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Abstract

In this paper, we present a robust and efficient multigrid solver for a reformulated
version of the system of poroelasticity equations. The reformulation enables us to
treat the system in a decoupled fashion. We show that the reformulation boils down
to a stabilization term in the iterative scheme, and that the solution of the original
problem is identical to the solution of the reformulated problem. A highly efficient
multigrid method can be developed, confirmed by numerical experiments.
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1 Introduction

In this paper we would like to add an application and its efficient numerical
treatment to the recently increased interest in saddle point type problems [2].
It is the time-dependent incompressible system of poroelasticity equations [3].
After a semi-discretization in time, the two-dimensional system, in its original
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form, can be written as a block 2 × 2 system,



A G

D −τ · B






u

p


 =



0

f


 . (1)

Here, u = (u, v) is the deformation (in the x- and y-directions), p is the pore
pressure, A is the 2D linear elasticity operator, D is the divergence operator,
G is the gradient, and B is a Laplace type operator multiplied by the time
step τ . For very small time steps, the size of the lower diagonal block entry
in (1) can become arbitrarily small. So, the system may be viewed as a sort
of singularly perturbed system related to



A G

D O






u

p


 =



0

f


 . (2)

Poroelasticity theory addresses the time dependent coupling between the de-
formation of porous material and the fluid flow inside. The porous matrix
is supposed to be saturated by the fluid phase. The state of this continuous
medium is characterized by the knowledge of elastic displacements and fluid
pressure at each point. A phenomenological model was first proposed and an-
alyzed by Biot [3], studying the consolidation of soils. Poroelastic models are
used to study problems in geomechanics, hydrogeology, petrol engineering and
biomechanics [8,5].

In this paper, we present an efficient multigrid method for a reformulated
version of the system of poroelasticity equations. We show by means of block
matrix manipulations that system (1) can be brought in a form which is fa-
vorable for (almost) decoupled iterative solution. At the same time, we an-
alyze the reformulated system and prove that the solution of this system is
identical to the solution of the original system. We show in 1D that by the
transformation, after discretization, a numerical stabilization term of lower
order has been brought in the discrete version of the lower diagonal block
of (1), which does not influence the order of numerical convergence negatively.
By a one-dimensional poroelasticity analysis and by corresponding numerical
experiments we show the stabilizing effect of the term. Numerical 2D experi-
ments confirm the stability, accuracy and the efficient multigrid treatment of
the resulting transformed system.

The paper is organized as follows, the poroelastic system, its transformation
plus a corresponding solution algorithm are presented in Section 2. Further-
more, in Section 2.2 a previously used stable discretization on a staggered
grid is explained, which is used for comparison with the current approach.
In Section 3 the one-dimensional case is considered. The discrete problem is
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stabilized and the convergence of the corresponding transformed scheme is
proven. In a diagram the relation between the original and the transformed
system with respect to stability, both in the continuous and in the discrete
case is also presented. Section 4 then details the solution algorithm with only
multigrid methods for scalar equations. Finally Section 5 presents numerical
poroelastic experiments indicating the efficiency of the solution algorithm.

2 Mathematical Model and Discretization

2.1 Continuous System

The quasi–static Biot model for soil consolidation can be formulated as a
system of partial differential equations for displacements and the pressure of
the fluid. One assumes the material’s solid structure to be linearly elastic,
initially homogeneous and isotropic, the strains imposed within the material
are small. We denote by u = (u, v, p)T the solution vector, consisting of the
displacement vector u = (u, v)T and pore pressure of the fluid p. The governing
equations read

−µ∆̃u − (λ + µ)grad div u + α grad p = 0, x ∈ Ω, (3)

α
∂

∂t
(div u) −

κ

η
∆p = f(x, t), 0 < t ≤ T , (4)

where λ and µ are the Lamé coefficients; κ is the permeability of the porous
medium, η the viscosity of the fluid, α is the Biot-Willis constant (which we will
take equal one) and ∆̃ represents the vectorial Laplace operator. The quantity
div u (x, t) is the dilatation, i.e. the volume increase rate of the system, a
measure of the change in porosity of the soil. The source term f(x, t) represents
a forced fluid extraction or injection process, respectively, see [3].

For simplicity, we assume here that ∂ Ω is rigid (zero displacements) and per-
meable (free drainage), so that we have homogeneous Dirichlet boundary con-
ditions,

u(x, t) = 0, p(x, t) = 0, x ∈ ∂ Ω. (5)

Before fluid starts to flow and due to the incompressibility of the solid and
fluid phases, the initial state satisfies

div u(x, 0) = 0, x ∈ Ω. (6)

In the numerical experiments in Section 5 more complicated boundary condi-
tions are chosen. The incompressible, two-dimensional variant of Biot’s con-
solidation model reads
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−(λ + 2µ)uxx − µuyy − (λ + µ)vxy + px = 0,

−(λ + µ)uxy − µvxx − (λ + 2µ)vyy + py = 0, (7)

