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Abstract

Capital costs, fuel, operation and maintenance (O&M) costs, and elec-
tricity prices play a key role in the economics of nuclear power plants,
where especially capital costs are known to be highly uncertain. Differ-
ent nuclear reactor types compete economically by having either lower
and less uncertain construction costs, increased efficiencies, lower and less
uncertain fuel cycles and O&M costs etc. The decision making process
related to nuclear power plants requires a holistic approach that takes into
account the key economic factors and their uncertainties. We here present
a decision-support tool, that satisfactorily takes into account the major
uncertainties in the cost elements of a nuclear power plant, to provide
an optimal portfolio of nuclear reactors. The portfolio so obtained, un-
der our model assumptions and the constraints considered, maximizes the
combined returns for a given level of risk or uncertainty. These decisions
are made using a combination of real option theory and mean-variance
portfolio optimization.

1 Introduction

The global electricity demand is expected to double to over 30,000 TWh annu-
ally by the year 2030 and meeting this demand without substantially exacer-
bating the risks of climate change requires a solution comprised of a variety of
technologies on both the supply and demand side of the energy system (Pacala
and Socolow (2004), Holdren (2006) and European Commission (2007)). Nu-
clear power can play a key role in meeting the projected large absolute increase
in energy demand while mitigating the risks of serious climate disruption. The
fact that countries seem keen on building nuclear power stations suggests that
their relative costs compared to low-carbon alternatives seem attractive to at
least potential investors (Kessides, 2010). However, there are some concerns
related to uncertainties underlying the various costs elements of nuclear power
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that are reflected in the wide range of cost estimates, cost overruns and sched-
ule delays, for example of Finland’s Olkiluoto and France’s Flamanville nuclear
power plants.

There have been numerous studies on the economics of nuclear power in re-
cent years which use levelized cost 1 of electricity to compare the economics of
different generation technologies. The levelized cost methodology used in these
studies however does not address the role of risks and uncertainties involved.
Methodologies that take into account the large and diverse set of risks character-
izing investment in nuclear power are required. This paper concentrates on the
effect of risks and uncertainties on investment decisions related to the nuclear
industry and the use of diversification to mitigate some of these risks. Following
Roques et al. (2008) and Fortin et al. (2007) we use a two-step approach, where
first real options optimal investment decisions are taken at the plant level, and
then mean-variance portfolio (MVP here after) theory is used to minimize the
uncertainties of returns for a portfolio of nuclear reactors.

The seminal literature using MVP techniques in the power sector concen-
trated on fuel price risk, and focussed on minimizing generation cost, which,
under ideal regulations of a vertically integrated franchise monopoly, should
maximise social welfare. Awerbuch and Berger (2003) use MVP to identify the
optimal European energy technology mix, considering not only fuel price risk
but also Operation and Maintenance (O&M), as well as construction period
risks, while Jansen et al. (2006) use MVP to explore different scenarios of the
electricity system development in the Netherlands. Roques et al. (2008) applied
the portfolio theory from a private investor perspective to identify optimal port-
folios for electricity generators in the UK electricity market, concentrating on
profit risk rather than production costs risk. Fortin et al. (2007) suggest the
use of Conditional Value-at-Risk (CVaR) for portfolio optimization rather than
mean-variance portfolio and provide a detailed review of the literature in this
area.

Real options analysis (ROA) has been applied to the energy sector planning
for years, since the special features of the electricity sector, such as uncertainty,
irreversibility and flexibility to postpone investments, make standard investment
rules solely relying on the net present value (NPV) not advisable as they ignore
the options involved in a sequence of decisions. The real options approach for
making investment decisions in projects with uncertainties was pioneered by
Arrow and Fisher (1974).Using real options it’s possible to value the option to
delay, expand or abandon a project with uncertainties, when such decisions are
made following an optimal policy.

Pindyck (1993) employs real options to analyse the decisions to start, con-
tinue or abandon the construction of nuclear power plants. There, uncertain
costs of a reactor rather than expected cash flows are considered for making the
optimal decisions. Rothwell (2006) uses ROA to compute the critical electric-
ity price at which a new advanced boiling water reactor should be ordered in
Texas. Naito et al. (2010) apply real options theory to determine the optimal
timing for decommissioning of existing nuclear power plants and construction of
their replacements. Zhu (2012) uses real options to evaluate the Sanmen nuclear

1The levelized cost of a project is equivalent to the constant euro price of electricity that
would be required over the life of the plant to cover all operating expenses, interest and
repayment obligations on project debt, and taxes plus an acceptable return to equity investors
over the economic life of the project.
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power plant in the Zhejiang province, China, taking into account factors such
as uncertain construction and electricity costs. Gollier et al. (2005) evaluate
projects where a firm needs to make a choice between a single high capacity
reactor (1200 MWe) or a flexible sequence of modular SMRs (4× 300 MWe) us-
ing real options. The authors in Jain et al. (2012) and Jain et al. (2013) study
the value of modularity in nuclear power plants when decisions are to be made
in finite time horizon. They show that the value of a modular project can be
significantly affected by changing decision horizons, while taking into account
factors such as learning, probabilistic lifetime extensions, and rare events can
affect the operation of the power plant.

In this paper we concentrate on investment in nuclear power plants in a
liberalized electricity market, where the energy utility diversifies into different
nuclear reactor types as a strategy for reducing exposure to construction costs,
fuel and electricity price risks. Mean-variance portfolio (MVP) theory is used
to identify the portfolios that maximize the returns for given risk levels. The
return distribution of individual nuclear generation types depends on the uncer-
tainties in the costs and revenues of the plant. It is, however, also affected by
decisions to continue or abandon a project, that may be taken based on evolu-
tion of construction costs and electricity prices. For example, if the construction
costs become too high in the future, the management may decide to abandon a
project. Using real options we compute the return distribution for each plant
assuming the management makes optimal decisions in the future. The return
distribution for each plant is then used to compute the mean-variance portfolio.

Real options in discrete finite time horizon can be priced using methods for
pricing financial options with early exercise features. This paper uses a simu-
lation based algorithm, called the Stochastic Grid Bundling Method (SGBM)
(Jain and Oosterlee, 2012), for computing the return distribution for individ-
ual reactors. The simulation also computes the optimal policy to continue or
abandon the project in order to maximize its expected cashflows.

The rest of the paper is structured as follows: Section 2 will be concerned
with defining the portfolio optimization problem. Section 3 gives detailed ac-
count of the real options layer used for making optimal decisions at the individ-
ual plant level. In section 4 we validate our model against the results reported in
(Pindyck, 1993). Section 5 illustrates the two steps involved when determining
the optimal reactor order fractions through various numerical examples . Under
our model assumptions, the sensitivity of reactor order fractions to a different
choices of parameter values and constraints on the portfolio are also studied
in this section. The final section will conclude the findings and interpret the
general implications.

