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Abstract

In this paper, we present a robust distributive smoother in a multi-
grid method for the system of poroelasticity equations. Within the
distributive framework, we deal with a decoupled system, that can be
smoothed with basic iterative methods like an equation-wise red-black
Jacobi point relaxation. The properties of the distributive relaxation
are optimized with the help of Fourier smoothing analysis. A highly
efficient multigrid method results, as is confirmed by Fourier two-grid
analysis and numerical experiments.
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1 Introduction

Poroelasticity theory addresses the time dependent coupling between the
deformation of porous material and the fluid flow inside. The porous matrix
is supposed to be saturated by the fluid phase. The state of this continu-
ous medium is characterized by the knowledge of elastic displacements and
fluid pressure at each point. A phenomenological model for a rather general
situation was first proposed and analyzed by Biot [1], studying the consoli-
dation of soils. Poroelastic models are used nowadays to study problems in
geomechanics, hydrogeology, petrol engineering and biomechanics [9, 4].

In this paper, we present an efficient multigrid method for the system
of poroelasticity equations. In particular, we introduce a robust point-wise
smoothing method based on distributive iteration. In distributive smoothing
the original system of equations is transformed by post-conditioning in order
to achieve favorable properties, such as a decoupling of the equations and/or
possibilities for point-wise smoothing. A specialty lies in the discretization
approach employed. We adopt a staggered grid for the poroelasticity equa-
tions as in [5, 6]. A popular alternative is to use finite elements, see, for
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example, [10] for the quasi-static problem or [12] for the dynamic problem.
Standard finite differences do not lead to stable solutions without additional
stabilization. Throughout this paper we concentrate on Cartesian equidis-
tant grids.

The multigrid method is developed on the basis of Fourier analysis of
increasing complexity [2, 14]. The h-ellipticity concept is discussed, which
is fundamental for the existence of point-wise smoothers. The distributive
smoother is developed based on insights from the Stokes and incompressible
Navier-Stokes equations [2, 3, 14, 18]. Optimal relaxation parameters are
obtained with smoothing analysis, leading to a relaxation method, that is
robust w.r.t. the problem parameters like Lamé coefficients, permeability
of the porous medium, viscosity of the fluid, and time step and grid size.
Furthermore, the multigrid method is analyzed by Fourier two-grid analy-
sis [2, 13, 14] demonstrating an efficient interplay between relaxation and
coarse grid correction.

The outline of this paper is as follows. The model and discretization are
described in section 2. In section 3, the separate components of the multi-
grid solution method are presented and analyzed in different subsections;
in section 3.2 the h-ellipticity measure of the discretization, in sections 3.3
and 3.4 the relaxation method, and in section 3.5 the coarse grid correc-
tion. Numerical multigrid results are presented in section 4, confirming the
theoretical considerations.

2 Mathematical model and discretization

2.1 Continuous system

The poroelastic model can be formulated as a system of partial differential
equations for displacements and the pressure of the fluid. One assumes the
material’s solid structure to be linearly elastic, initially homogeneous and
isotropic, the strains imposed within the material are small. We denote
by u = (u, v, p)T the solution vector, consisting of the displacement vector
u = (u, v)T and pore pressure of the fluid p. The incompressible, two-
dimensional variant of Biot’s consolidation model reads

−(λ + 2µ)uxx − µuyy − (λ + µ)vxy + px = 0,

−(λ + µ)uxy − µvxx − (λ + 2µ)vyy + py = 0, (1)

(ux + vy)t − a (pxx + pyy) = Q

(plus initial and boundary conditions) with λ, µ(≥ 0) the Lamé coefficients,
a = κ/η ≥ 0 with κ the permeability of the porous medium and η the
viscosity of the fluid, and Q the source (representing an injection or ex-
traction process), see [1]. Problem (1) is a limit of the compressible case.
The compressible system will be easier to solve, however, due to an extra
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contribution to the main diagonal of the matrix related to this system. We
concentrate on a solver for the two-dimensional incompressible case, and
focus on a model operator L which is suitable for analysis. It reads

L =



−(λ + 2µ)∂xx − µ∂yy −(λ + µ)∂xy ∂x

−(λ + µ)∂xy −µ∂xx − (λ + 2µ)∂yy ∂y

∂x ∂y −ã (∂xx + ∂yy)


 .

(2)
L can be interpreted as a “stationary variant” of (1), i.e., the operator
after an implicit (semi-) discretization in time. For example, in case of
Crank-Nicholson time discretization we have ã = 0.5aδt. From (2) one may
calculate the corresponding determinant:

det (L) = −µ∆
(
ã(λ + 2µ)∆2 − ∆

)

with Laplace operator ∆ and biharmonic operator ∆2. The principal part
of det (L) is ∆m with m depending on the choice of λ, µ, and ã. Due to
physical reasons, we always have µ, ã, λ + 2µ > 0, yielding m = 3. The
number of boundary conditions that must accompany L is m [2, 14].

A dimensionless version of (1) can be obtained with dimensionless pa-
rameters:

µ̂ = 1 + (λ/µ) (= 1/(1 − 2ν), with Poisson ratio ν), (3)

x̂ = x/`, ŷ = y/`, t̂ = (λ + 2µ)at/`2, Q̂ = `2Q/(a(λ + 2µ)), and unknowns
û = u/`, v̂ = v/`, p̂ = p/(λ+2µ). Here, scaling has taken place with respect
to a characteristic length of the porous medium `, the Lamé constant λ+2µ,
time scale t0, and a in (1).

2.2 Discrete system

The time-dependent operator (2) suffers from stability difficulties. The co-
efficient in the L3,3-block in (2) is typically, depending on the time step,
extremely small. In order to avoid oscillating solutions, the discretization
has to be designed with care. To overcome the stability difficulties in finite
differences, a staggered grid was proposed in [5, 6]. We adopt this methodol-
ogy for system (1), using central differences on a uniform staggered grid with
mesh size h. Staggering is, of course, a well-known discretization technique
in computational fluid dynamics, in particular for incompressible flow [8, 16].

