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SUMMARY9

In this paper, we present e�cient multigrid methods for the system of poroelasticity equations discretized
on a staggered grid. In particular, we compare two di�erent smoothing approaches with respect to11
e�ciency and robustness. One approach is based on the coupled relaxation philosophy. We introduce
‘cell-wise’ and ‘line-wise’ versions of the coupled smoothers. They are compared with a distributive13
relaxation, that gives us a decoupled system of equations. It can be smoothed equation-wise with basic
iterative methods. All smoothing methods are evaluated for the same poroelasticity test problems in15
which parameters, like the time step, or the Lam�e coe�cients are varied. Some highly e�cient methods
result, as is con�rmed by the numerical experiments. Copyright ? 2004 John Wiley & Sons, Ltd.17
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1. INTRODUCTION

Multigrid methods are motivated by the fact that many iterative methods, especially if applied21
to elliptic problems, have a smoothing e�ect on the error between the exact solution and a
numerical approximation. A smooth discrete error can be well represented on a coarser grid,23
where its approximation is much cheaper. The design of e�cient smoothers in multigrid
for the iterative solution of systems of partial di�erential equations (PDEs), however, often25
requires special attention. The relaxation method should smooth the error for all unknowns in
the equations (that are possibly of di�erent type) of the system.27
A good indication for the appropriate choice of smoother is the system’s determinant. If the

main operators (or their principal parts) of the determinant lie on the main diagonal of the29
system’s matrix, smoothing is a straightforward matter. In that case, the di�erential operator
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that corresponds to the primary unknown of each equation is the leading operator. Therefore,1
a simple equation-wise decoupled smoother can e�ciently be used. If, however, the main
operators in a system are not in the desired position, the choice of e�cient smoother needs3
some care. A �rst obvious choice in the case of strong o�-diagonal operators in the di�erential
system is coupled smoothing: All unknowns in the system at a certain grid point are updated5
simultaneously.
Additional smoothing di�culties are met, if one of the operators on the system’s main7

diagonal equals zero, or is very close to zero (i.e. with extremely small parameters in front
of derivatives). However, for this situation also, di�erent forms of coupled and (distributive)9
decoupled smoothers exist, which smooth the errors in all the unknowns e�ectively. The
research underlying these smoothers is basically done in the late 1970s and in the early 1980s11
for incompressible �ow problems [1, 2].
Here, we consider multigrid schemes based on coupled and decoupled relaxation for the sys-13

tem of incompressible poroelasticity equations. The system has been discretized on a staggered
grid, which is one way to cope with numerical instabilities in the time-dependent process. In15
the staggered grid arrangement the three primary unknowns, displacements and pressure, are
not de�ned at the same positions on the grid. The equation for the pressure contains a time-17
dependent divergence operator for the displacements and a Laplace operator for the pressure,
possibly with an extremely small parameter in front. Details are given in Section 2.19
Decoupled smoothing for this system is found in the distributive framework: Smoothing is

applied after a post-conditioning step of the original system. This step transforms the system21
in such a way that the operators in the determinant of the original system appear on the
main diagonal of the transformed system, ready for decoupled smoothing. The distributive,23
decoupled smoother for poroelasticity has already been introduced in Reference [3]. We repeat
it brie�y in Section 3.1 and provide e�cient smoothers for a term with a biharmonic and a25
Laplace operator appearing after the transformation.
For coupled smoothing we compare two forms. In one version, three primary unknowns in27

the staggered arrangement are smoothed and updated simultaneously. In the second version
of coupled smoothing, the divergence operator in the third equation is taken into account in29
a more profound way. A ‘cell-wise’ relaxation variant is chosen that updates �ve unknowns
at once. Locally, the unknowns in the divergence operator are treated simultaneously. The31
coupled smoothers are described in Section 3.2.
We will compare coupled and distributive smoothing for the poroelasticity system numer-33

ically. Throughout the literature, especially in the description of multigrid for Stokes and
incompressible Navier–Stokes equations, one of the two approaches mentioned above has35
typically been adopted. However, it does not become clear in the papers which relaxation
method is to be preferred. In Reference [4], a coupled smoother is compared with distributive37
smoothers for an incompressible �ow problem. It is stated that the coupled smoother is prefer-
able, especially for convection dominating �ows. In Reference [5], a distributive smoother is39
evaluated next to cell- and line-wise versions of the coupled smoother. The coupled smoother
comes out best, but in Reference [6] it is concluded that for strati�ed �ow a distributive41
smoother is to be preferred. An overview paper with many references for these smoothers in
computational �uid dynamics problems is Reference [7]. In Reference [8] multigrid has been43
used for 3D poroelasticity, based on coupled smoothing.
Both smoothing approaches have their advantages and their disadvantages. If a system45

of equations consists of elliptic and of other, non-elliptic, components, decoupled relaxation