2 Mean Variance Portfolio

While selecting the generating technology, policy makers need to consider not
only the cost of the generating technology but also uncertainties in the costs
involved. Furthermore, in liberalized energy markets uncertainties are not only
limited to the costs of the generating technology but also affect the revenues
stream, as utilities are no longer able to pass on their prudently incurred invest-
ments costs to consumers. In order to systematically deal with uncertainties
in the costs and revenues, we, like Awerbuch and Berger (2003), Roques et al.
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(2008), employ the MVP theory 2 to find an optimal mix of generating technolo-
gies, that results in the highest expected return for a given level of uncertainty
(or standard deviation) of the returns3.

To compute the optimal reactor order fraction using MVP, the expected
return distribution for individual reactors is required. One way of obtaining
the return distribution is by simulating several samples of costs (like the fuel
prices) and revenues (electricity prices) and then computing the return for each
sample. This approach however does not address the effect of possible future
decisions related to operation of the power plant (for example, abandoning the
plant if the expected costs exceed expected revenues at a later date) on the
return distribution. In order to include the effect of optimal decisions in the
return distribution, first an optimal investment policy for each reactor type is
computed. This policy is then applied to simulated paths to determine whether
for a particular path there should be an early abandonment. Based on these
decisions the costs and revenues for each sample path are computed, which then
gives the optimal return distribution. The details for computing an optimal
investment policy and the associated return distribution for individual plants
are given in section 3.

Suppose an investor has a certain wealth to invest in a set of J reactors. Let
the return from operation of reactor i be denoted by random variable Ri, and
let wi represent the proportion of the total investment to allocate in the i-th
reactor. The expected return of this portfolio is given by:

E[Rp] = w1E[R1] + . . .+ wJE[RJ ]. (1)

The portfolio variance, in turn, is calculated by

V ar(Rp) = E





(

J
∑

i=1

wiRi − E

(

J
∑

i=1

wiRi

))2


 . (2)

So,

V ar(Rp) =

J
∑

i=1

J
∑

j=1

E [(Ri − E[Ri])(Rj − E[Rj ])]wiwj . (3)

Representing each entry i, j of the covariance matrix Q by

qij = E [(Ri − E[Ri])(Rj − E[Rj ])] , (4)

one has
V ar(Rp) = w⊤Qw,

where w = (w1, . . . , wJ )
⊤.

As wi represents the weight of reactor i, the weights are required to satisfy
an additional constraint:

2MVP is one of the possible ways for portfolio optimization, based on how the risk is
expressed, which in the case of MVP is the standard deviation of the returns. Others like
Szolgova et al. (2011) , Fuss et al. (2012) use Conditional Value at Risk (CVar) for portfolio
optimization.

3See Awerbuch and Berger (2003) and Jansen et al. (2006) for a discussion of the assump-
tions and limitations affecting the application of MVP theory to power generation assets.
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I
∑

i=1

wi = 1.

As we deal with a portfolio of nuclear reactors additional conditions on
the weights, like that they cannot be negative, need to be applied. Addition-
ally, weights of individual reactors might be constrained by an upper and lower
bound, for example, if the utility decides that the new portfolio should not
excessively deviate from the existing one. In general, we can state that:

Li ≤ wi ≤ Ui, i = 1, . . . , J,

for given lower Li and upper Ui bounds on the weights.
MVP theory does not prescribe a single optimal portfolio combination, but

rather a range of efficient choices for each level of return, which form a Pareto
efficient frontier composed of non dominated points. This means that a rational
investor should use an external criterion to choose a portfolio out of the set at
hand. Investors will choose a risk-return combination based on their preferences
and risk aversion. By solving the mean-variance optimization problem we iden-
tify a portfolio for given risk tolerance, λ, of the investor, of minimum variance
amongst all that provide a return equal to Rmin, or, in other words, minimize
the risk for a given level of return. The formulation can be written as:

min
w

1

λ
w⊤Qw,

subject to: E[Rp] = Rmin,

J
∑

i=1

wi = 1, (5)

Li ≤ wi ≤ Ui, i = 1, . . . , J.

Equation (5) is a convex quadratic programming problem for which the first-
order necessary conditions are sufficient for optimality. The classical Markowitz
mean-variance model can be seen as a way of solving the bi-objective problem,
which consists of simultaneously minimizing the portfolio risk (variance) and
maximizing the portfolio return (profit), i.e.

min
w

1

λ
w⊤Qw,

max
w

E[Rp],

subject to:

J
∑

i=1

wi = 1, (6)

Li ≤ wi ≤ Ui, i = 1, . . . , J.

The solution of equation (6) is non-dominated, efficient or Pareto optimal
for equation (5). Efficient portfolios are thus the ones which have the minimum
variance among all that provide a certain expected return or, in other words,
those that have maximal expected return among all upto a certain variance.
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3 Plant level optimization using real options

The real option valuation of nuclear power plants should take into account
the major uncertainties that affect the decision making process associated with
them. Of the several risks involved in the life cycle of nuclear power plants (see
Kessides (2010) for a comprehensive review), the following have been identified
as significant from the perspective of economic risks and are taken into account
in our model.

• The construction or capital costs, and the speed to build: The length of
the pre-construction period and the time it takes to construct the plant
are highly uncertain as there are several factors that make forecasting nu-
clear plant construction costs difficult. As pointed out by Kessides (2010)
one of the reasons for this is that new nuclear plants require a signifi-
cant amount of on-site engineering, which accounts for a major portion
of the total construction cost (Thomas, 2005). It is generally difficult to
manage and control the costs of large projects involving complex on-site
engineering. While major equipment items (turbine generators, the steam
generators, and the reactor vessel) can be purchased on turnkey terms,
it would difficult for the entire nuclear plant to be sold on turnkey terms
precisely because of the lack of confidence on the part of vendors that they
can control all aspects of the total construction costs. Additionally, gov-
ernmental licensing and certification procedures can add up significantly
to construction costs and delays.

• The O&M and fuel costs: The O&M component includes expenses related
to health and environmental protection and accumulation of funds for
spent-fuel management and for eventual plant decommissioning. It also
includes the cost for insurance coverage against accidents. Thus, several
potential externalities are internalized in O&M costs.

• The price of electricity: Electricity prices are highly uncertain and vary
significantly not just between different seasons but also during a single
day. Thus, the revenues generated by a power plant are uncertain and an
important parameter for making optimal decisions.

3.1 Modelling uncertain construction costs

Construction or capital costs constitute almost 60% of the total costs associated
with nuclear power plants and are the major source of uncertainty when it
comes to a comprehensive cost-benefit analysis of nuclear power. An economic
assessment that reflects on the uncertainty in construction costs by employing
probabilistic scenario analysis can help making economic decisions related to
NPPs. To capture the uncertainties associated with the construction costs and
their effect on the decision making process we follow the model proposed by
Pindyck (1993) for irreversible investment decisions when projects take time to
complete and are subject to uncertainties over the cost of completion.

