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Abstract. In this paper, we present three-grid Fourier analysis for multigrid methods. Due to
the recursive structure of a multigrid iteration, this analysis can be deduced from the well-known
two-grid Fourier analysis. The coarse grid correction part of multigrid algorithms can be more
accurately evaluated with the three-grid analysis. We apply the analysis to several scalar equations
and discretizations with an emphasis on problems with a multigrid coarse grid correction difficulty
like upwind discretizations of the convection diffusion equation. The main focus lies on possible
improvements by carefully chosen Galerkin operators and/or by an additional acceleration with
restarted GMRES, GMRES(m). Numerical test calculations validate the theoretical predictions.
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1. Introduction. Fourier one-grid (smoothing) and two-grid analysis [2, 20, 21]
are well-known tools in the multigrid community. The two-grid analysis is the basis
for classical asymptotic multigrid convergence estimates [20, 21]. Moreover, it is the
main analysis tool for nonsymmetric problems.

For several multigrid components or cycle variants, however, the asymptotic
multigrid convergence factor cannot be predicted accurately by the Fourier two-grid
factors. For example, one may use different discretizations on different grids. It can
be beneficial to replace the direct 2h-, 4h-, etc. discretizations on the coarser grids by
other discretizations. The most prominent example of this kind is the Galerkin coarse
grid operator. As the entries of the Galerkin coarse grid discretizations are in general
not known in advance, they may not be favorable for the smoothing method applied.
Investigations of the two-grid iteration cannot display possible smoothing difficulties
on coarser grids induced by the different discretizations, since the direct solution of
the 2h-problem is assumed. Furthermore, if one is interested in the influence on the
asymptotic convergence factor of V -cycles versus W -cycles, of different numbers of
pre- and postsmoothing, or of different smoothers on different grids, one needs to
consider at least three grids.

To investigate these additional phenomena we carry out a three-grid Fourier anal-
ysis, which is usually sufficient to obtain a comprehensive insight into a multigrid
method. In section 2, we outline the theoretical background of the three-grid analy-
sis. Instead of (4 × 4)-blocks for the two-grid iteration matrix [2, 20, 21, 24] in the
case of standard grid coarsening, the three-grid iteration matrix is transformed into
a (16× 16)-block matrix by Fourier analysis in the two-dimensional scalar case. This
means that the calculation of three-grid asymptotic convergence factors is reduced to
the calculation of the spectral radii of certain (16 × 16)-matrices.

In section 3, we apply the three-grid analysis to several equations and multigrid
components. We focus on singular perturbation problems like the convection diffu-
sion equation discretized by first or higher order difference schemes and the rotated
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anisotropic diffusion equation. For these problems a variety of nonstandard coarse
grid discretizations is evaluated. Some of them are discussed in [26]. For example,
Galerkin coarsenings based on the transfer operators from [7] and [27] are analyzed.

This analysis can be generalized to the situation where multigrid is a precondi-
tioner for GMRES(m) [15] in the same way as it was done in [24] for the two-grid
analysis. The different multigrid algorithms are not only evaluated as a solver but
also as a preconditioner for GMRES(m).

2. Fourier analysis of multigrid. In this section we introduce the three-grid
Fourier analysis of multigrid as a solver and as a preconditioner for GMRES(m); see
sections 2.3 and 2.4, respectively. We restrict ourselves to the two-dimensional scalar
case and standard coarsening, i.e., the grid coarsening is performed by doubling the
mesh size in each direction, in order to keep the presentation as simple as possible.
However, the generalization to three dimensions or to systems of equations is obvious
but somewhat more technically involved, as explained in Remark 2. Other coarsening
techniques like semicoarsening can be treated in a similar way by some appropriate
changes concerning the coarse grid correction in the multigrid process.

2.1. Notation and basic principles. The rigorous theoretical foundations for
the Fourier analysis of multigrid, which is also commonly called local mode analysis,
can be found, for example, in [4] and [18]. Basically, the local mode analysis is valid
if the influence of a domain boundary is negligible [4]. Often, this requirement can be
fulfilled by performing some extra local relaxations near and at the boundary.

For a k-grid cycle, we consider k discrete linear operators Ln (n = 1, . . . , k) with
constant coefficients on k infinite grids Gn with mesh sizes hn = 2k−nh:

Lnun(x) = fn(x)
(2.1)

on Gn := {x = hnj = (hnjx, hnjy) = (x, y) with j ∈ Z
2} .

Obviously, the grids become finer with an increasing index n, and Lk is defined on
the finest grid with mesh size hk = h. In stencil notation [20], (2.1) looks like

Lnun(x) =
∑

κ∈J

(ln)κun(x + κhn) = fn(x) on Gn(2.2)

with stencil coefficients (ln)κ and a finite index set J ⊂ Z
2. For compact 9-point

stencils [L] we have, for example,

J := {κ = (κx, κy) with κx, κy ∈ {−1, 0, 1} } and [L] =



l−1,1 l0,1 l1,1
l−1,0 l0,0 l1,0
l−1,−1 l0,−1 l1,−1


 .

From (2.2), it can be deduced that the continuous eigenfunctions, the Fourier com-

ponents, of the fine grid operator Lk are given by

φ(θ,x) := eixθ/h = eijθ = ei(jxθx+jyθy) with x ∈ Gk ,

where the Fourier frequencies θ = (θx, θy) vary continuously in R
2. The corresponding

eigenvalues or Fourier symbols of Lk read as

L̃k(θ) =
∑

κ∈J

(lk)κe
iθκ .(2.3)
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On Gk, we introduce the scaled Euclidean inner product [20]

〈vk, wk〉 := lim
m→∞

1

4m2

∑

|κ|≤m

vk(κh) wk(κh) with

|κ| = max{|κ1|, |κ2|} and vk, wk : Gk −→ C,

leading to a norm ||vk|| :=
√
〈vk, vk〉. Note that the Fourier components are orthonor-

mal with respect to this inner product [20]. We define the space of bounded infinite
grid functions by

F(Gk) := {vk | vk( . ) : Gk −→ C with ||vk|| < ∞}.

