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Abstract

For a discretization of the three-dimensional steady incompressible Navier-Stokes equations a solution
method is presented for solving flow problems on stretched grids. The discretization is a vertex-
centered finite volume discretization with a flux splitting approach for the convective terms. Second
order accuracy is obtained with defect correction. The solution method used is multigrid, for which
a plane smoother is presented for obtaining good convergence in flow domains with severely stretched
grids. A matrix is set up in a plane, which is solved iteratively with a preconditioned GMRES method.
A stop criterion for GMRES is investigated which reduces the number of inner iterations compared
to an ’exact’ plane solver without affecting the multigrid convergence rates. The performance of
the solution method is shown for a Poisson model problem and for three-dimensional incompressible
channel flow examples.
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1 Introduction

With the appearance of supercomputers in the field of numerical mathematics, fast multi-
grid and preconditioned Krylov subspace solution methods were constructed for solving large
systems of discretized partial differential equations. In the eighties the multigrid method
became a very popular method for solving computational fluid dynamics problems. Its effi-
ciency in solving nonlinear problems, for example in compressible Euler, Navier-Stokes and
incompressible Navier-Stokes equations, has lead to many multigrid publications, mostly for
block-structured applications. The fact that in nonlinear multigrid it is not necessary to store
a matrix resulted in algorithms to solve very large (three-dimensional) systems of equations.
An overview of multigrid solution methods for computational fluid dynamics problems is given
in [36] and for incompressible Navier-Stokes equations also in [17].

Preconditioned Krylov subspace methods became very popular after the introduction of CGS
([30]) and GMRES ([28]). It was then possible to solve non-symmetric sparse matrices effi-
ciently. An advantage of Krylov subspace methods is that linear systems are solved with a
given matrix, which means that one does not need to have much knowledge of underlying
discretizations, possibly of systems of equations. More recently these methods are also being
used for computational fluid dynamics problems, for block-structured grids for example in
[35], [6], [8]. Moreover, Krylov methods are very interesting for discretizations on unstruc-
tured grids, where robust multigrid smoothers from structured grids, like line smoothers, are
often not available. A combination of both solution methods is not often seen. Multigrid is
sometimes used as preconditioner for Krylov methods ([23]), or as inner iteration in GMRES-
type methods ([39]). Here, we will combine both solution techniques for three-dimensional
incompressible fluid flow problems with severe stretching of grid cells.

Several methods have been proposed for the discretization of steady incompressible Navier-
Stokes equations on block-structured grids. Probably the most widely adopted approach is
to use Cartesian velocity unknowns and pressure as dependent variables on a collocated grid.
The pioneering papers of this collocated approach are by Rhie and Chow ([25]) and Peric [21].
In our work the collocated approach is also adopted for solving the steady equations. The
three-dimensional equations are discretized on a block-structured grid with vertex-centered
finite volumes. The discretization in general domains is presented in [19] and is based on the
two-dimensional discretization in [7]. With a flux splitting formulation of the steady incom-
pressible Navier-Stokes equations, well-known discretization and solution methods derived
from steady compressible Navier-Stokes equations can be used, such as in [14]. A first order
accurate upwind discretization with polynomial flux difference splitting for the convective
terms ([7]) is implemented for solving the steady equations directly. Second order accuracy
is obtained with van Leer’s second order x-scheme ([34]) in the defect correction technique.
Nonlinear multigrid (FAS) is used as inner iteration in defect correction (see [14], [36]).

It is well-known that for the Poisson equation the convergence rate of standard multigrid
with a point smoother tends to one for anisotropic problems. Anisotropies might for example
occur as result of a severe stretching of grid cells. For certain types of stretching of three-
dimensional grid cells a plane smoother is a necessary requirement for satisfactory standard
multigrid convergence ([31]). In the present work, plane Gauss-Seidel smoothers which visit
planes in lexicographical and zebra-type ordering are implemented and evaluated. All un-
knowns in a plane are updated simultaneously; a two-dimensional matrix is set up, which
is solved iteratively with a preconditioned GMRES ([28]) method. A stop criterion for the
GMRES plane solver is evaluated, which reduces the number of inner iterations compared



to an ‘exact’ plane solver drastically, without influencing the multigrid convergence. Firstly,
this algorithm is tested for the three-dimensional Poisson equation on stretched grids.