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:000–000
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easily allows to choose di�erent relaxation methods for the di�erent operators appearing,1
see, for example, Reference [9]. However, for general systems of equations it is not easy to
�nd a suitable distributive relaxation scheme. Furthermore, the proper treatment of boundary3
conditions in distributive relaxation may not be trivial, as typically the system’s operator is
transformed by the smoother but the boundary operator is often not considered. For the system5
under consideration these problems are not observed. It is further not straightforward to use
the concept of a blackbox iterative method, like algebraic multigrid (AMG), in combination7
with distributive relaxation. Distributive relaxation is based on transformations of the original
system, that are not easily extracted from the corresponding matrix. For systems of equations9
the so-called point-block AMG approach [10] may be naturally used in combination with
coupled relaxation. Results of this combination for poroelasticity are, however, not known.11
The solution methods proposed here rely on geometric multigrid concepts and bene�t from
insights in the poroelasticity system.13
What distinguishes this paper from previous papers on the smoothing topic is that we

compare the two tuned, highly e�cient smoothing approaches systematically for identical15
discrete poroelasticity test problems. The other multigrid components, such as the transfer
operators and the coarse grid discretization are identical. We will even count the number17
of �oating point operations spent in the respective algorithms for the comparison. Several
problem parameters, such as the Lam�e coe�cients and the time step are then varied. By this,19
we will gain valuable insight into the behaviour of each smoother. The comparison, presented
in Section 4.1, will be performed with respect to e�ciency and robustness of the multigrid21
methods.
We restrict ourselves to Cartesian grids in this paper. This basically covers the consol-23

idation aspect of poroelasticity. In the �eld of tissue engineering, non-Cartesian grids are
needed and a generalization to curvilinear or �nite element unstructured grids may then be25
necessary.

2. DISCRETE POROELASTICITY SYSTEM27

The poroelastic model in the classical Biot [11] consolidation theory can be formulated as a
system of PDEs for the displacements in x and y directions, u and v, and the pore pressure29
of the �uid p. They build the solution vector u=(u; v; p)T. The 2D incompressible variant of
the system of poroelasticity equations reads31

−(�+ 2�)uxx − �uyy − (�+ �)vxy + px =0
−(�+ �)uxy − �vxx − (�+ 2�)vyy + py =0

(ux + vy)t − a(pxx + pyy) =Q
(1)

with �; �(¿0) the Lam�e coe�cients, a=�=�¿0 with � the permeability of the porous medium,33
� the viscosity of the �uid and Q a source term. The system comes with initial and boundary
conditions.35

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:000–000
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A ‘stationary’ model operator L from (1) which is suitable for analysis reads1

Lu=




−(�+ 2�)@xx − �@yy −(�+ �)@xy @x

−(�+ �)@xy −�@xx − (�+ 2�)@yy @y

@x @y −ã�






u

v

p


 = f (2)

with Laplace operator �= @xx+@yy. System (2) represents an operator after an implicit (semi-)3
discretization in time; ã equals, for example, 0:5a�t.
From (2) the corresponding determinant reads5

det(L)= − ��(ã(�+ 2�)�2 −�) (3)

Here, �2 = @xxxx + 2@xxyy + @yyyy (biharmonic operator). The principal part of det(L) is �m.7
In the common situation with �; ã; �+ 2�¿0, we have m=3.
It is obvious that the leading operators in determinant (3) do not appear on system’s9

main diagonal (2). As mentioned in the Introduction, straightforward decoupled smoothing in
multigrid will then not lead to e�cient geometric multigrid methods. As the parameter ã in11
the main diagonal block of the third equation can become small, in dependence on the time
step �t, we have to consider coupled, or distributive relaxation methods for this system.13
Another (slight) complication for smoothing arises from the discretization chosen here. The

poroelasticity operator (2) su�ers from stability di�culties when strong pressure gradients are15
present. Standard discretizations, like central di�ferences on regular meshes or usual �nite
elements, applied to poroelasticity system (2) su�er from some oscillating behaviour when17
strong gradients of pressure are present, due to a lack of stability of the methods (the inf–
sup condition is not satis�ed). To overcome these stability di�culties, a staggered grid was19
proposed in Reference [12] and employed in Reference [3] for (1), using central di�erences
on a uniform staggered grid with mesh size h. (Staggering is a well-known discretization21
technique in computational �uid dynamics, in particular for incompressible �ow [13, 14],
where the third diagonal block in the system equals zero.)23
Often in poroelasticity problems pressure values are prescribed at the physical boundary.

So, pressure points in the staggered grid should be located at the physical boundary, and the25
displacement points are then de�ned at the cell faces, see Figure 1. A divergence operator
is naturally approximated by a central discretization of the displacements around the pressure27
point.
The discretization of each equation, centred around the equation’s primary unknown, reads29

Lhuh=




−(�+ �)(@xx)h − ��h −(�+ �)(@xy)h=2 (@x)h=2

−(�+ �)(@xy)h=2 −��h − (�+ �)(@yy)h (@y)h=2

(@x)h=2 (@y)h=2 −ã�h






uh

vh

ph


 = fh (4)

The following discrete operators on the staggered grid are used in (4) (given in stencil31
notation):

(@x)h=2
∧=
1
h
[−1 ? 1]h; −(@xx)h ∧=

1
h2
[−1 2 −1]h

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:000–000
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Figure 1. Staggered location of unknowns for poroelasticity.

(@xy)h=2
∧=
1
h2




−1 1

?

1 −1



h

; −�h
∧=
1
h2




−1
−1 4 −1

−1



h

((@y)h=2 and −(@yy)h are given by analogous stencils.)1
The ‘?’ denotes the position on the grid at which the stencil is applied, i.e. ◦, • or ×,

respectively, in Figure 1.3
Furthermore, we choose the Crank–Nicolson time discretization. It is con�rmed in Reference

[3] that for test problems without singularities we obtain O(h2 + �t2)-accuracy.5

Remark: stretching and staggering
We will also use stretched staggered grids. Often, boundary layers occur in the beginning of7
the time-dependent consolidation process, due to pressure boundary conditions. The staggered
grid is a remedy for unphysical oscillations near the boundary layer. However, grid stretching9
serves the same purpose: It may be su�cient to use adequate stretching and a collocated grid
to capture a boundary layer well. Here, we use the combination stretching and staggering for11
evaluating multigrid’s robustness.

