
KRYLOV SUBSPACE ACCELERATION OF NONLINEAR

MULTIGRID WITH APPLICATION TO RECIRCULATING FLOWS∗

C. W. OOSTERLEE† AND T. WASHIO‡

SIAM J. SCI. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 21, No. 5, pp. 1670–1690

Abstract. This paper deals with the combination of two solution methods: multigrid and
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is applied also on coarse grids, so that recirculating incompressible flow problems discretized with a
higher order upwind scheme can be solved efficiently.
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1. Introduction. In the search for efficient solvers that are generally applica-
ble, we consider multigrid a preconditioner for Krylov subspace methods. Although
multigrid solution methods can be O(N) solvers, it is not always easy to choose the
optimal components for difficult problems. Complicating factors include convection
dominance, anisotropies, nonlinearities, and non-M -matrix properties. All of these
phenomena can occur with convection-dominated rotating computational fluid dy-
namics (CFD) problems discretized by higher order upwind discretization.

It is also not trivial to design robust multigrid solvers for large classes of nonlinear
CFD problems. By Krylov subspace acceleration, we aim to increase the class of
problems for which proven efficient multigrid solvers exist. In the case of an O(N)
multigrid solver, we try to improve its convergence rate or to reduce the number of
necessary smoothing steps by using the acceleration technique. For large systems of
equations, the acceleration technique is, in general, cheaper in CPU time than one
implicit smoothing iteration on the finest grid.

It is possible to generalize this Krylov accelerated multigrid solution method,
called KMG, to systems of equations and to nonlinear problems. In a natural way,
a nonlinear multigrid method can be constructed (see [3] [10]), so that linear and
nonlinear problems can be handled by the one and the same method. In section 3,
it is shown that the same principle holds for the Krylov subspace acceleration. If we
switch from GMRES to FGMRES [20], it is not so difficult to generalize the Krylov
subspace acceleration to nonlinear situations. With this Krylov accelerated multigrid
method many different nonlinear problems can be solved, as we have already shown
in [23]. The acceleration method is, in fact, related to the reduced rank extrapolation
method (RRE), as it is presented in [21], and to the acceleration cycle presented in [6].

An interesting topic for making the KMG method feasible for solving realistic
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3D CFD problems is the reduction of storage. Much storage is necessary when a
large Krylov subspace is needed for searching an accelerated solution. We discuss a
possibility and show results of the use of the Krylov acceleration also on coarse grids.
On coarse grids much less storage is needed for a Krylov subspace. We denote the
method by KMG-f if the Krylov subspace acceleration is only performed on the finest
grid, and by KMG-fc if the acceleration is performed on fine and coarse grids.

Another advantage of the KMG solver lies in its parallelizability. Both parts
can be parallelized in a standard way on the basis of grid partitioning [15]. In this
paper, we concentrate on a class of problems that is particularly difficult to solve
with standard multigrid methods: rotating flows with dominant convection. In sec-
tion 4, we explain in some detail the difficulties of rotating flow problems. In [7]
and [25], the same types of problems are treated and remedies are given for improving
the multigrid convergence rate for the first-order upwind discretization of the con-
vection terms. We investigate the effect of the fine and coarse grid Krylov subspace
acceleration for first-order and, especially, for second-order upwind discretizations.
Parallel numerical convergence results with the nonlinear KMG solution method are
presented in section 6, for example, for the system of incompressible Navier–Stokes
equations, where the discretization is based on the primitive variables. The flux-
difference splitting discretization of the Navier–Stokes equations [8] with higher order
upwind κ-discretizations [13] for the convective terms is second-order accurate.

2. The Krylov acceleration for nonlinear multigrid methods. The linear
system discussed in section 2 is

Au = b,(2.1)

and a multigrid cycle for solving (2.1) is described by the following matrix splitting:

Muj + (A−M)uj−1 = b,(2.2)

where uj represents a current and uj−1 a previous solution vector. This formulation
is equivalent to

uj − uj−1 = M−1(b−Auj−1) = M−1rj−1 and(2.3)

uj+1 − uj = (I −M−1A)(uj − uj−1),(2.4)

with r being the residual vector and I − M−1A representing the multigrid itera-
tion matrix. Multigrid scheme (2.2) for solving (2.1) is used as a preconditioner for
GMRES(m). The parameter m represents the number of vectors stored after which
the GMRES(m) algorithm will restart. The right preconditioned method then con-
siders the equation

AM−1(Mu) = b.(2.5)

GMRES(m) searches for a solution uj in the following subspace:

M(uj−uj−m) ∈ span[rj−m, (AM−1)rj−m, . . . , (AM−1)m−1rj−m] =: Km(AM−1, rj−m),

where Km(AM−1, rj−m) is the Krylov subspace. GMRES minimizes the residual rj
in the L2-norm,

min
M(uj−uj−m)∈Km(AM−1,rj−m)

‖b−Auj‖2,(2.6)
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whereas the conjugate gradient method (CG) minimizes the residual in the A−1-
norm. It is clear that CG requires symmetric positive definite matrices A and M−1

and that GMRES is not restricted in this sense. With a powerful preconditioner,
like multigrid, one can work with a small subspace (a small m) and still achieve
considerable convergence acceleration for many problems. The work for one GMRES
iteration consists of a matrix-vector product and a preconditioning step. In our case,
the computation is dominated by the multigrid preconditioning.

It is possible to generalize the KMG solution method to nonlinear problems.
Moreover, the linear solution method is, in fact, automatically included in the non-
linear method. The nonlinear system treated here is described by

R(u) = b−A(u) = 0.(2.7)

2.1. The nonlinear multigrid method. Solution method M gives an updated
intermediate solution uM from uj−1,

uM = M(R, uj−1).(2.8)

(The new iterant uj is selected from iterant uM , and an accelerated vector uA as is
discussed in the next section.) In our case, M represents one nonlinear multigrid FAS
cycle [3]. Another more generally known research direction is to construct nonlinear
solution methods on the basis of a global Newton linearization. The resulting linear
system is then solved with a linear multigrid method [10] and/or with Krylov methods.

