t,ND = τR(D)/∆t, D = 1, · · · , L. For tm + τR(D) =
tm + ND∆t ≤ T , the value Vk(tm + τR(D)) = Vk(tm + ND∆t). The values
Vk(tm + τR(D)) = 0 for all k if tm + ND∆t > T . In that case, φtm

D and
∂φtm

D /∂x are zero, as they are linear combinations of Vk(tm + τR(D)). In this
setting, Vk(tm) and Vk(tm + τR(D)), D = 1, · · · , L can be determined in one
recursion, in which the intermediate values of Vk need to be stored for later use.

3.3.3 Calculation of Gk(x1, x2, D)

The terms Gk in (44) are split into two parts, i.e.

Gk(x1, x2, D) = Gk,g(x1, x2, D) +Gk,c(x1, x2, D),

with Gk,g from an instantaneous profit g(x, tm, D), and Gk,c the part generated
by φtm

D (x, tm), i.e., the continuation value from time point tm+τR(D), as defined
in (4).

Equations (29) and (30) can be used to compute Gk,g(a,minj<L x
d(L, j), L)

and Gk,g(PD, UD, D), D = 1, · · · , L, unless PD > ln(Smin) where we use,

Gk,g(PD, UD, D) = D · 2
b− a

(Kdψk(PD, UD)− χk(PD, UD)).

Similarly, the quantities Gk(maxj<L x
a
Lj , b, L) and Gk(Wi, Qi, i), i = 1, · · · , L

can be computed by (31) and (32), unless if Qi < ln(Smax) for which we have

Gk,g(Wi, Qi, i) = i · 2
b− a

(χk(Wi, Qi)−Kaψk(Wi, Qi)).

Finally, the quantity Gk,c(x1, x2, D) can be obtained by (34), replacing ∆t and
Vj(tm+1) by τR(D) and Vj(tm + τR(D)), respectively.

Remark 3.6 (Constant recovery time). If the recovery time does not depend
on D, we call the recovery time constant. This can be viewed as a special case
of the pricing method discussed above. As additional profit is not related to an
extra penalty, if it is profitable to exercise the swing option, we have Dopt ≡ L
from a profit maximizing point-of-view. Hence, at any point in time, we have
either D = 0, or D = L.

Newton’s method is now applied to determine two early-exercise points xd
m

and xa
m, so that

c(xd
m, tm) = g(xd

m, tm, L) + φtm

L (xd
m, tm),

and
c(xa

m, tm) = g(xa
m, tm, L) + φtm

L (xa
m, tm),

with D = L and τR(D) constant. Then Vk(tm) is split into three parts,

Vk(tm) = Gk(a, xd
m, L) + Ck(xd

m, x
a
m, tm) +Gk(xa

m, b, L),

that can be calculated as in the case of state-dependent recovery time.
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4 Numerical Results

In this section we demonstrate the performance of our pricing algorithm for
swing options with constant and dynamic recovery times. The CPU used is
an Intel (R) Core (TM) 2 Duo CPU E6550 2.33GHz, Cache size 4MB, and
the algorithm is programmed in MATLAB 7.5. The two sub-sections to follow
present results with two different types of recovery time:

• Constant recovery time is in Subsection 4.1: If D 6= 0, we set τR(D, t) = 1
4 ,

as in [1]. In other words, the option holder needs to wait 3 months between
two consecutive swing actions, independent of the time point of exercise
or the size D.

• State-dependent recovery time is in Subsection 4.2: We assume τR(D, t) =
D/12 which implies that if the option holder exercises the swing option
with D units, he/she has to wait D months before the option can be
exercised again.

Parameter sets used for numerical examples are (unless stated otherwise):

CGMY C = 1, G = 5,M = 5, Y = 1.5, r = 0.05, (46)
OU : κ = 0.301, x̄ = 3.150, σ = 0.334, r = 0.05, (47)

where, for the OU process the value of x̄ is under the Q-measure. The values
set for the OU process is as in [1]. The values for CGMY, in particular Y > 1
(infinite activity jump process) are known to be particularly difficult for PIDE
solvers. We will see here that these CGMY parameters do not pose any problem
for the swing option COS method.