Often in poroelasticity problems pressure values are prescribed at the
physical boundary. So, pressure points in the staggered grid should be lo-
cated at the physical boundary, and the displacement points are then defined
at the cell faces. Therefore, a divergence operator is naturally approximated
by a central discretization of the displacements in a cell, see Figure 1. Notice
that the staggered placement of unknowns here is different from incompress-
ible Navier-Stokes, because of the pressure placement. The two-dimensional
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(infinite) staggered grid employed is composed of three types of grid points,
Gh = G1

h ∪ G2
h ∪ G3

h, where

Gj
h :=

{
x

j
h =

(
xj

h, yj
h

)
:= (kx, ky)h + sj; (kx, ky) ∈ ZZ

2
}

, (4)

with

u − grid points x1
h ∈ G1

h with s1 = (h/2, 0),

v − grid points x2
h ∈ G2

h with s2 = (0, h/2),

p − grid points x3
h ∈ G3

h with s3 = (0, 0)

and a uniform mesh size h, see Figure 1.
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Figure 1: Staggered location of unknowns for poroelasticity.

The discrete system

Lhuh =




L1,1
h L1,2

h L1,3
h

L2,1
h L2,2

h L2,3
h

L3,1
h L3,2

h L3,3
h







uh(x1
h)

vh(x2
h)

ph(x3
h)


 = fh (5)

based on (2) reads at u-grid points:

−(λ + 2µ)(∂xx)huh − µ(∂yy)huh − (λ + µ)(∂xy)h/2vh + (∂x)h/2ph = 0, (6)

at v-grid points:

−(λ + µ)(∂xy)h/2uh − µ(∂xx)hvh − (λ + 2µ)(∂yy)hvh + (∂y)h/2ph = 0, (7)

and at p-grid points:

(∂x)h/2uh + (∂y)h/2vh − ã(∂xx)hph − ã(∂yy)hph = Q. (8)

Here, the following discrete operators on the staggered grid (4) are used
(given in stencil notation):

(∂x)h/2
∧
=

1

h

[
−1 ? 1

]
h/2

, −(∂xx)h
∧
=

1

h2

[
−1 2 −1

]
h
,

(∂xy)h/2
∧
=

1

h2




−1 1
?

1 −1




h/2

.
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The “?” denotes the position on the shifted grids G1
h and G2

h at which the
stencil is applied, compare with Figure 1. (∂y)h/2 and −(∂yy)h are given by
analogous stencils.

We choose the Crank-Nicolson discretization in time direction, with
O(δt2) accuracy. Second order accuracy has been obtained for reference
problems with smooth solutions (not shown here).

3 Multigrid solution method

In this context, an efficient solver for the system of poroelasticity equations
discretized on staggered grids is necessary. Multigrid methods (see, for ex-
ample, [2, 7, 14]) are motivated by two basic observations: Firstly many
iterative methods have a strong error smoothing effect if they are applied to
discrete elliptic problems Lhuh = fh. Secondly, a smooth error term can be
well represented on a coarser grid where its approximation is substantially
less expensive. These observations suggest the following structure of a two-
grid cycle for a linear problem, called the correction scheme: Perform n1

steps of an iterative relaxation method Sh on the fine grid (pre-smoothing),
compute the defect of the current fine grid approximation, restrict the de-
fect to the coarse grid using a restriction operator Rh,2h, solve the coarse
grid defect equation, interpolate the correction using a prolongation opera-
tor P2h,h to the fine grid, add the interpolated correction to the current fine
grid approximation (coarse grid correction), perform n2 steps of an iterative
relaxation method on the fine grid (post-smoothing). Hence, the two-grid
error transformation operator is given by

Mh,2h := Sn2

h

(
Ih − P2h,h (L2h)−1 Rh,2hLh

)
Sn1

h = Sn2

h Ch,2hSn1

h , (9)

where Ih denotes the identity and Ch,2h is called the coarse grid correction
operator. Instead of inverting L2h, the coarse grid equation can be solved
by a recursive application of this procedure, yielding a multigrid method.
We assume standard coarsening here, i.e., the sequence of coarse grids is
obtained by repeatedly doubling the mesh size in each space direction. This
is indicated by the subscript “2h”.

The crucial point for any multigrid method is to identify the multigrid
components yielding an efficient interplay between relaxation and coarse
grid correction. A useful tool for a proper selection is local Fourier analysis.

3.1 Basic elements of local Fourier analysis for multigrid

Classical Fourier analysis [2, 13, 14] is often applied to develop efficient
multigrid methods for linear elliptic equations with constant (or frozen) co-
efficients. It is based on the simplification that boundary conditions are
neglected and all occurring operators are extended to an infinite grid. On
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an infinite grid, the discrete solution, its current approximation and the
corresponding error or residual can be represented by linear combinations
of certain exponential functions—the Fourier components—which form a
unitary basis of the space of bounded infinite grid functions. On the stag-
gered grid Gh under consideration, a unitary basis of vector-valued Fourier
components is given by

ϕh (θ,xh) :=




exp
(
iθ · x1

h/h
)

exp
(
iθ · x2

h/h
)

exp
(
iθ · x3

h/h
)


 with θ ∈ Θ := (−π, π]2,

xh := (x1
h,x2

h,x3
h), x

j
h ∈ Gj

h, (j = 1, 2, 3)

and complex unit i =
√
−1 yielding the Fourier space

F (Gh) := span {ϕh (θ,xh) : θ ∈ Θ} .

(For scalar equations defined, for example, on G3
h, the corresponding Fourier

components read ϕh

(
θ,x3

h

)
:= exp

(
iθ · x3

h/h
)
.) Then, the main idea of

local Fourier analysis is to analyze different multigrid components by eval-
uating their effect on the Fourier components.