The basis of our method is nonlinear multigrid, for which Jacobians ∂A/∂u are
only evaluated and stored locally (point- or line-wise) in the smoother on every grid
level. This is an advantage of FAS compared with methods with a global Newton
linearization, which need to store the whole Jacobian matrix. Another related advan-
tage is that, in the case of an exceptionally ill-conditioned Fréchet derivative, global
Newton linearization will lead to convergence problems, whereas the FAS convergence,
due to the local linearization, might not suffer from the condition of the derivative.
This problem occurs when the given continuous problem has no Fréchet derivative.
In that case, the condition of the Jacobian deteriorates severely as the grid is refined,
and Newton’s method convergence deteriorates accordingly.

A difference between linear multigrid and nonlinear FAS is that, in linear multigrid
methods on the coarse grid, corrections to a fine grid solution are explicitly calculated,
whereas, for FAS, the corrections are obtained with coarse grid approximations uH

to a solution. The coarse grid equation for the FAS scheme on a coarse grid with grid
size H looks like

AH(uH) = AH(wH + ÎHh uh) = IHh (R(uh)) + AH(ÎHh uh) = gH .(2.9)

Operators IHh and ÎHh are (usually different) restriction operators transferring grid
functions from fine grids, h, to coarse grids, H; uh represents a current fine grid
approximation. The coarse grid correction wH is prolongated and added to the fine
grid solution. The FAS scheme coincides with the linear multigrid scheme for linear
equations, as can be seen from (2.9) by subtracting AH(ÎHh uh).

2.2. The Krylov acceleration. The nonlinear Krylov method is explained as
a finest grid level acceleration and can be seen as an outer iteration for the nonlin-
ear multigrid preconditioner. As explained in detail in [23], the (nonlinear) search
directions are constructed from available intermediate solution vectors. Jacobians are
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approximated with help of the residual vectors for the intermediate solutions; they
are not recomputed explicitly in our Krylov acceleration technique. This technique
for accelerating the convergence of solution method (2.8) consists of two steps.

We derive a minimization problem of the residual, which is mathematically equiv-
alent to the minimization performed in GMRES. A method equivalent to the flexi-
ble GMRES method (FGMRES) [20] is constructed, which allows a preconditioner
to change from iteration to iteration. As a consequence, we need to store, as in
FGMRES, twice as many vectors as in standard GMRES, namely, m residual vectors
and m solution vectors.

In nonlinear cases, the Krylov subspace span

[rj−m, AM−1rj−m, . . . , (AM−1)m−1rj−m]

is not available, since we have neither a linear operator A nor the linear multigrid
preconditioner M . Instead, we have a nonlinear operator R and a nonlinear multigrid
FAS cycle, as discussed above.

Let uj be a sequence of solutions. If, instead of (2.3), we use (2.4) and induction,
then we obtain a different representation of the Krylov subspace Km:

Km(AM−1, r) := span[rj−m, AM−1rj−m, . . . , (AM−1)m−1rj−m]

= M · span[uj−1 − uj−m, uj−2 − uj−m, . . . , uj−m+1 − uj−m].(2.10)

We can define the space in (2.10) for linear and nonlinear equations. From this sub-
space, we try to find a solution to a minimization problem. Assume we have intermedi-
ate solution vectors uj−m, . . . , uj−1 and their residual vectors R(uj−m), . . . , R(uj−1).

Step 1. We accelerate the FAS process (2.8) and search for an improved solution
uA, compared with the FAS solution uM in the space uM+span[uj−m−uM , . . . , uj−1−
uM ] defined by (2.10),

uh,A = uh,M +

m∑

i=1

αi(uh,j−i − uh,M ).(2.11)

For simplicity, we assume j ≥ m. The main question that now arises is how to
approximate R(uA) by an affine mapping f : α → f(α) in order to reduce ‖R(uA)‖2,
as in (2.6). The basis for the approximation is the following linearization:

R(uA) = R

(
uM +

∑

1≤i≤m

αi(uj−i − uM )

)
≈R(uM )+

∑

1≤i≤m

αi

(
∂R

∂u

)

uM

(uj−i − uM ).

(2.12)

There are basically two different possibilities for approximating the right-hand side of
(2.12).

• One can explicitly calculate and use the Jacobian at uM :

f(α) = R(uM ) −

m∑

i=1

αi

∂A

∂uM

(uj−i − uM ).(2.13)

In this way, one needs extra calculations for obtaining the Jacobian (plus m
matrix-vector multiplications with the Jacobian). When the Jacobian is cal-
culated for another intermediate solution ui instead of at uM , a less accurate
approximation of R(uA) is expected.
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• One can also use a Jacobian-free approximation, which, in our method, looks
like

f(α) = R(uM ) +

m∑

i=1

αi(R(uj−i) −R(uM )).(2.14)

Here, the storage of residual vectors R(uj−i) is necessary.
The Jacobian-free approximation is chosen in this work. The minimization of the
functional is done in the L2-norm. It has a direct correspondence to FGMRES in
case of linear problems. Jacobians are approximated by the residual vectors for the
intermediate solutions. These vectors are already available on the finest grid level in
multigrid (before performing a restriction, for example). In this sense, the method is
well suited to the nonlinear multigrid method.

The work for solving the minimization problem is relatively small (compared to
a multigrid cycle). It requires the minimization of

∥∥∥∥R(uM ) +
∑

1≤i≤m

αi(R(uj−i) −R(uM ))

∥∥∥∥
2

.(2.15)

This simply reduces (2.15) to the solution of the following linear system:

H(m)




α1

α2

...
αm


 =




β1

β2

...
βm


 .(2.16)

Here, H(m) = (hik) is defined by

hik = (R(uj−i), R(uj−k)) − (R(uM ), R(uj−i))

− (R(uM ), R(uj−k)) + (R(uM ), R(uM )),(2.17)

where (., .) is the standard inner product. Right-hand sides β1, . . . , βm are defined by

βi = (R(uM ), R(uM )) − (R(uM ), R(uj−i)).(2.18)

The matrix H(m) is solved with a direct solution method. In principle, it is possi-
ble that H(m) is an ill-conditioned matrix, since all residuals R(uj−i) are based on
solutions uj−i that are converging toward the discrete solution uh. However, with
the powerful multigrid preconditioner, it is observed and expected that the (small)
matrices H(m) are still satisfactorily conditioned, so that the αi-solutions of (2.18)
are acceptable. If the H(m) matrix were ill-conditioned for a certain problem, Step
2 in the algorithm described below prevents the algorithm from accepting a possibly
bad accelerated solution. If H(m) is a singular matrix, more details are given in [23].

