
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 07-12

Multi-asset option pricing

using a parallel Fourier-based technique

C.C.W. Leentvaar and C.W. Oosterlee

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2007



Copyright  2007 by Department of Applied Mathematical Analysis, Delft,
The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission from Depart-
ment of Applied Mathematical Analysis, Delft University of Technology, The
Netherlands.



Multi-asset option pricing using a parallel

Fourier-based technique

C.C.W. Leentvaar1∗and C.W. Oosterlee1,2

1Delft University of Technology,

Numerical Analysis Group, c.c.w.leentvaar@tudelft.nl

2CWI, Center for Mathematics and Computer Science,

Amsterdam, the Netherlands, c.w.oosterlee@cwi.nl

October 5, 2007

Abstract

In this paper we present and evaluate a Fourier-based sparse grid
method for pricing multi-asset options. This involves computing multi-
dimensional integrals efficiently and we do it by the Fast Fourier Trans-
form. We also propose and evaluate ways to deal with the curse of di-
mensionality by means of parallel partitioning of the Fourier transform
and by incorporating a parallel sparse grids method. Finally, we test the
presented method by solving pricing equations for options dependent on
up to seven underlying assets.

1 Introduction

In this paper a parallel method (based on sparse grid and the FFT) for pricing
multi-asset options is presented. The core of the method is the computation of
a multi-dimensional integral. By means of the Fast Fourier Transform (FFT)
we can compute this integral efficiently. Deterministic solvers (as opposed to
Monte-Carlo methods) on tensor-product grids for multi-dimensional problems
however suffer from the so-called curse of dimensionality, i.e., the exponential
increase in the number of unknowns as the dimension d increases. This is
also true for the FFT-based technique presented here. In order to reduce the
complexity we combine a parallel partitioning method for the Fourier transform
with a sparse grid method. The method is evaluated in terms of complexity
analysis and by means of numerical experiments for multi-asset options for up
to seven dimensions.

Besides others, FT-based methods have been successfully applied by Bakshi
[1] and Scott [13] in computational finance. Here, we discuss a method by Lord
et. al. [12], which has been developed in particular for pricing early-exercise
options.

∗The author wants to thank the Dutch Technology Foundation STW for financial support

2



This paper is organized in five sections. In Section 2, we describe the
Fourier-based method for multi-asset options on tensor-product grids, called
the multi-dimensional CONV method. Section 3 discusses the partitioning and
corresponding parallelization of the method. This section also contains some
parallel multi-asset results. In Section 4, we combine the method with the par-
allel sparse grid technique [17] which is based on [15] and present results from
numerical experiments on sparse grids. In Section 5, we draw our conclusions
from this work.

The options considered in this paper have their payoff given by:

•

(∏d
j=1 S

1
d

j −K

)+

(call on the geometric average of the assets).

•
(∑d

j=1 cjSj −K
)+

, with cj the basket weights (basket call).

• Options on the minimum or maximum of the underlying assets, for ex-
ample: (K − maxj Sj)

+, put on the maximum of the underlying assets.

2 The multi-dimensional CONV method

The method presented falls in the category of transform methods. These meth-
ods are based on the risk-neutral valuation formula, for options on a single
asset:

V (t, S(t)) = e−r(T−t)
E [V (T, S(T ))] , (1)

where V denotes the value of the option, r is the risk-free interest rate, t is
the current time, T is the maturity date and S represents the price of the
underlying. Interest rate, r, is assumed to be deterministic here. Equation (1)
is an expectation and can be valuated using numerical integration provided that
the probability density function is known. Equation (1) can be written as,

V (t, x(t)) = e−r(T−t)

∫ ∞

K∗

(
ex(T ) − eK

∗
)
f(x)dx, (2)

with K∗ = lnK, x(t) = lnS(t) and f(x) the probability density function. The
value of V (t, x(t)) tends to S(0) as K∗ tends to −∞ and hence the call price
is not square integrable. Therefore, the payoff is multiplied by damping factor
exp (αK∗), with α > 0. The computation of the Fourier transform of the option
value, ψ, can be done by using the characteristic function, φ(ω), as proposed
by Carr and Madan [5]:

ψ(ω) = e−r(T−t)

∫ ∞

−∞

eiωK∗

∫ ∞

K∗

eαK∗
(
ex − eK

∗
)
f(x)dxdK∗

=
e−r(T−t)φ(ω − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v
,

(3)

where the characteristic function of the underlying is defined by

φ(u) = E

[
eiu lnS(T )

]
. (4)

3



For a European call an exact solution exists. To compute the call price, the
inverse Fourier transform has to be computed:

V (t, x(t)) =
e−αK∗

2π

∫ ∞

−∞

e−iωK∗

ψ(ω)dω. (5)

Following the same steps for basket options, however, would need the charac-
teristic function of a basket value, which is not known in general. For common
baskets quite accurate approximations can be obtained by assuming that the
basket itself is an asset following the same distribution as one of the under-
lying assets [7]. Here, we evaluate a method which does not rely on such an
approximation.

Like all transform-based methods, the CONV method [12] is based on the
risk-neutral valuation formula (1). In the multi-dimensional version we need to
compute:

V (t,x(t)) = e−r(T−t)

∫

Rd

V (T,y)f(y|x)dy, (6)

where x = lnS(t) is a vector of the log-asset prices, y = lnS(T ) and f(y|x) is
the probability density function of the transition of x at time t to y at time T .

With the right to exercise at certain times, tn, before the maturity date, T ,
the Bermudan option price is defined by:

V (tn,x(tn)) = max

{
E(tn,x(tn)) , e−r(tn+1−tn)

∫

Rd

V (tn+1,y)f(y|x)dy

}
,

(7)
with E(tn,x(tn)) the exercise payoff at tn.

At each exercise date, tn, valuation of (7) can be interpreted as a European-
style contract with maturity time tn+1 and “initial” time tn. For the derivation
of the multi-asset CONV method, we can therefore focus on (6) and keep the
notation as in (6).

The main premise of the CONV method is that the transition density func-
tion f(y|x) equals the density of the difference of y and x:

f(y|x) = f(y − x). (8)

This holds for several models, such as geometric Brownian motion and, more
generally, Lévy processes, which have independent increments. Then with z =
y − x, we have:

V (t,x) = e−r(T−t)

∫

Rd

V (T,x + z)f(z)dz, (9)

which is a cross-correlation between V and f . The cross-correlation operator
can be treated as a convolution operator [9] and therefore the method is called
the CONV method in [12].

The valuation of equation (9) can be done numerically for known probability
density functions. For several asset price models, including the Lévy processes,
however, only the characteristic function is known. When transforming the
cross-correlation operator to Fourier-space, we have to deal with a product of

4



the Fourier transform of the payoff and the Fourier transform of the probability
density function, which is the characteristic function.