3. MULTIGRID SOLUTION METHOD13

E�cient multigrid solvers for the system of poroelasticity equations discretized on staggered
grids are evaluated. We consider both distributive and coupled relaxation methods in the15
following subsections.

3.1. Distributive relaxation17

In order to relax Lhuh= fh, a ghost variable wh is used with uh=Chwh and the transformed
system LhChwh= fh is considered in distributive relaxation [1, 15]. Ch is chosen such that the19
resulting system LhCh is triangular [16]. The transformed system is then suited for decoupled

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:000–000
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smoothing. The distributor, introduced in Reference [3], that ful�ls these requirements for1
poroelasticity reads

Ch=




Ih 0 −(@x)h=2
0 Ih −(@y)h=2

(�+ �)(@x)h=2 (�+ �)(@y)h=2 −(�+ 2�)�h


 (5)

3

with identity Ih. The transformed system reads, combine (4) and (5),

LhCh=




−��h 0 0

0 −��h 0

LC3;1h LC3;2h ã(�+ 2�)�2
h −�h


 (6)

5

with

LC3;1h =(@x)h=2 − ã(�+ �)((@xxx)h=2 + (@xyy)h=2)7

and

LC3;2h =(@y)h=2 − ã(�+ �)((@xxy)h=2 + (@yyy)h=2)9

where the discrete operators appearing read (in stencil notation),

(@x)h=2
∧=
1
h
[−1 ? 1]h; (@xxx)h=2

∧=
1
h3
[−1 3 ? −3 1]h

(@xxy)h=2
∧=
1
h3



1 −2 1

?

−1 2 −1



h

; �2
h

∧=
1
h4




1

2 −8 2

1 −8 20 −8 1

2 −8 2

1



h

(The other discrete operators are given by analogous stencils.) Notice that the diagonal el-11
ements of the triangular LhCh are factors of det(Lh) (discrete version of (3)), which is a
highly desirable feature.13
In detail, the distributive relaxation consists of two steps, the predictor and the corrector. In

the predictor step, a new approximation �wm+1 to the ‘ghost variable’ �w=(�wu; �wv; �wp)T15
is computed,

LhCh�wm+1 = rmh (7)17

with residual rmh =Lhu
m
h − fh.

The �rst two equations in (6), (7) can be smoothed with an e�cient smoother for the19
Laplace operator. This is typically the well-known red–black Gauss–Seidel relaxation (in 2D

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:000–000
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and 3D) [17, 18], which is well parallelizable. The corresponding smoothing factor in 2D is1
0.063 for two iterations.
The challenging task here is to �nd a highly e�cient smoother for the third equation3

in (7),

(ã(�+ 2�)�2
h −�h)�wp= r3; h (8)5

(with r3; h composed of the terms LC3;1h ; LC
3;2
h and Q).

There are several ways of smoothing the operator in (8). Good smoothing factors are7
obtained with an overrelaxation parameter ! in red–black Jacobi point relaxation (RB-JAC),
as shown in Reference [3]. This is a red–black scheme, where Jacobi is employed within each9
colour. A suitable overrelaxation parameter for the combination of the two operators, �2

h and
�h, is != 25

18 ≈ 1:4 [19]. The smoothing factor for two iterations is bounded by 1
4 for all mesh11

sizes and problem parameters [3]. The overrelaxation is performed after a complete RB-JAC
step in a multi-stage fashion (not-as usual-within a RB-JAC relaxation). This smoother is13
abbreviated by dist bih rb.
A multi-stage variant of any arbitrary relaxation Sh is given by15

m̃∏
i=1

((1−!i)Ih +!iSh)

with discrete identity Ih and multi-stage relaxation parameters !i (i=1; : : : ; m̃). As a second17
variant, we also include a 2-stage version of the RB-JAC method for Equation (8). Suitable
multi-stage parameters are in this case !1 = 2:1; !2 = 1 [19]. This smoother is abbreviated19
by dist bih ms.
Next, we consider a di�erent approach for the third equation, that avoids smoothing directly21

for a biharmonic operator. This approach (similar to Reference [20]) may therefore be more
easily applied in the case of curved grids. An e�cient smoother is found by splitting the23
operator in the third equation, as follows

−�hqh= r3; h (−ã(�+ 2�)�h + 1)�wp= qh (9)25

with extra slack variable qh. This way, we deal with simple operators of Laplace-type for
smoothing. The two operators in (9) can be smoothed with red–black Gauss–Seidel itera-27
tion, but also with line-wise Gauss–Seidel relaxation methods. We evaluate the variant with
red–black Gauss–Seidel relaxation (dist 2lp rb) and one with alternating line Gauss–Seidel29
(dist 2lp lin) in the numerical experiments. In an alternating line Gauss–Seidel method, lines
in the x and y directions are processed. Of course, line-wise relaxation methods are mainly31
applicable on structured grids, as we have them here in our applications.
In dist 2lp rb, an underrelaxation parameter !=0:85 (obtained experimentally) is necessary33

for fast convergence of (9). Line-wise Gauss–Seidel relaxation is necessary for satisfactory
multigrid convergence in the case of stretched grid test problems (we employ standard geo-35
metric grid coarsening). A relaxation of zebra line type, in which �rst all odd numbered lines
are processed before all even numbered lines, did not lead to faster multigrid convergence37
and is therefore not included. Notice that the four distributive variants mainly di�er in the
treatment of the third scalar equation. The other di�erence is that the line-wise variant also39
employs line smoothing for the �rst two equations.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:000–000
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(a) i

j

(b)

Figure 2. ‘Three unknown’ coupled relaxation: (a) triad-wise; (b) x-line-wise; ×: ph; ◦ : uh; • : vh.