In the numerical experiments we further choose Smin = 10,Kd = 20,Ka =
25, Smax = 50, T0 = 0. The choice T0 = 0 does not pose any restrictions on the
algorithm, as we can simply change it to any T0 > 0.

4.1 Constant Recovery Time

First of all, American-style swing option values under the CGMY and OU pro-
cesses, with L = 5, are presented in Figure 5, with as independent variables S
and t; v(S(t), t) is the swing option value. Jumps in the swing option values are
observed at T − t = 0.25, T − t = 0.5 and T − t = 0.75. This can be explained
by the fact that at these time points the maximum number of times the holder
can exercise, ns, is reduced by one. For instance, time point T − t = 0.5 is the
last time point at which an option holder can exercise up to three times. For
any t > T − 0.5, the holder cannot exercise more than twice.

Due to the constant recovery time, we should exercise L = 5 units if it is
profitable to exercise. Hence for S > 50, with Ka = 25, the profit would be
L · (50 − 25) = 125. When t ≈ 0, we have at maximum four possibilities to
exercise, which is the reason for option values as high as 500 in Figure 5.

Next, we discuss the convergence behavior of the option values over N ,
the number of terms in the Fourier cosine series. Again the CGMY and OU
processes are used, with the parameters in (46), (47). The remaining parameters
are τR = 0.25, T − t = 1,M = 12; S0 = 8 is set for the CGMY experiment and
S0 = exp(x̄) for the OU problem.
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(a) OU (b) CGMY

Figure 5: American-style swing option values under the OU and CGMY pro-
cesses with constant recovery time, τR(D) = 0.25.

In Table 1 it is shown that the swing option pricing algorithm under CGMY,
with the parameters chosen, takes only 0.0367 seconds to converge to one basis
point. A similar convergence is observed for OU process4 as also shown in
Table 1.

N 64 96 128 160 192

CGMY option value 99.9362 53.8713 220.7021 220.7021 220.7021

CPU time (sec.) 0.0232 0.0303 0.0367 0.0467 0.0526

N 96 128 160 192 224

OU option value 51.3677 49.6984 53.4784 53.4784 53.4784

CPU time (sec.) 0.0429 0.0432 0.0493 0.0527 0.0587

Table 1: Swing option prices and CPU time under the CGMY and the OU
process, with parameter sets (46), (47).

An American option can be viewed as a Bermudan option with M → ∞.
In Table 2 the performance of two methods to approximate an American-style
swing option is compared. One method is the direct approximation by means of
Bermudan-style options, by increasing M, whereas the second method is based
on the repeated Richardson 4-point extrapolation technique (19) on Bermudan-
style swing options with four different numbers of exercise opportunities. In
Table 2, the column denoting “P (N/2)” gives the computed values of the
Bermudan-style options with M = N/2. For the values obtained with the
Richardson extrapolation we useM = 16 in (19) (so, 2M = 32, 4M = 64, 8M =
128).

The CGMY model is used here with the parameters r, C,G,M, Y, from (46) ,
and T−t = 0.5, S0 = 8, Smin = 10, Smax = 50,Kd = 20,Ka = 25. As illustrated
in Table 2, to converge to an error of O(10−4), one would require 203 seconds
with the direct approximation method, and approximately one second with the
extrapolation technique.

4We used the reformulated characteristic function to accelerate the algorithm for the OU
process, see Appendix A
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n = log2 N
P (N/2) Richardson

option value CPU time option value CPU time

7 137.423 0.27 137.395 0.59
8 137.408 0.53 137.390 0.99
9 137.399 2.00 137.390 1.79
10 137.394 8.39 137.390 3.40
11 137.392 39.55 137.390 6.68
12 137.391 203.27 137.390 13.21

Table 2: Convergence over M and comparison between two approximation
methods for American-style swing option.

4.2 State-Dependent Recovery Time

We now consider the case where the recovery time depends on the amount D.
The use the CGMY model with the parameters from (46). Figure 6a compares
the swing option prices with three upper bounds of D: L = 8, 10, 12. A higher
upper bound typically results in higher option values, because a higher upper
bound implies more possibilities for an option holder at each exercise date.