(ux + vy)t
− a (pxx + pyy)= f

(plus initial and boundary conditions) with a = κ/η > 0. Problem (7) is a
limit of the compressible case. The compressible system is, however, easier to
solve due to an extra contribution to the main diagonal of the matrix related to
this system. We concentrate on a solver for the two-dimensional incompressible
case, and consider a model operator L, which reads

L =




−(λ + 2µ)∂xx − µ∂yy −(λ + µ)∂xy ∂x

−(λ + µ)∂xy −µ∂xx − (λ + 2µ)∂yy ∂y

∂x ∂y −ã (∂xx + ∂yy)




. (8)

L can be interpreted as a “stationary variant” of (7), i.e., the operator after an
implicit (semi-) discretization in time. For example, in case of Crank-Nicholson
time discretization we have ã = 0.5aτ . From (8) one may calculate the corre-
sponding determinant:

det (L) = −µ∆
(
ã(λ + 2µ)∆2 − ∆

)

with Laplace operator ∆ and biharmonic operator ∆2. The principal part of
det (L) is ∆m with m depending on the choice of λ, µ, and ã. From physical
reasoning, we always have µ, ã, λ + 2µ > 0, yielding m = 3. The number of
boundary conditions that must accompany L is m [4,12].

2.2 Previous Approach: Staggered Grid

Physically, when a load is applied in a poroelasticity problem, the pressure
suddenly increases and a boundary layer appears in the early stages of the
time-dependent process. In the case of an unstable discretization, unphysical
oscillations can occur in the first time steps of the solution. After this phase,
the solution shows a much smoother behavior. The time-dependent opera-
tor (8) suffers from stability difficulties. The coefficient in the L3,3-block in (8)
is typically, depending on the time step, extremely small. In order to avoid
oscillating solutions, the discretization has to be designed with care.

Previously, we adopted a staggered grid discretization in [6] for system (7),
using nearest neighbor central finite differences. Pressure points in the stag-
gered grid were located at the physical boundary, and the displacement points
are defined at the cell faces, as often pressure is prescribed at the boundary.
The divergence operator is naturally approximated by a central discretization
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Fig. 1. Staggered location of unknowns for poroelasticity.

of the displacements in a cell, see Figure 1.
The discretization of each equation, centered around the equation’s primary
unknown, reads in this case

Lhuh =




−(λ + µ)(∂xx)h − µ∆h −(λ + µ)(∂xy)h (∂x)h

−(λ + µ)(∂xy)h −µ∆h − (λ + µ)(∂yy)h (∂y)h

(∂x)h (∂y)h −ã∆h







uh

vh

ph




= fh,

(9)
with fh = (0, 0, fh)

T , and the subscripts denote central discrete operators on
the staggered grid. An efficient multigrid solver for the system of poroelasticity
equations discretized on the staggered grid has been developed in [7,15].

The multigrid scheme developed solves the system in a coupled fashion, with
a distributive smoother: In order to relax Lhuh = fh, a new variable wh by
uh = Chwh was introduced and system LhChwh = fh has been considered in
smoothing. The resulting transformed system is suited for decoupled smooth-
ing, i.e., each equation can be treated separately. The so-called distributor
reads [15]

Ch =




Ih 0 − (∂x)h

0 Ih − (∂y)h

(λ + µ) (∂x)h (λ + µ) (∂y)h
−(λ + 2µ)∆h




(10)
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with identity Ih. Then, the transformed system reads

LhCh =




−µ∆h 0 0

0 −µ∆h 0

LC3,1
h LC3,2

h ã(λ + 2µ)∆2
h − ∆h




with (11)

LC3,1
h = (∂x)h − ã(λ + µ)

(
(∂xxx)h + (∂xyy)h

)
, (12)

LC3,2
h = (∂y)h

− ã(λ + µ)
(
(∂xxy)h

+ (∂yyy)h

)
. (13)

Equation-wise smoothing for (11) is now an option, starting with the first
equation in the system, etc. All multigrid components related to the coarse
grid correction are naturally dictated by the staggered grid arrangement. The
multigrid scheme works very well, with convergence factors less than 0.2 [7,15].

However, the choice for a staggered grid is a rigorous one. Staggered grid dis-
cretizations may not be easily generalized to curved domains, or to unstruc-
tured grids. The staggered grid choice has only been made, because in the
initial phase of a time-dependent problem a boundary layer may occur that is
prone to unphysical oscillations on a collocated grid, without additional stabi-
lization. Therefore, we perform here a system transformation and (implicitly,
by doing so) a stabilization so that we can discretize on a collocated grid,
without any unphysical oscillations.

2.3 Transformed System

Let us rewrite problem (3)-(6) as

A
∂u

∂t
+ grad

∂p

∂t
= 0, in Ω, (14)

div
∂u

∂t
−

κ

η
∆p = f, in Ω, (15)

u = 0, p = 0, on ∂Ω, (16)

div u(x, 0) = 0, x ∈ Ω, (17)

where A = −µ∆̃ − (λ + µ)grad div.