In the corrector step, the new approximation for uh is then added to the present approxi-1
mation as

um+1h = umh + �u
m+1
h = umh +Ch�w

m+1 (10)3

This is just a matrix–vector product. The implementation is straightforward.
The distributive relaxation is designed such that its performance should be independent of5

problem parameters, like the Lam�e coe�cients or the time step.

Remark: boundary conditions7
In distributive smoothing, the order of LhCh is higher than the order of Lh and hence boundary
conditions for corrections �w need to be supplied. There is considerable freedom in select-9
ing the boundary conditions. For our model applications, we can use simple Dirichlet and
Neumann boundary conditions for �w, whenever we prescribe them for u. For poroelasticity11
problems with a prescription of stress components, for example, the proper treatment will
depend on the speci�c boundary condition.13

Remark: number of smoothing steps
In principle, it is not necessary to employ the same number of smoothing steps for both15
operators in (9). In our case, however, using one relaxation step for each operator brings the
fastest convergence.17

3.2. Coupled relaxation

Straightforward generalization of coupled smoothing with unknowns in a staggered grid ar-19
rangement is to relax triads of three unknowns, ui; j; vi; j and pi; j, simultaneously. Figure 2(a)
shows a triad.21
In the ‘triad-wise’ variant, a small 3× 3-matrix must be solved, for all triads in the staggered

grid. It is convenient to consider the correction equations23 

a1;1 a1;2 a1;3

a2;1 a2;2 a2;3

a3;1 a3;2 a3;3






�ui; j

�vi; j

�pi; j



m+1

=



r1i; j

r2i; j

r3i; j



m

(11)

where a3;3 can be an extremely small entry from the third diagonal block of the system.25
(During the elimination process a3;3 is replaced by larger elements.) In the correction equa-
tion setting, it is easily possible to discard certain elements in (11), for example, the ele-27
ments a1;2; a2;1 related to the mixed derivatives. This is not necessary for our applications.

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:000–000
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i

j

(a) (b)

Figure 3. Five unknown coupled relaxation: (a) cell-wise; (b) x-line-wise; ×: ph; ◦ : uh; • : vh.

Afterwards, the correction is added to the current approximation, possibly with a relaxation1
parameter,

um+1i; j = umi; j +!Tum+1i; j3

We use !=1.
The triads can be processed in di�erent orderings. An obvious choice for triad numbering5

is the lexicographic Gauss–Seidel ordering, but also the red–black Gauss–Seidel ordering may
be promising for this system. The red–black ordering has advantages over the lexicographic7
for parallel processing purposes. These variants are abbreviated by triad lex and triad rb,
respectively. The relaxation can be performed in triad-wise or in a line-wise fashion if grid9
anisotropies occur in a test problem. Zebra or lexicographic line Gauss–Seidel ordering is then
appropriate. For each line a block tridiagonal matrix has to be inverted. Figure 2b presents the11
line-wise variant of this coupled smoothing process. We include an alternating line Gauss–
Seidel version in the comparison, denoted by triad lin.13
It is reported in Reference [2] that the triad smoother is not satisfactorily for incompressible

Navier–Stokes equations. A better alternative is a coupled smoother [2], that locally updates15
all unknowns appearing in the divergence operator in the third equation (4) simultaneously. In
practice, this means that instead of the three unknowns (11), �ve unknowns (pressure pi; j, 217
times uh- and vh-displacements, ui; j; ui−1; j ; vi; j ; vi; j−1, centred around a pressure point) should
be relaxed simultaneously. ‘Cell-wise’ smoothing is shown in Figure 3(a). A small 5× 5-19
matrix must be inverted for each cell. Notice that the word ‘cell’ does not relate to a grid
cell here, as the unknowns are centred around a pressure point. It is used to distinguish both21
coupled smoothers. For incompressible Navier–Stokes equations, the corresponding cell-wise
relaxation method is sometimes called the ‘Vanka smoother’ after the author of the �rst paper23
[2]. In one smoothing iteration all displacement unknowns are updated twice, whereas pressure
unknowns are updated once. This makes an iteration with this smoother more expensive than25
the triad smoother. For the cell-wise version the orderings can again be lexicographic or
red–black. The two variants are abbreviated by vanka lex and vanka rb, respectively.27
Figure 3(b) presents the line-wise version of the Vanka smoother. It has been used in the

CFD context in References [21, 22]. The line-wise versions can be in lexicographic, zebra line29
or in alternating line ordering. The block matrices to be inverted are somewhat more involved
than those for the line-wise triad smoother. The cost of a coupled line-wise iteration, however,31
is substantially higher than the cost of distributive line-wise relaxation. An alternating line
Gauss–Seidel version is evaluated, denoted by vanka lin.33

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:000–000
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Figure 4. Fine and coarse grid cells and unknowns, ◦: uH point, •: vH point, ×: pH point.