The Fourier transform of a function can however only be taken if the function
is L1−integrable. This is typically not the case for multi-asset payoff functions
but damping techniques [5] and [12] are not available for multi-asset options in
general. As an example we try to integrate a payoff of a two-dimensional basket
call, which is damped by eα1x1+α2x2,

∫

R2

eα1x1+α2x2K (c1e
x1 + c2e

x2 − 1)+ dx1dx2

=K

∫ − ln c2

−∞

∫ ∞

ln(1−c2ex2)−ln c1

eα1x1+α2x2 (c1e
x1 + c2e

x2 − 1) dx1dx2

+K

∫ ∞

− ln c2

∫ ∞

−∞

eα1x1+α2x2 (c1e
x1 + c2e

x2 − 1) dx1dx2.

(10)

The second term in (10) is unbounded because of the integration over R for x1.
It is not possible to find a proper value for α1 to bound this integral.

In the multi-dimensional CONV method the computation is done numeri-
cally and therefore the domain of integration has to be truncated. If the payoff
itself is truncated to a certain bounded subset Ωd, it is L1-integrable. We
therefore redefine the payoff function as,

V (T,x) =

{
V (T,x) x ∈ Ωd ⊂ R

d

0 x /∈ Ωd.
(11)

We now take the Fourier transform of equation (9):

er(T−t)F{V (t,x)}(ω) =

∫

Rd

eiωx

[∫

Rd

V (T,x + z)f(z)dz

]
dx

=

∫

Rd

∫

Rd

eiω(x+z)V (T,x + z)f(z)e−iωzdzdx.

(12)

Here the multi-dimensional Fourier transform, and its inverse, are defined as:

F{h(x)}(ω) =

∫

Rd

eiωxh(x)dx,

F inv{H(ω)}(x) =
1

(2π)d

∫

Rd

e−iωxH(ω)dω,

with, for example,
∫

Rd

eiωxh(x)dx =

∫ ∞

−∞

. . .

∫ ∞

−∞

eiω1x1 . . . eiωdxdh(x1, . . . , xd)dx1 . . . dxd.

Changing the order of integration in (12) and using y = x + z, we find:

er(T−t)F{V (t,x)}(ω) =

∫

Rd

∫

Rd

eiωyV (T,y)f(z)e−iωzdydz

=

∫

Rd

eiωyV (T,y)dy

∫

Rd

e−iωzf(z)dz

= F{V (T,y)}(ω)φ(−ω),

(13)

5



with φ the characteristic function. After taking the inverse Fourier transform,
the option price is found to be:

V (t,x) = e−r(T−t)F inv {F{V (T,y)}φ(−ω)} . (14)

In this paper the asset prices are modeled as correlated log-normal distribu-
tions. The characteristic function can be computed via the probability density
function,

f(x) =
1√

(2π)d|Σ|
exp

(
−

1

2
(x − µ)T Σ−1 (x− µ)

)
,

where µj =
(
r − δj −

1
2σ

2
j

)
(T − t), Σ is the correlation matrix with [σ]jk =

ρjkσjσk and |Σ| its determinant. Dividend-yields δj , volatilities σj and the
correlation coefficients ρjk are assumed to stay constant. The characteristic
function reads, by using equation (4),

φ(ω) = exp



i
d∑

j=1

µkωk − (T − t)

d∑

j=1

d∑

k=1

ρjkσjσkωjωk



 . (15)

Equation (14) can now be solved numerically with the help of multi-dimensional
quadrature rules. A computation using the FFT requires equidistant grids for
x, y and ω:

xj,kj
= xj,0 + kjdxj , (16)

yj,kj
= yj,0 + kjdyj, (17)

ωj,nj
= ωj,0 + njdωj, (18)

where the index j denotes the j-th coordinate, j = 1, . . . , d, and kj ∈ [0,Nj −1]
and dxj = dyj. The Nyquist relation has to be fulfilled to avoid aliasing:

dxj · dωj =
2π

Nj

. (19)

We abbreviate xj,kj
= xkj

, subscripts k1, . . . , kd by k, the transformed vector
by

F{V (T, yk1, . . . , ykd
)} = V̂ (T, ωn1 , . . . , ωnd

) = V̂n.

and the repeated sum by

N1−1∑

k1=0

. . .

Nd−1∑

kd=0

=

N−1∑

k=0

Approximating the inner integral of (14) by the trapezoidal rule gives:

V̂n :=

∫

Rd

V (T,y)eiωydy ≈ dY

N−1∑

k=0

ZkVk exp(iωn1yk1 + . . . + iωnd
ykd

), (20)

6



with dY =
∏d

j=1 dyj, Zk =
∏d

j=1Rj(kj) and the trapezoidal weights,

Rj(kj) =

{
1
2 kj = 0 ∨ kj = Nj − 1

1 otherwise.

The terms exp(iωnj
ykj

), j = 1 . . . d, can be rewritten as,

exp(iωnj
ykj

) = exp(i(ωj,0 + njdωj)(yj,0 + kjdyj))

= exp(iωj,0yj,0) exp(i(ωj,0kjdyj + yj,0njdωj) exp(
2πinjkj

Nj

).

We choose ωj,0 = −1
2Njdωj and yj,0 = −1

2Njdyj, meaning that the grids are
centered at the origin. Furthermore, we introduce the standard DFT notation,
WNj

= exp(−2πi
Nj

), and have:

exp(iωnj
ykj

) = exp(iωj,0yj,0) exp(i(ωj,0kjdyj + yj,0njdωj)W
−njkj

Nj

= exp(
2πiNj

4
) exp(−πikj) exp(−πinj)W

−njkj

Nj

= (−1)kj (−1)nj+
Nj

2 W
−njkj

Nj
.