For discretizations of three-dimensional steady incompressible Navier-Stokes equations on a
stretched grid it is not clear a priori when a plane smoother is a necessary requirement, if all
equations are smoothed simultaneously. The coupled set of equations consists of three nonlin-
ear momentum equations, for which the main classification depends on the Reynolds number,
and the continuity equation, whose discretization often results in an additional Poisson term
for the pressure. The multigrid algorithms with line and plane smoother are compared for
channel flow problems at different Reynolds numbers with grid stretching in length direction.
The discretization and solution method are set up in a parallel multiblock environment. With
grid partitioning ([15]) different blocks are solved in parallel on different processors of a MIMD
machine. The communication among the nodes on all multigrid levels is handled by a high-
level communications library CLIC ([27]), based on the portable message-passing interface
PARMACS ([5]). Finally, a multiblock three-dimensional backward-facing step problem is
solved, in which a three-dimensional grid is generated with different grid stretching in the
three directions.

2 Discretization of incompressible Navier-Stokes equations

In Cartesian coordinates the steady incompressible Navier-Stokes equations are written as a
system of equations as follows,
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where f, g, h are the components of the convective flux vector, and fy, gy and hy are the
viscous fluxes:
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Here u, v and w are Cartesian velocity unknowns, p is pressure, ¢ is a constant reference
velocity and Re is the Reynolds number defined as: Re = U.L/v, with U a characteristic
velocity, L a characteristic length and v the kinematic viscosity.

Differences of the convective fluxes with respect to u can be written as,

Af = AjAu, Ag= AsAu, Ah= A;Au (2)

with u = (u,v,w,p)” and A;, Ay and A3 are the discrete Jacobians:
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where the overbar denotes the mean of variables.
Matrix A will be written as a combination of A1, As and Az as follows,
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Here r = ngu + nyU + n,w, and (ng, ny, n,) are components of a normal vector. Using
n2 + ”5 +n2 =1, a set of three different eigenvectors is found for matrix A:

M=X=7r A3=7r+a, \=r—a,witha=vr2+c2.

However, a full set of four left and right eigenvectors was found. With left and right eigenvector
matrices L and R matrix A will be split into negative and positive parts A~ and AT,

A= =RA"L, AT=RA'L, A=A+ A* (4)

A= =X"I, AT =)XTI, A\ =min()\;,0), A\ = max(}\;,0), i = 1,4. (I is the identity matrix.)
The resulting formula for the finite volume discretization is found with (3) and (4); a linear
combination of flux differences can be expressed as:

nyAf + nyAg +n,Ah = (A~ + AT)Au (5)

The three-dimensional vertex-centered finite volume discretization of (1) in general domains
is presented in [19] and is based on the two-dimensional discretization in [7]. In the present
work mainly problems in Cartesian domains will be considered. The most important aspects
of the finite volume discretization are repeated briefly. Integration of the convective part of
(1) over a control volume €, ; ;. gives,
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where F = n.F with F = (f,g,h)T, n = (ng,ny,n,)T is the outward normal vector on the
volume side and dS the length of the volume side.

As example, the evaluation of flux Fj_ /5 ; in (6) is shown. For Fj /5 ; an upwind definition
is used,

Fit1/256 = 1/2(Fijk + Fip1k — |AF; i41]) (7)
AF; ;41 is found with (2) and (3):
AFj ;1 =Fi1jk— Fijr = Aiiv18u;;41 (8)

where A; ;41 is built as in (3) with U-values coming from (i,j,k)T and (i + 1,j,k)T, and
Aw;ir1 = Wiq1 5k — U4, With (4) for the absolute value of AF; ;. is found,

|AFi 1| = (A1 — Ajip) Attt (9)

The formula used in the discretization follows from (5), (7) and (8):
Fivipegh = Figr +1/2(Fi1j, — Fijr) — 1/2|AF i1
Fijg+1/24; 0100541 — 1/2|AF; ;14
= F’i,j,k + Ai_,H_lAui,i—l—l (10)
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The fluxes on the other volume boundaries in (6) are treated in the same way.

The viscous fluxes f,, g, and hy are discretized with the Peyret control volume technique
([22]). Second derivatives disappear with a shifted control volume ([22], [7]).

The treatment of boundary conditions, which is described in detail in [7] is generalized to
three dimensions in [19].