Remark: (coupled line smoothing)1
In numerical poroelasticity experiments with stretched grids in Section 4, it is found that
the multigrid methods with the coupled line-wise versions only converge satisfactorily, if the3
terms with mixed derivatives in (4) are not included in the block matrix but placed in the
right-hand side instead. Otherwise, due to problems with the diagonally dominance of the5
block matrices slow convergence is observed.

3.3. Coarse grid correction7

In the multigrid method we choose standard geometric grid coarsening on the Cartesian grids,
i.e. the sequence of coarse grids is obtained by doubling the mesh size in each space direction.9
This is indicated by the subscript ‘2h’. An appropriate coarse grid correction consists of
geometric transfer operators Rh;2h, P2h; h, and direct coarse grid discretization (i.e. coarse grid11
analog of Lh). For the poroelasticity system there is no bene�t in using the Galerkin coarse
grid discretization. The Galerkin coarse grid discretization merely results in a larger stencil13
here. For real-life problems with jumps in the permeability coe�cient �, we may need to
reconsider Galerkin coarse grid operators, as they lead to natural coarse grid operators for15
problems with jumping coe�cients.
The transfer operators that act on the di�erent unknowns are dictated by the staggered grid,17

see Figure 4. At u- and v-grid points we consider 6-point restrictions and at p-grid points a
9-point restriction. In stencil notation they are given by19

Ruh;2h
∧=
1
8



1 1

2 ? 2

1 1



h

; Rvh;2h
∧=
1
8



1 2 1

?

1 2 1



h

; Rph;2h
∧=
1
16



1 2 1

2 4 2

1 2 1



h

(12)

respectively. As the prolongation operators Pu=v=p2h; h , we apply the usual interpolation operators21
based on bilinear interpolation of neighbouring coarse grid unknowns in the staggered grid.

3.4. Number of �oating point operations23

As a measure for the performance of the respective multigrid methods, we count the num-
ber of �oating point operations (�ops) during the iterative solution of the time-dependent25
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poroelasticity test problems. This may give additional insight in the di�erence in CPU time1
spent, for example, in coupled and decoupled, in ‘point-wise’ and line-wise relaxation or in
multigrid V- and F-cycles. The number of �ops is independent of the hardware on which3
the problems are solved. For simplicity, we count here additions, multiplications and also
divisions as one �op.5

4. NUMERICAL EXPERIMENTS

In the numerical experiments, we evaluate the smoothers described. We summarize the ab-7
breviations introduced for the smoothers

dist bih rb : distributive, 3rd eq. based on bih. op., red–black Jac. !=1:4
dist bih ms : distr., 3rd eq. bih. op., ms. red–black Jac. !1 = 2:1; !2 = 1:0
dist 2lp rb : distr., 3rd eq. based on 2 Laplace op., red–black GS, !=0:85
dist 2lp lin : distr., 3rd eq. based on 2 Laplace op., alt. line GS, !=1:0

triad lex : triad-wise coupled, lexicographic GS, !=1
triad rb : triad-wise coupled, red–black GS, !=1
triad lin : triad-line-wise coupled, alt. line GS, !=1

vanka lex : cell-wise coupled, lexicographic GS, !=1
vanka rb : cell-wise coupled, red–black GS, !=1
vanka lin : cell-line-wise coupled, alt. line GS, !=1

9
The measure for convergence is related to the absolute value of the residual after the mth
iteration in the maximum norm over the three equations in the system,11

resm= |r1; h|+ |r2; h|+ |r3; h|

The multigrid convergence factor �h presented in the tables below is then given by13

�h=
5

√
resm

resm−5 (13)

For m the last iteration is chosen before the stopping criterion is met. This quantity is typically15
somewhat better than the asymptotic convergence factor.
In the following sections, we report on the multigrid convergence of the numerical experi-17

ments. Corresponding analysis results based on Fourier analysis are available for some of the
smoothers, but they will be presented elsewhere. The analysis results agree well with our nu-19
merical convergence, which indicates that our straightforward boundary (and near-boundary)
treatment in the smoothing methods does not in�uence the convergence negatively.21

4.1. Multigrid convergence for �rst model problem

Some analytical reference solutions are known in the literature [23] for (1) in dimensionless23
form, where scaling has taken place with respect to a characteristic length of the medium ‘,
Lam�e constants �+ 2�, time scale t0 and a.25
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Figure 5. Numerical solution for displacement and pressure for
2D poroelasticity reference problem, 322-grid.

By choosing a unit squared domain, a source term Q=2 sin t̂ · �0:25;0:25 (t̂=(�+2�)at, � is1
the Kronecker delta function), the following boundary and initial conditions:

at y= {0; 1}; u=0; @v=@y=0

at x= {0; 1}; v=0; @u=@x=0

and pressure p=0 at the boundaries, we can mimic the dimensionless situation. In this3
case, the solution can be written as an in�nite series [23]. An interesting feature is that this
solution is independent of the Lam�e coe�cients. Figure 5 shows for this setting the computed5
displacement and pressure solution at time t̂=�=2. The solution resembles the exact solution in
Reference [23] very well, see also [3]. O(h2+�t2) accuracy is observed for the displacements,7
and, asymptotically, for the pressure too (despite the occurrence of the delta function which
usually in�uences the numerical accuracy negatively) [3].9
This reference problem is solved with multigrid. In the various multigrid methods compared

here, only the smoother changes. We start the evaluation with a basic form of the equa-11
tions, by choosing the Lam�e coe�cients in (4) as �=0; �= 1

2 and coe�cient ã=0:5a�t=
5× 10−3 (a=1; �t=10−2). We consider here the multigrid convergence in the �rst time step13
with di�erent mesh sizes ranging from h= 1