Expenditure of nuclear power plants are sunk costs that cannot be recov-
ered should the investment turn out, ex post, to have been an unfavourable one,
i.e. the firm cannot disinvest and recover the money spent. Cost uncertain-
ties have implications for irreversible investment decisions. The uncertainties
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in construction costs of nuclear power plants can be classified into two different
types. The first, as Pindyck (1993) states, is technical uncertainty, that relates
to the technical difficulties associated with the completion of the nuclear power
plant, i.e. if the cost of raw materials, labour etc. are fixed then the uncer-
tainty reflects how much time, effort and material will ultimately be required.
Technical uncertainties involved in the construction of the plant can be resolved
only by undertaking the project which unfolds the actual costs and construction
time as the project proceeds.

The second type of uncertainty that affects the construction costs is external
or independent of what the firm does and is called input cost uncertainty. Input
cost uncertainty arises when the prices of labour, land, materials needed to
build the plant fluctuate unpredictably, or when there are unpredictable changes
in government regulations (for example a change in the required quantities of
construction inputs or certification time). As prices and government regulations
change irrespective of whether or not the construction of a plant has already
begun, input costs uncertainties affect the expected plant costs.

Consider the expected cost of completion of a nuclear power plant to be a
random variable K, then, following Pindyck (1993), the stochastic differential
equation (SDE) governing the dynamics of Kt can be written as:

dKt = −Idt+ β(IKt)
1
2 dWβ + γKtdWγ , (7)

where I is the rate of investment. When the construction of a nuclear power
plant has begun the expected change in Kt over an interval dt is −Idt, but the
realized change can be greater or less than this due to the random fluctuations
in the cost to completion of the project. The term β(IKt)

1
2 dWβ constitutes

a part of the fluctuation in the project cost due to the technical uncertainty,
where the noise is introduced by the Wiener process Wβ and the amplitude of
the noise depends on the remaining expected costs of the project and the rate
of investment I, and β. When the firm is not investing, i.e., I is zero the project
cost is not influenced by technical uncertainties. The term γKtdWγ constitutes
the part of the fluctuation in the project costs due to input cost uncertainty. As
discussed before, this uncertainty affects the cost of the plant irrespective of I,
i.e. whether the firm is investing or not. Higher values of parameters β and γ,

result in greater uncertainties in realized construction costs of the power plant.
The time for completion of the power plant is a stochastic variable T̃ and is
the time when Kt falls to zero. Wβ and Wγ are uncorrelated Wiener processes,
with Wβ being also uncorrelated to the economy and the stock market, while
Wγ may be correlated with the market.

We assume that the firm invests in the project at a constant rate (i.e. I is
constant), also observed in practice as shown in Table 1, where the fraction of
the overnight costs4 for the construction of a power plant in different countries
incurred each year is almost equal.

3.2 Modelling uncertain O&M , fuel and electricity prices

During a nuclear power operation period, the generating costs consist of opera-
tional and maintenance cost, back-end and front-end fuel cycle costs. Following

4Overnight cost is the cost of a construction project if no interest was incurred during
construction, as if the project was completed ”overnight.”
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Year CAN USA FIN NLD CHE JPN ROU
-8 16.5
-7 12.5
-6 10 3 5 12.5
-5 8 20 10 20 19 15 12.5
-4 22 20 22 20 19.5 20 12.5
-3 29 20 28 20 19.5 20 16.5
-2 21 20 20 20 19.5 18.5 12.5
-1 12.5 10 20 20 19.5 21.5 4.5
1 7.5

Table 1: Expense schedule for nuclear power plant construction from country to country
expressed as percentage of total overnight construction cost per year. Source: OECD (2005),
CAN: Canada, FIN: Finland, NLD: The Netherlands, CHE: Switzerland, ROU: Roumania.
Year stands for number of years before the plant becomes operational.

Rothwell (2006) and Zhu (2012) we model the uncertain generation costs by
Geometric Brownian Motion (GBM). The dynamics of the generation costs are
described by the following SDE:

dCt = µ∗

cCtdt+ σcCtdWC , (8)

where Ct is the instantaneous cost of generation in e per kWh, µ∗

c is a risk
adjusted drift5 of the generation costs and σc is the volatility of the generation
costs. WC is a Wiener process which may be correlated to the market.

Modelling electricity spot prices is difficult primarily due to factors like:

• Lack of effective storage, which implies that electricity needs to be con-
tinuously generated and consumed.

• The consumption of electricity is often localized due to constraints of the
grid connectivity.

• The prices show other features like daily, weekly and seasonal effects, that
vary from place to place.

Models for electricity spot prices have been proposed by Pilipovic (1997), Lu-
cia and Schwartz (2002) and Barlow (2002), where the latter develops a stochas-
tic model for electricity prices starting from a basic supply/demand model for
electricity. These models are focused on short term fluctuations of electricity
prices which helps better pricing of electricity derivatives.

As decisions for setting up power plants look at long term evolution of elec-
tricity prices, we, like Gollier et al. (2005), use the GBM as the electricity price
process. However, it should be noted that within our modelling approach we
can easily include other price processes. The dynamics of electricity prices in
our model are now described by

5if µc is the true drift of generation cost then the risk adjusted drift is µ∗
c = µc − η,

assuming that the Intertemporal Capital Asset Pricing model of Merton (1973) holds, the
risk premium η is equal to the β∗ of the successful project times the risk premium of market
portfolio: η = β∗(rm − rf ).
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dPt = µ∗

pPtdt+ σpPtdWP , (9)

where Pt is the instantaneous cost of electricity in e per kWh, µ∗

p is the risk
adjusted drift of electricity price process and σp gives the volatility of electricity
prices.

3.3 Value of the power plant after it becomes operational

When the construction of a power plant is finished, i.e. Kt = 0, the value of the
project depends only on the net cashflow to be generated from the operation of
the power plant. Let ht(Pt, Ct) be the value of the power plant, once it becomes
operational, at time t when the instantaneous cost of electricity is Pt e per
kWh and the combined O&M and fuel cycle costs are Ct e per kWh. Let t̃S
denote the time when the plant starts its operation, i.e. t̃S is the first instance
when Kt = 0. Then, the time when it will be decommissioned, t̃f , is equal to,

t̃f = L+ t̃S ,

where L is the designed lifetime of operation for the power plant and t̃S ≤
t ≤ t̃f . The expected discounted stream of future differences in cash flows at
time t, under the risk neutral measure P, from the remaining operation of the
power plant, assuming the plant is decommissioned only after completing its
designed lifetime, is then a function of its current state, Pt, Ct, and is equal to:

ht(Pt, Ct) = E

[

∫ max(t̃f ,t)

t

e−rfτ (Pτ − Cτ ) dτ |Pt, Ct

]

= e−(rf−µ∗

p)tPt

1− e−(rf−µ∗

p)(tf−t)+

rf − µ∗
p

−e−(rf−µ∗

c)tCt

1− e−(rf−µ∗

c )(tf−t)+

rf − µ∗
c

, (10)

where rf is the risk free discount rate and (tf−t)+ is used to denote max(tf−
t, 0).