If standard coarsening in two dimensions is selected, each “low-frequency”

θ = θ00 ∈ Θ2h
low := (−π/2, π/2]2

is coupled with three “high-frequencies”

θ11 := θ00 − (sign (θ1) , sign (θ2))π, θ10 := θ00 − (sign (θ1) , 0) π,

θ01 := θ00 − (0, sign (θ2))π
(
θ11,θ10,θ01 ∈ Θ2h

high := Θ \ Θ2h
low

)

in the transition from Gh to G2h. That is, the related three high-frequency
components are not visible on the coarse grid G2h as they coincide with
the coupled low-frequency component. Now, the Fourier space can be sub-
divided into the corresponding four-dimensional subspaces, known as 2h-
harmonics:

F2h(θ) := span
{
ϕh

(
θ00,xh

)
,ϕh

(
θ11,xh

)
,ϕh

(
θ10,xh

)
,ϕh

(
θ01,xh

)}

(10)
with θ = θ00 ∈ Θ2h

low.

3.2 Measure of h-ellipticity for the fine grid discretization Lh

The h-ellipticity measure is often used to decide whether or not a certain dis-
cretization is appropriate for a multigrid treatment. A “sufficient” amount
of h-ellipticity (some form of “ellipticity” in the discretization) indicates that
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point-wise error smoothing procedures can be constructed [2, 3, 14]. The
measure of h-ellipticity for the (3 × 3)-system of equations is defined by

Eh(Lh) :=
min

{∣∣∣det
(
L̃h(θ)

)∣∣∣ : θ ∈ Θ2h
high

}

max
{∣∣∣det

(
L̃h(θ)

)∣∣∣ : θ ∈ Θ
}

where the complex (3 × 3)-matrix L̃h(θ) is the Fourier symbol of Lh, i.e.,

Lhϕh(θ,xh) = L̃h(θ)ϕh(θ,xh).

The determinant of the discrete version of (2) is given by

det (Lh) = −µ∆h

(
ã(λ + 2µ)∆2

h − ∆h

)
,

where the discrete Laplacian and the discrete biharmonic operator are rep-
resented by the following stencils

−∆h
∧
=

1

h2




−1
−1 4 −1

−1




h

, ∆2
h

∧
=

1

h4




1
2 −8 2

1 −8 20 −8 1
2 −8 2

1




h

. (11)

Theorem 1. The measure of h-ellipticity for the discrete system of poroe-
lasticity equations ((6, (7), (8)) is given by

Eh(Lh) =
2ã(λ + 2µ) + h2

128ã(λ + 2µ) + 16h2
.

Proof. The Fourier symbols of the discrete scalar operators (which are
analogously defined as for systems above, see [2, 14] for details) read,

(
∂̃x

)
h/2

(θ) = is1, −
(
∂̃xx

)
h
(θ) = s2

1, −∆̃h(θ) = s2
1 + s2

2 (12)

(
∂̃xy

)
h/2

(θ) = −s1s2, ∆̃2
h(θ) = (s2

1 + s2
2)

2, (13)

where s1 := 2
h sin (θ1/2) and s2 := 2

h sin (θ2/2). (The operators in the y-
direction go similarly.) The Fourier symbol of the system and its determi-
nant read

L̃h(θ) =




(λ + 2µ)s2
1 + µs2

2 −(λ + µ)s1s2 is1

−(λ + µ)s1s2 µs2
1 + (λ + 2µ)s2

2 is2

is1 is2 ã
(
s2
1 + s2

2

)


 ,

det
(
L̃h(θ)

)
= µ

(
s2
1 + s2

2

) (
ã(λ + 2µ)

(
s2
1 + s2

2

)2
+ s2

1 + s2
2

)
. (14)
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Due to λ, µ, ã ≥ 0 and the definition of s1 and s2 it follows from (14) that

maxθ∈Θ

{
det

(
L̃h(θ)

)}
is obtained at θmax = (π, π) leading to

det
(
L̃h(θmax)

)
=

64

h6
µ

(
8ã(λ + 2µ) + h2

)
. (15)

Similarly, minθ∈Θhigh

{
det

(
L̃h(θ)

)}
is obtained at θmin = (π/2, 0), (0, π/2)

yielding

det
(
L̃h(θmin)

)
=

4

h6
µ

(
2ã(λ + 2µ) + h2

)
. (16)

Combining (15) and (16) concludes the proof. �

Thus, Eh(Lh) is uniformly bounded away from zero for all reasonable com-
binations of λ, µ, ã ≥ 0 and h > 0. As a consequence, it should be possible
to find efficient point-wise smoothers within a multigrid method. This may
be surprising, because L1,1

h and L2,2
h from (5) may contain grid anisotropies

depending on the choice of the Lamé coefficients. That is the size of the co-
efficients referring to the different spatial directions (i.e. −(λ+2µ) and −µ)
may vary considerably. Apparently, the smoothing properties of a proper
point relaxation scheme for the system are not affected by these scalar grid
anisotropies. For a vanishing mesh size one obtains

lim
h→0

Eh(Lh) =
1

64
> 0

implying that the above considerations are valid in the limit of small mesh
size as well.