Equation (20) can be written as:

V̂n ≈ dY

N−1∑

k=0

GkVk

d∏

j=1

(−1)nj+
Nj

2 W
−njkj

Nj
, (21)

with Gk = Zk

∏d
j=1(−1)kj . Recognizing that

Dd {fk} =
N−1∑

k=0

fk

d∏

j=1

e
2πinj kj

Nj =
N−1∑

k=0

fkW
−nk
N

Dinv
d {Fn} =

1
∏d

j=1Nj

N−1∑

n=0

Fn

d∏

j=1

e
−2πinjkj

Nj =
1

∏d
j=1Nj

N−1∑

n=0

FnW
nk
N

are the discrete Fourier transform (DFT) and inverse Fourier transform, respec-
tively, we have:

V̂n ≈ dY
d∏

j=1

(
(−1)nj+

Nj

2

)
· Dd [GkVk] , (22)

where Dd is the d−dimensional (or d-times repeated) DFT. The outer integral
of equation (14) is treated by the left-hand rectangle rule in accordance with
the error analysis [12]. So, we have,

V (t,xm) = e−r(T−t)F inv
(
V̂n · φn

)
≈
e−r(T−t)

(2π)d

∫

Rd

V̂nφne
−iωxdω

= dΩ
e−r(T−t)

(2π)d

N−1∑

n=0

V̂nφne
−iωn1xm1−...−iωnd

xmd

(23)

7



with φn = φ(−ωn1, . . . ,−ωnd
), and by using (19),

dΩ =

d∏

j=1

dωj =

d∏

j=1

2π

Njdyj

=
(2π)d

NddY
. (24)

Again we can replace,

e−iωnj
xmj = (−1)mj (−1)nj+

Nj

2 W
njmj

Nj
. (25)

Combining (23), (24) and (25) gives:

V (t,xm) ≈
e−r(T−t)

NddY

N−1∑

n=0

V̂n · φn.
d∏

j=1

(−1)mj (−1)nj+
Nj

2 W
njmj

Nj
. (26)

We see that the products (−1)nj+
1
2
Nj vanish when combining (26) and (21).

The combination of the two discretized integrals leads to the multi-dimensional
CONV method:

V (t,xm) =
e−r(T−t)

(2π)d

d∏

j=1

(−1)mjDinv
d [φnDd {VkGk}] . (27)

3 Parallel partitioning

Equation (27) is set up for tensor-product multi-dimensional grids. For an
increasing number of dimensions, however, the total number of points will in-
crease exponentially. This so-called curse of dimensionality [2] renders many
nice sequential algorithms useless. Even on state of the art sequential comput-
ers, the memory is not large enough to store vectors of size N =

∏d
j=1Nj, for d

sufficiently large. One of the possibilities to solve on finer grids is to partition
the problem and solve the different parts separately in parallel.

The partitioning chosen here is based on the down-sampling method [9].
The basis of this method is a splitting of the input vector (in our case the
Fourier transformed payoff) into two parts: one part containing the even and
one containing the odd points. These two DFTs can be computed independently
and their result can be added. A straightforward sequential implementation of
the DFT of size N uses N2 computations, whereas the partitioned version needs(

N
2

)2
computations for each DFT plus one summation. This partitioning can be

continued. It will converge to O(N logN) computations, like the FFT. Taking
N as a power of two is the most efficient choice. Equation (27) is based on
the transform of the payoff and the inverse transform of the product. This
structure complicates the partitioning to some extent, but it can still be used,
as described below.

Consider first the one-dimensional version of equation (27):

Hm =

N−1∑

n=0

φnV̂nW
mn
N , (28)

8



where we omit the discounting factor. As mentioned, we split (28) into two
sums of size M = N/2:

Hm =

M−1∑

n=0

φ2nV̂2nW
2nm
N +

M−1∑

n=0

φ2n+1V̂2n+1W
(2n+1)m
N

=
M−1∑

n=0

φ2nV̂2nW
nm
M +Wm

N

M−1∑

n=0

φ2n+1V̂2n+1W
nm
M ,

(29)

where we use

W 2nm
N = e−

2πi2nm
N = e−

2πimn
M = Wmn

M .

The two DFTs in (29) can be solved in parallel. The inner parts φ2n, φ2n+1, V̂2n

and V̂2n+1 can be computed by addressing the appropriate points. V̂2n and
V̂2n+1 are based on a size N vector, V̂ , which we partition as well.

For the even elements, we can write:

V̂2n =
N−1∑

k=0

GkVkW
2nk
N ,

=

M−1∑

k=0

GkVkW
nk
M +

N−1∑

k=M

GkVkW
nk
M

=

M−1∑

k=0

GkVkW
nk
M +W nM

M

M−1∑

k=0

Gk+MVk+MW
nk
M , (30)

and for the odd elements:

V̂2n+1 =

M−1∑

k=0

GkVkW
k
NW

nk
M +WM

N W nM
M

M−1∑

k=0

Gk+MVk+MW
k
NW

nk
M . (31)

We observe that (30) and (31) are again a sum of two DFTs of size N/2. When
the splittings (29), (30) and (31) are combined, we find the one-dimensional
partitioned version of equation (28).

The multiple partitioned version is based on a repetition of this splitting
which we derive for β parts, with β a power of two. The size of the computations
is then M = β−1N . The points used in the splitting of the inverse transform
are given by βn+ q, with q ∈ [0, β − 1]. So, the multiple partitioned version of

equation (28) reads, using W βnm
N = W nm

N :

Hm =

β−1∑

q=0

M−1∑

n=0

φβn+qV̂βn+qW
m(βn+q)
N =

β−1∑

q=0

Wmq
N

M−1∑

n=0

φβn+qV̂βn+qW
mn
M . (32)

9



The partitioning into the odd and even parts can now be included:

V̂βn+q =
N−1∑

k=0

VkGkW
−(βn+q)k
N

=

β−1∑

p=0

M−1∑

k=0

Vk+pMGk+pMW
−(βn+q)(k+pM)
N

=

β−1∑

p=0

W−pq
β

M−1∑

k=0

Vk+pMGk+pMW
−nk
M W−qk

N ,

(33)

where we used

W−βnpM
N = e2πinp = 1 and W−pqM

N = W−pq
β .

Combining (32) and (33), we obtain the one-dimensional multiple split version
of equation (28):

Hm =

β−1∑

q=0

Wmq
N

M−1∑

n=0

φβn+qW
mn
M

β−1∑

p=0

W−pq
β

M−1∑

k=0

Vk+pMGk+pMW
−nk
M W−qk

N

=

β−1∑

p=0

β−1∑

q=0

W−pq
β Wmq

N Dinv
(
φβn+qD

[
Vk+pMGk+pMW

−qk
N

])
.

(34)

This partitioning can be generalized to the multi-dimensional case. We
then have a partitioning vector β containing βj-parts for each coordinate j. The
points in the outer transform (32) are represented by βn+q = (β1n1 + q1, . . . , βdnd + qd).
The points of the payoff addressed in (33) are represented by k + pM =
(k1 + p1M1, . . . , kd + pdMd). When using the multi-dimensional summation,
the multiple partitioned version of equation (27) reads:

V (t,x) =
e−r(T−t)

(2π)d

β−1∑

p=0

β−1∑

q=0

W−pq
β Wmq

N Dinv
d

[
φβn+qDd

{
Vk+pMGk+pMW−qk

N

}]
.