64 to
1
256 . These convergence statistics are repre-

sentative for all other time steps.15
Table I shows the V(1,1)- and F(1,1)-cycle results for the four variants of distributive

relaxation, whereas Table II compares the four coupled relaxation methods. They present17
the convergence factor �h (13), the number of iterations to reach the stopping criterion in
brackets, and correspondingly the CPU time in seconds needed for this �rst time step. The19
stopping criterion is chosen as the absolute residual over all unknowns to be less than 10−9.
This criterion is too severe for realistic applications, but well-suited for our investigation of21
the multigrid convergence. The PC used for the timing results is a Pentium IV with 2:6Mhz.
A matrix–free version of multigrid is used; the CPU times include the time for computing23
the operator elements.
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Table I. V(1; 1)- and F(1; 1)-multigrid convergence factors with distributive smoothing;
in brackets, the average number of iterations for a residual reduction to 10−9, and the

corresponding CPU time in econds.

Smoother

Cycle Grid dist bih rb dist bih ms dist 2lp rb dist 2lp lin

V(1,1) 2562 0.24 (16) 49′′ 0.16 (13) 37′′ 0.20 (15) 42′′ 0.15 (12) 33′′

1282 0.23 (15) 12′′ 0.15 (12) 9′′ 0.19 (14) 10′′ 0.15 (11) 8′′

642 0.21 (13) 3′′ 0.15 (11) 2′′ 0.18 (13) 2′′ 0.15 (11) 2′′

F(1,1) 2562 0.15 (13) 51′′ 0.10 (11) 42′′ 0.12 (12) 44′′ 0.10 (11) 41′′

1282 0.14 (13) 13′′ 0.10 (11) 10′′ 0.12 (11) 10′′ 0.10 (10) 10′′

642 0.13 (12) 4′′ 0.10 (11) 2′′ 0.11 (10) 2′′ 0.10 (9) 2′′

Table II. V(1; 1)- and F(1; 1)-multigrid convergence factors with coupled smoothing; in
brackets, the average number of iterations for a residual reduction to 10−9, and the

corresponding CPU time in seconds.

Smoother

Cycle Grid triad lex triad rb vanka lex vanka rb

V(1,1) 2562 0.24 (16) 62′′ 0.23 (16) 62′′ 0.17 (14) 83′′ 0.10 (11) 65′′

1282 0.24 (16) 16′′ 0.23 (15) 15′′ 0.17 (13) 20′′ 0.10 (10) 15′′

642 0.20 (15) 3′′ 0.22 (14) 3′′ 0.17 (12) 5′′ 0.10 (10) 4′′

F(1,1) 2562 0.20 (15) 76′′ 0.17 (13) 66′′ 0.17 (14) 111′′ 0.07 (10) 78′′

1282 0.20 (15) 19′′ 0.17 (13) 18′′ 0.17 (13) 27′′ 0.07 (9) 18′′

642 0.20 (15) 5′′ 0.17 (12) 4′′ 0.17 (12) 6′′ 0.07 (9) 5′′

An h-independent convergence can be observed in the tables for all variants of distributive1
and coupled relaxation for these problem parameters for the F-cycle. Especially, the CPU time
results of the distributive variants are very satisfactory. The fastest method is the alternating3
line smoother based on the splitting into two Laplace-type operators. This may be somewhat
surprising for a problem without any grid anisotropies. The multi-stage variant dist bih ms is5
equally fast. It is, however, slower than we would expect from Fourier smoothing analysis
results. In the case of two smoothing iterations, the smoothing factor of dist bih ms is 0.0257
(for dist bih rb it is 0.25). However, a Fourier two-grid analysis already shows that these
excellent smoothing factors cannot be maintained in a two-grid method. The corresponding9
Fourier two-grid factors are for dist bih ms 0.13 and for dist bih rb 0.24. The results in
Table I are somewhat better than these asymptotic two-grid Fourier analysis factors.11
The CPU time of the coupled smoothing methods in Table II is somewhat higher than

of the methods from Table I, although a similar number of iterations is needed to meet the13
convergence criterion. Among the coupled smoothers, the Vanka smoothers are more expen-
sive than the triad smoothers. This is because the Vanka smoother treats each displacement15
unknown twice. An interesting observation is that the convergence with the Vanka smoother
is improved by red–black relaxation of the cells, whereas a red–black relaxation of triads does17
not improve the multigrid convergence.
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Furthermore, the V-cycle seems su�cient for this problem; it is fastest and shows (almost)1
h-independent behaviour. From this single experiment, we cannot yet distinguish clearly be-
tween methods.3

4.2. Smaller time steps

We keep the problem formulation of the previous section, but vary systematically some prob-5
lem parameters. The �rst parameter that varies in this section is the time step �t. (The Lam�e
coe�cients are kept at �=0; �= 1