For each vk ∈ F(Gk), there exists a Fourier transformation, i.e., each vk can be
written as a linear combination of Fourier components [4, 11, 23]. Fourier components

with |θ̂| := max{|θ̂x|, |θ̂y|} ≥ π are not visible on Gk, since they coincide with compo-

nents eijθ, where θ = θ̂(mod 2π), due to the periodicity of the exponential function.
Therefore, the Fourier space

F := span{eijθ : θ ∈ Θ = (−π, π]2}(2.4)

contains any bounded infinite grid-function.
It is convenient to explain the three-grid analysis (or, more generally, the k-

grid analysis) by a recursive adaptation of the two-grid case. The discrete fine grid
solution uk and a current approximation ui can be represented by linear combinations
of Fourier components eijθ ∈ F because of F(Gk) ⊂ F . The same holds for the error
vi−1 = ui−1 − uk before and vi = ui − uk after the ith k-grid cycle. It can be easily
established by induction that the error transformation by a k-grid cycle is given by
the following recursion [10, 20, 21]:

M1
2 = Sν2

2 K1
2S

ν1
2 = Sν2

2 (I2 − P 2
1 (L1)

−1R1
2L2)S

ν1
2 ,(2.5)

M1
`+2 = Sν2

`+2K
1
`+2S

ν1

`+2
(2.6)

= Sν2

`+2(I`+2 − P `+2
`+1 (I`+1 − (M1

`+1)
γ)(L`+1)

−1R`+1
`+2L`+2)S

ν1

`+2

for ` = 1, . . . , k − 2 ,

where the sub- and superscripts of the different operators are abbreviations for the
related mesh sizes of the k involved grids. Sn is a smoothing operator on Gn, ν1 and
ν2 indicate the number of pre- and postsmoothing iterations, K1

n is the coarse grid
correction operator, In is the Gn-identity, Ln is the approximation of Lk on a coarse
grid Gn, Pn

n−1 and Rn−1
n are transfer operators from coarse to fine grids and reversed,

and γ is the cycle index (for example, γ = 1 denotes a V -cycle and γ = 2 denotes a
W -cycle). Of course, it is possible to vary the number of pre- and postsmoothing steps
on the different grids leading to ν1(n) and ν2(n). Ln−1 may be defined by Galerkin
coarsening, Ln−1 = Řn−1

n LnP̌
n
n−1, or simply by a straightforward application of Lk

on Gn−1. Note that the transfer operators in the Galerkin process do not necessarily
have to match with Rn−1

n and Pn
n−1 from the multigrid iteration.

For the coarse grid discretization operators, the prolongation, and the restriction,
similar stencil notations as in (2.2) exist. The corresponding Fourier symbols, denoted
by a tilde ,̃ are calculated as in (2.3) with a suitable index set J related to the
operator under consideration; see (2.8). A detailed representation of the Fourier
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symbols for many prolongations, restrictions, and discretizations is given, for instance,
in [10, 20, 21, 23].

In the following, we often use a more instructive notation for the operators from
(2.5), (2.6), the related Fourier symbols, and the infinite grids Gn. For example, their
indices are replaced by the corresponding mesh sizes hn = 2k−nh. For example, we
write Ph

2h, P̃h
2h(θ), and Gh instead of P k

k−1, P̃
k
k−1(θ), and Gk, respectively; see, e.g.,

(2.7), (2.8), or (2.11). Some basic elements of the three-grid analysis already appear
in the two-grid analysis. Here, the sub- or superscript 2g always stands for two-grid.
The index 3g is used accordingly for three-grid in section 2.3.

2.2. Two-grid Fourier analysis. If standard coarsening is selected, it is conve-
nient to divide the Fourier space (2.4) into the following four-dimensional subspaces.

Definition 2.1 (2h-harmonics). The 2h-harmonics F2g
θ are given by

F2g
θ := span{φ(θαxαy ,x) with αx, αy ∈ {0, 1} }, where

θ = θ00 ∈ Θ2g := (−π/2, π/2]2 and θαxαy := θ00 − (αxsign(θx), αysign(θy) )π .

This distinction is motivated by the fact that each low-frequency θ00 ∈ Θ2g is
coupled with three high-frequencies θα with α 6= (00) in the transition from Gh to
G2h. For example, the three high-frequency components are not visible on the coarse
grid as they coincide with the corresponding low-frequency component.

In order to ensure that we deal with nonsingular Fourier symbols L̃h(θ) and

L̃2h(2θ), we restrict our considerations to the following slightly shrunken subspace of
the Fourier space (2.4), as in [20]:

F2g := F\
⋃

θ∈Ψ2g

F2g
θ with Ψ2g := {θ ∈ Θ2g : L̃2h(2θ00) = 0 or L̃h(θα) = 0}.