(35)
We see that if one of the coordinate grids is split into two parts, i.e.
βk = 2, βj 6=k = 1, the computation of equation (35) would be a combination of

4 DFTs of size Nk

2

∏d
j=1,j 6=kNj. If the same coordinate would be partitioned

again, we would deal with 16 DFTs of size Nk

4

∏d
j=1,j 6=kNj . The parallel effi-

ciency is low in this case, as the number of processors needed grows quadratically
with βj . Therefore, we rewrite equation (35) as,

V (t,x) =
e−r(T−t)

(2π)d

β−1∑

q=0

Wmq
N Dinv

d



φβn+qDd






β−1∑

p=0

Vk+pMGk+pMW−qk
N W−pq

β








 .

(36)
In this case the computations are partitioned over the q-sum into B =

∏d
j=1 βj

parts. Each processor now has to compute the p parts of the payoff function.

10



The summation over p could also be done in parallel with communication among
the processors. A drawback of allowing communication for high-dimensional
problems is the need to transfer very large vectors from one processor to another.
We certainly need the communication when solving early exercise options in
parallel, but not for European options. So, early exercise options would be
parallelized efficiently on a parallel machine with some form of shared memory.
An alternative to this type of parallelization could be the sparse grid method for
which parallelization is straightforward. We focus on the communication-less
version of this parallel approach and solve European style options with it.

3.1 Complexity analysis

We now evaluate the parallelization technique to solve equation (27) by a com-
plexity analysis, and first briefly summarize the procedure to solve (27) below.

1. Compute the payoff on the tensor-product grid;

2. Multiply the payoff by the function Gk;

3. Take the fast Fourier transform;

4. Multiply the result by the characteristic function;

5. Take the inverse fast Fourier transform of the product;

6. Multiply it by the discount factor.

7. For Bermudan options: Take the maximum of this value and the
payoff function at tn. Repeat the procedure from step 2 until t0 is
reached.

The construction of the payoff function is a significantly faster procedure than
the computation of the two FFTs and the multiplication by the characteris-
tic function. We distinguish three portions of time consumption during the
solution process of European options:

• Tpay is the time needed to construct the payoff including the multiplication

with the function Zk and W−qk
N in (36),

• Tfour is the time in steps 3 to 6 in the algorithm,

• Tadd is the additional time needed for starting the computation, reading
and writing files.

We assume here that Tadd is negligible. The total time needed to compute
equation (27) is then Ttot ≈ Tpay + Tfour. We further assume that Tfour =
ATpay. If technique (36) is used and we partition the problem in B parts, the
computational time per processor reads,

Ttot,split = Tpay +
1

B
Tfour =

A+B

B
Tpay, (37)

11



with B =
∏d

j=1 βj . If there are Q identical processors available, then the parts
B can be distributed over the Q processors. Ideally Q is a divisor of B. The
number of parallel processes is therefore equal to ⌈B

Q
⌉ and the computational

time reads:

Ttot,split =

⌈
B

Q

⌉
A+B

B
Tpay (38)

In our applications, typically, A ∈ [4, 12] for B = 1.

3.2 Full grid experiments

We evaluate the CPU-times of the parallel CONV method for some multi-
dimensional experiments on tensor-product grids. We first evaluate the option
on the geometric average for which we compare the numerical result with an
analytic solution [14]. This solution can be obtained by the use of a coordinate

transformation y =
∏d

j=1 e
xj

d . The option price can then be obtained via the
one-dimensional Black-Scholes formula with:

σ̂ =

√√√√ 1

d2

d∑

j=1

d∑

K=1

ρjkσjσk, δ̂ =
1

d

d∑

j=1

(
δi +

1

2
σ2

i

)
−

1

2
σ̂2.

In Table 1, the prices for the 4D call option on the geometric average of
the assets are presented for a different number of grid points. The first column
in Table 1 represents the number of grid points per coordinate Nj = 2nf , j =
1, . . . , 4. The final computation, nf = 7, requires 4 GB of memory and has a
complexity of 228-points.

The option parameters chosen are r = 6%, σj = 0.2, δj = 0.04, ρjk = 0.25
if j 6= k and T = 1. The strike price is e40, as is S(0).

The desired accuracy of errors being less than e0.01 is achieved for nf = 5.
We observe a second order convergence on the finer grids. The right-side part
of Table 1 presents timings on a parallel machine, which consists of nodes with
two processors each, having 8 GB of memory. Parameter A, as in (37) is also
given.

d = 4 Call on the geometric average CPU times with eq. (36)

nf Price Error Ratio B=1 B=2 B=4 B=16 A

3 1.962 2.0 × 10−1 5.3 <0.1 <0.1 <0.1 <0.1
4 2.128 3.8 × 10−2 5.4 <0.1 <0.1 <0.1 <0.1
5 2.156 9.3 × 10−3 4.1 0.5 0.2 0.1 <0.1 4.5
6 2.163 2.3 × 10−3 4.0 9.4 4.9 3.0 1.6 6.2
7 2.165 5.8 × 10−4 4.0 164.1 85.1 45.2 25.2 7.1

Table 1: Option prices for the 4D geometric average call option with the parallel
timings (in sec.). Last column gives A (37).

Based on these results we conclude that the partitioning strategy reduces
total CPU time well. Parallel efficiency would improve on finer grids and in
higher dimensions.

12



We now consider problems that require more than the maximum available
physical memory per processor. The parallel partitioning is then mandatory.
In Table 2, we present the prices of a digital put on the geometric average of
five assets. As the payoff function of the digital option (it will pay an amount of
e1 when the geometric average is less than the strike price in our experiment)

has a discontinuity along the hyper-surface
∏d

j=1 e
xj

d = 1, it is expected that
this leads to only first order error convergence. Table 2 indeed displays first
order convergence (again the exact solution is known for the digital put on the
geometric average) and we see that a grid size with nf = 6 is not sufficient to
reach the desired accuracy.

Table 3 presents the solution of a 6D standard basket put with equally
weighted assets (ci = 1

6 ). The error convergence is irregular for this payoff, but
at least of second order. The size of nf = 5 is again sufficient to reach the
desired accuracy. The CPU times for B = 32 in Tables 2 and 3 are estimated
times when the number of processors Q is equal to the number of parts B.

d = 5 Digital put on the geometric average CPU times

nf Price Error Ratio B=4 B=32 A

2 0.81 3.36 × 10−1 1.49 <0.1 <0.1
3 0.32 1.49 × 10−1 2.26 <0.1 <0.1
4 0.40 7.43 × 10−2 2.00 0.2 0.1 4.0
5 0.43 3.71 × 10−2 2.00 1.8 1.1 4.5
6 0.45 1.86 × 10−2 2.00 295.6 91.1 8.7

Table 2: Option prices for the 5D geometric average digital put, plus parallel
timing results and parameter A from (37).

d = 6 Basket put CPU times

nf Price Error Ratio B=4 B=32

2 1.26 1.25 <0.01 <0.01
3 1.52 2.63 × 10−1 4.7 0.09 <0.01
4 1.51 1.70 × 10−2 15.5 5.02 1.2
5 1.50 2.62 × 10−3 6.5 334.34 111.1

Table 3: Option prices for the 6D basket put, plus parallel timing results.