3.4 Real option value of the power plant

The option value of the power plant before it becomes operational depends on
the electricity price, Pt, combined fuel cycle and O&M costs, Ct, that would be
incurred if the plant becomes operational and on the expected cost of comple-
tion, Kt of the power plant. The option value, Vt(Pt, Ct,Kt), of the plant can
be computed using Ito’s lemma to obtain the differential equation for dV :

dV =
∂V

∂t
dt+

∂V

∂P
dP +

∂V

∂C
dC +

∂V

∂K
dK

+
1

2

∂2V

∂2P
dP 2 +

1

2

∂2V

∂2C
dC2 +

1

2

∂2V

∂2K
dK2

1

2

∂2V

∂P∂C
dPdC +

1

2

∂2V

∂P∂K
dPdK +

1

2

∂2V

∂K∂C
dKdC,
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and substituting equations (7), (8), (9) into the corresponding Bellman equa-
tion for optimality (see Pindyck (1993)) with the final condition :

Vt̃S
(Pt̃S

, Ct̃S
,Kt̃S

) = max(ht̃S
(Pt̃S

, Ct̃S
), 0). (11)

Here ht̃S
(Pt̃S

, Ct̃S
) is given by equation (10).

Solving the partial differential equation so obtained can be cumbersome due
to the free boundary condition, as the date at which the power plant starts
its operation, t̃S , is a random variable. The problem we consider has a di-
mensionality of three, but in practice it can be even higher, which makes the
use of finite difference based methods for solving the above PDE cumbersome.
We, like Schwartz (2004), use a simulation-based approach to solve the optimal
investment decision problem.

3.5 Computing the real option value using simulation

We assume a complete probability space (Ω,F ,P) and finite time horizon [0, T ],
with Ω the set of all possible realizations of a stochastic economy between 0 and
T . The information structure in this economy is represented by an augmented
filtration Ft : t ∈ [0, T ], and P is the probability measure on elements of F . We
assume that the state of economy is represented by an Ft-adapted Markovian
process (Pt, Ct,Kt), i.e. the electricity price rate, the generation cost rate and
the expected cost of completion of the power plant, respectively, at time t. The
state space is generated at discrete time steps and for simplicity the time horizon
is divided into M equal parts, with t ∈ [t0 = 0, . . . , tm, . . . , tM = T ]. The length
of each time step is equal to

∆t =
T

M
.

The simulation begins by generating N stochastic paths for the remaining
expected construction cost Kt, generation cost Ct and electricity price rate Pt.

The vector Ptm(n), Ctm(n),Ktm(n), where n ∈ [1, . . . , N ] and m ∈ [0, . . . ,M ],
defines a unique state at time step tm. We simulate the random cost of comple-
tion paths using the following discrete approximation to equation (7).

Ktm+1
(n) = Ktm(n)− I∆t+ β(IKtm(n))

1
2 (∆t)

1
2Xβ + γKtm(n)(∆t)

1
2Xγ , (12)

where Xβ , Xγ are uncorrelated standard normal variates. Time point t̃S(n)
is the first time step at whichKt(n) reaches a value less than or equal to zero and
Kt(n) is set to zero for all t ≥ t̃S(n). Figure 1 shows a few of the scenario paths
obtained using equation (12), and Figure 2 gives an example of the distribution
of the total construction time. The generation cost rate Ct and the electricity
price rate Pt paths are simulated as:

Ctm+1
(n) = Ctm(n)e(µ

∗

c−
1
2
σ2
c)∆t+σc

√
(∆t)XC , (13)

Ptm+1
(n) = Ptm(n)e(µ

∗

p−
1
2
σ2
p)∆t+σp

√
(∆t)XP , (14)

where Xγ , XC and XP are standard normal variates that can be correlated.
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Figure 2: Distribution of construction time when construction costs are uncertain.
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Time horizon T is taken sufficiently long, so that the construction of the
plant is almost surely finalized before T, i.e. t̃S < T with very high probability.

The real option value problem, like its financial counterpart the Bermudan
option, is solved backwards in time, starting from the final time step, tM = T.

For those paths where the construction of the plant is finalized the option value
at any time step is given by equation (10). Particularly, the option value at the
time point at which the plant becomes operational is given by:

Vt̃S
(Pt̃S

(n), Ct̃S
(n), 0) = e−(rf−µ∗

p)t̃SPt̃S
(n)

1 − e−(rf−µ∗

p)L

rf − µ∗
p

(15)

−e−(rf−µ∗

c)t̃SCt̃S
(n)

1− e−(rf−µ∗

c )L

rf − µ∗
c

, (16)

where n ∈ [1, . . . , N ] and L is the designed lifetime of the plant.
For those paths where investment is still ongoing the optimal decision to

continue the investment is based on the continuation value Qtm(Ptm , Ctm ,Ktm),
which is given by:

Qtm := e−rf∆t
E
[

Vtm+1
|Ptm , Ctm ,Ktm

]

, (17)

where the simplified notations Qtm and Vtm+1
are used for

Qtm(Ptm , Ctm ,Ktm), and Vtm+1
(Ptm+1

, Ctm+1
,Ktm+1

), respectively. It is optimal
for the firm to continue with the investment, when the construction is not yet
finalized, i.e. if Qtm(n) ≥ I∆t, and abandon it otherwise. More intuitively,
irrespective of how much the firm has already spent on the construction of the
power plant, the optimal decision at a given state point is just based on whether
the net future expected revenues are greater than zero. The option value at a
state described by path n, at time step tm, is then:

Vtm(n) = max(Qtm(n)− I∆t, 0). (18)

Once the option value has been computed for all paths at tm, the above
process (17,18) is followed recursively moving backwards in time until we reach
the starting time t0. The main challenge here is to efficiently compute the con-
tinuation value given by equation (17), for which we use the Stochastic Grid
Bundling Method (SGBM), details of which are discussed in Jain and Oosterlee
(2012) .