We transform problem (14-17) to an equivalent problem. Firstly, applying the
divergence operator to (14) and the operator (λ + 2µ)∆ to (15), adding the
resulting equations and taking into account the equality

−(λ + 2µ) ∆ div = div A,
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we obtain

−∆
∂p

∂t
+ (λ + 2µ)

κ

η
∆2p = −(λ + 2µ)∆f. (18)

Secondly, by applying operator (λ+µ) grad to (15) and by adding the resulting
equation to (14) we get

−µ∆̃
∂u

∂t
+ grad

∂p

∂t
− (λ + µ)

κ

η
grad ∆p = (λ + µ) grad f.

With the new variables q = −∆p and v =
∂u

∂t
, we deal with the transformed

system:

−µ∆̃v + grad
∂p

∂t
+ (λ + µ)

κ

η
grad q = (λ + µ) grad f, (19)

q + ∆p = 0, (20)

∂q

∂t
− (λ + 2µ)

κ

η
∆q = −(λ + 2µ)∆f, (21)

v = 0, p = 0, div v +
κ

η
q = f, on ∂Ω. (22)

plus initial conditions. We have proven the following result:

Proposition 1 If (u, p) is a solution of problem (14-17) then (v, p, q) is the
solution of problem (19-22).

In the following proposition we prove that both problems really are equivalent.

Proposition 2 If (v, p, q) is solution of problem (19-22) then (u, p) is solution
of problem (14-17).

Proof: By applying the divergence operator to (19) and the use of equality
div∆̃ = ∆div, we find

−µ∆divv −
∂q

∂t
+ (λ + µ)

κ

η
∆ q = (λ + µ) ∆ f (23)

Adding (23) and (21), we obtain

µ∆

(
divv +

κ

η
q − f

)
= 0, in Ω.
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By using boundary conditions (22) we deduce equation (15). Equation (14) is
obtained by applying the operator (λ + µ)grad to (15) and using (19).
Note that problem (19-22) is coupled over the boundary of the domain.

Further the generalization of the transformation to three dimensions is straight-
forward. One additional unknown, the time-dependent displacement in the z-
direction, is then also resolved.

Let us consider a semi-discretization in time with step time τ = T/M with M
a positive integer. For 1 ≤ m ≤ M − 1 and assuming that vm, pm and qm are
known, the following iterative scheme is proposed.

Algorithm I:

(1) Solve:






(
qm+1 − qm

τ

)
− (λ + 2µ)κη∆qm+1 = −(λ + 2µ)∆fm+1, in Ω,

div vm +
κ

η
qm+1 = fm+1 on ∂Ω.

(2) Solve 



−∆pm+1 = qm+1 in Ω,

pm+1 = 0, on ∂Ω.

(3) Solve





−µ∆̃vm+1 + grad
pm+1 − pm

∆t
+ (λ + µ)

κ

η
grad qm+1 =

(λ + µ) grad fm+1, in Ω,

vm+1 = 0, on ∂Ω.

Notice that the boundary condition in step (1) is lagging behind one time
step. Without additional iteration the scheme presented here will therefore be
of O(τ).

Two important issues regarding Algorithm I are discussed in Sections 3.1
and 4.

First of all, the operators to be inverted in the algorithm above are only
scalar Laplace type operators, for which standard multigrid for scalar equa-
tions works extremely well (Section 4). Therefore, a highly efficient iterative
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solution process can be defined for the transformed system.

Secondly, when working with the reformulated system stable numerical solu-
tions are obtained on a standard collocated grid (Section 3.1). So far, we can
prove this stability issue only for the 1D poroelasticity model situation.

3 One-Dimensional Poroelasticity

3.1 1D Transformation

In 1D, the governing equations simplify and read

(P) : − (λ + 2µ)
∂2u

∂x2
+

∂p

∂x
= 0, (24)

∂2u

∂x∂t
−

κ

η

∂2p

∂x2
= f, x ∈ (0, 1), 0 < t ≤ T , (25)

We denote the original problem (24),(25) by (P) for reference in Figure 2.
For simplicity, we again assume that ∂ Ω is rigid (zero displacements) and
permeable (free drainage), so that we have homogeneous Dirichlet boundary
conditions, u(0, t) = u(1, t) = 0, p(0, t) = p(1, t) = 0, and the initial state
satisfies

∂u

∂x
(x, 0) = 0. (26)

The equivalent transformed 1D problem, denoted by (Ptr), is

(Ptr) : − (λ + 2µ)
∂2u

∂x2
+

∂p

∂x
=0, (27)

q +
∂2p

∂x2
=0, (28)

∂q

∂t
− (λ + 2µ)

κ

η

∂2q

∂x2
=−(λ + 2µ)

∂2f

∂x2
, (29)

u = 0, p = 0,
∂2u

∂x∂t
+

κ

η
q = f, on ∂Ω. (30)

The 1D transformation is easier than the 2D/3D cases, as it is not necessary
to cancel out the term grad divu from the first equation.
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3.2 Discrete Case

We consider a uniform grid on the interval [0, 1], with step size h:

ω̄ = {xi | xi = ih, i = 0, 1 . . . , N} ,

and denote by ω and ∂ω the interior and the boundary nodes respectively. We
consider the Hilbert space Hω̄ of the discrete functions uh = (u0, u1, . . . , uN)
on the grid ω̄, with scalar product and norm given by

(uh, vh)ω̄ = h

(
u0v0 + uNvN

2
+

N−1∑

i=1

uivi

)
, ‖ uh ‖ω̄=

√
(uh, uh).