The crucial observation is that the coarse grid correction operator K2h
h (see (2.5))

leaves the spaces of 2h-harmonics invariant for an arbitrary Fourier frequency θ ∈
Θ̃2g := Θ2g\Ψ2g. The same invariance property holds for many well-known smoothing
methods, e.g., Jacobi point- or line-relaxation, lexicographical Gauss–Seidel point-
or line-relaxation, and certain pattern relaxation methods such as red-black Gauss–
Seidel or zebra line Gauss–Seidel. Especially for pattern relaxations, the calculation
of the related Fourier symbols is not as simple as it is for the different operators of
the coarse grid correction. In general, certain Fourier components within the spaces
of 2h-harmonics may be coupled by the smoothing operator, which means that the
calculation of the corresponding Fourier symbol cannot be done separately for each
component φ(θ,x), as in (2.3). On the contrary, it is represented by a general (4×4)-
matrix S2g(θ, h) = S2g(θ00,θ11,θ10,θ01, h) ∈ C

4×4. For the explicit representation
of several relaxation methods, we refer to [10, 20, 21, 23].

Summarizing, we have that the two-grid operator (see (2.5)) leaves the spaces of
2h-harmonics invariant, i.e., for each θ ∈ Θ̃2g it holds that

M2h
h |F2g

θ

∧
= M2g(θ, h)(2.7)

= (S2g(θ, h))ν2( I2g − P 2g(θ, h)(L2g(θ, h))−1R2g(θ, h)L2g(θ, h) )(S2g(θ, h))ν1 .
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The representation of the coarse grid correction block matrices is given by

I2g = diag{1, 1, 1, 1} ∈ C
4×4 , L2g(θ, h) = L̃2h(2θ00) ∈ C

1×1 ,

L2g(θ, h) = diag{L̃h(θ00), L̃h(θ11), L̃h(θ10), L̃h(θ01)} ∈ C
4×4 ,

(2.8)
R2g(θ, h) = ( R̃2h

h (θ00) R̃2h
h (θ11) R̃2h

h (θ10) R̃2h
h (θ01) ) ∈ C

1×4 ,

P 2g(θ, h) = ( P̃h
2h(θ00) P̃h

2h(θ11) P̃h
2h(θ10) P̃h

2h(θ01) )T ∈ C
4×1 .

Using the simple block representation from (2.7), the spectral radius of the two-
grid iteration matrix and thus the asymptotic two-grid convergence factor can be
approximated by

ρ2g(h) := sup
θ∈Θ̃2g

ρ(M2g (θ, h)) .(2.9)

Remark 1 (boundedness of ρ2g(h)). In all the examples considered in section 3,

we have Θ̃2g = (−π/2, π/2] \ {(0, 0)}, as only L̃h((0, 0)) and L̃2h(2(0, 0)) are zero.

However, the suprenum in (2.9) remains finite, since R̃2h
h ((0, 0))L̃h((0, 0)) is rank

deficient too, in such a way that limθ→(0,0) ρ(M
2g(θ, h) ) is bounded; see [4].

The smoothing or one-grid convergence factor ρ1g(h), based on the “ideal” coarse

grid correction operator Q2h
h with Q2h

h |F2g
θ

∧
= Q = diag{0, 1, 1, 1} from [20], reads as

ρ1g(h) := sup
θ∈Θ̃2g

ρ(Q(S2g(θ, h))ν1+ν2 ) .(2.10)

Q2h
h annihilates the low-frequency error components and leaves the high-frequency

components unchanged. ρ1g(h) yields reasonable convergence estimates as long as
Q2h

h is a good approximation of the real coarse grid correction operator.

2.3. Three-grid Fourier analysis. From (2.6), the error transformation by a
three-grid cycle is given by vi = M4h

h vi−1 with

M4h
h = Sv2

h K4h
h Sv1

h(2.11)

= Sv2

h (Ih−Ph
2h(I2h − (M4h

2h )γ)(L2h)−1R2h
h Lh)Sv1

h ,

where M4h
2h , defined by (2.5), reads as

M4h
2h = Sν2

2h(I2h − P 2h
4h (L4h)−1R2h

4hL2h)Sν1

2h .(2.12)

Instead of inverting L2h, as is done in the two-grid cycle (2.5), the 2h-equation is solved
approximately by performing γ two-grid iterations M4h

2h with zero initial approxima-
tion. This is reflected by the replacement of (L2h)−1 from (2.5) by the expression

(L4h
2h)−1 = (I2h − (M4h

2h )γ)(L2h)−1(2.13)

in (2.11). To see this, consider an arbitrary nonsingular system Lu = f which is
approximately solved by γ steps of an iterative method, Cuj = (C − L)uj−1 + f ,
based on the splitting L = C + (L− C). If a multigrid method is applied, we obtain
uj = Muj−1 + C−1f with C−1 = (I −M)L−1. M denotes the error transformation
matrix by one multigrid cycle; see (2.6). Starting with u0 = 0, the γth iterate can
easily be written as uγ = (I − Mγ)L−1f . In a numerical algorithm, however, L−1

(and, in particular, (L2h)−1) is, of course, not applied explicitly.
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Fig. 2.1. A set of Fourier frequencies that are coupled by a three-grid iteration; see Definition 2.2.

Considering three-grid cycles, it is appropriate to divide the Fourier space F into
a direct sum of the following 16-dimensional subspaces.

Definition 2.2 (4h-harmonics). The 4h-harmonics are defined by

F3g
θ := span

{
φ(θα

β ,x) with α = (αx αy) , β = (βx βy),

and αx, αy ∈ {0, 1} , βx, βy ∈
{

0,
1

2

} }
,

where θ = θ00
00 ∈ Θ3g := (−π/4, π/4]2 and

θ00
βxβy

= θ00
00 − (βxsign(θx), βysign(θy) )π ,

θ
αxαy

β = θ00
β − (αxsign(θβx

), αysign(θβy
) )π .