2 .) The time step is chosen smaller: It ranges now from7
10−3 to 10−6. This a�ects ã in (2). In the case of pressure boundary layers in the initial stage
of a consolidation process, such small time steps are realistic. The grid size is set to 2562. As9
the coe�cient in the third diagonal block of the poroelasticity system now tends to zero, we
expect that the triad smoother may fail to converge (as observed for incompressible Navier–11
Stokes in Reference [2]). Figure 6 presents convergence plots for V(1,1)- and F(1,1)-cycles
with the three smoothers triad rb (Figures 6(a) and 6(b)), vanka rb (Figures 6(c) and 6(d))13
and dist 2lp rb (Figures 6(e) and 6(f)). The other variants did not lead to other convergence
tendencies. Within the �gures the time step is varied. Figure 6(a) contains �t=10−5, instead15
of �t=10−6 in the other pictures. This is because �t=10−5 is the �rst time step for which
divergence with the triad smoother in the V(1,1)-cycle is observed. Note that the y-axis is17
in a logarithmic scale. Figure 6 shows that both coupled smoothers are more sensitive to the
variation of the time step than the distributive smoother: The convergence slope in Figures19
6(e) and 6(f) is independent of �t. The robustness of the triad smoother is clearly limited,
as in Figures 6(a) and 6(b) the multigrid convergence degrades severely for extremely small21
time steps. The convergence of the Vanka smoother is also sensitive with respect to variations
in �t: smaller �t leads to slower convergence. From this experiment, the distributive relaxation23
is to be preferred for extremely small time steps.

4.3. Variation of Lam�e coe�cients25

In this section, we vary the Lam�e coe�cients and investigate their e�ect on the multigrid
convergence. The grid for these tests is 2562; time step �t=0:1. Two cases are compared:27
�=�=1 and �=103; �=104. Table III presents for both, the distributive and the coupled,
relaxation methods V(1,1)- and F(1,1)-cycle multigrid convergence in the �rst time step. Next29
to convergence factor �h (13), the number of iterations to reduce the absolute value of the
residual to less than 10−9 is shown. As expected [3], Table III shows that the multigrid31
methods with distributive relaxation converge at the same speed, independent of the size of
the Lam�e coe�cients. It is also very similar to the convergence in Table I. The convergence33
with the triad smoother depends on the Lam�e coe�cients (�=�=1 converges slower than the
second case); for the Vanka smoother this is not the case. Overall, all results are impressive35
for such a complicated system.
Table IV presents, in addition, the number of �ops to reduce the residual to the more37

realistic value of 10−5 for all methods. The Lam�e coe�cients are set to �=103; �=104, the
grid is 2562; �t=0:1. The total number of �ops is given for one and for �ve time steps.39
Table IV con�rms the convergence tendency from Table III for �=103; �=104. Again the
V(1,1)-cycle in the distributive relaxation dist 2lp lin performs best. The multi-stage distribu-41
tive smoother also performs very well. For this parameter set, however, the red–black version
of the triad smoother converges well. The Vanka smoother is more expensive. Furthermore,43
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Figure 6. Multigrid convergence for very small time steps: (a) V-cycle, triad smoother; (b) F-cycle,
triad smoother; (c) V-cycle, Vanka smoother; (d) F-cycle, Vanka smoother; (e) V-cycle, distributive

smoother; (f) F-cycle, distributive smoother.

the number of �ops needed for �ve time steps is about �ve times the number for one time1
step. This indicates that the convergence in the �rst time step is a representative measure for
the total process.3

4.4. Problem with realistic parameters

Next, we evaluate a poroelasticity test problem with more realistic parameters. These are5
the following. The domain size is larger, �= (−50; 50)× (0; 100); the Lam�e coe�cients are
�=8333; �=12500; the porosity is a=�=�=10−6. As the boundary conditions for the pres-7

Copyright ? 2004 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:000–000



UNCORRECTED P
ROOF

16 F. J. GASPAR ET AL.

NLA372

Table III. 2562-grid multigrid convergence factors with distributive and coupled smoothing, variation
in Lam�e coe�cients.

Smoother

Cycle �; � dist bih rb dist bih ms dist 2lp rb dist 2lp lin

V(1,1) 1,1 0.25 (20) 0.21 (17) 0.21 (19) 0.18 (15)
F(1,1) 1,1 0.19 (16) 0.10 (13) 0.11 (14) 0.10 (13)
V(1,1) 103; 104 0.25 (20) 0.21 (17) 0.21 (19) 0.18 (15)
F(1,1) 103; 104 0.19 (16) 0.10 (13) 0.12 (14) 0.10 (13)

triad lex triad rb vanka lex vanka rb

V(1,1) 1,1 0.35 (23) 0.38 (24) 0.16 (16) 0.12 (13)
F(1,1) 1,1 0.34 (21) 0.30 (19) 0.18 (16) 0.08 (11)
V(1,1) 103; 104 0.27 (20) 0.27 (19) 0.16 (16) 0.11 (13)
F(1,1) 103; 104 0.23 (17) 0.18 (15) 0.18 (16) 0.08 (11)

Table IV. Number of �ops (× 109) to reach resm610−5 for one and �ve time steps, with distributive
and coupled smoothing, �=103; �=104.

Smoother

Cycle No. steps dist bih rb dist bih ms dist 2lp rb dist 2lp lin

V(1,1) 1 1.35 1.40 1.74 1.32
5 6.15 6.33 7.80 6.01

F(1,1) 1 1.63 1.50 1.74 1.55
5 7.51 6.93 7.92 7.01

triad lex triad rb vanka lex vanka rb

V(1,1) 1 1.42 1.42 2.17 1.53
5 6.48 6.23 9.79 7.00

F(1,1) 1 1.73 1.39 2.90 2.04
5 7.95 6.26 11.3 9.05

sure, we set1

p=

{
1 on �1: |x|620; y=100;
0 on �\�1

The boundary conditions for the displacements are identical to the ones prescribed in3
Section 4.1. The grid size varies between 1

64 and
1
256 ; the time step is �xed, �t=1:0. We

present the V(1,1)-cycle convergence by means of the convergence factor and, in brackets,5
the number of iterations to reach the stopping criterion for some selected relaxation methods.
The stopping criterion per time step was chosen as the absolute residual to be again less than7
10−9. Further, the CPU time spent until convergence is presented (Table V). From this table,
the superiority of dist 2lp lin among the ones presented becomes obvious. The triad smoother9
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Table V. V(1; 1) multigrid convergence factors, and, in brackets, the average number of iterations per
time step, and CPU time (s) for di�erent smoothers.