The policy for continuing or abandoning the construction of the plant ob-
tained above is used to compute the real option value, i.e. the expected dis-
counted cashflow, and the distribution of the net cashflow obtained following
the optimal policy. The mean and the distribution of the optimal cashflow are
required as inputs for the portfolio optimization step described in section 2. To
compute them we generate another set of Nl paths

6 and apply the policy com-
puted above to continue or abandon the construction of the plant. If the n-th
path enters the critical zone, i.e. reaches a state (Pt(n), Ct(n),Kt(n)) where it
is optimal to abandon, the plant is abandoned for that path and revenues for

6Fresh paths are generated as using the same set of paths that were used to obtain the
optimal policy may result in an option value which is biased high, due to perfect foresight (or
over-fitting).
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the path are set to zero, i.e. Revenue(n) = 0. The costs incurred until the plant
was abandoned are discounted to time t0 to :

Cost(n) =

t̃a(n)
∑

t=t0

e−rf tI∆t,

where t̃a is the first time the path enters the abandonment region. For those
paths whose construction is successfully completed (i.e. the paths which never
enter the abandonment region), the revenues as seen at time t0 are:

Revenue(n) = e−rf t̃SVt̃S
(Pt̃S

(n), Ct̃S
(n), 0), (19)

and the costs of construction of the plant, discounted to time t0, are:

Cost(n) =

t̃S
∑

t=t0

e−rf tI∆t, (20)

where t̃S(n) is the time when the plant starts its operation along the n-th
scenario path. The real option price or the net expected cash-flow following the
optimal policy of the power plant is then given by

Vt0(Pt0 , Ct0 ,Kt0) =
1

Nl

Nl
∑

n=1

(Revenue(n)− Cost(n)) . (21)

The option price so obtained is a lower bound7 of the true price as the policy
used is generally sub-optimal due to numerical errors involved.

4 Validation: A Case from Pindyck

Pindyck (1993) examined the decision to start or continue building of a nuclear
power plant. To apply the model the estimates of the expectation and variance
of the cost of building a kilowatt of nuclear generating capacity are used. The
variance is decomposed into two parts to obtain estimates for technical uncer-
tainty and input cost uncertainty. The survey of individual nuclear power plant
costs published by the Tennessee Valley Authority (1977 to 1985) was used,
which provided data on expected cost of a kilowatt of generating capacity on a
plant-by-plant basis. A cross-section regression analysis over time was employed
to estimate the expected costs and variance of a power plant. The variance of
the costs and their decomposition were estimated from time-series and cross-
sectional variations of the data, using the fact that the variance of cost due to
technical uncertainty is independent of time, whereas the variance due to input
cost fluctuations grows with time. Based on these estimates the technical uncer-
tainty parameter β in (Pindyck (1993)) is found to vary from 0.24 to 0.59, while
γ in (Pindyck (1993)) varies between 0.07 to 0.2. In this analysis an instant
revenue as soon as the construction is finalized was considered.

As a first validation experiment, like Pindyck (1993) we use the parameter
set given in Table 2.8 Table 3 compares the values reported by Pindyck with

7Lower bound implies that if the same Monte Carlo simulation is performed several times,
with different initial seeds, the mean of Vt0 so obtained would be lower than Vt0 .

8Note that prices are in USD here in accordance to the reference values from the literature.
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Initial expected cost K0 $ 1435 per kilowatt
Investment rate I $ 144 per annum
Discount factor r 0.045

Life Time of reactor 40 years
Revenue $ 2000 per kilowatt or 1.23 cents per kWh

Table 2: Parameter set used for validation case

Pindyck SGBM LSM
β Vt0 K∗

0 Vt0 K∗
0 Vt0 K∗

0

0 121 1550 120.64 1550.5 120.64 1550.5
0.24 131 1609 128.89 1582 128.75 1612
0.59 215 1881 211.46 1798 210.36 1887

Table 3: The real option value and critical expected construction cost for different levels of
technical uncertainties. K∗

0
, is the critical expected construction cost at time t0, above which

the project should not be undertaken.

those obtained using the simulation method SGBM as well as the least squares
method (LSM) (see Longstaff and Schwartz (2002), Schwartz (2005) for details
on LSM), for different levels of technical uncertainty. It can be seen that with-
out uncertainties in the construction costs the closed-form solution and results
from simulations are almost identical, where a minor difference is due to the
discretization of equation (7). When technical uncertainty, β, is non-zero the
real option values from simulation are slightly lower than the closed form values
from (Pindyck, 1993), as simulation results are biased low. The option values
obtained using SGBM are slightly higher than those obtained using the least
squares method for the same set of paths, which implies that in the discrete
time version the critical costs for abandonment, K∗

0 , obtained using SGBM are
more accurate.

We would like to emphasize the role of real options in computing the net
expected cashflow and its distribution when a firm is flexible to take decisions
during the course of construction and operation of the reactor. If the underlying
stochastic factors like expected cost of completion turn unfavourable in the
future the firm uses its discretion to abandon the project9 in such a way that the
net expected cashflow is maximized. Figure 3 compares the cashflow distribution
when (a) the firm doesn’t have the flexibility to change its decision in the future
and continues with the construction of the reactor irrespective of whether the
scenario is favourable or not, (b) the firm has the flexibility to change its decision
and continues or abandons the project following the policy computed using
SGBM. It can be seen that the option to abandon the project under unfavourable
price scenarios reduces the possibility of extreme losses. Table 4 compares the
expectation and standard deviation of the net cashflow for the above two cases.

9It is assumed that the firm behaves rationally throughout the life cycle of construction
and operation of a nuclear power plant, although there is some empirical evidence which
suggests that management might act otherwise when sunk costs are involved, for example
see “Throwing good money after bad ? : Nuclear power plant investment decisions and the
relevance of sunk costs”by Bondt and Makhija (1988) .
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Figure 3: Distribution of net cashflow when the firm has flexible and inflexible decision to
abandon the project in future. The policy, when early abandonment is possible, is computed
using SGBM. Same set of scenario paths are used for the two cases.

Inflexible Flexible case
Case (SGBM)

Expected
net cashflow ($/kWe) 186 221

Standard
deviation 600 500

Table 4: The expected value and standard deviation of the net cashflow corresponding to
the distribution in Figure 3. The reactor parameters are taken from Table 2 and [β, γ] values
are [0.59 0.07], respectively.
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Figure 4: Fraction of paths abandoned at different time steps, when the policy from SGBM
is followed, corresponding to the case considered in Table 4.

Figure 4 shows the fraction of scenario paths for which the project is aban-
doned at different time steps when the policy from SGBM is followed for the
above case. It’s more likely for a project to be abandoned in its early phases than
in later stages. As the project commences the remaining expected construction
costs (due to the ongoing investment) and also the remaining expected time to
finish the construction reduce while the anticipated revenues increase (as the
revenues are expected to start flowing in relatively sooner, which implies they
are discounted less), which reduces the chance of the project being abandoned.

5 Numerical Examples

In this section we illustrate by various examples the two steps involved in de-
ciding the optimal mix of NPPs for a power utility (or country or otherwise).
We consider a more realistic case, where not only the costs are uncertain but
also the market price of electricity. We analyze the real option value, optimal
decision rules to start, continue or abandon the construction of a reactor, distri-
bution of costs and cashflows obtained following the optimal policy for different
reactors. Finally, based on the expected net cashflow and its distribution, we
find the optimal reactor order fraction for the different reactors considered.