Step 2. Since (2.12) may not be a reasonable approximation in the nonlinear

case (some of the intermediate solutions may be far away from the desired solution),
criteria are needed for selecting uj from uM and uA. The criteria for selecting the
accelerated solution uA as uj (and for restarting) are the following.

1. The norm of R(uA) is not too large compared with R(uM ) and intermediate
residuals R(uj−i):

‖R(uA)‖2 < γA min
1≤i≤m

(‖R(uM )‖2, ‖R(uj−i)‖2).(2.19)
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2. uA is not too close to any of the intermediate solutions unless a considerable
decrease of the residual norm is achieved:

εB‖uA − uM‖2 < min
1≤i≤m

(‖uA − uj−i‖2)

or

‖R(uA)‖2 < δB min
1≤i≤m

(‖R(uM )‖2, ‖R(uj−i)‖2).(2.20)

In several numerical experiments in [23], we found that taking γA somewhat larger
than 1 on the finest grid, for example, γA = 2, brings a more reliable convergence for
problems that are difficult for the multigrid preconditioner. In general, the method is
not very sensitive to the choice of γA. Criterion 2 is necessary to prevent stagnation
in the convergence. It is possible that ‖R(uM )‖2 becomes significantly larger than the
minimum of the residual norms of the intermediate solutions or that R(uM )−R(uj−i)
is orthogonal to the span[R(uj−1), R(uj−2) . . . ] (illustrated in Figure 2.1) even though
the multigrid process leads towards the desired solution. In these cases, a small weight
1 −

∑
1≤i≤m αj−i will be given to uM and the weight αi of a minimal intermediate

residual R(uj−i) could be close to 1, so that the acceleration process forces the solution
back to a previous intermediate solution uj−i.

)M

R(u )M
R(u

(a)

=

(b)
R(u )

R(u )

R(u ) R(u )

A

A

0

0

Fig. 2.1. Two example situations (with m = 1) in which the acceleration process stagnates:
(a) ‖R(uM )‖2 is larger than the previous residual vector and (b) R(uM ) − R(u0) is orthogonal to
(the span of) the previous residual vector.

In order to prevent this phenomenon, one should carefully take into account the
distances between the solutions and the reduction of the residual norm as is done
in criterion 2. We fix the parameters in criterion 2 in all numerical experiments in
section 4 as εB = 0.1, δB = 0.9. The same criteria, (2.19) and (2.20), are used for
restarting the Krylov subspace, as is presented in [23]. For restarting, γA is set to 1
and it takes place if the criteria are not satisfied in two consecutive iterations.

2.3. Parallelism. Our aim is to find efficient parallel solution methods for ap-
plications in which the domain is split into a small number of blocks, for example,
into 16 blocks. The KMG solution method is parallelized in a straightforward way.
The usual way of parallelizing in several application fields with block-structured grids
is called grid partitioning [15]. The global grid is split into blocks. Parallelization is
done by assigning each block to a process. This parallelization strategy is well suited
to both the multigrid preconditioner and the Krylov subspace method.

This means for the Krylov method that the inner products necessary for con-
structing the small system (2.16) are first evaluated locally. The calculated parts of
the inner product are then communicated among the nodes and summed, so that the
matrix elements in (2.16) are available in all processors. Every processor solves the
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system (2.16) and has the αi values available. In every processor, the updated part
of the new accelerated solution uA is then obtained. Clearly, in this way, the search
for an improved solution is not performed per processor, but over the whole domain.

To get an efficient parallel multigrid method, the grid is stored with some overlap
along the block boundaries on all fine and coarse grids [15]. Communication among
the nodes is required for keeping the values in overlap regions up to date. Here, the
coarsest grid is chosen such that in every processor there is at least one unknown avail-
able. It depends on the parallelization of the smoother whether the parallel multigrid
program is similar to or different from the sequential program. For example, us-
ing a red-black point smoother gives an identical sequential and parallel multigrid
smoother. After a partial smoothing sweep over all red (odd) grid unknowns, com-
munication takes place in which the odd points in the overlap regions are updated.
Then, after the second partial sweep over the black points, we have an identical red-
black smoother as in the sequential case. Since transfer operators between fine and
coarse grids are fully parallel operators, the parallel multiblock multigrid method is
almost identical to the sequential single block method. The only difference might be
the choice of the coarsest grid.

In case of line smoothers in CFD applications, however, it is common to change
the line smoother into a line smoother per block, a line Gauss–Seidel smoother with
Jacobi aspects at block boundaries. It is found in [14] that, for several channel flow
CFD problems where a domain was split into one and into several blocks, the single
block multigrid convergence with alternating Gauss–Seidel line smoothing is regained
if, after each x-line sweep per block, an extra communication step is performed and,
after each y-line sweep (plus the usual communication), one grid line along the interior
block boundaries is smoothed additionally. Without these additions, the convergence
rate degrades. In this case, the parallel multigrid algorithm is different from the
sequential one and is related more to certain domain-decomposition methods, but
the single grid convergence is regained for parallel calculations with a relatively large
number of blocks [14]. Here, in section 5, when line smoothers are applied, we do not

need these additions to regain the single block convergence with KMG.