The resulting discretization is first order accurate and is so-called positive. With defect
correction ([14], [11], [36]) second order accuracy can be obtained by iterating with a first
order discretized operator. The right hand side is then corrected with a second order operator.
For defect correction techniques within multigrid a common approach is that only on the finest
grid the right hand side is corrected ([11]). The second order scheme used in defect correction
is van Leer’s k-scheme ([34]). The vectors u; ;x and u;41 ;; in (7) and (8) are replaced by
respectively:

1+k 1—k
Wik 4 Wi+ —7— (Wit = Wijk) + —7— (Wi = Wio1,jp)
1+k 1—%
W1k & Wiplgk+ T(um’,k — Uit14k) + T(uz'+1,j,k — Wit2,5k) (11)

In the y- and z-direction vectors u; j, W;j+14, W;jk+1 are replaced in a similar way.

All tests have been made with x = 0, the Fromm scheme. For incompressible Navier-Stokes
equations it is not necessary to implement a limiter. For many different problems at low and
high Reynolds numbers wiggles did not appear.

3 The parallel multigrid method

The parallel multigrid algorithm consists of a host and a node program. The host program
creates node processes, sends initial data to the nodes and receives calculated results. Each
node program performs the calculations and communicates with other nodes. The paral-
lelization is done with the 3D block-structured communications library CLIC, developed at
GMD ([27]). CLIC provides subroutines for all communication tasks occurring in multiblock
multigrid applications. Its portability is assured by an implementation using the message
passing interface PARMACS ([5]). CLIC is also used for the parallelization of industrial
aerodynamics codes ([9]). The parallelization technique used to distribute parts of a domain
to different processes is grid partitioning ([15]). The domain is split into blocks. Along the
interior block boundaries an overlap region is defined, and all operations in multigrid are
performed in parallel.

Standard nonlinear multigrid (FAS) is employed, consisting of three-dimensional restriction
and prolongation operators, a coarse grid operator coming from a direct discretization of
the partial differential equations on the coarse grid and several Gauss-Seidel type smoothing
methods.

Transfer operators. The restricted fine grid approximate solution is only a starting approx-
imation on a coarse grid in the FAS algorithm, therefore a simple restriction operator is
sufficient. For this purpose an injection operator is chosen. A part of the coarse grid right




hand side, fr Kk, is a full weighting restriction of fine grid residuals, 7:
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This contribution of different fine grid residuals to the coarse grid right hand side is also
depicted in Figure 1.

Figure 1: The restriction contributions for the coarse grid vertex in the cube’s center: point
A: contribution with %, B: with 11—6, C: with 31—2 and D: with 61—4.

The prolongation operator prolongates corrections of unknowns to finer grids. Here, 3D
trilinear interpolation is used.

Smoothing method. The most important part of a standard multigrid method is the smoothing
algorithm. Robustness depends in many cases primarily on the smoothing algorithm as does
efficiency. Several types of Gauss-Seidel smoothing methods are implemented, that update
a system of coupled equations simultaneously, as advocated in [1]. For discretizations of
incompressible Navier-Stokes equations on staggered grids, coupled smoothers are well known
([33], [32], [17]). In the smoothing methods corrections, u’, to the current solution, u®, are
calculated. Thus:

B(u') =f - B(u") (13)

where B represents a smoothing operator.
These corrections are added to the current solution with underrelaxation factor w,

a1 =y + wu’ (14)

Another type of smoothing methods for steady incompressible Navier-Stokes equations is the
distributive smoother-type, where the different equations are updated uncoupled. Examples
of distributive smoothers are SIMPLE ([20], [29] and [24]) pressure correction methods, Dis-
tributive Gauss-Seidel ([3]) and distributive ILU smoothers ([37], [38]).



Implemented in our code are point coupled Gauss-Seidel smoothers, in which grid points
are processed point-by-point, an x-line, y-line and z-line coupled Gauss-Seidel smoother
(xLLGS, yLGS and zLGS respectively), and (x,y)-plane, (x,z)-plane and (y,z)-plane Gauss-
Seidel smoothers ((x,y)GS, (x,2)GS, (y,2)GS), that visit planes in lexicographical order. More-
over, zebra plane Gauss-Seidel smoothers ((x,y)ZGS etc.) are constructed, that in a first stage
visit all odd (white) planes, and in a second stage all even (black) planes.