3.3 Distributive relaxation Sh

We construct a distributive relaxation for the discrete system Lh. In order
to relax Lhuh = fh, we introduce a new variable wh by uh = Chwh and
consider the transformed system LhChwh = fh. Ideally (compare with [2]),
Ch is chosen such that the resulting system LhCh is triangular and the
diagonal elements of LhCh are composed of det (Lh). Then, the resulting
transformed system is suited for decoupled smoothing, i.e., each equation
can be treated separately. The new contribution here is the following choice
for the distributor

Ch =




Ih 0 − (∂x)h/2

0 Ih − (∂y)h/2

(λ + µ) (∂x)h/2 (λ + µ) (∂y)h/2 −(λ + 2µ)∆h


 (17)
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with identity Ih. Then, the transformed system for the interior points (Re-
marks 1 and 2 refer to the boundaries) reads

LhCh =



−µ∆h 0 0

0 −µ∆h 0

LC3,1
h LC3,2

h ã(λ + 2µ)∆2
h − ∆h


 with (18)

LC3,1
h = (∂x)h/2 − ã(λ + µ)

(
(∂xxx)h/2 + (∂xyy)h/2

)
and (19)

LC3,2
h = (∂y)h/2 − ã(λ + µ)

(
(∂xxy)h/2 + (∂yyy)h/2

)
, (20)

where the central discrete operators read in stencil notation

(∂x)h/2
∧
=

1

h

[
−1 ? 1

]
h/2

, (∂xxx)h/2
∧
=

1

h3

[
−1 3 ? −3 1

]
h/2

,

(∂xxy)h/2
∧
=

1

h3




1 −2 1
?

−1 2 −1




h/2

.

The other discrete operators are given by analogous stencils.
For an implementation of the distributive relaxation it is convenient to

consider the correction equations

Lhδum+1 = rm
h and LhChδwm+1 = rm

h

with update δum+1 = Chδwm+1 = uh − um+1
h and residual rm

h = Lhum
h −

fh. um
h denotes the approximation after the mth iteration of the exact

discrete solution uh.
The distributive relaxation consists of two steps. In the first step, a

new approximation δwm+1 to the “ghost variable” δw = (δwu, δwv , δwp)
T

is calculated. This will be done by decoupled red-black point relaxation, due
to the structure of the transformed system LhCh; discussed in section 3.4.
In the second step, a new approximation for uh is computed by

um+1
h = um

h + δum+1
h = um

h + Chδwm+1. (21)

In detail, the new approximation in (21) is given by

um+1
h =um

h + δwm+1
u − (∂x)h/2 δwm+1

p ,

vm+1
h = vm

h + δwm+1
v − (∂y)h/2 δwm+1

p ,

pm+1
h = pm

h + (λ + µ) (∂x)h/2 δwm+1
u + (λ + µ) (∂y)h/2 δwm+1

v

− (λ + 2µ)∆h δwm+1
p .

This implementation is straightforward.

Remark 1. The distributive relaxation operations described above ((17),
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(18)) are operator manipulations in which the discretization of boundary
operators is not taken into account explicitly. Experience with distributive
relaxation gained in computational fluid dynamics learns that the zero blocks
in (18) may not always equal zero exactly for certain boundary conditions.
Therefore, it is often advised to perform additional relaxation steps near
boundaries. In the application presented here, we do not need the additional
treatment near the boundary.

Remark 2. A “left distributor” for ChLhuh = Chfh may read:

Ch =




Ih 0 (λ + µ) (∂x)h/2

0 Ih (λ + µ) (∂y)h/2

− (∂x)h/2 − (∂y)h/2 −(λ + 2µ)∆h


 .

In that case, we obtain

ChLh =



−µ∆h 0 LC1,3

h

0 −µ∆h LC2,3
h

0 0 ã(λ + 2µ)∆2
h − ∆h




with LC1,3
h = LC3,1

h and LC2,3
h = LC3,2

h ; see (19), (20). We end up with
an upper triangular system. In a first step then, the last equation should
be updated after which the other two may be treated. The advantage of a
left distributor may be that we still deal with the primary unknowns uh,
whereas in the right distributor case we work with wh as the slack variable.
A disadvantage of a left distributor is that the right-hand side must also
be transformed. We have chosen for the right distributor as we do not
encounter any problems in defining boundary conditions here. Also in the
case of stress boundary conditions, treated in a future paper, it is easily
possible to set up the distributive system near the boundaries.

Remark 3. For the discrete Stokes operator

Lh,st =




−∆h 0 (∂x)h/2

0 −∆h (∂y)h/2

(∂x)h/2 (∂y)h/2 0




the distributor proposed in [3, 18] is given by

Ch,st =




Ih 0 − (∂x)h/2

0 Ih − (∂y)h/2

0 0 −∆h


 .

The transformed system then reads

Lh,stCh,st =




−∆h 0 0
0 −∆h 0

(∂x)h/2 (∂y)h/2 −∆h


 .
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Note that for the particular parameter selection (which is of no physical
relevance) λ = −1, µ = 1, and ã = 0, (5) and (17) coincide with Lh,st and
Ch,st, respectively. Regarding this matter, the distributor for the poroelas-
ticity model operator can be considered as a generalization of the well-known
distributive relaxation for the staggered version of the Stokes equations.

3.4 Optimal multigrid smoothing for the system of poroe-

lasticity

The smoothing method Sh in a multigrid algorithm is designed to reduce
high-frequency components of the error between exact solution and current
approximation effectively. A quantitative measure for its efficiency repre-
sents the smoothing factor obtained by Fourier analysis. Fourier smoothing
analysis is based on the observation that many classical relaxation methods
(like Jacobi or Gauss-Seidel relaxation) leave the spaces of 2h-harmonics
invariant, i.e.,

Sh|F2h(θ) =: S̃h(θ) ∈ C12×12
(
θ ∈ Θ2h

low

)
.

Applying an “ideal” coarse grid correction operator

Qh,2h|F2h(θ) =: Q̃h,2h = diag{0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} ∈ C12×12

which annihilates the low-frequency error components and leaves the high-
frequency components unchanged yields the smoothing factor [2, 14]

ρ1 (Lh, n) := sup
θ∈Θ2h

low

ρ
(
Q̃h,2hS̃n

h (θ)
)

,

i.e., the asymptotic error reduction of the high-frequency error components
by n sweeps of the relaxation method. Here, ρ(M) denotes the spectral
radius of the matrix M . In analogy to the two-grid factor to be defined
below, it could also be named one-grid factor as it only takes the fine
grid operators—relaxation and discretization—into account. The subscript
“1” refers to one-grid. For scalar equations, we have S̃h(θ), Q̃h,2h =
diag{0, 1, 1, 1} ∈ C4×4.