In a similar way, let us consider the Hilbert space Hω = {uh ∈ Hω̄ | u0 = uN =
0}, with scalar product

(uh, vh) = h
N−1∑

i=1

uivi,

and associated norm.

We define the self–adjoint and positive definite operator δ on Hω as

(δwh)i =






0 i = 0,

−
wi+1 − 2wi + wi−1

h2
i = 1, . . . , N − 1,

0 i = N,

and we consider the operators A = (λ + 2µ)δ and B = δ. We also introduce
the difference operators, G = D : Hω → Hω̄

(Gph)i =





p1

h
i = 0,

pi+1 − pi−1

2h
, i = 1, . . . , N − 1,

− pN−1

h
, i = N,

which verify (Gph, uh) = −(ph, Duh), ∀(uh, ph) ∈ Hω × Hω.

Let Um
h ∈ Hω and P m

h ∈ Hω be approximations to u(x, tm) and p(x, tm), where
tm = mτ, m = 0, 1, . . . , M, M τ = T . Then, using an Euler implicit scheme to
discretize in time we get the problem
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(Ph) : AUm+1
h + GP m+1

h = 0, (31)

DUm+1
h − DUm

h

τ
+

κ

η
BP m+1

h = fm+1
h , m = 0, . . . , M − 1. (32)

with initial condition DU 0
h = 0. (Ph) represents the discretization of the orig-

inal problem on a collocated grid, which is not stable. If we follow the trans-
formations made in the continuous case, i.e. apply operator A to the second
equation and operator D to the first equation and take into account the initial
condition DU0

h = 0, we obtain the transformed discrete problem, denoted by
(Ph)tr,

(Ph)tr : AU1
h + GP 1

h = 0, (33)

Q1
h = BP 1

h , (34)

CQ1
h + τ(λ + 2µ)

κ

η
BQ1

h = τ(λ + 2µ)Bf 1
h , (35)

D

(
U1

h

τ

)
+

κ

η
Q1

h = f 1
h , on ∂ω̄, (36)

and,

AUm+1
h + GP m+1

h = 0, (37)

Qm+1

h = BP m+1

h , (38)

C

(
Qm+1

h − Qm
h

τ

)
+ (λ + 2µ)

κ

η
BQm+1

h = (λ + 2µ)Bfm+1
h , (39)

D

(
Um+1

h − Um
h

τ

)
+

κ

η
Qm+1

h = fm+1

h on ∂ω̄, (40)

m = 1, 2, . . . , M − 1,

where a new difference operator appears, given by:

(Cqh)i =





1

4
(q2 + 2q1) i = 1,

1

4
(qi+1 + 2qi + qi−1), i = 2, . . . , N − 2,

1

4
(qN−2 + 2qN−1), i = N − 1,

One can easily verify that −DG = CB = BC. In this way we have obtained
a problem that is equivalent to problem (31-32).

Remark With this scheme we may obtain oscillations because the matrices
in (35) and (39) are, in general, no M-matrices.
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If h2 <
4(λ + 2µ)κ

η
τ we have an M-matrix. However, this restriction on the

spatial step is severe if we use small time steps in the initial stage of the con-
solidation process.

In order to stabilize equations (35) and (39) we perturb them as follows:

Cq1
h + τ(λ + 2µ)

κ

η
Bq1

h +
h2

4
Bq1

h = τ(λ + 2µ)Bf 1
h ,

C

(
qm+1
h − qm

h

τ

)
+ (λ + 2µ)

κ

η
Bqm+1

h +
h2

4
B

(
qm+1
h − qm

h

τ

)
= (λ + 2µ)Bfm+1

h .

Taking into account that C +
h2

4
B = I, we encounter the discrete problem

(Ptr)h : Au1
h + Gp1

h = 0, (41)

q1
h = Bp1

h, (42)

q1
h + τ(λ + 2µ)

κ

η
Bq1

h = τ(λ + 2µ)Bf 1
h , (43)

D

(
u1

h

τ

)
+

κ

η
q1
h = f 1

h , on ∂ω̄, (44)

and,

Aum+1

h + Gpm+1

h = 0, (45)

qm+1
h = Bpm+1

h , (46)
(

qm+1
h − qm

h

τ

)
+ (λ + 2µ)

κ

η
Bqm+1

h = (λ + 2µ)Bfm+1

h , (47)

D

(
um+1

h − um
h

τ

)
+

κ

η
qm+1
h = fm+1

h , on ∂ω̄, (48)

m = 1, 2, . . . , M − 1,

which is the discrete problem corresponding to problem (27-30), denoted by
(Ptr)h (i.e., first transform then discretize). Finally, we observe that this for-
mulation is equivalent to the pre-transformed scheme