The hedge parameters can easily be obtained using the CONV method. We
refer to the appendix for the derivation and some numerical results for Delta.

In the next section, we will describe the sparse grid technique to solve multi-
asset options. The sparse grids technique can be chosen if the required memory
or the required number of processors for the partitioned full grid version is just
too large. However, the efficient use of the sparse grid technique in computa-
tional finance is seriously restricted by the types of multi-asset option contracts
in use. An acceptable accuracy with the sparse grids method can only be
expected if the solution has bounded mixed derivatives. The payoffs of the

13



examples presented in Tables 1, 2 and 3 do not have this property. It may be
possible to transform a payoff so that the kink (or discontinuity for a digital
option) is aligned with a grid line [11], but this cannot be done for every payoff.
A call or put option based on the maximum or minimum of the underlying
assets has its non-differentiability on grid lines, see Figure 1. It is therefore

0
50

100
150

200
250

300

0

50

100

150

200

250

300
0

20

40

60

80

100

120

140

160

180

200

S1S2

(a) Call on maximum

0
50

100
150

200
250

300

0

50

100

150

200

250

300

0

10

20

30

40

50

60

70

80

90

100

S1S2

(b) Put on maximum

0
50

100
150

200
250

300

0

100

200

300
0

50

100

150

200

S1S2

(c) Call on minimum

0
50

100
150

200
250

300

0

50

100

150

200

250

300

0

10

20

30

40

50

60

70

80

90

100

S1S2

(d) Put on minimum

Figure 1: Payoff for 2D options on the maximum or minimum of assets.

expected that these options can be handled well in the sparse grid setting.

4 Sparse grids

The partitioning of equation (27) to get (36) is not sufficient to deal with the
curse of dimensionality. It helps to get problems of moderate size into the
memory or to speed up the computation of medium-sized problems. A 5D
problem with 26 grid points per coordinate would need vectors containing 230

elements (about 16 GB of memory). With a maximum of 4 GB of memory per
processor, we could solve the problem on 4 processors (splitting the problem
twice). However, a 7D problem with 27 grid points per coordinate is too large
to partition with a moderate number of processors. Vectors on this grid will
consist of 249 elements. If machines of 4 GB memory are available, the number
of splittings required is 21 and we would have 221 subproblems of a reasonable
size. Of course, several subproblems can be solved on a single processor as
the FFT-based computation is typically fast. With 211 subproblems on one
processor, we would need 210 ≈ 1000 processors. The (computer dependent)
restrictions on the number of dimensions and the tensor-product grid sizes that
can be efficiently handled in parallel can be calculated easily.

14



The sparse grid method, developed by Zenger and co-workers [4, 17] is an
approach which allows the solution of problems with higher dimensionality. The
solution is obtained via a combination of approximations obtained on relatively
coarse high-dimensional grids, that are called subproblems here. The solution
of this combination technique mimics the solution on a full tensor-product grid.

Let’s consider a full grid with Nj = 2ns , i.e., the number of grid points for
coordinate direction j. The sparse grid method combines subproblems with a
maximum number of 2ns-points in one coordinate. The other coordinates of the
subproblem are discretized with a minimum number of grid points per direction,
2b, called ‘the base’ here. The number of subproblems to combine depends on
the number of dimensions, the base, and the number of points of the full grid
to mimic. These subproblems are ordered in d layers with the complexity of
each subproblem within the layer being the same. The ordering of layers in the
sparse grid combination technique is defined via a multi-index.

Definition 1 A multi-index Id,ℓ related to a d−dimensional grid is the collec-
tion of the sets of numbers (n1, n2, . . . , nd) which have the property:

1. nj ≥ b, ∀j,

2.
∑d

j=1 nj = ℓ and ℓ = ns − j + (d− 1)b+ 1 for j = 1, . . . , d

An element from the multi-index is called a subproblem-index. The size of the
subproblem is (2n1 × 2n2 × . . . × 2nd). The multi-index is empty if one of the
two conditions does not hold.

The combination of the subproblem solutions, by means of interpolation, at a
certain layer ℓ, is just the sum of these solutions on the grids from the multi-
index Id,ℓ. The first layer of subproblems consists of grids of size
(2ns × 2b × . . .× 2b). The layer number for this grid is ℓ = ns + (d− 1)b. Grids
of size (2b × 2b × . . .× 2ns) and (2b+2 × 2b × . . .× 2ns−2) are, for example, also
present in this layer. The next layer is of size ℓ = ns − 1 + (d − 1)b. So, the d
layers needed in the sparse grid combination technique are,

ℓ = ns − j + (d− 1)b+ 1 j = 1 . . . d. (39)

To form the solution a weighted combination of layers is taken with the binomial
coefficients as the weights [4],

Vcombined =

d∑

j=1

(−1)j+1

(
d− 1
j − 1

) ∑

q∈Id,ℓ

Vq, (ℓ = ns − j + (d− 1)b+ 1). (40)

This construction is similar to the difference quadrature formulation of Smolyak
[15]. The combined solution leads to a sparse grid solution, see Figure 2.

Example: Consider a 3D grid of size 163, whose solution we would like to
mimic by the sparse grid method. Now ns = 4, d = 3 and we have 3 layers of
subproblems. Suppose that we need a grid that consists of at least 4 points per
coordinate (b = 2), then we find:

15



0 5 10 15 20 25 30

0

5

10

15

20

25

30

(a) b=1

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(b) b=2

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(c) b=3

Figure 2: Construction of a 2D sparse grid: combined solution

• First layer, ℓ = 8, with grids (16 × 4 × 4), (8 × 8 × 4), (4 × 16 × 4), (8 ×
4 × 8), (4 × 8 × 8) and (4 × 4 × 16).

• Second layer, ℓ = 7, with grids (8 × 4 × 4), (4 × 8 × 4) and (4 × 4 × 8).

• Third layer, ℓ = 6, with grid (4 × 4 × 4).

If the base would be 8 (b = 3), then we would have two layers (as a third
layer would violate Condition 2 in Definition 1 and therefore give an empty
multi-index),

• First layer, ℓ = 10, with grids (16 × 8 × 8), (8 × 16 × 8) and (8 × 8 × 16).

• Second layer, ℓ = 9, with grid (8 × 8 × 8).

In this paper, the grid is chosen such that the value of the origin is the grid’s
central point. This origin is then a grid point of every subproblem. The solution
at another grid point can either be found by shifting the grid so that the point
lies in the center, or we can use interpolation to find the value.