An x-line smoother updates unknowns on a line y = const. and z = const. An (x,y)-plane
smoother updates all unknowns in an (x,y)-plane, see Figure 2. All smoothers set up a matrix
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Figure 2: An example of unknowns that are updated simultaneously in different smoothers
for block-structured grids: (1) LGS, (2) yLGS, (3) zLGS, (4) (v,2)GS, (5) (z,y)GS and (6)
(z,2)GS.

for all unknowns that are updated simultaneously. For point and line smoothers this matrix
is solved directly with a band LU solver. For the plane smoothers the matrix is solved iter-
atively with a preconditioned GMRES solver ([28]). The number of vectors for storing the
Arnoldi basis is chosen as 35. The preconditioner is a truncated ILU decomposition. The
drop tolerance is set to 1072. To the author’s knowledge general black-box multigrid methods
for solving matrices coming from systems of equations are not yet available.

In order to keep the plane smoother as cheap as possible the GMRES stop criterion ¢ is in-
vestigated. This is defined as :—g: the residual in the plane after n GMRES iterations divided
by the initial residual. The resulting criterion reduces the number of GMRES iterations con-
siderably, compared to € = 10~®, which represents the fact that a plane is solved with high
accuracy. It will be shown that it does not influence the multigrid convergence.

In the following section the smoothers are evaluated for test problems coming from the
three-dimensional Poisson equation and from three-dimensional steady incompressible Navier-
Stokes equations.

4 Results

4.1 Poisson equation

Firstly, the Poisson equation on a three-dimensional cubic domain is investigated,
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In [31] two-level analysis was performed and in [10] multigrid results were obtained with a
lexicographical plane Gauss-Seidel smoother, in which two-dimensional multigrid was used as
plane solver. We try to confirm the need for a plane smoother for the test cases from [31].
Multigrid convergence results are evaluated for the algorithms with an alternating line and
a lexicographical plane smoother with different stop criteria. The three-dimensional domain
with length parameters Li, Ly and L3 is shown in Figure 3. The domain is discretized with

Lo

Ly
Figure 3: The single block domain for the model test problems.

an equal number of grid points in each direction. Parameters L1, Ly and L3 are chosen such
that stretched grid cells occur. In [31] it was found that a plane smoother was a necessary
tool when Ly > Lo ~ L3 (test case 1) and Ly > Ly > L3 (test case 2). These test cases are
investigated with V(1,1) multigrid cycles, meaning V-cycles with 1 pre- and 1 post-smoothing
iteration. In Figure 4a the multigrid convergence results with (y,z)GS and yLGS followed by
zLLGS are presented for test case 1, choosing L1 = 10, Lo =1, L3 =1 on a 49 x 49 x 49 grid.
GMRES stop criterion ¢ = 108 is compared with other stop criteria, where the planes are
solved with less accuracy, in order to see when the multigrid convergence rate of (y,z)GS with
the high plane solution accuracy is obtained.

o: c= 108
< e=0.1
*x: €= 0.5
o: yLGS & zLGS
1(n) o
log (L)

(a) cycles (= n) (b) cycles (= n)

Figure 4: V(1,1) multigrid convergence for 3D Poisson’s equation (493-grid). A lezicographical
(y,z)-plane smoother with different stop criteria for the GMRES plane solver is compared with
an alternating line smoother (yLGS & zLGS), (a): for L1 =10, Ly = Ly =1 and (b): for
L1 =10, Ly = 1,L3 = 0.1.

It is clear from Figure 4a that a plane smoother is a necessary requirement; the convergence
of the alternating line smoother is not satisfactory. Furthermore, the multigrid convergence
behavior of (y,z)GS with GMRES criterion ¢ = 107! is similar to the convergence with
e = 1078, With the other criterion ¢ = 0.5 extra multigrid iterations are needed to reduce
the residual sufficiently.

In Figure 4b the multigrid convergence for test case 2, choosing Ly = 10, Ls =1, L3 = 0.1,



is presented on a 49 x 49 x 49 grid. Also in this second test case the plane smoother is
superior, especially while a relatively coarse grid is chosen. On finer grids the convergence
rate of multigrid with the line smoother further increases towards 1, while the convergence
of multigrid with plane smoothers does not change. With ¢ = 10! three instead of two
multigrid iterations are needed for the required convergence.