Figure 2.1 illustrates this somewhat technical definition by indicating the location
of the 16 different frequencies θα

β . It can be motivated in the same way as it was done
in the two-grid analysis concerning the 2h-harmonics. In the transition from G2h

to G4h, a low frequency θ00
00 ∈ Θ3g is coupled with three high frequencies θ00

β with
β 6= (00). We collect four such components in the following subspaces.

Definition 2.3.

Fβ
θ := span

{
φ(θ00

βxβy
,x) with βx, βy ∈

{
0,

1

2

} }
for θ00

00 ∈ Θ3g .

Furthermore, each θ00
β is coupled with three high-frequency components θα

β with
α 6= (00) in the transition from Gh to G2h; see Figure 2.1. It follows that a three-grid
cycle couples 16 frequencies, i.e., the 15 high-frequency components alias on G4h with
the low-frequency component φ(θ00

00,x).
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Again, we exclude certain frequencies from the calculation to obtain a well-defined
three-grid operator and consider the following slightly smaller spaces:

F3g := F\
⋃

θ∈Ψ3g

F3g
θ and Θ̃3g := Θ3g\Ψ3g with

Ψ3g :=
{

θ ∈ Θ3g : L̃4h(4θ00
00) = 0 or L̃2h(2θ00

β ) = 0 or L̃h(θα
β ) = 0

}
.

Comparing Definitions 2.1 and 2.2, it immediately follows that each space of 4h-
harmonics consists of four spaces of 2h-harmonics, i.e., for an arbitrary θ ∈ Θ̃3g we
have

F3g
θ = F2g

θ00
00

∪ F2g
θ00

1
2

1
2

∪ F2g
θ00

1
2
0

∪ F2g
θ00

0 1
2

.(2.14)

As a fundamental statement for the three-grid analysis, we find that the three-grid
operator M4h

h (2.11) leaves the spaces of 4h-harmonics invariant. Using Definition 2.3,

(2.14), and the considerations from the last subsection, it follows for every θ ∈ Θ̃3g

that

Sh : F3g
θ −→ F3g

θ , Lh : F3g
θ −→ F3g

θ ,
(2.15)

R2h
h : F3g

θ −→ Fβ
θ , L4h

2h : Fβ
θ −→ Fβ

θ , Ph
2h : Fβ

θ −→ F3g
θ .

The relation for L4h
2h reads in more detail as (see (2.13) and (2.12))

L2h : Fβ
θ −→ Fβ

θ , S2h : Fβ
θ −→ Fβ

θ , R4h
2h : Fβ

θ −→ span{φ(θ00
00,x)} ,

L4h : span{φ(θ00
00,x)} −→ span{φ(θ00

00,x)} , P 2h
4h : span{φ(θ00

00,x)} −→ Fβ
θ .

As a consequence of (2.15), one obtains the following (16 × 16)-block matrices:

M4h
h |F3g

θ

∧
= M3g(θ, h)(2.16)

= (S3g(θ, h))ν2( I3g − P 3g(θ, h)(L3g(θ, h))−1R3g(θ, h)L3g(θ, h) )(S3g(θ, h))ν1 .

The different operators of the block-matrices M3g(θ, h) can be expressed by the two-
grid representations from section 2.2; see S2g(θ, h) and (2.8):

I3g = diag{I2g, I2g, I2g, I2g} ∈ C
16×16 ,

S3g(θ, h) = diag{S2g(θ00, h), S2g(θ 1
2

1
2
, h), S2g(θ 1

2 0, h), S2g(θ0 1
2
, h)} ∈ C

16×16 ,

L3g(θ, h) = diag{L2g(θ00, h), L2g(θ 1
2

1
2
, h), L2g(θ 1

2 0, h), L2g(θ0 1
2
, h)} ∈ C

16×16 ,

R3g(θ, h) = diag{R2g(θ00, h), R2g(θ 1
2

1
2
, h), R2g(θ 1

2 0, h), R2g(θ0 1
2
, h)} ∈ C

4×16 ,

P 3g(θ, h) = diag{P 2g(θ00, h), P 2g(θ 1
2

1
2
, h), P 2g(θ 1

2 0, h), P 2g(θ0 1
2
, h)} ∈ C

16×4 ,

(L3g(θ, h))−1 = ( I2g − (M2g(2θ, 2h))γ )

( diag{L2g(θ00, h),L2g(θ 1
2

1
2
, h),L2g(θ 1

2 0, h),L2g(θ0 1
2
, h)} )−1 ∈ C

4×4 .
(2.17)

Of course, M2g(2θ, 2h) can be calculated using S2g(θ, h) and (2.8) if we replace h by
2h and θ by 2θ.
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Analogous to the two-grid factor ρ2g(h) from (2.9), we obtain the three-grid con-
vergence factor as the suprenum of the spectral radii from certain block-matrices:

ρ3g(h) := sup
θ∈Θ̃3g

ρ(M3g (θ, h)) .(2.18)

The considerations from Remark 1 concerning the boundedness of ρ2g(h) carry over
to the three-grid factors calculated in section 3.