((Ptr)h)−tr : Au1
h + Gp1

h =0, (49)

Du1
h + τ

κ

η
Bp1

h +
h2

4
Bp1

h = τf 1
h , (50)
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and:

Aum+1

h + Gpm+1

h = 0, (51)

Dum+1
h − Dum

h

τ
+

κ

η
Bpm+1

h +
h2

4

Bpm+1
h − Bpm

h

τ
= fm+1

h , (52)

m = 1, 2, . . . , M − 1,

where the initial condition Du0
h has already been applied. This scheme does

not give oscillations. A diagram in Figure 2 summarizes the relation between
the different problems considered. In the figure disc stands for “discretized”,
stab means “stabilized” and ≡ indicates that problems are equivalent. Sum-
marizing, we have six different problems:

• (P): original continuous problem,
• (Ptr): transformed continuous problem,
• (Ph): discretization of (P) (this scheme shows oscillations),
• (Ptr)h: discretization of (Ptr) (oscillation-free solutions),
• (Ph)tr: transformation of discrete problem (Ph) (identical to (Ph) (i.e.,

oscillatory), and
• ((Ptr)h)−tr: formulation where (Ptr)h is transformed to an identical (stable)

scheme based on the original problem.

Figure 2 indicates that one can obtain ((Ptr)h)−tr from (Ph) by adding a
stabilization term. We can also obtain scheme (Ptr)h from (Ph)tr by adding
a stabilization term.

(P)tr
disc
−→ (Ptr)h ≡ ((Ptr)h)−tr

(P)
disc
−→ (P)h ≡ (Ph)tr

|||

@
@

@
@

@
@

@
@
@R

�
�

�
�

�
�

�
�

�	

stabilized

not stable

stab stab

Fig. 2. Relation between stable and unstable, continuous and discrete problem for-
mulations.

In order to illustrate with a numerical example the effects of stabilization
of term h2B(pm+1

h − pm
h )/(4τ) as in (52), we show the numerical results for

Terzagui problem [3], which consists on a column of soil, bounded by a rigid,
impermeable bottom and walls. A unit load is prescribed at the top wall,
which is free to drain.
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Fig. 3. Unphysical oscillations for original formulation of the incompressible poroe-
lasticity model problem, with central differencing with 32 nodes, t̂ = 10−6, and
stable solution from transformed system on a collocated grid.

Figure 3 shows, for the initial time step, that standard central finite differences
on a grid with 32 nodes lead to spurious oscillations in the discrete pressure
(x = 0 represents the top wall). The time discretization is the O(τ) accurate
implicit Euler scheme with τ = 10−6.

In this problem the boundary layer is approximated in a stable way by the
discrete transformed system in O(h2 + τ)-accuracy on a collocated grid with
32 nodes, see also Figure 3.

3.3 Convergence of the stabilized scheme

We now prove in 1D that the stabilized discrete problem gives stable solutions.
Firstly, we give an energy estimate. For simplicity, we suppose that p0

h satis-
fies the boundary conditions. In this case, the scheme writes as (51-52) even
for m = 0. Otherwise, a different estimate must be done for the first step time.

Proposition 4 The solutions of the scheme (51-52) for m ≥ 0 satisfy the a
priori estimates

‖um+1
h ‖2

A +
h2

4
‖pm+1

h ‖2
B ≤ ‖u0

h‖
2
A +

h2

4
‖p0

h‖
2
B + C1τ

m+1∑

j=1

‖f j
h‖

2
B−1 , (53)

‖pm+1
h ‖2

B ≤ 2‖p0
h‖

2
B + C2



τ
m∑

j=1

‖
f j+1

h − f j
h

τ
‖2

B−1 + ‖fm+1
h ‖2

B−1



 , (54)

where C1 and C2 are constants independent of the discretization parameters.
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Proof: Multiplying scalarly (51) and (52) by (um+1
h −um

h )/τ and pm+1
h respec-

tively, we get for 0 ≤ m ≤ M − 1,

(
Aum+1

h ,
um+1

h − um
h

τ

)
+

(
Gpm+1

h ,
um+1

h − um
h

τ

)
= 0, (55)

and

(
D

um+1
h − um

h

τ
, pm+1

h

)
+

κ

η
(Bpm+1

h , pm+1
h ) +

h2

4

(
B

pm+1
h − pm

h

τ
, pm+1

h

)
=
(
fm+1

h , pm+1

h

)
. (56)

The addition of (55) and (56) yields

(
Aum+1

h , um+1
h − um

h

)
+ τ

κ

η
B(pm+1

h , pm+1
h ) +

h2

4

(
B(pm+1

h − pm
h ), pm+1

h

)
=

τ
(
fm+1

h , pm+1

h

)
. (57)

Applying the generalized Cauchy-Schwarz inequality in the right hand side we
get

1

2

(
‖um+1

h ‖2
A − ‖um

h ‖
2
A

)
+

h2

8

(
‖pm+1

h ‖2
B − ‖pm

h ‖
2
B

)
≤

τη

4κ
‖fm+1

h ‖2
B−1 ,

and therefore, (53) is obtained, i.e., the solution uh is stable with respect to
the initial data and right hand side.