In Table 1 the average number of GMRES iterations per plane on all multigrid levels is
presented for the stop criteria with satisfactory convergence behavior, e = 1078 and e = 107".
Also the number of iterations for ¢ = 5.1073 is shown, because with this criterion again only
two multigrid iterations were needed in test case 2. It can be seen that with e = 10~ and
e = 5.107% many inner GMRES iterations are saved. Wall-clock times and the number of

Table 1: Average number of inner GMRES iterations per plane for different stop criteria in
(y,2)GS for the 3D Poisson equation on a 49 x 49 x 49 stretched grid.

test case 1 test case 2

MG level: € €

1078 | 107! | 5.1073 || 10-8 | 10! | 5.1073
1 (= finest) || 15.9 | 2.3 4.4 8.4 1.2 2.2

2 10.8 | 1.9 3.6 9.3 0.9 1.7
3 6.6 1.6 2.5 3.4 0.9 1.4
4 3.6 0.7 14 21 0.7 0.7

multigrid iterations needed are presented in Table 2, where for comparison the time for several
iterations of multigrid with the alternating line smoother is also shown. Instead of the linear
correction scheme the same algorithmic environment as for the incompressible Navier-Stokes
equations (FAS) is used, where the three-dimensional matrix has not been stored, neither have
the two-dimensional matrices in the planes. The times are obtained using two processors of an
IBM SP2 computer, where the actual calculation took place on a ”wide” node. The wall-clock
time for test case 1 after 6 multigrid iterations with the line smoother is comparable to the
time with (y,z)GS with e = 107! It is interesting to observe that for test case 2 the wall-clock
time with the plane smoother is less than the time needed for two multigrid iterations with
the line smoother.

Table 2: Wall-clock times (seconds) and number of multigrid iterations for different stop
criteria in the plane smoother and for the line smoother for the 3D Poisson equation on a
49 x 49 x 49 stretched grid.

test case 1 test case 2

smoother: | crit. # its. | sol. time ||| # its. | sol. time
e=10"8 6 150.0 2 32.4
plane e=10""1 6 109.9 3 39.1
€=>5.10"3 6 115.2 2 27.4
line yLGS & zLGS 6 103.4 2 35.7
3 52.6




4.2 Incompressible model flow problem

As a 3D incompressible Navier-Stokes test problem the flow in a tube with rectangular cross-
section is investigated. In the tube grids with severe stretching are generated. The domain
from Figure 3 is again taken for this test problem. Parameter L; in Figure 3 is varied from
10 to 100, Lo and L3 are set to 1. The stretching is chosen in flow direction, because that
seems to be a natural choice for realistic flow problems around objects.

At inflow a fully developed inflow profile is prescribed; at outflow Neumann boundary condi-
tions with a fixed pressure are given.

For different Reynolds numbers (Re) different underrelaxation factors are used in the plane
Gauss-Seidel smoothers. Optimal values were found to be:

Re <100 : w=1.0; 100 < Re < 1000 :w =0.8; Re > 1000 :w = 0.6 (16)

For the line smoothers the optimal underrelaxation factor appeared to be 1, independent of
the Reynolds number.
Average reduction factors, u,, are presented defined as,

1
4 i(n) n
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i.e. the sum of the maxima of residuals over four equations after n iterations divided by the
initial residuals to the power %

At first, the first order upwind discretization is solved to test the influence of the Reynolds
number and of grid stretching on the multigrid algorithm. The solution method for first or-
der accuracy is the inner loop inside defect correction and therefore its convergence rate also
influences the second order convergence. The GMRES plane solver will be more expensive in
wall-clock time and storage for this matrix resulting from a system of equations.

Figure 5 presents the V(1,1)- and F(1,1)-cycle multigrid convergence for L; = 100 and
Re = 1000. The convergence is shown for three grid sizes: Figure 5a 172 grid, Figure 5b
333 grid and Figure 5¢ 493 grid. Again plane smoother (y,z)GS is compared the alternating
line smoother, yLGS & zLGS.

Level independent convergence rates are observed, comparing Figures 5a, 5b and 5c, which
is typical for multigrid solution methods. Furthermore, it is found that the much cheaper
algorithm with € = 10! produces similar convergence rates as the algorithm with ¢ = 1078.
Also it can be seen that the rates with the plane smoother in the F-cycle are much better
than the rates with the line smoother.

In Table 3 15 is shown for three Reynolds numbers 10, 100 and 1000 to observe differences
between diffusive dominance (Re < 100) and convective dominance (Re > 1000) for the first
order discretization scheme. The grid considered consists of 492 grid points, and grid stretch-
ing L; varies from 10 to 100. The F(1,1)-cycle is used with three smoothers, yLGS followed
by zLGS, (y,z)-plane lexicographical Gauss-Seidel and (y,z)-plane zebra Gauss-Seidel. As
stop criterion for GMRES we chose € = 1078: we would like to investigate whether a plane
smoother is a necessary requirement, and therefore the plane is solved in every smoothing
iteration with high accuracy.