5.1 Choice of nuclear power plants

In this section we discuss the economics of different nuclear reactors we consider
for determining an optimal portfolio in energy generation planning. Here, not
only the expected costs of completion of the reactors are uncertain, but also
the source of revenues, i.e. the electricity prices. The optimal decisions do not
only depend upon the expected costs of the reactor but also on the present
market price of electricity. Under our model assumption, the construction of
an unfinished reactor continues as long as the expected cost of completion is
below some critical value and the electricity prices are above the corresponding
threshold electricity price. For a given expected construction cost if the present
electricity price (per annum) falls below a threshold the expected net cashflow
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Power Power Efficiency Capacity Factor Life Time
(Thermal) MW (Electric) MW (%) (%) (years)

Gen III 4500 1600 35.5 90 60
FR 3600 1500 42 85 60
HTR 500 (200 +100) (40 + 20) 90 60
SCWR 2300 1000 43.5 90 60

Table 5: The specification of the reactors considered.

would be negative and hence the construction of the plant is discontinued in our
model. Similarly for a given electricity price if the expected cost of completion
increases above a threshold price the construction of the plant will be abandoned
in our model.

For our analysis we consider the following types of reactors for the portfolio.

• Generic Gen III type Light Water Reactor (LWR): The light water reactor
(LWR) is a type of thermal reactor that uses water as its coolant and
a neutron moderator and solid compound of fissile elements as its fuel.
Thermal reactors are the most common type of nuclear reactor, and light
water reactors are the most common type of thermal reactor.

• Fast Reactors (FR): Fast reactors or fast neutron reactors are a category
of nuclear reactors in which the fission chain reaction is sustained by fast
neutrons. They are considered an attractive option because of their poten-
tial to reduce actinide wastes, particularly plutonium and minor actinides
which eliminate much of the long-term radioactivity from the spent fuel.
Fast reactors with closed fuel cycle allow a significantly improved usage of
natural uranium. The Sodium Cooled Fast Reactor (SFR), Lead Cooled
Fast Reactor (LFR) and Gas Cooled Fast Reactor (GFR) are examples
of fast reactors featured in the Generation IV roadmap (2002) (Gen IV,
2002).

• High Temperature Reactor (HTR): Also featured in the Generation IV
roadmap, HTRs are graphite-moderated nuclear reactors with a once-
through uranium fuel cycle. The high temperatures enable applications
such as an emission-free process heat or hydrogen production, which effec-
tively increase the efficiency of the reactor by as much as 20% (Generation
IV roadmap (2002)).

• Super Critical Water Reactor (SCWR): Featured in the Generation IV
roadmap, SCWRs resemble light water reactors (LWRs) but operate at
higher pressure and temperature, with a direct once-through cycle like a
boiling water reactor (BWR), with the water always in a single fluid state
like the pressurized water reactor (PWR). The SCWR is an advanced
nuclear system because of its high thermal efficiency of 45% vs. 33% for
current LWRs, and simple design (Generation IV roadmap (2002)).

The size, efficiency and capacity factors of the reactors considered, taken
from (Roelofs et al., 2011), are given in Table 5.

Notice that HTRs have an efficiency of 40% + 20%, as not only would the
reactor produce 200 MW of electricity, but also 100 MW of process heat. We
incorporate this in our model by assuming that the cost of electricity is 2.32
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Figure 5: Modular construction factor as a function of size of the reactor. The reference
power plant size is 1100MWe.

times the process heat costs, as in Gandrik (2012), which results in a revenue
for this reactor equal to 1.21× Pt.

We take the reference values for the expected construction costs, fuel cy-
cle costs, operation and maintenance costs and also the confidence interval or
standard deviation of these costs from van Heek et al. (2012), Roelofs et al.

(2011). These are engineering cost estimates as there isn’t sufficient experience
to estimate these values from historical data. Table 6 reports the expected
construction costs and fuel, operation and maintenance costs as derived from
the values in van Heek et al. (2012) and Roelofs et al. (2011). In the case
of the HTR we additionally include the benefits of modular construction (in-
creased standardisation and faster learning curves), different from van Heek et

al. (2012). We follow the analysis of Boarin & Ricotti (2011), where four effects
of modular construction are distinguished:

1. Learning factor: The number of similar plants constructed world-wide will
lead to increased experience in construction and therefore in decreased
costs;

2. Modularity factor: The modularization factor assumes a capital cost re-
duction for modular plants, based on the reasonable assumption that the
smaller the plant size, the higher the degree of design modularization;

3. Multiple units factor: The multiple units saving factor shows a progressive
cost reduction due to fixed cost sharing among multiple units at the same
site;

4. Design factor: The design factor takes into account a cost reduction by
assumed possible design simplifications for smaller-sized reactors.

Figure 5 shows the curve constructed when all these separate effects are
combined. A fitted curve that gives the modular construction factor is then
given by,

mcf = min

(

0.195 ln

(

Powermod

100

)

+ 0.63− 10−4 × Powerref , 100%

)

, (22)
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Expected Expected
Reactor construction cost Fuel and O&M cost

e/kWe e/kWe/a
Generic 2900 140

Gen III LWR (320) (35)
FR 4600 185

(580) (35)
HTR 3600 165

(750) (35)
SCWR 3400 140

(400) (33)

Table 6: Expected construction, fuel and O&M costs for different reactors considered. The
values in brackets are standard deviations of these costs.

where Powerref is 1100 MWe and Powermod is on the x-axis of figure 5. Fol-
lowing equation (22) based on the assessment of Boarin and Ricotti (2011), the
modularity construction factor would be 65.5% for a Powermod = 200 MWe
HTR, which brings down the expected costs of construction of HTRs from 6100
to 3600 e/kWe.

As the values reported in Table 6 are “engineering estimates ”the uncertainty
in these values can primarily be attributed to technical uncertainty. When
only technical uncertainties are involved the variance of the expected cost of
construction is given by (see Pindyck (1993)) :

Var(K) =

(

β2

2− β2

)

K2;

a relation we use to compute the corresponding value of β for different reactors
in the portfolio. The Brownian motions driving the input cost uncertainties
(see section 3.1) for different reactors can be correlated to each other (and the
economy), as raw material required and government regulations are similar for
different reactors, while technical uncertainties for different reactors are assumed
to be uncorrelated. Table 7 summarizes the parameter choices related to Table
6.

The real option value of the reactors and the distribution of the net cashflow
under optimal policy for construction and operation of the reactors, depends on,
amongst others, the expected growth rate for electricity prices (µ∗

p), uncertainty
in electricity prices (σp), and the discount rate used (r)10. Table 8 gives values
considered for these parameters. For the base case, values corresponding to the
row ’Medium’ in Table 8 are taken, and the initial price of electricity Pt0 is set
to 8.5 cents/kWh.