The smoothing factor ρ1 (Lh, n) for n distributive relaxations governed
by (17) is determined by the diagonal blocks of the transformed system
(18) [2, 14]. More precisely, we have

ρ1 (Lh, n) = max{ρ1

(
LC1,1

h := −µ∆h, n
)

,
(22)

ρ1

(
LC3,3

h := ã(λ + 2µ)∆2
h − ∆h, n

)
}.

This means that the calculation of ρ1 (Lh, n) reduces to the computation of
the spectral radii of certain (4 × 4)-matrices. Both scalar operators LC 1,1

h ,

11



LC3,3
h occurring in (22) are grid isotropic in the sense that the coefficients

referring to different spatial directions are of the same size. Hence, a dis-
tributive point relaxation method can be used for all choices of λ, µ, and ã
as it was already anticipated by the measure of h-ellipticity.

There are many efficient relaxation schemes known for LC 1,1
h . The

smoothing properties of some of these schemes are, however, not satisfactory
for LC3,3

h , if it is dominated by the biharmonic term which depends on the
set of parameters and the mesh size under consideration. More precisely,
the corresponding smoothing factor increases for an increasing ã(λ+2µ)/h2.
This can be observed for a fixed set of parameters λ, µ, ã and a decreasing
mesh size h. In Table 1 the smoothing factors are presented for red-black
Jacobi (RB-JAC) point relaxation. Here, the computational grid is subdi-
vided into red and black points in a checkerboard manner. RB-JAC consists
of a Jacobi sweep over the red points only followed by a Jacobi sweep over
the black points using the updated values at the red points.

Remark 4. Note, that RB-JAC coincides with the well-known Gauss-Seidel
relaxation with a red-black numbering of grid points for 5-point discretiza-
tions like ∆h. However, this equivalence is not longer valid for discrete
operators based on “larger” stencils like ∆2

h; see Remark 5.4.5 from [14] for
details.

RB-JAC is the basis for very efficient multigrid methods for the Poisson
equation [13, 14] which is demonstrated by the smoothing factor 0.25. How-
ever, for the biharmonic operator a deterioration to ρ1

(
∆2

h, 1
)

= 0.64 can

be observed. For LC3,3
h , the parameters λ, µ, and ã are fixed and the mesh

size h varies between 1/4 and 1/256. The choices for these parameters are
representative for geophysical applications. Table 1 shows that the smooth-
ing properties increase for LC3,3

h with a decreasing mesh size (i.e., with
increasing ã(λ + 2µ)/h2) as the biharmonic term dominates.

h 1
4

1
8

1
16

1
32

1
64

1
128

1
256

−∆h 0.25 0.25 0.25 0.25 0.25 0.25 0.25
∆2

h 0.64 0.64 0.64 0.64 0.64 0.64 0.64

ã(λ + 2µ)∆2
h − ∆h 0.31 0.41 0.54 0.61 0.63 0.64 0.64

Table 1: Smoothing factors ρ1( . , 1) for three operators; λ = 1250, µ =
12500, ã = 10−7.

Improved smoothing factors can be obtained by introducing a one-stage
parameter ω in RB-JAC. A one-stage variant of an arbitrary relaxation
method Sh is given by

Sh(ω) := (1 − ω) Ih + ωSh

with discrete identity Ih. To construct an optimal one-stage relaxation, we

12



search for the parameter ω which minimizes the corresponding smoothing
factor. This means that one has to solve the following minimization problem:

min
ω

sup
θ∈Θ2h

low

ρ
(
Q̃h,2hS̃h(ω,θ)

)
(23)

with S̃h(ω,θ) := (1 − ω)Ĩh + ωS̃h(θ) and identity matrix Ĩh ∈ C4×4 (for
the scalar case). The situation is particularly transparent, if we assume
a non diverging relaxation Sh equipped with a real-valued “high-frequency
spectrum”

σS :=
{

spectrum of Q̃h,2hS̃h(θ) | θ ∈ Θ2h
low

}
,

i.e., σS ⊂ [Smin, Smax] ⊂ [−1, 1]. Then, (23) reduces to a classical minimiza-
tion problem,

min
ω

sup
−1≤Smin≤z≤Smax≤1

|(1 − ω) + ωz| ;

see, for example, [15]. The optimal smoothing one-stage parameter and the
related smoothing factor are given by

ωopt =
2

2 − Smax − Smin
and ρ1( . , n = 1) =

Smax − Smin

2 − Smax − Smin
. (24)

Remark 5. Note, that the one-stage parameter is applied after a complete
RB-JAC step (and not—as usual overrelexation parameters—within each
half step of RB-JAC relaxation). For Jacobi (JAC) relaxation, overrelax-
ation and one-stage parameter coincide since unknowns are updated after
the complete relaxation sweep and not dynamically within the relaxation
process (as for Gauss-Seidel or pattern relaxation like RB-JAC).

Example 1. As an example we consider Jacobi relaxation which is defined
by

SJAC
h := Ih − D−1

h Lh,

where Dh denotes the diagonal part of some discrete operator Lh under con-
sideration. Obviously, the Fourier components are eigenfunctions of SJAC

h

yielding a “diagonal” Fourier representation

S̃JAC
h (θ) = diag{A00, A11, A10, A01} ∈ C4×4

with Aα = 1 − D̃−1
h (θα)L̃h(θα) (25)

for scalar operators Lh. For the Laplacian Lh = −∆h (11), we have Dh
∧
=

1
h2 [ 4 ]h leading to

Aα = 1− h2

4
∆̃h(θα) = 1 + sin2(θα

1 /2) + sin2(θα

2 /2) =
1

2
(cos(θα

1 ) + cos(θα

2 )),

13



compare with (12). From the above Fourier representation of SJAC
h , we

easily obtain

σS = [Smin =
1

2
(cos(π)+cos(π)) = −1, Smax =

1

2
(cos(−π/2)+cos(0)) = 1/2].