In Table 3 it can be seen that the plane smoothers are superior over the alternating line
smoother, when the grid stretching is more than a factor 10. This is especially true for lower
Reynolds numbers. For L; = 10 the behavior of all smoothers is still comparable for higher
Reynolds numbers. It can also be observed that the zebra plane smoother produces better
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Figure 5: V- and F-cycle multigrid convergence for 3D inc. Navier-Stokes equations (Re =
1000). (y,2)GS with two stop criteria for GMRES is compared with yLGS & zLGS, for
Ly =100, Ly = L3 = 1. a) 173-grid, b) 33%-grid, c) 493-grid.

convergence rates than the lexicographical plane smoother for the low Reynolds case Re = 10.
For the other cases the results of the zebra and lexicographical plane Gauss-Seidel smoothers
are comparable. Finally, from Table 3 it is expected that with a larger stretching the need
for the plane smoothers will be even more pronounced.

Defect Correction. It is now interesting to compare the convergence behavior for the defect
correction technique with the results obtained above. The channel flow problem with param-
eters L1 = 100, Lo = L3 = 1 and Re = 1000 is again chosen. The combination of defect
correction with (y,z)GS appeared to converge optimal with a V(1,1)-cycle as inner iteration.
An F-cycle did not lead to further convergence acceleration.

Figure 6 presents the defect correction convergence behavior for different GMRES stop cri-
teria within (y,z)GS on a 333 grid. They are compared with the line smoother in F(1,1),
that showed satisfactory convergence rates for the first order accurate discretization (Figure
5 and Table 3). In Figure 6 it can be seen that the convergence for stop criterion ¢ = 1072
is identical with € = 107%. The other criteria produce a slightly worse convergence behavior.
The algorithm with the line smoother converges slowly; pog is 0.83. Furthermore, it was found
that the algorithm with the zebra plane smoother did not lead to satisfactory results for the
second order discretization.

Table 4 compares the average number of GMRES iterations per plane for criteria e = 1071,
€ = 1072 and € = 1075, This average number is presented for 20 multigrid defect correction
iterations for all multigrid levels, except for the coarsest (= level 4 for the 172 grid and level
5 else). Also, the average reduction factor ugg is shown for (y,z)GS in Table 4. Table 4 shows
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Table 3: Single block convergence rates for line and plane smoothers on a 492 grid with
different stretching of grid cells (L) in x-direction and for Reynolds numbers 10, 100 and
1000.

Re: smoother: Li1=10|Ly=20| L; =50 | Ly =100
| | | |
yLGS & zLL.GS 0.65 0.80 0.86 0.94
10 (y,2)GS 0.24 0.35 0.56 0.62
(v,2)ZGS 0.27 0.25 0.22 0.42
yLGS & zI.GS 0.44 0.56 0.70 0.86
100 (v,2)GS 0.44 0.24 0.20 0.22
(v,2)ZGS 0.29 0.28 0.25 0.20
yLGS & zLGS 0.40 0.43 0.50 0.69
1000 (v,2)GS 0.31 0.24 0.22 0.20
(v,2)ZGS 0.43 0.26 0.22 0.22

that with e = 1072 many GMRES iterations are saved compared to € = 1075, and that the
multigrid convergence is not influenced on all grids investigated. With € = 10~! the multigrid
convergence is also very satisfactory on the 493 grid. The average reduction factor ugy for
yLGS+zLGS in F(1,1) was 0.83 on the three grids considered. Table 5 compares wall-clock
times for 20 defect correction iterations of (y,z)GS with ¢ = 1072 and of yLGS+zLGS. The
differences in wall-clock times can clearly be observed. These plane convergence and timing
results can be taken as basis for research to nonstandard multigrid algorithms ([12], [16], [18])
for three-dimensional CFD problems, in which the coarse grid correction is made more robust,
so that cheaper point or line smoothers can be used to obtain faster convergence for the kind
of problems investigated here.
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< (y,2)GS, e = 1071
*: (y,2)GS, € = 5.1072
o (y,2)GS, e =102
o: (v,2)GS, e =107
o: yLGS & zLGS