3. Krylov acceleration on coarse grids. A new idea is to incorporate the
nonlinear Krylov subspace acceleration into the multigrid cycle and to apply it also
on the coarse grids. A target for realistic applications of KMG is a reduction of the
storage needed for building the Krylov subspace (2.10). Of course, the method is
parallel, and one can benefit from the distributed storage of MIMD machines or of
clusters of workstations. However, in general, it is preferred to use the extra memory
for solving finer problems. A good convergence with a small Krylov subspace means,
in practice, that the multigrid preconditioner must be “as good as possible.” It is,
for example, not possible to get a convergence acceleration from a small subspace if
a smoother is used that does not reduce a large number of frequencies well.

From the dual view of multigrid, in which the coarse grid equation (2.9) is the main
equation and the fine grid is merely available for achieving a better accuracy, it seems
logical to also accelerate the coarse grid equation. The size of the Krylov subspace
on the finest grid can be reduced by additionally using the Krylov acceleration of the
coarse grid problem (2.9). The Krylov subspace vectors on a first coarse grid are four
times smaller than the fine grid vectors in 2D and eight times smaller in 3D. This
subspace acceleration on the coarse grids is helpful if the solution of the multigrid
coarse grid equation (2.9), with the coarse grid smoother and the remaining coarse
grid multigrid cycle, leads to multigrid convergence problems. The coarse grid Krylov
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acceleration then removes “problematic frequencies” on coarse grids. So, the coarse
grid smoothing is not replaced by the subspace acceleration. After the smoothing the
intermediate iterants are combined so that a coarse grid solution vector with a smaller
residual results. We apply this coarse grid Krylov acceleration in the FAS version of
multigrid. It is, however, also possible to perform the acceleration within the linear
correction scheme (CS), as it is, in a different terminology, as performed in [7].

The difficulty in accelerating the convergence on a coarse grid is that the right-
hand side of the coarse grid equation (2.9) is not constant as on the finest grid. It
changes after every restriction from the fine grid during the FAS cycle. A similar
approach to the Krylov acceleration on the finest grid is, however, applicable to the
coarse grid equation. Assume that we stored a sequence of mc coarse grid solutions,
possibly from different multigrid iterations,

{uH,j−1, uH,j−2, . . . , uH,j−mc
},

and a sequence of the action of AH to these solutions,

{AH(uH,j−1), AH(uH,j−2), . . . , AH(uH,j−mc
)},

and that we have an approximate solution uH,M of the coarse grid equation (2.9).
Then we construct an accelerated solution uH,A from

uH,A = uH,M +

mc∑

i=1

αi(uH,j−i − uH,M )(3.1)

and use the following approximation of gH − A(uH,A) (2.9) as in the Krylov acceler-
ation on the finest grid,

gH −AH(uH,A) ≈ gH −AH(uH,M ) −

mc∑

i=1

αi(AH(uH,j−i) −AH(uH,M )),(3.2)

and minimize the L2-norm of the right-hand side of (3.2). Here, a different size mc

for the coarse grid Krylov subspace can be chosen. If the right-hand side of the coarse
grid equation (2.9) does not change much, the affine space

uH,M + span[uH,j−1 − uH,M , uH,j−2 − uH,M , . . . , uH,j−mc
− uH,M ](3.3)

is an appropriate subspace to search a better solution.
One can perform the additional coarse grid Krylov acceleration on only one, on

certain, or on all coarse grids. In this paper, we mainly use the acceleration on all
fine and coarse grids; the method is then denoted by KMG-fc (compared to KMG-f,
if the acceleration is performed only on the finest grid). Often, however, it is found
that the use of the Krylov subspace acceleration on two or three additional coarse
grids already results in a considerable convergence improvement.

It is possible to perform the coarse grid Krylov acceleration basically at three
stages in the multigrid cycle, namely: after coarse grid presmoothing (stage 1), after
coarse grid postsmoothing (stage 2), or just before the prolongation (stage 3). The
last two possibilities are identical for a V-cycle. They are indicated in Figure 3.1 for
a V-cycle on grid level 2. In Figure 3.2, the coarse grid acceleration on the grid levels
2 and 3 in a multigrid W-cycle is also presented. The subspace is truncated, i.e., the
first vector is removed from the subspace and the next one is added to the subspace,
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2 2 2 2

Fig. 3.1. The Krylov acceleration on level 2 in multigrid V(1,1)-cycles indicated by ◦, acceler-
ation at stage 2.

Fig. 3.2. The Krylov acceleration in multigrid W(1,1)-cycles indicated by ◦, acceleration after
postsmoothing on levels 2 and 3.

if it already contains mc vectors. In the actual experiments, we find that performing
the subspace acceleration at stage 2 (after the standard postsmoothing) results in
the best multigrid convergence. Selection and restarting conditions, based on (2.19),
(2.20) with γA = 1, are also necessary in the coarse grid Krylov acceleration.

4. Multigrid for recirculating flow problems. It is well known that ro-
tating convection-dominated convection–diffusion-type problems are difficult to solve
efficiently by standard multigrid methods [7], [10]. This class of singularly perturbed
problems is an interesting candidate for the coarse grid Krylov acceleration, since it
is the coarse grid correction that yields the multigrid convergence difficulties, as we
will explain in this section. The standard convection-diffusion equation,

−ε∆u + a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
= 0 on Ω = (0, 1)2,(4.1)

with 0 < ε << 1, serves as the model problem to explain the difficulties occurring in
general rotating flow problems.

4.1. Standard upwind discretization. With a standard upwind discretization
for the convective terms, it is difficult to obtain multigrid convergence factors less than
0.5 when a standard 2h-discretization on the coarse grids is used (first observed in [4]).
This can be clearly observed with local mode two-grid Fourier analysis. Figure 4.1(a)
presents the eigenmode spectrum obtained from the two-grid Fourier analysis for a
convection-dominated convection-diffusion equation (4.1) with ε = 10−5 and a =
b = 1, discretized by first-order upwinding. The smoother used is an alternating line
Gauss–Seidel. A two-grid factor of 0.5, as found in Figure 4.1(a), results in multigrid
convergence factors that increase recursively toward one when standard multigrid
cycles are employed. A general conclusion, which can also be observed in Figure 4.1(a),
is that characteristic low frequency error components, which are constant along the
characteristics of the advection operator, are not reduced efficiently on coarse grids.
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Fig. 4.1. (a): The two-grid asymptotic convergence factor 0.5 with a standard upwind dis-
cretization and (b): the factor 0.95 with the (κ = 0)-discretization from two-grid Fourier analysis
for a convection-diffusion equation.