Smoother triad lex dist 2lp lin dist 2lp rb vanka lex

2562 ¿50 0.08 (8) 22′′ 0.20 (14) 46′′ 0.45 (22) 144′′

1282 ¿50 0.08 (8) 5′′ 0.20 (14) 11′′ 0.54 (27) 44′′

642 ¿50 0.08 (8) 1′′ 0.19 (13) 3′′ 0.50 (26) 11′′

Figure 7. Numerical solution for displacement and pressure (in di�erent orientations) for the 2D
poroelasticity reference problem of Section 4.5.

fails to converge within 50 iterations. The red–black versions of coupled smoothing led to1
worse convergence. The other distributive smoothers performed well, as expected.
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Figure 8. Multigrid convergence with dist 2lp lin on a 16× 128 grid, and varying time step.
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Figure 9. Multigrid convergence with triad lin on a 16× 128 grid, and varying time step.

4.5. Anisotropic grids; grid stretching1

Another analytic solution is obtained with source term Q=0 and a non-zero pressure boundary
condition prescribed on the lower edge, as3

p(x; y=0; t̂)= (H (x − 0:4)−H (x − 0:6)) sin t̂; t̂=(�+ 2�)at

with H (·) the Heaviside function. The displacement boundary conditions are as in Section 4.1.5
Also in this case, an analytic solution is obtained [23]. The numerical solution is depicted in
Figure 7. In the solution a rapidly varying pressure at the lower boundary can be observed.7
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Figure 10. Multigrid convergence with vanka lin on a 16× 128 grid, and varying time step.

This test case serves as the evaluation of stretched grids in order to capture the pressure1
gradient accurately. The grids are chosen such that the line-wise versions of the distributive
and coupled relaxation methods are most favourable. The computational domain �= (0; 1)23
is discretized with 16× 128 grid cells. We use four grids in the multigrid solver. Figure 8
presents the convergence for dist 2lp lin, the distributive alternating line relaxation. The pa-5
rameters used are �=�= a=1. The time step is varied; the plot presents the convergence
with di�erent time steps. Figure 8 shows a very satisfactory convergence with distributive7
relaxation for all values of �t. Figure 9 shows the corresponding convergence with the alter-
nating line-wise triad smoother triad lin. It can be observed in Figure 9 that also the line-wise9
version of the triad smoother is very sensitive to the size of the time step. For extremely small
steps, the method no longer converges. For larger time steps, however, the convergence is11
satisfactory.
Figure 10 then shows the multigrid convergence with the coupled Vanka alternating line-13

wise smoother vanka lin. For very small time steps, �t=0:001, for example, also this line-wise
version does not converge. Obviously, the line-wise distributive smoother is to be preferred,15
as it is most robust.
With respect to the computational costs of the di�erent line-wise smoothers, the distributive17

smoother is clearly to be preferred. The coupled line-wise smoothers are at least 1.5 times
more expensive than the distributive version.19
In the distributive version, only tridiagonal systems need to be solved, whereas in the

coupled line-wise smoothers more complicated block matrices must be inverted.21

5. CONCLUSIONS

We evaluate multigrid solution methods for a fast solution of the incompressible poroelasticity23
equations. For stability reasons, a staggered grid discretization has been adopted.
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For the system, we have compared distributive relaxation methods with two variants of1
coupled smoothing, triad-wise and cell-wise. The other multigrid components are based on
standard grid coarsening, geometric transfer operators and a direct coarse grid discretization.3
From the various systematic multigrid tests, in which many parameters have been varied,

the methods based on distributive relaxation are the favourites. They are most e�cient, and5
they are robust. The convergence of the methods based on distributive relaxation, especially
of the multi-stage variant for the operator with a biharmonic term, and of the alternating line7
relaxation for the split operator, are highly e�cient, insensitive to changes in the time step,
or the Lam�e coe�cients. For implementation on parallel computers with distributed memory,9
the multi-stage variant is most easily parallelizable. As the distributive variant based on line
smoothing is also able to deal with stretched grids, this method is to be preferred.11
The coupled triad smoothers are not robust with respect to extremely small time steps. The

coupled smoothers of Vanka-type are more robust, but most often more expensive than the13
distributive relaxation methods. This is especially true for the line-wise versions of coupled
smoothing.15
In this paper we have evaluated the asymptotic multigrid convergence of some highly

e�cient multigrid variants. For the most e�cient methods the convergence is close to 0.1017
for all the test problems presented. These excellent multigrid convergence factors are also
the basis for full multigrid (FMG) methods, in which the iteration starts on the coarsest grid19
and, after reaching the �nest grid, only one additional cycle is necessary to obtain the desired
accuracy of the solution. For time-dependent problems full multigrid methods (i.e. starting21
each time step on the coarse grid) are somewhat arti�cial as a good starting guess, that is
the solution of the previous time step, exists. But, in principle with the convergence factors23
presented, full multigrid techniques may provide even more e�cient solvers for our problems.
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