------

Bd_ |rin))|
log( =izl ——
( i1 O eo )

def. corr. cycles (= n)

Figure 6: Convergence of second order residuals compared for different stop criteria € in
GMRES for a 3D incompressible channel problem at Re = 1000, stretching parameters: L =
100, Ly = L3 = 1; 333 grid points.
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Table 4: Average number of GMRES iterations per multigrid level (20 mg-iterations) and
defect correction convergence rates pgg for V(1,1) and (y,z)GS with different stop criteria;
stretching L; = 100 and Re = 1000.

grid: €: # its. on mg. level: B :
1 (= finest) | 2 3 4
10! 8.2 5.7 | 3.7 - 0.65
173 [ 1072 11.5 8.5 | 5.2 - 0.63
107 23.8 16.5 | 10.7 | - 0.63
101 9.1 7.7 | 5.7 | 4.2 | 0.65
333 [ 1072 15.9 11.8 | 8.7 | 6.0 | 0.61
10~ 33.9 23.8 | 16.4 | 10.7 || 0.61
10T 10.7 89 | 74 | 4.8 | 0.63
49% 1072 18.5 14.1 [ 10.5 | 7.2 || 0.62
1076 41.0 29.2 120.1 | 13.8 | 0.62

Table 5: Wall-clock times (seconds) for 20 V(1,1) defect correction iterations for (y,z)GS with
stop criterion € = 1072 and for yLGS & zLGS in F(1,1) for a 3D stretched incompressible
channel problem.

smoother: grid:

173 | 333 493

(v,2)GS, e = 10~2 | 330 | 3339 | 13331
yLGS & zLGS | 294 | 2447 | 10167
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4.3 Three-dimensional flow in a 90° bending square duct

The problem studied here is the three-dimensional channel flow problem in a 90° bending
square duct. Several researchers used the geometry presented in Figure 7 with L = 5 to solve
the flow problem at Re = 790, see [19] and the references therein. A fully developed inflow
velocity profile is imposed at the inlet boundary; at the outflow boundary Neumann boundary
conditions are prescribed.

We use this flow problem to study the influence of parameter L on the defect correction
convergence. The Reynolds number, based on the mean entrance velocity and the duct width

h L
$ (0’0’0) L
/ Rl‘,ff.\\
X=-5 ' ““
Z
A
yal -
< 0=0 N0
X 0 =90

Figure 7: Domain for flow over a three-dimensional square duct with a 90° bend, and the
division into 3 blocks.

is assumed to be 100. L varies from 20 to 100; ~ = 1; R = 1.8. The flow domain is split
into three blocks, consisting of 33 x 33 x 33 points, as is depicted in Figure 7. Again the
lexicographical plane smoother with GMRES stop criterion ¢ = 1072 is compared to the
alternating line smoother. The defect correction convergence of the second order results with
multigrid F(2,2)-cycles is presented in Figure 8 for L = 20, L = 50 and L = 100. Figure 8

*: (y,2)GS, L =50

e: (y,2)GS, L =100

o: yLGS & zLGS, L = 50
o: yLGS & zLGS, L = 100

E:'1:1 |’i(n))|oo
log( STENTEION )

—7 I I I I
0 5 10 15 20

def. corr. cycles (=n)

Figure 8: Comparison of F(2,2) convergence of defect correction between (y,z)GS and
yLGS+2zLGS, flow in a 3D duct at Re = 100 for different values of parameter L.

15



shows that for L > 50 the plane smoother is beneficial. For L = 20 also the alternating line
smoother presents a satisfactory convergence. It is interesting to observe that the convergence
is not really influenced by the large discontinuity in stretching at the block boundaries for
L = 100. For this three block problem the differences in wall-clock time between the plane
and the alternating line smoother are more pronounced: 20 F(2,2) defect correction cycles
with yLGS and zLGS cost 3340 seconds, 20 F(2,2) cycles with the plane smoother cost 5700
seconds on 4 IBM SP2 thin nodes.

Finally, Figure 9 shows the vector field with reduced resolution in the mid-span plane in the
curve for the flow at Re = 100.