The different scaling of convection (a(x, y)/h, b(x, y)/h) and diffusion (ε/h2) is
not approximated properly with an upwind discretization on the coarse 2h grids. A 1D
standard upwind discretization can be written as a combination of a central difference
discretization plus a Laplace term with artificial viscosity:

aux = a

(
ui − ui−1

h

)
= a

(
ui+1 − ui−1

2h

)
+

(
ah

2

)
−ui−1 + 2ui − ui+1

h2
(4.2)

(if a = constant > 0). On a coarse (2h) grid, a factor 0.5 is missing in the scaling of
the different terms, due to the appearance of the additional h in the artificial viscosity
term [5]. An important observation is that, in the case of scalar convection-dominated
flow problems with an inflow and an outflow boundary, convergence difficulties do
not occur with line smoothers, for example, in alternating directions, since these
smoothers are exact solvers on the fine grid along the characteristic direction and,
therefore, they also take care of problematic low frequency error components. This
is not the case for rotating convection-dominant flow problems, for which no real
inflow and outflow boundary exist. Boundary information is mainly diffusing into
the domain and often boundary layers are found in the solution. The coarse grid
problem, which is shown with Fourier analysis, is therefore most relevant for rotating
convection-dominated problems. The factor 0.5 is observed in the two-grid local
mode Fourier analysis, since in this analysis the (positive) influence of boundary
conditions on the convergence is not taken into account. In the local mode Fourier
analysis [3] one works with the eigenfunctions φ(θ,x) = eikθ with Fourier frequencies
θ, which implicitly indicates that the analysis is performed on an infinite grid and
that boundary conditions cannot be taken into account. In [7] and [25], improved
multigrid solution methods, especially for the upwind discretization of this problem,
were constructed by means of the overweighting of residuals, an acceleration via a
defect-correction approach on all grids, and/or by the use of a point smoother in
the flow direction. Here, we investigate the influence of the additional coarse grid
Krylov acceleration on the convergence, which is in some sense a generalization of the
techniques proposed in [7].
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4.2. Higher order upwind discretizations. Higher order upwind discretiza-
tions of convection, like the upwind κ-discretizations [13], are more accurate and
therefore more interesting for the discretization of the convective terms. A 1D upwind
κ-discretization can be written as a combination of a central difference discretization
plus a second-order dissipation term, which is proportional to the third derivative of
u:

aux = a

(
ui+1 − ui−1

2h

)
+

(
ah2(1 − κ)

4

)
ui−2 − 3ui−1 + 3ui − ui+1

h3
(4.3)

(if a = const > 0). In this paper, we use the discretization for κ = 0, the Fromm
scheme, which is O(h2) accurate and looks for the standard convection-diffusion equa-
tion (4.1) with a, b = const > 0 like

[L̂]h =
a

h
[1/4 − 5/4 3/4 1/4 0]h +

b

h




0
1/4
3/4
−5/4
1/4



h

+
ε

h2




0 −1 0
−1 4 −1
0 −1 0



h

.(4.4)

For a < 0, similar formulae are found. The linear κ-scheme is a first choice for
obtaining second-order accurate schemes with a dominating convection term. They
work satisfactorily for a large class of CFD problems, including the incompressible
Navier–Stokes equations. The κ-schemes are, however, not monotone, which means
that they have to be modified (with limiters) for CFD problems containing strong
gradients, like shocks. For discretizations with limiters, the method introduced in
this paper also applies. For the problems investigated here, the κ-schemes result in
satisfactory discretizations.

With respect to multigrid convergence, it is known that using the basic iterative
methods as a smoother directly on L̂ leads actually to a diverging method. Multi-
stage smoothers or defect-correction approaches are commonly used for this type of
discretizations in convection-dominated problems.

In [18], an alternating symmetric line smoother, the KAPPA smoother, was pro-
posed, analyzed, and evaluated for higher order upwind discretizations with the κ-
scheme. The higher order upwind discretization is treated directly in the multigrid
solution method, not by an outer defect-correction iteration. The KAPPA smoother
is based on a splitting into a first-order upwind part and a remaining part (Splitting
II in [18]). With smoothers based on this splitting, fast convergence is obtained for
many convection-dominated channel flow problems with inflow and outflow bound-
aries. For rotating flow problems with a dominating convection term, however, con-
vergence problems can be expected again with standard multigrid methods, as we
see from the two-grid Fourier analysis results (shown in Figure 4.1(b) for (4.1) with
a = b = 1 and ε = 10−5). A two-grid convergence factor of at best 0.95 is expected,
which is far from satisfactory. The multigrid convergence will tend to 1. With the
Krylov acceleration on fine and coarse grids, we expect to improve the convergence
rate. The robust symmetric alternating line variant of the KAPPA smoother is ex-
plained briefly, since it is the basis for the numerical examples in the next section. A
symmetric alternating line smoother smooths all lines in the forward x-direction and
in the forward y-direction. Then, the relaxation takes place in backward directions.
The other multigrid components are standard components.
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Higher order upwind discretizations (4.3), (4.4) of (4.1) have the general form

L̂u =
∑

µ∈J

∑

ν∈J

a(2)
µν ui+µ,j+ν(4.5)

with coefficients a
(2)
µν and a set of indices J = {−2,−1, 0, 1, 2}. A part of the symmetric

alternating line KAPPA smoother is the y-line smoother for a forward ordering of
lines, which we explain here in more detail. It is constructed with a special splitting
of L̂ into L0, L+, and L−. The x-line smoother can be explained similarly. First,
we explain the superscripts: 0 indicates operator parts corresponding to grid points
currently treated, + refers to grid points with already updated unknowns, and −
means it is still to be updated, as in [22]. In the case of a forward y-line smoother,
0 represents the line i = ic = const where the unknowns are currently updated, +
indicates the lines i < ic, and − refers to the unknowns on the lines i > ic. The
L0 parts in the KAPPA smoother are not the operator elements a(2) from the higher
order upwind discretization of the grid points under consideration but the first-order
upwind operator elements. L0 and L+ look (with the stencil notation) like