In the case of a constant recovery time we find (not shown) that higher val-
ues of L always give rise to higher option values. In the case of state-dependent
recovery time, τR(D), an exception is observed for the parameters under consid-
eration, when 25 ≤ S ≤ 30. In that case L = 10 results in higher option values
than L = 12, see Figure 6a. In this interval, g(x, t,D) is small and φt

D(x, t)
is the dominant part of the profit. Larger D-values lead to smaller φt

D-values.
However, with S further on the left side of Kd or at the right side of Ka, func-
tion g(x, t,D) starts to dominate and larger L-values give higher swing option
values.

(a) Varying amount L (b) Varying recovery time τR(D)

Figure 6: CGMY process, T − t = 1; Left: Different values for L, and fixed
τR(D, t) = 1

12D; Right: Different Recovery time, and fixed L = 5.

Figure 6b illustrates the influence of the recovery time on the swing option
value. Here we compare τR(D) = 1

12D with τR(D) = 1
6D, which corresponds

to one month (solid line) or two months (dashed line) penalty time for each
unit exercised. Figure 6b shows that longer recovery time gives lower option
prices. In other words, if one can wait after exercising one pays less for the
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swing option 5.
Table 3 shows how the option value and optimal value of D (i.e., Dopt)

change over time. Here we take L = 8, and S0 = 8, a case where the option is
deep in-the-money. As expected, jumps in the optimal D-values are observed
at t∗k = T − kτR(1).

Recovery time τR(D) = 1
12D implies that if we exercise k or fewer units at

t∗k, we can exercise once more before expiry T , whereas if we exercise more than
k units, we cannot exercise again before T . In other words, at t∗k, φt

D > 0 for
D ≤ k and φt

D = 0 otherwise.
Note that at the time points t = T and T − t = 1/24, the optimal value

equals Dopt = L = 8. For t = T this is due to the arbitrage-free condition
and the profit maximization principle, whereas for T − t = 1/24 the time left
is so small that, in our setting, there is only one chance left for a swing action
(φt

D = 0 for all D, k). One should then choose the largest D-value allowed to
get an optimal profit.

T-t option value Dopt T-t option value Dopt

0 80 8 8/24 110.587 4

1/24 80 8 9/24 111.556 4

2/24 85.489 1 10/24 120.572 5

3/24 85.794 1 11/24 121.806 5

4/24 92.441 2 12/24 130.769 6

5/24 93.116 2 13/24 132.224 6

6/24 101.058 3 14/24 141.051 7

7/24 102.371 3 15/24 142.690 7

Table 3: Dopt over time L = 8, S0 = 8, τR = D
12 .

Figure 7 shows how Dopt changes w.r.t. the underlying price, with L =
8, T−t = 1, τR(D) = 1

12D. As S goes beyondKd andKa, Dopt tends to increase,
because in this region the payoff g(x, t,D) dominates in the term g(x, t,D) +
φt

D(x, t). Between S = 20 and S = 25, Dopt = 0, since g(x, t,D) = 0 for all
D > 0 in this interval.

Next, the convergence of the swing option value over N , and the corre-
sponding CPU time for the CGMY process, with S0 = 8, T − t = 1 and different
upper bounds L, are presented in Table 4. With N = 256 the swing option
algorithm reaches basis point accuracy. Table 4 also illustrates that the algo-
rithm is flexible regarding the variation in parameter L. Large L-values result
in higher CPU times, since an increasing number of early-exercise points needs
to be determined, and more Ck- and Gk-terms have to be computed.