Remark 2 (generalization to d dimensions, k grids, and systems of equations). In
the most general case, we consider a d-dimensional problem and apply k-grid cycles to
a system of q equations. Then, every low-frequency θ ∈ Θkg := (−21−kπ, 21−kπ]d is
coupled with 2d(k−1) − 1 high frequencies. Accordingly, the related 2k−1h-harmonics
are of dimension 2d(k−1). Each operator of the k-grid cycle acts on the whole system
and the dimensions of the corresponding block-matrices (see (2.8) and (2.17) for the
two-dimensional scalar case with two- and three-grid cycles, respectively) are given
by

Ikg, Skg(θ, h), Lkg(θ, h) ∈ C
2d(k−1)q×2d(k−1)q, Rkg(θ, h) ∈ C

2d(k−2)q×2d(k−1)q,

P kg(θ, h) ∈ C
2d(k−1)q×2d(k−2)q, Lkg(θ, h) ∈ C

2d(k−2)q×2d(k−2)q.

The evaluation of k-grid cycles appears to be quite complicated and costly for many-
level cycles, but one should take into account that the k-grid operators (2.6) are
recursively defined and can be expressed in terms of two-grid operators. This means
that the entries of a k-grid Fourier matrix representation are given by certain two-
grid Fourier symbols; see (2.17). In practice, however, it should usually be enough to

perform a three-grid analysis to obtain sufficient insight into a multigrid method.

Remark 3 (finite-dimensional Fourier space). Note that the Fourier space (2.4)
has a nondenumerable basis as θ varies continuously in (π, π]2. The use of infinite-
dimensional spaces and operators leads to some technical simplifications in the anal-
ysis; see [20]. However, in general, the suprema from (2.9), (2.10), and (2.18) cannot
be calculated analytically. Therefore, we restrict our practical computations in sec-
tion 3 to a finite-dimensional Fourier space which is related to the mesh size h under
consideration:

Ffinite := span{eijθ : θ ∈ Θfinite := (−π, π]2 ∩Ghθ
}

with Ghθ
:= {θ = hθj = (hθjx, hθjy) with hθ = 2πh , j ∈ Z

2} .

The definitions of Θ̃2g, Θ̃3g, F
2g, and F3g have to be changed accordingly. Hence the

suprema are replaced by maxima, which can easily be calculated numerically. Using
this finite-dimensional Fourier space, the infinite Fourier analysis becomes an exact
analysis for certain model problems on rectangular domains with periodic boundary
conditions. Pure periodic boundary conditions lead to a singular boundary value
problem in general. This necessitates a compatibility condition for every iterative
solution method, which directly corresponds to the exclusion of the “zero” frequency
in the analysis; see Remark 1. More details can be found, for example, in [20, 21].

2.4. Generalization for multigrid as a preconditioner for GMRES(m).
In this section, we briefly describe the generalization of the above analysis to multigrid
as a right preconditioner for GMRES(m). For a detailed discussion with respect to
the two-grid analysis, we refer to [24].
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As Krylov subspace methods are commonly described using matrix and vector
notation, we consider the linear system Lu = f , related to (2.1) with n = k. A
three-grid (or, more generally, a multigrid) cycle can be described by the matrix
splitting, Cuj + (L−C)uj−1 = f, where uj and uj−1 represent a new and a previous
approximation. This formulation is equivalent to

uj = uj−1 + C−1(f − Luj−1) and rj = (I − LC−1)rj−1

with the residual vectors rj , rj−1 and the residual transformation matrix

I − LC−1 = LML−1,(2.19)

where M denotes the three-grid iteration matrix. GMRES(m) searches for a new
approximation uj with corresponding residual rj in the Krylov subspace

Km(LC−1, rj−m) := span[rj−m, (LC−1)rj−m, . . . , (LC−1)m−1rj−m] .

It selects the new solution by minimizing the residual in the discrete Euclidean 2-norm

||rj ||2 = min{||Pm(LC−1)rj−m||2 | Pm ∈ Πm},(2.20)

where Πm denotes the set of all polynomials of degree at most m with Pm(0) = 1. For
convenience, j ≥ m is assumed. Since we are interested in the asymptotic convergence
of multigrid preconditioned GMRES with a restart after m iterations, we focus on the
residuals rm, r2m, . . . , ri·m. Then a “complete” iteration with iteration index i consists
of m multigrid preconditioned GMRES(m) steps. The GMRES(m)-polynomial which
characterizes the ith complete iteration is denoted by P i

m, leading to the following
recursion for the corresponding residual:

ri·m = P i
m(LC−1)r(i−1)·m.(2.21)

As unitary transformations do not affect the convergence properties of GMRES,
we consider the Fourier representations M̃3g and L̃3g instead of the representations
M and L with respect to the Euclidean basis. More precisely, we use the finite-
dimensional variants

M̃3g := [M3g(θ, h)]θ∈Θ̃3g∩Ghθ

and L̃3g := [L3g(θ, h)]θ∈Θ̃3g∩Ghθ

to allow an explicit calculation; see Remark 3. Assuming a repeated application of
preconditioned GMRES(m), the following function g has to be minimized in order
to find the coefficients αi

k (k = 1, ...,m) of the ith GMRES(m)-polynomial P i
m (see

(2.19), (2.20), and (2.21)):

g(αi
1, . . . , α

i
m) := (P i

m(I − L̃3gM̃3g(L̃3g)−1)r̃(i−1)m, P i
m(I − L̃3gM̃3g(L̃3g)−1)r̃(i−1)m).