L0 :=




0

a
(1)
01

0 0 a
(1)
00 0 0

a
(1)
0−1

0




, L+ :=




0
0

a
(2)
−20 a

(2)
−10 0 0 0 0

0
0




.(4.6)

L− = L̂ − L0 − L+. So a
(1)
00 , etc., denote operator elements from the first-order

accurate upwind discretization. With the definitions of L0, L+, and L− given, the
splitting for obtaining uj+1 for the grid points i = ic looks, with underrelaxation, like

L0u∗ = f − (L−uj + L+uj+1),(4.7)

uj+1 = ωu∗ + (1 − ω)uj(4.8)

for i = ic, after which the next line of points i = ic+1 is relaxed. With the notation as
explained above, it is possible that iteration indices j and j+1 appear on a right-hand
side.

5. Numerical results. In this section, we show convergence results for KMG-f
and KMG-fc applied to linear and nonlinear rotating 2D problems on MIMD machines.

5.1. Rotating convection-diffusion problems. The first problem investi-
gated is the 2D scalar convection-diffusion equation (4.1) with a dominating rotating
convection term:

a(x, y) = − sin(πx) · cos(πy), b(x, y) = sin(πy) · cos(πx).

Dirichlet boundary conditions are prescribed:

u|Γ = sin(πx) + sin(13πx) + sin(πy) + sin(13πy).

Parameter ε in (4.1) varies between 10−3 and 10−5.
This equation discretized with standard upwinding is studied in many papers, for

example, in [7], [25], [17], [23]. Here, we also evaluate the convergence with Fromm’s



1682 C. W. OOSTERLEE AND T. WASHIO

Table 5.1

Multigrid and fine and coarse grid accelerated multigrid convergence for the 2D rotating
convection-diffusion equation for different values of ε.

O(h)-discretization

Method ε = 10−3 ε = 10−4 ε = 10−5

Multigrid 0.48 (8; 87 s) 0.66 (14; 149 s) 0.66 (19; 200 s)

Fine grid acc. (m = 2) 0.22 (6; 70 s) 0.40 (8; 92 s) 0.29 (9; 103 s)
Fine grid acc. (m = 15) 0.15 (6; 70 s) 0.28 (7; 81 s) 0.21 (8; 93 s)
Fine (m = 2) + coarse grid (mc = 5) acc. 0.16 (6; 73 s) 0.27 (6; 73 s) 0.22 (7; 85 s)

O(h2)-discretization

ε = 10−3 ε = 10−4 ε = 10−5

Multigrid 0.10 (5; 85 s) 0.45 (6; 101 s) 0.90 (63; 986 s)

Fine grid acc. (m = 2) 0.08 (4; 73 s) 0.31 (7; 123 s) 0.85 (42; 704 s)
Fine grid acc. (m = 15) 0.07 (4; 73 s) 0.30 (7; 123 s) 0.72 (24; 421 s)
Fine (m = 2) and coarse grid (mc = 5) acc. 0.07 (4; 76 s) 0.25 (6; 112 s) 0.65 (14; 250 s)

discretization (4.4) for the convection, as discussed in the previous section. The finest
grid consists of 2562 cells.

In [17], we investigated the convergence of a multigrid as a preconditioner with
GMRES acceleration for the standard upwind discretization, where we used a rela-
tively large number of vectors m in the Krylov subspace, namely, m = 20. Here, the
aim is to use a small m and to investigate the coarse grid Krylov subspace acceler-
ation. The performance of KMG-f is compared to the KMG-fc solution method. In
the latter case, we have a restart parameter m on the finest grid and mc for the size
of the subspace on the coarse grids. Parameter m varies between 2 and 15, when the
Krylov acceleration takes place only on the finest grid. The sizes are fixed, m = 2
and mc = 5, when Krylov acceleration takes place on the fine and coarse grids.

A robust standard FAS multigrid method based on the W(0,1)-cycle consisting of
9 levels is chosen as the preconditioner. The calculation starts on the coarsest grid (full
multigrid (FMG)) to improve an initial approximation on the finest grid. A robust
smoother for the O(h) discretization is the symmetric alternating line Gauss–Seidel
smoother [24]. For the O(h2) discretization, it is the symmetric alternating KAPPA
line smoother discussed in the previous section. An underrelaxation parameter is not
needed for this scalar test problem.

Table 5.1 compares the asymptotic convergence of multigrid with the average con-
vergence (after a large number of iterations) of KMG. Also, the number of iterations
plus cpu time, on an RS6000 workstation, for reducing the residual by 6 orders of
magnitude is indicated in brackets.

Table 5.1 shows a very satisfactory convergence improvement with KMG-fc, es-
pecially for the convection-dominant cases. For the first-order upwind discretization
on this 2562 grid, the improvement is seen for ε = 10−4 and ε = 10−5. A gain of
12 iterations in reducing the initial residual by six orders of magnitude is observed
with ε = 10−5 for the KMG-fc solution method. The improvement is also significant
for the discretization with the Fromm scheme. Here, the improvement is best for
ε = 10−5. For this test, the coarse grid Krylov subspace acceleration with m = 2 on
the finest grid performs better than the fine grid Krylov acceleration with m = 15.
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Table 5.2

Accuracy of the higher order upwind discretization for rotating convection.

h: 1/16 1/32 1/64 1/128 1/256
‖uh − u‖2 6.8e-3 1.5e-3 2.1e-4 2.3e-5 2.2e-6

Table 5.3

Convergence of multigrid preconditioned Krylov methods.

h: Acceleration # levels ρh, (# its., time in s)
1/64 Fine grid (m = 15) 1 0.61 (26, 48 s)