Applying (24) yields the well-known optimal damped Jacobi smoother for
the Laplacian:

ωopt = 4/5 and ρ1(∆h, n = 1) = 3/5.

For RB-JAC relaxation, the situation is somewhat more difficult as the
Fourier components are no longer eigenfunctions of the relaxation operator.
It still leaves the spaces of 2h-harmonics invariant, but certain Fourier com-
ponents are coupled by RB-JAC yielding off-diagonal entries in its Fourier
representation:

S̃RB
h (θ) = S̃B

h (θ) · S̃R
h (θ) with (26)

S̃R
h (θ) =

1

2




A00 + 1 A11 − 1 0 0
A00 − 1 A11 + 1 0 0

0 0 A10 + 1 A01 − 1
0 0 A10 − 1 A01 + 1


 , (27)

S̃B
h (θ) =

1

2




A00 + 1 −A11 + 1 0 0
−A00 + 1 A11 + 1 0 0

0 0 A10 + 1 −A01 + 1
0 0 −A10 + 1 A01 + 1


 . (28)

For the derivation of these Fourier representations for the consecutive Ja-
cobi sweeps over the red (R) and the black (B) points, respectively, we refer
to [13, 14].

Example 2. The optimal one-stage parameter for RB-JAC relaxation ap-
plied to ∆h is given by ωopt (∆h) = 16/15 leading to ρ1 (∆h, 1) = 1/5,
whereas for ∆2

h we have ωopt

(
∆2

h

)
= 25/18 yielding ρ1

(
∆2

h, 1
)

= 1/2; com-
pare with Example 4.3.1 and Proposition 6.6.1 from [17], respectively. These
results have been derived using S̃RB

h (θ) with Aα from Example 1 for the

Laplacian and with Aα = 1 − h4

20 ∆̃2
h(θα) (see (11), (13)) for the biharmonic

operator.

Since LC3,3
h is a combination of the two operators from Example 2, it is

reasonable to search for an optimal one- or multi-stage RB-JAC relaxation
for

LC3,3
h = c∆2

h − ∆h with c = ã(λ + 2µ) ≥ 0 (29)

leading to the following theorem.
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Theorem 2. The spectrum σS (w.r.t. the high-frequency error components)
of point RB-JAC relaxation applied to LC3,3

h (29) is bounded by

Smin = −16c2 + 10ch2 + h4

8 (5c + h2)2
and Smax =

(
8c + h2

)2

4 (5c + h2)2
.

Proof. The Fourier representation S̃RB
h (θ) ∈ C4×4 for point RB-JAC relax-

ation applied to a two-dimensional operator like LC 3,3
h is given in (26). After

a projection onto the high frequency components using the ideal coarse grid
correction operator Q̃h,2h = diag{0, 1, 1, 1} one obtains

Q̃h,2hS̃RB
h (θ) =




0 0 0 0
a(θ) b(θ) 0 0

0 0 d(θ) e(θ)
0 0 f(θ) g(θ)


 with θ ∈ Θ2h

low,

a(θ) =
1

4

(
−A2

00 + 1 + (A11 + 1)(A00 − 1)
)
,

b(θ) =
1

4

(
−(A00 − 1)(A11 − 1) + (A11 + 1)2

)
,

d(θ) =
1

4

(
(A10 + 1)2 − (A01 − 1)(A10 − 1)

)
,

e(θ) =
1

4

(
(A10 + 1)(A01 − 1) − A2

01 + 1
)
,

f(θ) =
1

4

(
−A2

10 + 1 + (A01 + 1)(A10 − 1)
)
,

g(θ) =
1

4

(
−(A10 − 1)(A01 − 1) + (A01 + 1)2

)

and Aα = A(θα) = 1 − h4

20c + 4h2

(
c ∆̃2

h(θα) − ∆̃h(θα)
)

; (30)

compare with (27), (28), (25), (11), (12), and (13). The eigenvalues of
Q̃h,2hS̃RB

h (θ) read λ1(θ) = 0, λ2(θ) = b(θ), and

λ3/4 =
d(θ) + g(θ)

2
± 1

2

√
d(θ)2 + 4e(θ)f(θ) − 2d(θ)f(θ) + g(θ)2.

A straight-forward but lengthy analysis yields that the spectrum σS of
Q̃h,2hS̃RB

h (θ) (θ ∈ Θ2h
low) is real-valued. One may verify that the extreme

values lie at the boundary of Θ2h
low leading to

Smin = λ2(0,±π/2) = λ2(±π/2, 0) = −16c2 + 10ch2 + h4

8 (5c + h2)2

and Smax = λ3(0,±π/2) = λ3(±π/2, 0) =

(
8c + h2

)2

4 (5c + h2)2
.