The αi
k are obtained by solving the linear system

∂g

∂αi
`

= 2

m∑

k=1

αi
k((I − L̃3gM̃3g(L̃3g)−1)`r̃(i−1)m, (I − L̃3gM̃3g(L̃3g)−1)kr̃(i−1)m)

+ 2((I − L̃3gM̃3g(L̃3g)−1)`r̃(i−1)m, r̃(i−1)m) = 0 for ` = 1, . . . ,m.(2.22)

The solution of (2.22) can easily be computed for every iteration index i due to

the sparse block structure of (I − L̃3gM̃3g(L̃3g)−1)` (` = 1, . . . ,m) if the previous
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Fourier transformed residual r̃(i−1)m is given. We simply prescribe a randomly chosen
initial residual r̃0. This allows the calculation of α1

` (` = 1, . . . ,m) by (2.22) and

gives r̃1·m = P 1
m(I − L̃3gM̃3g(L̃3g)−1)r̃0. Then the computation of r̃i·m for i > 1 is

straightforward due to its recursive definition; see (2.21). This leads to an average
reduction factor ρacc3g (i,m) for a complete iteration, which can be obtained by the
three-grid Fourier analysis

ρacc3g (i,m) :=

[(
||r̃i·m||2
||r̃0||2

)1/m]1/i

.(2.23)

The superscript “acc” is used as an abbreviation for “accelerated,” since the com-
bination of multigrid and GMRES(m) can be interpreted as an acceleration of the
multigrid convergence speed by an additional application of GMRES(m).

In all tests, presented in section 3, ρacc3g (i,m) tends to a constant for i ≥ 20. The
particular choice of the initial residual r̃0 does not influence the average reduction
factors for i � 1, which is confirmed by systematic test calculations. Thus it is
expected that ρacc3g (m) := ρacc3g (20,m) matches well with numerical reference values.

If we use the above Fourier representation I− L̃3gM̃3g(L̃3g)−1, the corresponding
spectrum can be calculated numerically. The common way (see, for example, [15, 16])
to analyze the convergence of GMRES is to exploit information about the spectrum
σ of the iteration matrix LC−1.

Suppose that all eigenvalues of I − L̃3gM̃3g(L̃3g)−1 are located in an ellipse
E(c, d, a) which excludes the origin. (c, 0) denotes the center, d denotes the focal
distance, and a denotes the major semiaxis. Note that σ is always symmetric with
respect to the real axis, so we only consider ellipses which are aligned with the axes
and where the ordinate of the center equals zero. Then it is known [16] that the
absolute value of the polynomial

tm(z) := Tm

( c
d
−

1

d
z
)/

Tm

( c
d

)
= Tm(ẑ)

/
Tm

( c
d

)
with z, ẑ :=

( c
d
−

1

d
z
)
∈ C

is small on the spectrum of I − L̃3gM̃3g(L̃3g)−1. Here Tm represents the Chebychev

polynomial of degree m of the first kind; see [16]. If I − L̃3gM̃3g(L̃3g)−1 is diagonal-

izable, I − L̃3gM̃3g(L̃3g)−1 = XDX−1, then (2.20) yields

||r̃i·m||2 ≤ ||tm(I − L̃3gM̃3g(L̃3g)−1)||2 ||r̃(i−1)m||2

≤ [||tm(I − L̃3gM̃3g(L̃3g)−1)||2]
i ||r̃0||2 ≤

[
κ2(X)Tm

(a
d

)
/Tm

( c
d

)]i
||r̃0||2,

where κ2(X) denotes the spectral condition number of the transformation matrix
X [16]. Using these inequalities, we obtain for an arbitrary complete iteration i

ρacc3g (i,m) ≤ NE
m ≤ (κ2(X))1/m TE

m with(2.24)

NE
m := (||tm(I − L̃3gM̃3g(L̃3g)−1)||2)

1/m and TE
m :=

(
Tm

(a
d

)
/Tm

( c
d

))1/m

(2.25)

as approximations for the average reduction factors of m multigrid preconditioned
GMRES(m) steps (see (2.23)).
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Remark 4 (determination of ellipses). There seems to be no simple way to deter-
mine the “optimal” ellipse for a given spectrum σ which minimizes TE

m and NE
m from

(2.25). Thus it is proposed in [8] to compute a rectangle containing the spectrum σ
and then to calculate the ellipse of smallest area which encloses this rectangle. Both
steps of this two-stage strategy are rather simple and straightforward (see [8]), but the
resulting ellipses may cover much too large an area due to the first “auxiliary” step.
The resulting estimates reflect the qualitative convergence behavior of GMRES(m),
but the explicit values are far too pessimistic in general. Therefore, we tune the el-
lipses by hand. It is well known that each ellipse is uniquely defined if we prescribe
three points that should lie on the ellipse. As a first guess, we select those three eigen-
values contained in σ with maximal real part (λRe

max), with minimal real part (λRe
min),

and with maximal imaginary part (λIm
max). Then the semiaxis in the x-direction ax,

the semiaxis in the y-direction ay, and the center (c, 0) of the ellipse are given by

ax =
Re(λRe

max) − Re(λRe
min)

2
, c = Re(λRe

min) + ax, and ay =
Im(λIm

max)√
1 −

Re(λIm
max)−c
a2
x

.

Re(λ) and Im(λ) denote the real and imaginary part of the complex eigenvalue λ. (In
this way, the ellipse from Figure 3.2b is calculated.) If this first guess does not contain
the whole spectrum, the ellipse is carefully enlarged until it covers σ. (An example is
given in Figure 3.2a.) Although this strategy might not be very satisfactory from a
mathematical viewpoint, it yields sharper estimates which can be easily calculated.

In [17] it is stated that (2.24) is an asymptotic result and that the actual residual
norm should rather behave like TE

m without κ2(X). This presumption, in connection
with the two-grid Fourier analysis, is validated in [24], where it is found that the
heuristic estimate TE

m gives a certain insight into the asymptotic accelerated two-grid
convergence, whereas the upper bound NE

m is too pessimistic in general. Therefore,
some explicit values for TE

m based on the spectra of three-grid iteration matrices
are given in section 3 and compared with asymptotic numerical convergence results.
However, the main focus lies on ρacc3g (m).