Although we do not have an exponentially growing number of points with
this method, number of subproblems to be solved for increasing dimensions
increases significantly. It is related to the number of elements, Md,ℓ, in the
multi-index, which is based on layer number, ℓ, in equation (39). For a given
ns, b and d it reads:

Md,ℓ =

(
ℓ− d(b− 1) − 1

d− 1

)
. (41)

The total number of points on this layer reads, Nℓ = 2ℓ+(d−1) · Md,ℓ, and the
total number of points in a sparse grid computation, mimicking a full grid of
size 2ns in each direction, follows from (39), (40), and (41):

Ntotal =
d∑

j=1

2ns−j+1+(d−1)b

(
ns − j + 1 + (d− 1)b− d(b− 1) − 1

d− 1

)

= 2ns−d+1+(d−1)b
d∑

j=1

2d−j

(
ns − j − b+ d

d− 1

)
.

(42)

Example: We return to the example of a 7D problem with ns = 7, and
choose b = 2. From the definition of the multi-index, it follows that 5 layers

16



are needed, because two layers have empty multi-indices. The ℓ-values range
from 15 6 ℓ 6 19, the complexities from 221 points on the lowest, ℓ = 15, to
225 on the top layer (ℓ = 19). The number of subproblems is 330, ranging from
1 for the lowest to 210 for the top layer. The overall grid complexity according
to (42) is 233-points. The subproblems can be solved in parallel and we would
not need the additional FFT parallelization, as 225-points fit in the memory
of a 4GB machine. The parallel efficiency of the sparse grid technique is high,
because of the significantly large number of subproblems. All subproblems can
be distributed, for example, to only two processors and the total computational
time is about half. If N >> Q many subproblems have to be solved on the
same processor.

If, however, a subproblem does not fit into the memory, we additionally
have to make use of the parallelization strategy from Section 3, partitioning
the multi-dimensional CONV method for all the subproblems in a sparse grid
layer. Let’s consider, as an example, a 7D problem with ns = 10 and b = 2.
This problem requires 228-grid points for the subproblems in the top layer. The
total number of subproblems in that layer is 1716, but these subproblems need
to be partitioned once according to the splitting in Section 3. Therefore, we
deal with 3432 subproblems of roughly 227-points. The full grid problem would
require 270-grid points (243 GB), which is infeasible. The overall sparse grid
complexity is 239-points, subdivided into 5147 subproblems.

The accuracy of the CONV method can form the basis for some insight
in the error for the sparse grid case. For a single-asset option with the asset
modeled by geometric Brownian motion a second order full grid convergence was
derived in [12]. We assume an error of O(

∑d
j=1 ∆x2

j) for the multi-dimensional
problem. For the sparse grid integration technique, Gerstner [8] showed that the

order of convergence is of O(∆x2
(
log

(
∆x−1

))d−1
), for problems with bounded

mixed derivatives. We assume here that this sparse grid error expansion is also
valid for the max- and min-asset contracts evaluated in the next section. The
accuracy for the sparse grid case depending on the maximum number of grid
points in one direction (NS = 2ns) can be related “globally” to the number of
grid points Nj = 2nf in the full grid case, as follows:

Cf2−2nf = Cs2
−2nsnd−1

s , (43)

with constants Cf and Cs. The solution to this equation is given by:

ns = exp

(
−L

(
−

ln 4

d− 1
eD

)
−D

)

D =
−nf ln 4 + lnCf − lnCs

d− 1

and L is the Lambert W function1. With this expression, we can compute the
required number of grid points for a sparse grid computation to mimic a certain
full grid problem with grid size nf , given the desired accuracy ε, constant Cf

and number nf and the upper-bound of Cs. The constants Cf and Cs can be

1The Lambert W function is the solution of L(x)eL(x) = x.

17



determined from a small-sized experiment taking into account that especially
Cs is problem dependent.

4.1 Sparse grid computations

In the sparse grid method, we use the CONV algorithm as in the full grid case.
In fact, the sparse grid method can be coded as an outer loop running over all
subproblems. Within the loop, the CONV method is called with the desired
grid parameters. We developed the algorithm so that if the subproblems in the
sparse grid are additionally partitioned as described in Section 3, the number
of parallel tasks increases to U = NB, where B is the number of parts of a
subproblem. The algorithm loops over all tasks U . Every task is sent to a
different processor as soon as the processor is available. The maximum number
of tasks in a problem is limited to 231 on a 32-bit machine and 263 on a 64-bit
machine. As soon as the problem is solved for a certain q and multi-index Id,ℓ,
the solution (an option value) is returned to the master process and summed.
After this task is performed, a new task can be assigned to this processor. This
kind of parallel coding is not straightforward, due to the three different types
of partitioning within the algorithm, but it can be used on a heterogeneous
cluster.

We now perform numerical experiments with option contracts on the max-
imum or minimum of the underlying assets. The option parameters for these
experiments are

• K = 100, T = 1 year, r = 4.5%,.

• σ1 = 0.25, σ2 = 0.35, , σ3 = 0.20, , σ4 = 0.25, , σ5 = 0.20, , σ6 = 0.21 and
σ7 = 0.27.

• δ1 = 0.05, δ2 = 0.07, δ3 = 0.04, δ4 = 0.06, δ5 = 0.04, δ6 = 0.03 and
δ7 = 0.02.

• R =





1.00 −0.65 0.25 0.20 0.25 −0.05 0.05
−0.65 1.00 0.50 0.10 0.25 0.11 −0.016
0.25 0.50 1.00 0.37 0.25 0.21 0.076
0.20 0.10 0.37 1.00 0.25 0.27 0.13
0.25 0.25 0.25 0.25 1.00 0.14 −0.04
−0.05 0.11 0.21 0.27 0.14 1.00 0.19
0.05 −0.016 0.076 0.13 −0.04 0.19 1.00





.

with R the matrix with the correlation coefficients ρjk.

We start with the 4D problem and compare the sparse and the full grid
results. The parameters for this experiment are listed above, where we take the
first four subscript entries. In Table 4, the results for the full grid experiment
are presented for a European and a Bermudan style contract. The Bermudan
style contract has ten exercise dates during the lifetime of the option contract.
The results are presented for grids with Nj = 2nf , j = 1, . . . , d points. We see
a smooth convergence for this type of European contract and a accuracy better
than e0.01 when nf = 7. For the Bermudan contract, the convergence ratio

18



d = 4 European Bermudan

nf price error Ratio price error Ratio

3 0.38 7.38×10−1 0.61 5.06×10−1

4 0.87 2.51×10−1 2.94 0.53 9.25×10−1 0.55
5 1.05 6.82×10−2 3.67 1.87 3.36×10−1 2.75
6 1.10 1.76×10−2 3.88 1.85 2.88×10−2 11.67
7 1.11 4.51×10−3 3.90 1.84 5.37×10−3 5.36