�
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Corollary. Using the above proposition and (24) we can construct an opti-
mal one-stage method with one-stage parameter

ωopt

(
LC3,3

h

)
=

16
(
5c + h2

)2

3 (96c2 + 46ch2 + 5h4)
(31)

and optimal smoothing factor

ρ1

(
LC3,3

h , 1
)

=
8c + h2

16c + 5h2
. (32)

Since c = ã(λ + 2µ) ≥ 0 and h > 0 it can be easily seen from (32) that

1/5 ≤ ρ1

(
LC3,3

h , 1
)
≤ 1/2 (33)

for all possible choices of c = ã(λ + 2µ) and h. More precisely, the lower
bound is obtained if c = 0. Then LC3,3

h reduces to the Laplacian and the

corresponding optimal one-stage method is given by ω(LC 3,3
h ) = 16/15 and

ρ1(LC3,3
h , 1) = 1/5; see above. The upper bound is reached if the biharmonic

operator dominates LC3,3
h , i.e., c/h2 → ∞. For a fixed mesh size h this gives:

lim
c→∞

ωopt

(
LC3,3

h

)
= lim

c→∞

16
(
25 + 10h2/c + h4/c2

)

3 (96 + 46h2/c + 5h4/c2)
=

400

288
=

25

18
,

lim
c→∞

ρ1

(
LC3,3

h , 1
)

= lim
c→∞

8 + h2/c

16 + 5h2/c
=

1

2
,

recovering the optimal one-stage method for the biharmonic operator.
The smoothing strategy is that the first two equations in (18) are smoothed

by one-stage RB-JAC relaxation with ωopt(∆h), whereas for the third equa-

tion ωopt(LC3,3
h ) is chosen, leading to the following smoothing factor for the

system of poroelasticity:

ρ1 (Lh, 1) = max
{

ρ1 (∆h, 1) , ρ1

(
LC3,3

h , 1
)}

= ρ1

(
LC3,3

h , 1
)

.

From (33) it immediately follows that

1/5 ≤ ρ1 (Lh, 1) ≤ 1/2

which is a strong robustness result for such a complicated system involv-
ing several parameters (ã, λ, µ, h). For example, two steps of the proposed
RB-JAC one-stage method applied to the realistic set of parameters from
Table 1 yields a satisfactory ρ1 (Lh, 2) = 0.25.

Remark 6. The efficiency of many solution methods for problems from lin-
ear elasticity depends on the Poisson ratio ν defined in (3). The smoothing
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factor ρ1 (Lh, 1) only depends on the ratio c/h2 and there is no particular dif-
ficulty caused by certain values for the Poisson ratio which is demonstrated
by Tables 2, 3. We use a fixed set of parameters for h, λ and ã and vary
µ in order to analyze the effect of the Poisson ratio. It can be clearly seen,
that the smoothing factor is determined by c (for fixed mesh size) and is not
affected by the often crucial value ν = 0.5 for the Poisson ratio. For small
values for c (due to ã = 5−7 in Table 2) the best possible smoothing fac-
tors are obtained independent of the Poisson ratio, whereas for large values
for c (due to ã = 5−2 in Table 3) the worst possible smoothing factors are
reached, again independent of the Poisson ratio. Summarizing, the robust
behavior of the proposed relaxation method is independent of the Poisson
ratio. Note that ωopt(LC3,3

h ) and ρ1(Lh, 1) shown in Tables 2 and 3 result
from a simple evaluation of (31) and (32), respectively.

Remark 7. Applying Smin and Smax from Theorem 2 it is possible to

µ ν c ωopt(LC3,3
h ) ρ1(Lh, 1)

1 0.25 1.5 · 10−6 1.072 0.206
10−1 0.455 6.0 · 10−7 1.069 0.202
10−2 0.495 5.1 · 10−7 1.068 0.202
10−4 0.499 5.001 · 10−7 1.068 0.202

Table 2: Poisson ratio ν and corresponding smoothing factor ρ1 (Lh, 1) (up
to three digits) for varying µ and fixed λ = 1, ã = 5−7, h=1/64.

µ ν c ωopt(LC3,3
h ) ρ1(Lh, 1)

1 0.25 0.15 1.389 0.499
10−1 0.455 0.06 1.388 0.499
10−2 0.495 0.051 1.388 0.499
10−4 0.499 0.050 1.388 0.499

Table 3: Poisson ratio ν and corresponding smoothing factor ρ1 (Lh, 1) (up
to three digits) for varying µ and fixed λ = 1, ã = 5−2, h=1/64.

construct multi-stage variants of RB-JAC relaxation (see, for example, [17])
with even better properties. However, it turned out in the Fourier two-grid
analysis and in the numerical tests that it does not pay off to invest to much
work into smoothing because the coarse grid correction cannot reduce the
low-frequency error components equally well. Therefore, we focus on one-
stage RB-JAC smoothing methods.
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3.5 Coarse grid correction

An appropriate coarse grid correction on the Cartesian grid Gh consists of
straightforward geometric transfer operators Rh,2h, P2h,h, which are well-
established in the field of computational fluid dynamics and direct coarse
grid discretizations (i.e., coarse grid analogs of Lh). Since we use a staggered
grid, we have to distinguish the transfer operators which act on the different
grids Gj

h (j = 1, 2, 3), see Figure 1. At u- and v-grid points we consider
6-point restrictions and at p-grid points a 9-point restriction. In stencil
notation they are given by

Ru
h,2h

∧
=

1

8




1 1
2 ? 2
1 1




2h

h

, Rv
h,2h

∧
=

1

8



1 2 1

?
1 2 1




2h

h

, Rp
h,2h

∧
=

1

16



1 2 1
2 4 2
1 2 1




2h

h

,

respectively. The restriction operator for the defect in the p-equation differs
from the usual one in solving the incompressible Navier-Stokes equations,
because of the placement of pressure points at the vertices, whereas a cell-
centered pressure grid is employed in fluid mechanics applications. As the

prolongation operators P
u/v/p
2h,h , we apply the usual interpolation operators

based on linear interpolation of neighboring coarse grid unknowns, dictated
by the staggered grid (see, for example, Section 8.7 in [14]). The pressure
prolongation is the adjoint of its restriction.