Fine and coarse grid (m = 2,mc = 5) 2 0.58 (22, 41 s)
Fine and coarse grid (m = 2,mc = 5) 3 0.60 (22, 41 s)

1/128 Fine grid (m = 15) 1 0.64 (29, 212 s)
Fine and coarse grid (m = 2,mc = 5) 2 0.59 (23, 168 s)
Fine and coarse grid (m = 2,mc = 5) 3 0.58 (23, 169 s)
Fine and coarse grid (m = 2,mc = 5) 4 0.60 (25, 185 s)

1/256 Fine grid (m = 15) 1 0.63 (31, 909 s)
Fine and coarse grid (m = 2,mc = 5) 2 0.58 (26, 760 s)
Fine and coarse grid (m = 2,mc = 5) 3 0.52 (21, 622 s)
Fine and coarse grid (m = 2,mc = 5) 4 0.54 (22, 655 s)
Fine and coarse grid (m = 2,mc = 5) 5 0.54 (23, 685 s)

Standard multigrid solves this problem well for several ε-values. For certain ε-values,
the problem is not solved efficiently by standard multigrid without the acceleration,
which is often observed.

The second test investigates the h-independent convergence of KMG-fc for
convection-diffusion equation (4.1) with a dominating rotating convection term:

a(x, y) = − sin(2πx) · cos(2πy), b(x, y) = sin(2πy) · cos(2πx), ε = 10−5.

It can be seen that a = b = 0 is found on four points in the domain. Dirichlet
boundary conditions and right-hand side f are prescribed such that an analytical
solution results, namely,

u = 1 − (x− 1/4)3 − (y − 3/4)3.

It was examined in [5] that, for rotating flow problems, standard upwind discretization
does not reach O(h) accuracy, due to “anisotropic artificial viscosity.” This is also
observed for this test problem with the standard upwind discretization. Here, we
investigate the Fromm’s discretization for which it is shown, in Table 5.2, where the
error between the numerical and analytical solutions is presented for several grid sizes,
that a very satisfactory accuracy is reached. It can be seen that the numerical solution
is at least second-order accurate.

Table 5.3 shows the average convergence (for a large number of iterations), plus
the number of iterations and cpu time (in seconds), to reduce the residual by 10−6 for
three grid sizes. KMG-f with m = 15 is compared to KMG-fc, where m = 2 and mc =
5. We evaluate the influence of the number of levels on which Krylov acceleration is
applied (indicated by # levels in the table). The multigrid preconditioner is the same
as in the previous experiment (KAPPA smoother). FAS W(1,1)-cycles are used.

In Table 5.3, it is observed that the KMG-fc solution method results in a satisfac-
tory level-independent convergence rates for this test problem. The use of the Krylov
subspace acceleration on three grids is most efficient in Table 5.3. The final residual



1684 C. W. OOSTERLEE AND T. WASHIO

is then obtained after about 22 iterations for all grid sizes. Also, the cpu time needed
for reducing the initial residual by six orders of magnitude is smallest in case of the
acceleration on three levels. The use of the Krylov subspace acceleration on more
coarse grids, however, does not influence the convergence dramatically.

5.2. Incompressible flow problems. Next, incompressible flow examples are
treated. This nonlinear system of PDEs is discretized with a modern upwind method,
namely, with a flux-difference splitting discretization [8], in which the higher order
upwind κ-discretization [13] is applied for convective fluxes. Originally, these upwind
methods were developed for compressible flow problems. An overview of the flux split-
ting discretization methods is given in [11]. In [8], it is shown that the discretization
concept also applies for incompressible equations.

The 2D system of the incompressible Navier–Stokes equations is written in the
conservative form

∂f

∂x
(u) +

∂g

∂y
(u) =

∂fv
∂x

(u) +
∂gv

∂y
(u) ,(5.1)

where u = (u, v, p)T . For the incompressible Navier–Stokes equations, we have

f =



u2 + p
uv
c2u


 , g =




uv
v2 + p
c2v


 ,

fv =




1
Re

∂u/∂x
1
Re

∂v/∂x
0


 , gv =




1
Re

∂u/∂y
1
Re

∂v/∂y
0


 .

Here, c is a constant reference velocity (here, c = 1). The 2D vertex-centered
discretization of (5.1) on a collocated grid is flux-difference splitting with the κ-
discretization. The second-order accuracy of the resulting flux-difference discretiza-
tion is checked for several steady flow problems at low and high Reynolds numbers in
[8] for 2D problems and in [16] for 3D problems. For incompressible Navier–Stokes
equations, it is not necessary to implement a limiter. For many different (2D and 3D)
problems at low and high Reynolds numbers, oscillations (for example, in the pressure
distribution, as they occur near discontinuities for compressible flow problems) did
not appear.

5.3. Driven cavity problem. We want to show the benefits of the KMG-
fc solution method for some multiblock applications at high Reynolds numbers. A
first rotating flow test problem is the driven cavity flow at a high Reynolds number,
Re = 10000. With a moving top wall u = 1, and velocities prescribed zero on all
walls, recirculating flow is generated with small recirculation zones near the bound-
ary. Figure 5.1(a) presents streamlines for this flow example. A calculation with the
stationary incompressible Navier–Stokes equations is performed on a 1932 grid, with
stretching near all boundaries to capture the recirculation zones and boundary layers.
Figure 5.1(b) shows that the centerline velocity profiles u at x = 0.5 and v at y = 0.5
agree well with the reference data from [9].
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Fig. 5.1. The driven cavity flow problem at Re = 10000. (a) Streamlines; (b) and (c) Centerline
velocity profiles compared to reference data from [9].

Figure 5.2 presents the single block convergence for this problem. Also, the aver-
age reduction factor of the sum of the three equations

ρ =

(∑3
i=1 |r

(i)
h,25|∞∑3

i=1 |r
(i)
h,5|∞

) 1

20

(5.2)

is presented in the figure. In all figures, it can be seen that the first five iterations
are different from the asymptotic convergence behavior. Therefore, they are not
considered in (5.2). In Figure 5.2, again the pure multigrid convergence is compared
to the convergence of KMG-f with m = 15 and to KMG-fc with the acceleration on
6 levels with m = 2 and mc = 5. The coupled KAPPA smoother is used, so that
the second-order accurate discretization of the 3 equations is solved directly in the
multigrid method. A W(1,1)-cycle is chosen with 7 multigrid levels. Underrelaxation
parameter ω is set to 0.85 when the Krylov acceleration is applied on the coarse grids.
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Fig. 5.2. Single block convergence versus the number of iterations for driven cavity test problem
at Re = 10000.