Table 4: European and Bermudan 4D put option on the maximum of the
underlying assets on a full grid.The Bermudan contract has 10 exercise dates.

is less smooth, but the accuracy is again satisfactory. Although the results are
satisfactory in the 4D case, the Bermudan option contract, for example, cannot
be computed with nf = 7 in higher dimensional cases without any form of
communication. In Section 4, we derived an expression to compute the number
of grid points Ns = 2ns needed for mimicking the solution with sparse grid,
given the accuracy and the number of grid points Nf = 2nf in the full grid.
The estimate of the number of grid points is very global and we assume the
value of Cf as an upper bound for Cs. If the desired accuracy is ≈ 10−3, we
need in the full grid nf = 8 by applying the convergence ratio. From the results
in Table 4, we have with nf = 7 Cf ≈ 74. Solving equation (43), the number
of grid points for the sparse grid computation is ns = 13, to have an accuracy
of 10−3. The choice of the base b in the sparse grid technique has a major
influence on the complexity. The CONV method does not work if one of the
coordinates is discretized in only two points, so b > 2. It is also reasonable
for accuracy reasons to use a higher base [11], for example b = 3 which means
at least 8 points per coordinate. This however has a significant impact on the
costs of the method.

In Table 5, the results for the put option an the maximum of the underlying
assets are presented in four and five dimensional case and for European and
Bermudan style based on a sparse grid technique with b = 2. In this table, the
first column represents the mimic of the full grid. With ns = 13, we conclude
that the desired accuracy of 10−3 is a proper choice. The sparse grid method
also converges to the same value as the full grid case (see Table 4), although the
convergence tends to be of first order and irregular. For the five asset problem
(right part of Table 5), we see the same behavior of the four asset problem by
means of accuracy and convergence. Finally, the Bermudan option contract
also reaches the desired accuracy when ns = 13.

The interesting point is the CPU time. In Table 4, we have an accuracy of
4.5 × 10−3 when nf = 7 for the full grid European 4D option. The CPU time
on 16 equivalent processors for the full grid problem (see Table 1) is 25 seconds.
We have an accuracy of 4.68 × 10−3 with ns = 11 in Table 6 for the same
option, but now in sparse grid case. In Table 6, the parameters are presented
for the 4D sparse grid case with ns = 11. Each row in Table six represents a
layer of the combination technique with the complexity, value of ℓ and number
of subproblems. The right part gives the CPU times for each subproblem of

19



European 4D European 5D

ns Price Error Ratio Price Error Ratio

7 1.0488 5.25×10−2 0.7407 3.48×10−2

8 1.0785 2.97×10−2 1.77 0.7696 2.90×10−2 1.20
9 1.0992 2.06×10−2 1.44 0.7875 1.79×10−2 1.62
10 1.1061 6.88×10−3 3.00 0.7967 9.21×10−3 1.94
11 1.1107 4.68×10−3 1.47 0.8015 4.77×10−3 1.93
12 1.1134 2.62×10−3 1.79 0.8035 2.04×10−3 2.34
13 1.1146 1.22×10−3 2.15 0.8046 1.09×10−3 1.34

Bermudan 4D Bermudan 5D

ns Price Error Ratio Price Error Ratio

10 1.830 1.34 × 10−2 3.68 1.389 5.65 × 10−2 0.32
11 1.838 5.09 × 10−3 2.63 1.380 8.49 × 10−3 6.66
12 1.840 3.18 × 10−3 1.60 1.375 5.16 × 10−3 1.65
13 1.841 2.56 × 10−3 1.24 1.378 2.24 × 10−3 2.30

Table 5: Sparse grid results of a 4D and 5D put option on the maximum of the
assets

Problem parameters CPU times

j ℓ Complex. #probl Problem Layer time Q=12

1 17 220 165 0.51 82.5 7.3
2 16 219 120 0.24 28.8 2.5
3 15 218 84 0.12 10.1 1.0
4 14 217 56 0.05 2.88 0.3

Tot 425 124.2 11.1

Table 6: Problem parameters for sparse grid (mimic of the 4D 211 full grid)

a specific layer, the layer’s total sequential CPU time and parallel CPU time
when 12 CPUs are used. The total time on a single computer is 124.2 seconds
and on a heterogeneous cluster 11.1 seconds. The efficiency is 11.23, which is
high when 12 is the ideal case. Also we see that the CPU time in the sparse
grid on 12 CPUs is even lower than the CPU time for the full grid case on 16
CPUs (25 seconds, see Table 1). We conclude that the sparse grid technique is
an efficient method to use in parallel on a low number of CPUs, whereas the
problem size of the partitioned full grid is still large. For example, the problem
size of a problem in the top layer of the 5D 213 mimic in Table 5 has a total
complexity of 225 or 512 MB.

We conclude our sparse grid results with the higher dimensional examples
of the option contracts on the maximum or minimum of the assets. In Table
7, the results of the sparse grid computation are presented for a put option on
the maximum and minimum of the six or seven underlying assets. We again
see a satisfactory accuracy with ns = 10 and an irregular convergence. The
7D sparse grid problem with ns = 10 uses the sparse grid technique as well as

20



the partition technique in Section 3, because the maximum available memory is
2GB on our heterogeneous cluster. The problem size of this experiment in the
top layer is 4 GB and therefore it is partitioned with B = 2. Again the base
of the sparse grid technique is set to b = 2. The hedge parameters can also be
computed with the sparse grid technique. See the appendix for the results for
∆ and Γ.

6D Put on minimum 6D Put on maximum

ns Price Error Ratio Price Error Ratio

7 27.093 1.43×10−1 0.375 2.33×10−2

8 27.183 9.02×10−2 1.58 0.396 2.13×10−2 1.09
9 27.141 4.21×10−2 2.14 0.412 1.50×10−2 1.42
10 27.158 1.73×10−2 2.43 0.420 8.89×10−3 1.69

7D Put on minimum 7D Put on maximum

ns Price Error Ratio Price Error Ratio

7 26.153 1.22×10−1 0.179 1.45×10−2

8 26.217 6.31×10−2 1.93 0.194 1.50×10−2 0.96
9 26.189 2.72×10−2 2.32 0.206 1.14×10−2 1.31
10 26.203 1.34×10−2 2.02 0.213 7.21×10−3 1.58

Table 7: Sparse grid results of two types of 6D and 7D European contracts

5 Conclusions

The multi-dimensional CONV method is a powerful and fast method. It is able
to efficiently price multi-asset options of European and early-exercise type under
Lévy price dynamics, including geometric Brownian motion, and to compute the
hedge parameters. The partitioning of the method enables us to distribute some
multi-dimensional splitted parts over a system of parallel computers, which
speeds up the computation. Since we chose to avoid communication in the
parallel system, and thus require some additional computation, the parallel
efficiency is not optimal.