3.6 Fourier two-grid analysis

The crucial observation in the classical Fourier two-grid analysis is that
the two-grid operator (9) leaves the spaces of 2h-harmonics (10) invariant.
Hence, the two-grid operator can be represented in Fourier space by a block
matrix consisting of (4×4)-blocks for scalar equations and by (12×12)-blocks
for our discrete system (5):

Mh,2h|F2h(θ) =: M̃h,2h(θ) = S̃n2

h (θ)C̃h,2h(θ)S̃n1

h (θ)
(
∈ C12×12

)

with identity matrix Îh ∈ C12×12 and Fourier representation C̃h,2h(θ) of the
coarse grid correction operator. For details on Fourier two-grid analysis and
the derivation of C̃h,2h(θ), we refer to [2, 13, 14] and especially to [3, 11] for
the analysis on staggered grids.

From the above representation, one may easily calculate the two-grid
convergence factor as the supremum of the spectral radii from the related
block matrices by a computer program:

ρ2 := sup
θ∈Θ2h

low

ρ
(
M̃h,2h(θ)

)
.
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4 Numerical experiments

In this section, the robustness and efficiency of the distributive relaxation
method is investigated by comparing the theoretically predicted convergence
factors with the actually obtained numerical convergence. We choose a zero
right-hand side, homogeneous boundary conditions and a random initial
guess to avoid round-off errors. Local Fourier analysis, as discussed in the
previous section, yields asymptotic convergence estimates since it is based
on certain spectral radii. We measure the asymptotic numerical multigrid
convergence during the first time step by performing 100 multigrid cycles
and taking the average of the last 50 defect reduction factors:

ρk(num) := 50

√
ρ100

k · ρ99
k · · · · · ρ51

k =
50

√
res100

res51

with ρm
k = resm/resm−1 and the maximum norm of the residual over the

three equations in the system after the mth multigrid cycle:

resm := ‖rm
h,1‖∞ + ‖rm

h,2‖∞ + ‖rm
h,3‖∞.

The subscript “k” denotes the number of grids involved in the multigrid
solution method. V(1,1) denotes a V-cycle with one pre- and one post-
relaxation, F(1,1) the corresponding F-cycle.

The insensitivity of the smoothing method to critical values for the Pois-
son ratio carries over to the complete multigrid solver. We fix parameter
a = 1, yielding ã = 0.5δt, due to the Crank-Nicolson time discretization.
Tables 4 and 5 show theoretical predictions and numerically obtained con-
vergence factors for the parameters λ = 1, h = 1/64, 10−4 ≤ µ ≤ 1, and
δt = 10−6 (Tab. 4) and δt = 10−1 (Tab. 5). Obviously, these factors are
independent of the varying µ and thus independent of the varying Poisson
ratio. Instead they are governed by c (for fixed mesh size): the smaller c,
i.e., the smaller ã, the better the convergence.

µ cycle ρ1 ρ2 ρ6(num)

1, 10−1, 10−2, 10−4 V(1,1) 0.04 0.11 0.16
1, 10−1, 10−2, 10−4 F(1,1) 0.04 0.11 0.10

Table 4: Local Fourier analysis results and numerical convergence factors
for varying µ and fixed λ = 1, δt = 10−6, h = 1/64.

Results for more realistic sets of parameters are shown in Table 6. It can
be clearly seen, that the two-grid analysis provides excellent estimates for
the numerically observed F-cycle convergence involving six grids. Applying
the computationally less expensive V-cycle leads to a slight increase of the
multigrid convergence.
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µ cycle ρ1 ρ2 ρ6(num)

1, 10−1, 10−2, 10−4 V(1,1) 0.25 0.25 0.31
1, 10−1, 10−2, 10−4 F(1,1) 0.25 0.25 0.25

Table 5: Local Fourier analysis results and numerical convergence factors
for varying µ and fixed λ = 1, δt = 10−1, h = 1/64.

parameter set cycle ρ1 ρ2 ρ6(num)

λ = 1250, µ = 12500, V(1,1) 0.25 0.25 0.30
δt = 10−6 F(1,1) 0.25 0.25 0.25

λ = 0, µ = 0.5, V(1,1) 0.25 0.25 0.28
δt = 10−2 F(1,1) 0.25 0.25 0.24

λ = 0, µ = 0.5, V(1,1) 0.04 0.11 0.16
δt = 10−6 F(1,1) 0.04 0.11 0.10

λ = 1, µ = 1, V(1,1) 0.25 0.25 0.31
δt = 10−1 F(1,1) 0.25 0.25 0.25

λ = 103, µ = 104, V(1,1) 0.25 0.25 0.31
δt = 10−1 F(1,1) 0.25 0.25 0.25

Table 6: Local Fourier analysis results and numerical convergence factors
for various parameters and fixed mesh size h = 1/64.

5 Conclusion

We provide a fast and accurate discrete solution for the incompressible vari-
ant of the poroelasticity equations, discretized on a staggered grid to deal
with stability complications.

A robust distributive relaxation method for the system of poroelastic-
ity equations has been introduced. The properties of the smoother were
analyzed and optimized by Fourier smoothing analysis. With standard ge-
ometric transfer operators and direct coarse grid discretization, an efficient
multigrid method, based on point-wise smoothing methods results.

The analysis of the multigrid method has been performed with classical
multigrid Fourier analysis techniques. Their benefits have become clear in
this work. The numerical multigrid results agree very well with the results
from the Fourier analysis. This is an important gain by the analysis. The
influence of different relaxation parameters on the multigrid convergence
factor can be very well predicted. The main disadvantage of Fourier anal-
ysis may be that it is not straightforward to apply to non-Cartesian grid
applications. However, the insights obtained for the Cartesian grid case are
valuable for the development of efficient solvers for poroelasticity problems
in more complicated domains.
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Departamento de Mathemática Aplicada, University of Zaragoza
Pedro Cerbuna, 12
50009 Zaragoza
Spain
lisbona@unizar.es

Cornelis W. Oosterlee
Delft University of Technology, Faculty of Information Technology Systems,
Department of Applied Mathematical Analysis
Mekelweg 4
2628 CD Delft
the Netherlands
C.W.Oosterlee@math.tudelft.nl

22