3. Applications of three-grid Fourier analysis. In order to demonstrate the
benefits of the three-grid analysis, we consider several equations, discretizations, and
multigrid components. The applications range from the nicely elliptic Poisson equa-
tion in connection with standard components to singular perturbation problems with
more advanced multigrid components. By considering a large number of smoothers
and transfer operators, we intend to show the large range of applicability of the three-
grid analysis. In each of the following three subsections, we consider coarse grid
correction problems which can often be solved by algebraic multigrid (AMG) [19],
because AMG implicitly selects the “correct” coarsening strategy for the problem
under consideration, or by a special relaxation method. Of course, it is possible to
adapt the Fourier analysis from section 2 to nonstandard coarsenings or to sophisti-
cated smoothers. However, we try to keep the multigrid method simple and search
for possible improvements by carefully chosen transfer operators and Galerkin coarse
grid discretizations. Furthermore, we investigate the use of an additional accelera-
tion with GMRES(m) of nonoptimal but easy-to-program multigrid methods. The
main purpose is to evaluate the additional insights coming from the three-grid Fourier
analysis.

The theoretical estimates are compared with numerical experiments whose con-
vergence is indicated by ρn(kg), which denotes the average defect reduction after 100
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Table 3.1
MG1 applied to the Poisson equation, h = 1/128.

Cycle ρ1g(h) ρ2g(h) ρ3g(h) ρn(3g) ρn(7g)

V (1,1) 0.063 0.074 0.106 0.105 0.119
V (2,0) 0.063 0.074 0.133 0.132 0.170
V (0,2) 0.063 0.074 0.140 0.138 0.179

W (1,1), W (2,0), W (0,2) 0.063 0.074 0.074 0.073 0.073

iterations for the corresponding solution method involving k grids. We choose such
a large number of iterations because the theoretical values ρ2g(h) and ρ3g(h) refer
to asymptotic convergence factors. For nonsymmetric problems like the convection-
dominated examples from section 3.3, it might take a large number of iterations before
the asymptotic behavior is observed. An alternative is to consider norms of the three-
grid operator, like the defect reduction norm

σ3g(h) :=

(3.1)

sup
θ∈Θ̃3g

√
ρ(L3g(θ, h)M3g(θ, h)(L3g(θ, h))−1(L3g(θ, h)M3g(θ, h)(L3g(θ, h))−1)∗),

which can be obtained straightforwardly by the above analysis. The star ∗ in (3.1)
denotes, as usual, the adjoint of the matrix.

3.1. Poisson equation. The first example deals with the well-known 5-point
discretization of the Poisson equation,

−∆u(x) = 1 on Ω = (0, 1)2, u(x) = 0 on Γ = [0, 1]2 \ Ω.(3.2)

An efficient multigrid method [20] for this problem, denoted by MG1, consists of
• direct 2h-, 4h-, etc. coarse grid discretizations,
• bilinear interpolation of coarse grid corrections and full weighting of residuals,

and
• red-black Gauss–Seidel relaxation.

Table 3.1 compares the analytical predictions from the one-, two-, and three-grid
analysis with numerical reference values ρn(3g) and ρn(7g) for several 3- and 7-grid
cycles. This table illustrates that even for such a simple and well-understood problem
there is a difference between the performance of a V -cycle and a W -cycle and pre- and
postsmoothing which cannot be displayed by Fourier two-grid analysis, whereas the
different behavior of the cycle variants is very accurately predicted by the three-grid
estimates ρ3g(h).

Remark 5 (maintaining the two-grid convergence). As it is seen in Table 3.1, one
has to choose the multigrid W -cycle to obtain the two-grid convergence factor. This is
indicated by the Fourier analysis. The theoretical predictions for the two- and three-
grid factors are equal only for the W -cycle. If we replace the 5-point discretizations
on the coarse grids by operators based on Galerkin coarsening with full weighting and
bilinear interpolation, the V -cycle also leads to k-independent fast convergence. Using
a four-color Gauss–Seidel relaxation for the resulting symmetric 9-point operators, we
get for a V (1,1)-cycle ρ1g(h) = ρ2g(h) = ρ3g(h) = 0.063. This value is validated by
the corresponding numerical calculation for a 7-grid method.

A second multigrid variant, MG2 [1], with a simplified coarse grid correction is
given by
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Table 3.2
MG2 [1] applied to the Poisson equation, h = 1/128.

V (1,1) W (1,1)
ρ1g(h) ρ2g(h) ρ3g(h) ρ1g(h) ρ2g(h) ρ3g(h)

0.06 0.50 0.75 0.06 0.50 0.62
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Fig. 3.1. Eigenvalue spectra from Fourier analysis for three-grid W (1, 1)-cycles of MG2 [1]
with and without rescaling applied to the Poisson equation, h = 1/128.

• Galerkin coarse grid discretizations,
• piecewise constant interpolation and its transpose as transfer operators, and
• symmetric lexicographical Gauss–Seidel relaxation.

Modified versions of this strategy are used in the so-called aggregation-type AMG ap-
proaches, which might be useful for problems on unstructured grids; see, for example,
[1, 22]. A direct application of this method to the Poisson equation leads to inefficient
and strongly h-dependent V - (and W -) cycles. It can be easily shown that each of the
coarse grid operators is off by a factor of 2 compared to the discretization on the next
finer grid [1, 19]. A simple recursive argument yields that the V -cycle convergence
on k grids is limited by ρkg(h) ≥ 1 − 2−k+1 (ρ2g(h) ≥ 0.5, ρ3g(h) ≥ 0.75, . . . ) [19].
Table 3.2 shows that these limiting values can be confirmed by Fourier two- and
three-grid analysis.