Figure 9: Vector field (reduced resolution) in the mid-span plane for flow over a three-
dimensional square duct with a 90° bend, Re = 100.
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4.4 Laminar backward-facing step flow

In order to test flow problems with stretching in two directions (L; > Ly > L3) we choose
here, instead of the systematic approach of Subsection 4.2, to investigate one test problem,
the laminar flow over a backward-facing step. This well-known channel flow is well studied
for two-dimensional discretizations (for example in [13] and [32]). For the two-dimensional
flow experimental results are known ([2]), obtained in a three-dimensional test section. The
configuration is shown in Figure 10. It is split into four blocks here for parallel solution.

hy

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 10: Domain for flow over a three-dimensional backward-facing step, and the division
into four blocks.

A result of interest for this problem is for example the length of the first recirculation zone.
The two-dimensional computational results agree with the experiments only for a certain
range of Reynolds numbers, up to Re = 400. For higher Reynolds numbers the computed
recirculation lengths are too small ([13], [32]), due to three-dimensional effects. We try to
find the recirculation lengths found with the experiments by solving the three-dimensional
incompressible Navier-Stokes equations in a wide backward-facing step channel. The geomet-
rical parameters in Figure 10 are chosen as follows: hy = 72, hg =4, h3 =1, H = 2 for all
Reynolds numbers.

In blocks 2, 3 and 4 with parameters L1 = 24, Lo =4, L3 = 2 stretched grids with 17x33x49
points per block are generated. These parameters are especially chosen, so that grid stretching
occurs in two directions, and the problems need to be solved with a plane smoother. In block
117 x 33 x 25 grid points are generated, which means a load-imbalance among the blocks.
However, that is of no concern in this test. The computations presented are for Reynolds in
the range between 400 and 1000 with the Reynolds number defined as in [2], Re = U.H/v.
U is the average velocity, which is for large values of hy approximately equal to two-thirds of
the maximum inlet velocity.

At the outflow boundary Neumann boundary conditions are prescribed; at inflow a fully de-
veloped inflow is given.

For the first order discretization the alternating line and the (y,z)GS smoother were converg-
ing with similar rates (ug = 0.45 for F(1,1) for all Reynolds numbers investigated). However,
for the defect correction it was found that the alternating line smoother produced satisfactory
results only until Re = 600 (us0 = 0.79 for Re = 300), (y,z)GS produced satisfactory conver-
gence rates for all Reynolds numbers investigated (us0 = 0.76 for Re = 400; pi00 = 0.83 for
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Re = 800).

The length of the first recirculation zone (z,) after the step is determined on the center line
of the channel. This length is presented in Figure 11. It is compared with the experimental
results from [2] and with the two-dimensional results from [32]. Figure 11 shows that the
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Figure 11: The recirculation length found with the three-dimensional method compared with
measurements and two-dimensional results.

two-dimensional computational results from other papers deviate from the measurements.
The length found in two-dimensional flow experiments in [2] is in very good agreement with
the results from Figure 11, which confirms the statement that a three-dimensional flow in
generated in the experiments.

5 Conclusions

A multigrid algorithm to solve three-dimensional problems with severely stretched grid cells
has been presented. These problems with strongly coupled unknowns are solved with a plane
smoother. A matrix is set up for all unknowns in a plane. It is solved iteratively with a
preconditioned GMRES method. A stop criterion is investigated which reduces the number
of GMRES iterations, and does not influences the multigrid convergence rate. It is found that
the algorithm is very efficient for stretched Poisson problems. The algorithm produced good
results, when the GMRES plane solver was stopped after the initial residuals are diminished
by a factor of 10. For the method with the plane smoother similar wall-clock times are
obtained as for an alternating line smoother, while the convergence with the line smoother
was not satisfactory for the Poisson problem considered.

The solution method has also been tested for three-dimensional incompressible Navier-Stokes
equations. The discretization is based on a flux splitting formulation of the equations, and
a collocated grid arrangement of primitive variables. For grid stretching in one direction
the plane smoother was beneficial for cell aspect ratios of more than factor 50 for several
flow problems at different Reynolds numbers. Here, the defect correction algorithm with the
GMRES plane solver produced identical results as an ‘exact’ plane solver, when the GMRES
iterations were stopped after the initial residuals were diminished by a factor of 100. Although
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a zebra plane smoother produced satisfactory multigrid convergence results for first order
accurate incompressible flow problems, the convergence within defect correction was not as
good as for the lexicographical plane smoother. For the backward facing step problem, where
the grid stretching was made such that a plane smoother was necessary for convergence the
defect correction convergence rates increase. The computed recirculation lengths in a wide
backward facing step channel resembled the experimental results very well.
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