To obtain an a priori estimate for the pressure, a splitting of the solution will
be used. Let be pm+1

h = pm+1
h +p

m+1

h , where the first part pm+1
h , is the solution

of the problem

κ

η
B pm+1

h = fm+1

h , m = 0, . . .M − 1, (58)

and the second p
m+1

h is solution of

Aum+1
h + Gp

m+1

h = −Gpm+1
h , (59)

Dum+1
h − Dum

h

τ
+

κ

η
Bp

m+1

h +
h2

4
B

p
m+1

h − p
m
h

τ
= −

h2

4
B

pm+1
h − pm

h

τ
(60)

We get from (59) and (60)
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τ

∥∥∥∥∥
um+1

h − um
h

τ

∥∥∥∥∥

2

A

+

(
G(p

m+1

h − p
m
h ),

um+1

h − um
h

τ

)
= −

(
G(pm+1

h − pm
h ),

um+1

h − um
h

τ

)

and

(
D

um+1
h − um

h

τ
, p

m+1

h − p
m
h

)
+

κ

η

(
Bp

m+1

h , p
m+1

h − p
m
h

)

+
h2

4
(B

p
m+1

h − p
m
h

τ
, p

m+1

h − p
m
h ) = −

h2

4
(B

pm+1

h − pm
h

τ
, p

m+1

h − p
m
h ).

Adding the previous equations and after simple transformations we obtain the
inequality

κ

2η

(
‖p

m+1

h ‖2
B − ‖p

m
h ‖2

B

)
≤

τ

2

∥∥∥∥∥G
(

pm+1
h − pm

h

τ

)∥∥∥∥∥

2

A−1

+
τh2

8

∥∥∥∥∥

(
pm+1

h − pm
h

τ

)∥∥∥∥∥

2

.

obtaining the estimate (54).

Convergence results are straightforward using estimates (53-54) and consider-
ing the approximation errors of the scheme.

4 Multigrid Solution of Transformed System

The iterative solution method for the transformed system of equations (Algo-
rithm I) can be interpreted as a “left distributor” for

ChLhuh = Chfh,

with:

Ch =




Ih 0 (λ + µ) (∂x)h

0 Ih (λ + µ) (∂y)h

− (∂x)h − (∂y)h
−(λ + 2µ)∆h




. (61)

In that case, we obtain

ChLh =




−µ∆h 0 LC1,3
h

0 −µ∆h LC2,3
h

0 0 ã(λ + 2µ)∆2
h − ∆h




,
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with LC1,3
h = LC3,1

h and LC2,3
h = LC3,2

h , as in (12), (13), and

Chfh =




(λ + µ)∂xfh

(λ + µ)∂yfh

(λ + 2µ)∆fh




The main difference with Algorithm I is that here a semi-discretization in
time has already taken place (as in model operator (8)). Discrete operator Lh

represents the discretization on a collocated grid.

We end up with an upper triangular system. In a first step then, the last equa-
tion should be updated after which the other two equations may be treated.
For the resemblance and simplification, operator ã(λ + 2µ)∆2

h − ∆h is split
into

(−ã(λ + 2µ)∆h + 1)qh = f̃h, −∆hph = qh.

Notice that, compared to the work explained in Section 2.2, we solve the trans-
formed system that is almost (i.e., except for the boundary coupling) decou-
pled. So, we do not use the reformulation system only in multigrid smoothing.

For the multigrid solution of (61) we can simply choose four times a highly
efficient scalar multigrid algorithm that works well for discrete Laplace type
operators. All four scalar operators appearing are isotropic Laplace type oper-
ators. A multigrid method with highest efficiency, based on a red-black point-
wise Gauss-Seidel smoother, GS-RB, and well-known choices for the remaining
multigrid components [12] can be used for all choices of λ, µ, and ã. These
include the direct coarse grid discretization of the PDE, full weighting and bi-
linear interpolation, as the restriction and prolongation operators, respectively.

Remark 3. A similar transformation can be defined and analyzed for incom-
pressible Stokes equation from fluid mechanics. In that case, for the discrete
Stokes operator

Lh,st =




−∆h 0 (∂x)h

0 −∆h (∂y)h

(∂x)h (∂y)h
0




a corresponding distributor is given by

Ch,st =




Ih 0 0

0 Ih 0

− (∂x)h − (∂y)h
−∆h




.
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The transformed system then reads

Ch,stLh,st =




−∆h 0 (∂x)h

0 −∆h (∂y)h

0 0 −∆h




.

Also here, it is not necessary to discretize on a staggered grid for a stable
discretization. A generalization of this transformation for the system of in-
compressible Navier-Stokes equations can be found in [12] (Section 8.8.3):

Assume that Ω is a bounded domain in IR2 and that velocities u, v and pressure
p are sufficiently smooth. Then the two systems

−∆u + Re(uux + vuy) + px = 0 (Ω)

−∆v + Re(uvx + vvy) + py = 0 (Ω)

ux + vy = 0 (Ω = Ω ∪ ∂Ω)

and

−∆u + Re(vuy − uvy) + px =0 (Ω)

−∆v + Re(uvx − vux) + py =0 (Ω)

∆p + 2Re(vxuy − uxvy) = 0 (Ω)

ux + vy =0 (∂Ω)

are equivalent. The result originates from [10]. This transformed Navier-Stokes
system has recently been used in [11]. Notice the the original primary un-
knowns are used after the transformation. The generalization to 3D is trivial.