10As the Brownian motions dWγ , dWC , dWP may be correlated with the market, we cannot
use the risk-free interest rate for discounting, especially if spanning is not possible. We instead
consider different discount rates which represent different levels of risk premiums added to the
risk-free rate.
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K0 = 2900 (e/kWe),
γ=0.07,

Generic β = 0.15,
GenIII expected construction time = 5 years,

C0 = 1.36 (cents/kWh),
σC = 0.25;

K0 = 4600 (e/kWe),
γ =0.07,

Generic β = 0.18,
Fast Reactor expected construction time = 7 years,

C0 = 1.95 (cents/kWh),
σC = 0.19;

K0 = 3600 (e/kWe),
γ=0.07,

HTR β = 0.17,
expected construction time = 4 years,

C0 = 1.70 (cents/kWh),
σC = 0.22;

K0 = 3400 (e/kWe),
γ = 0.07,

SCWR β = 0.16,
expected construction time = 5 years,

C0 = 1.43 (cents/kWh),
σC = 0.24;

Table 7: Initial expected cost of completion, input cost uncertainty parameter γ, technical
uncertainty parameter β, expected construction time, present value of combined O&M and
fuel charges C0 and the corresponding volatility for different reactors. For all cases considered
we assume the correlation coefficient ρ between WP and WC to be 0.5 and the growth rate
in O&M costs, µ∗

C to be 0. The rate of investment I for each reactor is taken as their initial
expected construction costs divided by their expected construction times.

Growth rate Uncertainty Discount rate
µ∗

p (% per annum) σp (% per annum) r (% per annum)

Low 0 10 6
Medium 3 20 8
High 5 30 10

Table 8: Values of electricity price growth rate µ∗
p, uncertainty in electricity prices, σp and

discount rate r considered in various examples.
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Figure 6: Simulated Kt, Pt, Ct paths at a particular time step. Green represents the states
where it is optimal to continue and red where it is optimal to abandon the project.

5.2 Real option value analysis

We use real option analysis to determine the optimal policy to start, continue
or abandon the construction of a project, so that the net expected discounted
cashflow is maximized. As stochastic construction costs Kt, combined O&M
and fuel cycle costs Ct, and cost of electricity Pt, are considered, the optimal
decision will depend on these three state variables. It will be optimal to abandon
the project, if :

• the expected cost of completion is too high,

• the O&M and fuel cycle costs are too high,

• the electricity prices are too low.

Figure 6 shows the early abandonment region at an intermediate time step
of the simulation. Here the x− axis represents the expected costs of completion
of the reactor and the y− axis represents the cost of electricity minus fuel and
O&M costs. The red coloured grid points represent the states at which the
construction of the reactor should be abandoned, while green colour represents
the ones for which the construction should continue.

Table 9 reports the critical price of electricity above which each of these
reactors should be ordered and their real option values when the initial price of
electricity equals P0 = 8.5 cents/kWh. Reactor specific parameters are taken
from Table 7. The same set of simulated electricity paths should be used for
different reactors.

Under our model assumptions and parameter choices, we see that the HTRs,
despite their high expected capital costs, appear economically most attractive,
primarily due to their higher efficiencies. The Gen III LWRs have the lowest
critical electricity price above which they can be ordered, while the fast reactors
seem economically least viable in our model settings.
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Type Critical electricity Option value
price P ∗

0 P0 = 8.5 cents/kWh
Gen III LWR 4.0 3100

FR 6.25 875
HTR 4.5 3500
SCWR 4.7 2650

Table 9: Critical price of electricity P ∗
t0

in (euro cents/kWh) above which the reactors
should be ordered and their option values (in e/kWe) when the initial price of electricity is
8.5 euro-cents/kWh. The reactor parameters are taken from Tables 7 and 8.

5.3 Optimal portfolio analysis

If a firm has to choose amongst the above reactors, solely based on their capital
costs (Table 7), then their portfolio would contain only Generic Gen III type
LWRs, something also observed in practice. However, such a portfolio excludes
the role of uncertainties of cashflows for these reactors. Application of MVP the-
ory takes into account not only the expected returns but also the uncertainties
or risks associated with these returns.

An efficient frontier gives the optimal reactor order fraction for a portfolio
designed to meet a given expected return while minimizing the uncertainties of
these returns. In order to determine the efficient frontier the expected returns
and the covariance matrix of the returns from the reactors considered are re-
quired. The distribution of returns for each reactor optimally constructed is
sampled by computing the returns along each simulated path.

The following constraints on the portfolio are considered:

• Budget constraint: Under a budget constraint, the optimal reactor order
fraction for every euro spent is computed. Returns corresponding to a
euro spent on a reactor are given by,

Ri(n) =
Revenuei(n)− Costi(n)

Costi(n)
, (23)

and the constraint for the portfolio optimization problem is then:

J
∑

i=1

wi = 1,

n = 1, . . . , N being the path index and i = 1, . . . , J indicate the different
reactors considered. The weights correspond to the fraction of money
invested in different reactors, which is then used to compute the reactor
order fraction (per kWe) by taking into account the expected construction
costs as reported in Table 7.

• Capacity constraint: Under a capacity constraint, the optimal reactor
order fraction for every kWe of capacity ordered is computed. Returns
corresponding to a kWe ordered are given by,

Ri(n) = Revenuei(n)− Costi(n),
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Gen III FR HTR SCWR
Expected Return 1.3376 0.1863 1.0645 0.9744
Stdev Return 1.2356 0.9046 0.9926 1.0527

Table 10: The expected return and its standard deviation per euro spent for the base case.

and the constraint for the portfolio optimization problem is:

J
∑

i=1

wi = 1,

n = 1, . . . , N being the path index, and i = 1, . . . , J indicate the differ-
ent reactors considered. The constraint implies here that reactor order
fractions should add up to a kWe.

For both constraints, the weights are additionally bounded as,

0 ≤ wi ≤ 1, i = 1, . . . , J,

which comes naturally from the fact that short selling is not possible here,
and thus the weights cannot be negative.

The quadratic programming problem expressed by equation (5) is solved
using the optimization toolbox of MATLAB, which solves general problems of
the kind:

min
w

1

2
w⊤Qw + f ′w,

such that: Aw ≤ a,

Bw = b, (24)

L ≤ w ≤ U,

using the command w = quadprog(Q,f,A,a,B,b,L,U).
Figure 7 displays the efficient frontier and the corresponding optimal reactor

order fraction when the portfolio has the budget constraint. The mean and stan-
dard deviation of the simulated returns for the individual reactors are reported
in Table 10. Under our model assumptions and choice of parameter values, the
GenIII LWRs have the highest expected returns (based on equation (23), while
the FRs have the lowest returns per euro spent. However, the uncertainty of
returns for FRs is lower than that for GenIII LWRs. An investor who wants
to minimize the uncertainty of returns and is willing to take a lower expected
return in order to do so, will choose a portfolio with more Gen IV type reactors.
An investor who wants higher returns and is indifferent to the uncertainty of
returns, will hold a portfolio with more Gen III type reactors.