In the next experiment, we use the CGMY model with Y = 0.5 (other pa-
rameters as in (46)). We compare for American-style swing option values, with
the state-dependent recovery time, the approximation obtained by the 4–point
Richardson extrapolation with the direct approximation, obtained with Bermu-
dan option values with M increasing. Table 5 shows that the 4–point Richard-
son extrapolation is much more efficient than the direct method, and that both

5Similarly, smaller recovery times result in higher option prices with constant recovery
time.
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Figure 7: Dopt over underlying price, L = 8, T − t = 1, τR(D) = 1
12D

N 128 256 512

L=2
option price 128.7532 136.8724 136.8724
CPU time 0.0868 0.1669 0.2466

L=5
option price 138.2815 150.0041 150.0041
CPU time 0.3943 0.6505 1.1660

L=10
option price 186.6296 199.6870 199.6870
CPU time 1.4428 2.4115 4.3819

Table 4: Swing option values for CGMY process, dynamic recovery time, S0 =
8, T − t = 1.

methods converge to the same American swing option values. Convergence of
the Richardson extrapolation is already observed with M, the number of exer-
cise dates in (19) equal to 6. Larger values of M give the same extrapolation
result.

Bermudan approximation Richardson approximation

M = N/2 option value CPU time N option value CPU time

128 93.9501 5.7391 64 93.9710 1.6077
256 93.9710 20.1821 128 93.9707 2.3621
512 93.9707 77.0859 256 93.9707 3.9196

Table 5: Convergence over M and comparison between two approximation
methods for American-style swing option, CGMY model, S0 = 10, L = 5, Y =
0.5.

5 Conclusions

In this paper, we presented an efficient, flexible and robust pricing algorithm
for swing options with early-exercise features. It performs well for different
swing contracts with varying flexibility in upper bounds of exercise amount and
recovery times. The algorithm is based on Fourier cosine series expansions, and
can be applied to swing option pricing under different commodity processes,
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such as CGMY, other Lévy processes, or under the OU process. For Lévy
processes the Fast Fourier Transform can be applied in the backward recursion
procedure, which gives us Bermudan-style swing option prices accurate to one
basis point in milli-seconds for constant recovery time, and in less than one
to three seconds for dynamic recovery time with different values of L. The
Richardson 4-point extrapolation technique can be used to price American-style
swing options efficiently.

Acknowledgment We thank Lech A. Grzelak for his help in reformulating
the characteristic function for the OU process.
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A Reformulated Characteristic Function for OU
Process

For pricing Bermudan-style options under Lévy processes the Fast Fourier Trans-
form can be applied for a highly efficient computation. This is unfortunately
not the case for such options under the OU process (7), so that the resulting
computational complexity is O(M− 1)N2.

Here we present a first remedy to be able to also price Bermudan options
under an OU process highly efficiently, however, only for special parameter sets.
It is known from the literature that the OU process, x(t), admits the solution:

x(t) = x0e−κt + x
(
1− e−κt

)
+

∫ t

0

σeκ(s−t)dW (s),

i.e., x(t) is normally distributed, i.e.: x(t) ∼ N (E(x(t)),Var(x(t))), with:

E(x(t)|F0) = x0e−κt + x
(
1− e−κt

)
, (48)

Var(x(t)|F0) =
σ2

2κ
(
1− e−2κt

)
. (49)

Therefore, we can reformulate the OU process, and define a process y(t) in the
following way:

dy(t) = κ(x̄− x0)e−κtdt+ σe−κtdW (t), y0 = x0

Then y(t) is distribution-wise equal to OU process x(t), whose characteristic
function is

ϕY (ω, t) = eiωy0+A(ω,t) (50)

where
A(ω, t) =

ω

4κ
e−2κt(1− eκt)(ωσ2 + eκt(4i(y0 − x̄)κ+ ωσ2)) (51)

Since y0 appears in (51), we still cannot perform the integral computations fully
efficiently. However, due to the mean-reversion, the underlying will return to
its long term mean, x̄, after a certain time. In our swing option experiments,
we set S0 = exp(x̄), which has a very favorable effect on the characteristic
function. By fixing y0 = x̄ in (51) and applying (50), the FFT can be applied
and the computational complexity is reduced to O(M− 1)N log2N , like in the
case of Lévy processes. The error due to the approximation is, compared to the
computation with the original characteristic function of the OU process, less
than a basis point.

With arbitrary initial value, y0, the approximation is still valid and accurate,
in particular for large speed of mean reversion, κ, and small volatility, σ. For
other parameter sets, it is recommended to use the original OU characteristic
function. Improvement of this is a topic of future research.
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