5 Numerical Experiments

In this section three numerical experiments are evaluated. The experiments
range from a model problem with academic parameter setting to more realistic
problems and parameters. We report on the accuracy of the numerical solution
from the transformed system and, in particular, on the multigrid convergence.
A comparison in terms of CPU time between the staggered multigrid approach
and multigrid for the collocated discretization of the transformed system is
made.

For the coupled, staggered approach, the measure of convergence is related to
the absolute value of the residual after the m-th iteration in the maximum
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norm over the three equations in the system,

|rm
h |∞ := |rm

1,h|∞ + |rm
2,h|∞ + |rm

3,h|∞ < TOL, (62)

with TOL = 10−6. In the decoupled approach, the stopping criterion is based
on the residual in each equation separately. Convergence is achieved in each
equation’s residual is less than 10−6.

5.1 Multigrid Convergence for First Model Problem

Some analytical reference solutions are known in the literature [1] for (7) in
dimensionless form, where scaling has taken place with respect to a charac-
teristic length of the medium `, Lamé constants λ + 2µ, time scale t0 and
a (7).

By choosing a unit squared domain, a source term f = 2 · δ0.25,0.25 · sin t̂ (δx,y

is the Kronecker delta function, t̂ = (λ + 2µ)at), the following boundary and
initial conditions,

at: y = {0, 1} : u = 0, ∂v/∂y = 0

at: x = {0, 1} : v = 0, ∂u/∂x = 0,

and pressure p = 0 at the boundaries, we can mimic the dimensionless sit-
uation. In this case, the solution can be written as an infinite series [1], see
also [7]. An interesting feature is that this solution is independent of the Lamé
coefficients. The parameters in the reference experiment read µ = 1/2, λ =
0, ã = 5 · 10−3 (8). Figure 4 shows for this setting the computed displace-
ment and pressure solution at time t̂ = π/2. The solution resembles the exact
solution in [1] very well, without any unphysical oscillations. O(h2 + τ) accu-
racy is observed for the displacements, and, asymptotically, for the pressure
too (despite the occurrence of the delta function which usually influences the
numerical accuracy negatively) [7].

This reference problem is solved with state-of-the-art multigrid methods devel-
oped for the staggered grid (Section 2.2) and the collocated grid discretization
(Section 4). Table 1 compares the CPU times, to satisfy the tolerance 10−6,
of the transformed system on the collocated grid and the original system dis-
cretized on the staggered grid. Note that this tolerance is considered accurate
w.r.t. engineering practice.

The transformed system needs, on average, for the four equations six scalar
multigrid iterations per equation. The CPU time in Table 1 for this system on
a Pentium IV, 2.6 MHz is 1 second per time step on a 1282-grid, and 4 seconds
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Fig. 4. Numerical solution for displacements and pressure for 2D poroelasticity
model problem, 322-grid.

per time step on a 2562-grid. These results are more than 10 times faster than
the CPU time results in our previous work with multigrid for the staggered
system. The F(1,1)-cycle [12] (meaning one pre- and one post-smoothing iter-
ation) is used for this problem; it is fast and shows an h-independent behavior.
The average multigrid convergence factor observed on the collocated grid is
≈ 0.06, which is in correspondence with the multigrid theory for Laplace op-
erators. These results not sensitive to variations in the Lamé coefficients.

Also the multigrid convergence factor on the staggered grid is excellent, ρh ≈
0.06. We use the distributive smoother (11) in a multigrid F(1,1)-cycle [12]
here. In the distributive smoother three operators need to be smoothed sepa-
rately. For this purpose, a red-black point-wise Gauss-Seidel smoother is used
for the Laplace operators in the first two equations and a line-wise Gauss-
Seidel relaxation method for the third equation. This multigrid method for
the staggered case was the most efficient method in a comparison among var-
ious cycles and smoothers in [7]. The extra costs compared to the collocated
version are due to the fact that we treat a coupled system on the staggered
grid.

Table 1
CPU times comparison of multigrid methods for the original system on a staggered
grid, and the transformed system on a collocated grid.

32 × 32 64 × 64 128 × 128 256 × 256

collocated decoupled 0.06′′ 0.24′′ 1′′ 4′′

staggered coupled 1′′ 3′′ 14′′ 55′′

In both solution approaches a matrix-free version of multigrid is used; the
CPU times include the time for computing the operator elements.
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Fig. 5. Numerical solution for pressure for second problem, 322-grid.

5.2 Poroelasticity Problem with Realistic Parameters

In the following experiment, the domain considered is Ω = (−50, 50)×(0, 100).
As the boundary conditions zero displacements are chosen and for the pressure,

p =





1 on Γ1 : |x| ≤ 20, y = 100,

0 on Γ \ Γ1.