With the help of the sparse grid technique, we can climb in the number of
dimensions of the multi-dimensional contracts. The size of the target problem
depends, of course, on the number of parallel processors that are at one’s dis-
posal. An important remark is, however, that the basic sparse grid technique,
without any enhancements, can only be successfully applied for certain payoffs,
i.e., solutions should have bounded mixed derivatives. We show that the min-
and max-asset options exhibit a satisfactory sparse grid convergence. The par-
allel efficiency of the sparse grid method is excellent, as each subproblem can
be computed independently.

For high-dimensional problems it becomes necessary to combine the parallel
sparse grid method with the parallel version of the CONV method.

A logical next step in our research is to evaluate the resulting parallel
method on a machine containing a significant amount of parallel processors.

21



Acknowledgment: The authors would like to thank Roger Lord, Fang Fang and
Hisham bin Zubair for valuable discussions and Kees Lemmens for his assistance
with the parallel code.

References

[1] G. Bakshi and Z. Chen, An alternative valuation model for contingent
claims. J. Fin. Econometrics, 44: 123-165, 1997.

[2] R. Bellman, Adaptive Control Processes; a guided tour. Princeton Univer-
sity Press, 1961.

[3] H.J. Bungartz, M. Griebel, D. Röschke, and C. Zenger, Pointwise conver-
gence of the combination technique for the Laplace equation. East-West
J. Numer. Math., 2: 21–45, 1994.

[4] H.J. Bungartz and M. Griebel, Sparse Grids. Acta Numerica, 147–269,
May 2004.

[5] P. Carr and D.B. Madan, Option valuation using the fast Fourier trans-
form. J. Comp. Finance 2: 61-73, 1999.

[6] J. Gil-Pelaez, Note on the inverse theorem. Biometrika 37: 481-482, 1951.

[7] D. Gentle, Basket Weaving Risk 6:51-52, .

[8] T. Gerstner and M. Griebel, Numerical integration using sparse grids.
Num. Algorithms 18: 209-232, 1998.

[9] R.M. Gray and J.W. Goodman, Fourier Transforms. Kluwer Dordrecht,
Netherlands, 1995.

[10] J. Gurland, Inversion formulae for the distribution of ratios. Ann. of math.
statistics 19: 228-237, 1948.

[11] C.C.W. Leentvaar and C.W. Oosterlee, On coordinate transformation and
grid stretching for sparse grid pricing of basket options J. Comp. Appl.
Math, to appear.

[12] R. Lord, F. Fang, F. Bervoets, and C.W. Oosterlee, A fast and accurate
FFT-based method for pricing early-exercise options under Lévy processes.
SSRN, page http://ssrn.com/abstract=966046, 2007.

[13] L. Scott, Pricing stock options in a jump-diffusion model with stocahstic
volatility and interest rates: Application of Fourier inversion methods.
Math. Finance 7: 413-426, 1997.

[14] S.J. Berridge and J.W. Schumacher, An irregular grid method for high-
dimensional free-boundary problems in finance. Future Gen. Comp. Sys-
tems 20(3): 353-362, 2004.

22



[15] S.A. Smolyak, Quadrature and interpolation formulas for tensor products
of certain classes of functions. Dokl. Akad. Nauk. USSR 4: 240-243, 1963.

[16] J. Wu, N.B. Mehta and J. Zhang, A flexible approximation of the sum
of log-normal distributed values Glob. Telecom. Conf. (GLOBECOM), 6:
3413-3417, November 2005.

[17] C. Zenger. Sparse grids. In Proceedings of the 6th GAMM seminar, Notes
on numerical fluid mechanics, volume 31, 1990.

[18] Y. Zhu, X. Wu, and I Chern. Derivative securities and difference methods.
Springer Verlag, New York, 2004.

23



Appendix

Hedge parameters

The hedge parameters can be computed in an analytic way by the use of the
derivative properties of the Fourier transform [9]:

F

(
df

dx

)
= −iωF (f) .

Now the hedge parameters are:

∆j(t,x) =
∂V

∂Sj

= −
e−r(T−t)

Sj

F inv {iωjF{V (T,y)}φ(−ω)} , (44)

Γj(t,x) =
∂2V

∂S2
j

=
e−r(T−t)

S2
j

F inv
{(
iωj + ω2

j

)
F{V (T,y)}φ(−ω)

}
. (45)

These equations can be discretized similarly to (27) into:

∆k(t,xm) = −
e−r(T−t)

(2π)dSk

d∏

j=1

(−1)mjDinv
d [iωnk

φnDd {VkGk}] , (46)

Γk(t,xm) =
e−r(T−t)

(2π)dS2
k

d∏

j=1

(−1)mjDinv
d

[(
iωnk

+ ω2
nk

)
φnDd {VkGk}

]
. (47)

3D 4D 5D

nf ∆1 error ∆1 error ∆1 error

3 0.2077 0.1369 0.1087
4 0.2118 4.13×10−3 0.1370 8.90×10−4 0.1119 3.29×10−3

5 0.2120 1.30×10−4 0.1371 1.16×10−4 0.1116 3.40×10−4

6 0.2119 9.56×10−5 0.1372 2.22×10−5 0.1116 1.90×10−5

Table 8: Hedge parameters of a standard 3D,4D and 5D basket call on a full
grid of 2nf points per coordinate (option parameters are in section 4.2.2)

24



Full grid Put on the minimum

nf ∆1 error Γ1 error

3 -0.2821 1.27 × 10−1 1.126 × 10−2 2.91 × 10−3

4 -0.2322 4.99 × 10−2 1.024 × 10−2 1.03 × 10−3

5 -0.2232 8.99 × 10−3 9.823 × 10−3 4.12 × 10−4

6 -0.2223 9.91 × 10−4 9.765 × 10−3 5.80 × 10−5

7 -0.2222 9.97 × 10−5 9.751 × 10−3 1.47 × 10−5

Sparse grid Put on the minimum

ns ∆1 error Γ1 error

3 -0.2545 1.126 × 10−2

4 -0.2295 2.50 × 10−2 9.262 × 10−3 2.00 × 10−3

5 -0.2209 8.63 × 10−3 9.487 × 10−3 2.25 × 10−4

6 -0.2232 2.38 × 10−3 9.661 × 10−3 1.74 × 10−4

7 -0.2211 2.18 × 10−3 9.672 × 10−3 1.14 × 10−4

8 -0.2222 1.14 × 10−3 9.774 × 10−3 1.01 × 10−4

9 -0.2224 2.14 × 10−4 9.755 × 10−3 1.86 × 10−5

10 -0.2222 1.63 × 10−4 9.752 × 10−3 3.13 × 10−6

Table 9: Hedge parameters for the 4D put option on the minimum of the assets
in full and sparse grid

25