Figure 8 shows the efficient frontier and optimal reactor order fraction corre-
sponding to points on the optimal frontier, when the portfolios have the capacity
constraint. Expected returns and their standard deviations per kWe of reactor
ordered are reported in Table 11. We see that unlike the case with the budget
constraint, where portfolios with high returns were dominated by Gen III LWRs,
here portfolios with higher expected returns are dominated by both HTR and
GenIII LWRs. This difference can be explained as the returns in equation (23)
are scaled by the individual reactor costs.
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Figure 7: (a) Efficient frontier for the base case when portfolios have the budget constraint
and (b) reactor order fraction corresponding to points on the efficient frontier.
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Figure 8: (a) Efficient frontier for the base case when there is a capacity constraint and (b)
the reactor order fractions corresponding to points on the efficient frontier.

Gen III FR HTR SCWR
Expected Return (e/kWe) 3100 880 3500 2625

Stdev Return 2825 2870 3225 2850

Table 11: The expected returns and their standard deviations per kWe of reactor ordered
for the base case.
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Figure 9: Efficient frontiers for varying discount rates. Parameter values are taken from
Tables 7 and 8.

5.4 Portfolio sensitivity

In addition to the constraints on the portfolio, the choice of parameter values
affects the structure of the optimal portfolio. We study the optimal portfolio
for varying parameter values, which gives an intuition about the portfolio’s
sensitivity with respect to these parameters. In particular, we consider the
following cases:

• Different discount rates r, with other parameters constant.

• Varying electricity price growth rates µ∗
p, with other parameters constant.

• Varying uncertainties in electricity prices σp, with other parameters con-
stant.

From here on, we only consider portfolios that have capacity constraints.

Varying discount rates

For our reference case, we considered a discount rate of 8% per annum. We ex-
amine the portfolios sensitivity to varying discount rates. A change in discount
rate affects the expected revenues, costs and the optimal investment strategy,
which in turn affects the returns. This makes the discount rate an important
parameter while computing the efficient frontier and corresponding optimal re-
actor order fractions.

Figure 9 shows the efficient frontier for low, medium and high discount rates,
with corresponding values taken from Table 8. Lowering the discount rate can
help realize higher expected returns, although at increased uncertainty (vari-
ance) in returns. Although both the expected returns and the variance of returns
increases, however, the increase in the expected returns is more significant than
increase in the variance of returns. Therefore, reactors with higher expected
returns would then be more favoured in the mean-variance portfolio.

The optimal reactor order fractions corresponding to the points on the effi-
cient frontier are shown in Figure 10. Under our model assumptions and param-
eter choices, we see that lowering discount rates results in a portfolio dominated
by reactors having greater expected returns, while higher discount rates result
in a portfolio where reactors with lower uncertainties dominate.
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Figure 10: Optimal reactor order fractions when (a) r = 10%, (b) r = 8%, and (c) r = 6%.

Parameter values are taken from Tables 7 and 8.
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Figure 11: Efficient frontier for varying electricity price growth rate, where the reactor
specific parameters are taken from Table 7, and economic parameters from Table 8.

Varying electricity price growth rates

Long term growth rates of electricity prices are difficult to predict. A sensitivity
analysis of the optimal portfolio with respect to different electricity price growth
rates is then essential. We do an optimal portfolio analysis for low, medium and
high growth rate scenarios for electricity prices.

Figure 11 shows the efficient frontiers corresponding to different electricity
price growth rates. A higher growth rate in electricity prices results in portfolios
which can achieve greater expected returns.

The optimal reactor order fractions corresponding to the points on the ef-
ficient frontiers for different electricity price growth rates are shown in Figure
12. Under our model assumptions, we see that a higher expected growth rate in
electricity prices leads to portfolios that are dominated by reactors with higher
expected returns (HTR and GenIII), while for low growth rate scenarios optimal
portfolios can have reactors with lower returns (like FRs).

Varying uncertainty in electricity prices

Uncertainty in electricity prices affects the expected return and its distribution
for different reactors.We study the mean-variance portfolio for low, medium
and high uncertainty in electricity prices, with the corresponding values for
σp taken from Table 8. Figure 13 plots the efficient frontiers for the three
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Figure 12: Optimal reactor order fractions when (a) µ∗
p = 0%, (b) µ∗

p = 3%. (c) µ∗
p = 5%.

Parameter values are taken from Tables 7and Table 8.
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Figure 13: Efficient frontier for varying uncertainty in electricity prices, where parameter
values are taken from Tables 7 and 8.

different scenarios considered. With increasing uncertainty in electricity prices,
the uncertainty in returns of the optimal portfolio increases for a given level of
expected returns.

The optimal reactor order fractions corresponding to the points on the ef-
ficient frontiers for the three scenarios considered are presented in Figure 14.
Under our model assumptions, the reactor order fractions seem less sensitive to
uncertainty in electricity prices, when compared to their sensitivity to discount
rates or electricity price growth rates.

6 Conclusion

While the future of nuclear power depends on resolving the issues of safety
of operations, safe management of radioactive wastes and measures to prevent
proliferation (MIT, 2003), in a deregulated electricity market, the economics of
NPPs will be the most important determinant of nuclear energy’s role in the
future global energy mix. A decision-support tool, which takes into account
major factors and their uncertainties for studying the economics of individual
reactors as well as for a portfolio of reactors has been presented here.

Specifically, we have used real option analysis and portfolio optimization
to study optimal reactor order fractions within the nuclear sector. A two-step
approach is proposed, where first optimal decisions are taken at the plant level,
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Figure 14: Optimal reactor order fractions when (a) σp = 10%, (b) σp = 20%, and (c)
σp = 30%. Parameter values are taken from Tables 7 and 8.

and then the resulting distribution of returns for each reactor-type are used as
inputs to a portfolio optimization problem solved using MVP theory. The main
contribution on the methodological side can be stated as:

• The method adequately accounts for uncertain reactor construction costs
and schedule, and reflects their effect on the return distribution for differ-
ent reactors.

• An optimal policy for continuing the construction or abandoning the
project is computed taking into account the uncertainties in construction
costs, electricity prices and O&M and fuel cycle costs involved.

• A detailed study on optimal portfolios based on MVP theory is conducted.

• The effect of different constraints on portfolio diversification is studied.

• The sensitivity of the optimal portfolio with respect to electricity price
growth rates, uncertainty in electricity prices and discount rates is studied.

It should be emphasized here that, although careful attention has been paid
to choose realistic parameter values for the reactors considered, however, the
main focus of the paper is to illustrate a methodology that accounts for the var-
ious economic uncertainties related to nuclear power plants. Under our model
assumptions, it has been shown that certain scenarios lead to portfolios that are
dominated by Generation IV type reactors, while others result in conventional
Gen III type LWRs being the dominant ones. Following the methodology de-
scribed here can be useful when decisions related to reactor order fraction need
to be made.

As possible future direction of research, the portfolio optimization step
should in addition to the variance of the returns also consider other risk mea-
sures, such as, value at risk and conditional value at risk. The resulting portfolios
will not only minimize the variance of the returns but will also avoid reactors
which are likely to be abandoned in the future.
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