The material properties of the porous medium are given in Table 2.

Table 2
Material parameters for the second poroelastic problem.

Property Value Unit

Young’s modulus 3 × 104 N/m2

Poisson’s ratio 0.2 -

Permeability 10−7 m2

Fluid viscosity 10−3 Pas

In Figure 5 the solution of the pressure is presented.

In Table 3 we compare the CPU times of the two approaches: Solving the
system in a coupled fashion on a staggered grid, and the solution of the de-
coupled transformed system on a collocated grid. The multigrid methods for
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both discretization approaches are identical to the ones employed in the pre-
vious experiment. The multigrid convergence factor for the transformed sys-
tem is again excellent, 0.06 for each equation, as is its staggered counterpart
ρh ≈ 0.08 for the coupled system. The CPU time used, however, differs again
substantially, as presented in Table 3.

Table 3
CPU time comparison between the collocated decoupled and the staggered coupled
multigrid schemes.

32 × 32 64 × 64 128 × 128 256 × 256

collocated decoupled 0.05′′ 0.22′′ 1′′ 5′′

staggered coupled 0.5′′(5) 2′′(5) 10′′(6) 40′′(6)

The results with the transformed system, comparing to the results in Table 1,
confirm the independence of the multigrid convergence and CPU time with
respect to the poroelastic problem parameters. This is a strong robustness
result for the new solver developed.

5.3 Poroelastic Footing Experiment

The third example is a true 2d footing problem (see also [9]). The simulation
domain is a 100 by 100 meters block of porous soil, as in Figure 6.

?????

σ0

0

50

-50
100

Fig. 6. Computational domain for the footing problem

At the base of this domain the soil is assumed to be fixed while at some upper
part of the domain a uniform load of intensity σ0 is applied in a strip of length
40m. The whole domain is assumed free to drain. Therefore, the boundary
data is given as follows:
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Fig. 7. Numerical solution for displacements and pressure for 2D poroelasticity
reference problem, 322-grid.

p = 0, σxy = 0, σyy = −σ0, onΓ1 = {(x, y) ∈ ∂Ω, / |x| ≤ 20, y = 50},

p = 0, σxy = 0, σyy = 0, onΓ2 = {(x, y) ∈ ∂Ω, / |x| > 20, y = 50}.

The material properties of the porous medium are the same as in the previous
problem, see Table 2 and the uniform load is taken as σ0 = 1 × 104N/m2.

Notice that the boundary condition for the footing problem involves the pre-
scription of stress conditions. These conditions are applied in the discretization
of the equations of the stabilized system ((Ptr)h)−tr. Then they are trans-
formed to problem (Ptr)h in a similar way as it explained in Section 3.2.

In Figure 7 the solution of the pressure is presented. The unphysical oscilla-
tions for small t that were present in the numerical results in [9], do not occur
here with both formulations: not with staggered grids and not with collocated
grids adding the stabilization term.

Finally, the multigrid convergence factor for the decoupled system is found
to be 0.06 for the equations for p and q, while for the other two equations,
with the stress boundary conditions, it is found to be 0.12. The corresponding
CPU times are 1′′ on a 1282-grid and 4′′ on a 2562-grid. The convergence factor
for the coupled system on the staggered grid reads ρh = 0.2. The CPU times
are then 29′′ on a 1282-grid and 113′′ on the 2562-grid. The improvement in
CPU time with the transformed system is here more impressive. This example
shows that the transformation can easily be applied to more realistic boundary
conditions, resulting in a similar performance of the solver.
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6 Conclusion

In this paper we provide a fast and accurate discrete solution for the incom-
pressible variant of the poroelasticity equations. The system is transformed so
that a stable discretization can be obtained on a collocated grid. This is done
by means of an (implicit, via the transformation) addition of an O(h2 + τ)
stabilization term in the discretization of the transformed system.

A robust and very efficient multigrid iteration has been defined based on the
decoupled version of the poroelasticity system after the transformation. It is
sufficient to choose a highly efficient multigrid method for a scalar Poisson
type equation for the overall solution of this poroelasticity system. With stan-
dard geometric transfer operators, a direct coarse grid discretization and a
point-wise red-black Gauss-Seidel smoother, an efficient multigrid method is
developed for all relevant choices of the problem parameters. According to
classical multigrid theory, we observe multigrid convergence factors that are
less than 0.1 for a variety of poroelastic problems. In the literature this is often
called “textbook multigrid efficiency”. Very satisfactory solution times have
been produced, that are about 10 times faster than the iterative solution of
the coupled system, discretized on a staggered grid.

The present discretization and iterative solution method can be seen as a basis
for the generalization to more complicated problems that are also both porous
and elastic. Here we think of double porosity problems, or coupled problems
in which poroelasticity is coupled to Stokes flow and to thermodynamical
models. The present saddle point type problem has been handled well by
a transformation, that is now well understood, at least in 1D. The future
problems offer next challenges in the treatment of coupled saddle point type
problems.
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