It must be chosen smaller if the coarse grid acceleration is not applied, namely, 0.6 in
order to achieve convergence.

It can be seen in Figure 5.2 that the multigrid solution method is not converging
on this stretched grid. This is observed for several values of the underrelaxation pa-
rameter ω and for different numbers of smoothing iterations. Also, it can be seen that
KMG-fc is converging faster than KMG-f with a relatively large Krylov subspace of
15. To achieve a residual of 10−4, approximately five iterations are saved additionally.
The costs in cpu time are similar for both methods.

In Figure 5.3, we compare the single block KMG-fc method with its multiblock
version. The 1932 stretched grid is split into 1 × 2, 2 × 2, and 2 × 4 load-balanced
blocks. The problems are solved on 2, 4, and 8 processors of an IBM-SP2 machine.
Line smoothing is now performed within a block, as mentioned above. Figure 5.3
compares the reduction of the residual with the wall-clock time. The average reduction
factor ρ is also presented in the figure. It can be seen that the average reduction factor
is not influenced much by the Jacobi aspect of the KAPPA smoothers at the interior
boundaries. An extra update along the interior boundaries is not necessary for this
test problem. Efficiencies of about 85% are achieved with this method on 8 processors.

5.4. The twin roller example. The second incompressible Navier–Stokes ap-
plication is the numerical simulation of steel flow in a twin roller (see Figure 5.4).
Similar problems are also treated in [2], [12]. The twin roller process integrates both
the casting and the rolling process, which are treated separately in the conventional
steel production. Liquid steel is entering the simulation via a nozzle (see Figure 5.4)
in a pool between two rotating rolls, which are water cooled. A solid steel strip is
the resulting product. The twin roller is a multiphysics problem, with structural me-
chanics equations considered where the solidification takes place, for example, below
the “kissing point” (Figure 5.4) and near the rolls. Here, we study the convergence
of the KMG method for a second-order accurate simulation of the liquid steel, which
is considered to behave as a Newtonian fluid [12]. In the real computations, the in-
fluence of the temperature on the flow is modeled by an energy equation. We do not
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Fig. 5.3. Convergence versus wall-clock time for the multiblock driven cavity test problem at
Re = 10000.
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Fig. 5.4. The twin-roller model example for the incompressible Navier–Stokes problems.

do this here (although it is not an essential difficulty for the solution method).

A fast and robust solution method for the CFD part is a necessary requirement
for the overall multiphysics problem. We compute a 2D incompressible Navier–Stokes
flow in a domain with a submerged entry nozzle. Other inflow boundaries (other
nozzles) are treated, for example, in [2]. Symmetric boundary conditions are placed
at the centerline of the pool, so that half of a domain needs to be calculated. The
computational domain is shown in Figure 5.5. In the domain, a boundary-fitted
curvilinear grid is generated. Dirichlet boundary conditions for u and v at the roll
describe the speed of the roll. A free surface condition is placed at the top wall
and on Neumann-type boundary conditions at the outlet. Different types of extreme
stretched cells, especially in the lower part of the domain, are found in the numerical
grid, which is divided into six blocks for parallel processing. Four blocks contain
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Fig. 5.5. The domain with six blocks for the incompressible twin roller problem and the stream-
lines for Re = 100000 and Re = 10000.
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Fig. 5.6. The six block convergence of the residual from the second-order accurate discretization
for two Reynolds numbers.

128×80 cells, one consists of 64×64 cells and one of 128×64 cells. A load imbalance
exists, which is not critical. Here, the Reynolds number varies between Re = 104 and
Re = 105, which are standard parameters considered in [2] and [12]. Large circulation
zones appear in these flow problems, as can be observed from the streamlines for the
two Reynolds numbers in Figure 5.5.

The multigrid FAS scheme used for solving this problem is the same as for
the driven cavity problem. It consist of an F(0,1) cycle with four multigrid levels.
The smoother is again the coupled symmetric alternating KAPPA smoother with
ω = 0.85. Figure 5.6 shows the reduction of the residual from second-order accu-
rate discretization versus the wall-clock time and ρ as in (5.2) for both Reynolds
numbers. Standard FAS multigrid is compared to KMG-f with different sizes of the
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subspace; m = 2,m = 5, and m = 15; and with KMG-fc. In the latter case, we choose
m = 2,mc = 5. It can be seen that the convergence of the latter method is comparable
to the convergence of KMG-f with m = 15 for both tests. Furthermore, we observe
unexpected FAS multigrid convergence behavior in Figure 5.6. The convergence is
satisfactory for the high Reynolds number 100000. It slows down dramatically for
Re = 10000. The convergence of KMG-fc is regular, fast, and reliable.

6. Conclusions. We presented a parallel nonlinear Krylov acceleration strategy
for solving nonlinear equations. This strategy is similar to FGMRES for linear equa-
tions. It is possible to use the acceleration strategy in combination with a nonlinear
preconditioner, like a nonlinear multigrid method. The acceleration method is cheap,
relative to a nonlinear multigrid preconditioner, since it uses intermediate solutions
and residuals that are already calculated in the multigrid iteration. Based on proper
selection criteria, it is then decided whether to adopt the accelerated intermediate
solution or the solution obtained from the preconditioner. By means of the Krylov
acceleration, the multigrid solution method is made much more robust: larger ranges
of problem parameters can be solved efficiently. With the additional Krylov subspace
acceleration on the coarse grids of the multigrid preconditioner, rotating flow prob-
lems discretized by higher order upwind discretizations can be solved efficiently and
the size of the Krylov subspace can be reduced.
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