The above considerations motivate us to rescale the coarse grid Galerkin operators
by 1/α with α close to 2, Ln−1 = 1/α Řn−1

n LnP̌
n
n−1, as it is proposed in [1]. For

α = 2, the Galerkin operators coincide with the standard 5-point discretizations
on all grids. Figure 3.1 demonstrates the strong influence of this rescaling on the
eigenvalue distribution of a W (1,1) three-grid cycle from Fourier analysis.

Comparing Tables 3.2 and 3.3, one observes the improvement of the two- and
three-grid factors due to the rescaling. However, the coarse grid correction problem
is not completely solved for V -cycles which can be deduced from the big differences
between the one-, two-, and three-grid estimates and which is validated by the further
increasing numerical reference value ρn(7g) for a 7-grid cycle. This behavior might
refer to the fact that the order of the transfer operators (see, for example, [10, 12, 23])
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Table 3.3
MG2 [1] with a rescaling by α = 2 applied to the Poisson equation, h = 1/128.

MG2 as a solver
Cycle ρ1g(h) ρ2g(h) ρ3g(h) ρn(3g) ρn(7g)

V (1,1) 0.06 0.44 0.68 0.66 0.82
W (1,1) 0.06 0.44 0.52 0.50 0.51

MG2 as a preconditioner, m = 5
Cycle ρacc3g (m) ρn(3g) ρn(7g)

V (1,1) 0.44 0.42 0.53
W (1,1) 0.36 0.34 0.35

in the multigrid process is too low compared to the order of the partial differential
equation.

By combining MG2 with GMRES(m), one finds satisfactory convergence factors
with a rather small Krylov subspace. The actual improvement for a three-grid method
can be accurately predicted by ρacc3g (m); see Table 3.3.

Remark 6 (acceleration on coarse grids, F -cycle convergence). As the coarse grid
difficulty occurs on all coarser grids, it seems reasonable to incorporate the Krylov ac-
celeration into the multigrid cycle, like in [14], or to apply it only on the coarse grids.
In the present example, one obtains ρn(7g)=0.52 for a V (1,1)-cycle if GMRES(m = 5)
is applied only on the coarse grids. In this way, it is possible to reduce the storage
because on coarser grids much less storage is needed for a Krylov subspace. Further-
more, the multigrid F -cycle yields very similar convergence factors as the W -cycle,
both as a solver and as a preconditioner.

Of course, these simple transfer operators are not at all an optimal choice for
problem (3.2), especially compared to MG1 (see Table 3.1) or to AMG [19]. But it is
a first example of a multigrid method with a coarse grid correction difficulty already for
the Poisson equation and therefore an illustrative starting example. Furthermore, the
method is easy to program and can be seen as a basis for more advanced aggregation-
type AMG methods.

3.2. Rotated anisotropic diffusion equation. Next we discuss the standard
9-point discretization (see, for example, [23]) of the rotated anisotropic diffusion equa-
tion

−(c2 + εs2)uxx(x) − 2(ε− 1)cs uxy(x) − (εc2 + s2)uyy(x) = 1 on Ω = (0, 1)2

with c = cos(β), s = sin(β), u(x) = 0 on Γ = [0, 1]2 \ Ω.

This differential operator corresponds to −uξξ − εuηη in a (ξ, η)-coordinate system
which can be obtained by rotating the (x, y)-system by an angle of β [23]. We set
β = 45◦. For ε → 0 this equation is no longer elliptic. Using standard grid coarsening
and Gauss–Seidel smoothing, this leads to coarse grid correction difficulties which
limit the two-grid convergence to a factor of 0.75; see, for instance, [24]. The same
recursive argument as in the previous subsection yields a lower bound for the V -cycle
convergence on k grids which is given by ρkg(h) ≥ 1−4−k+1 (ρ2g(h) ≥ 0.75, ρ3g(h) ≥
0.9375, . . . ). These bounds can be established by Fourier two- and three-grid analysis
as can be seen from Table 3.4, where MG1 is applied to the rotated anisotropic
diffusion equation. Switching to a W -cycle leads to a slight improvement, which is
well predicted by the three-grid analysis.

If MG1 is used as a preconditioner, it is possible to obtain an acceptable W -cycle
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Table 3.4
MG1 applied to the rotated anisotropic diffusion equation, β = 45◦, ε = 10−5, h = 1/128.

MG1 as a solver
Cycle ρ1g(h) ρ2g(h) ρ3g(h) ρn(3g) ρn(7g)

V (1,1) 0.35 0.76 0.94 0.92 0.95
W (1,1) 0.35 0.76 0.90 0.87 0.89

MG1 as a preconditioner, m = 5

Cycle TE
m ρacc3g (m) ρn(3g) ρn(7g)

V (1,1) 0.79 0.68 0.63 0.73
W (1,1) 0.67 0.58 0.52 0.55
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Fig. 3.2. Eigenvalue spectra of I − L̃3gM̃3g(L̃3g)−1 for three-grid V(1, 1)-cycles of MG1 and
MG3 applied to the rotated anisotropic diffusion equation, β = 45◦, ε = 10−5, h = 1/128.

convergence, whereas the V -cycle convergence for a 7-grid method remains unsat-
isfactory. Again, the analytical values ρacc3g (m) yield reliable predictions that are

more accurate than those indicated by TE
m . As an example, Figure 3.2a shows the

V (1,1)-cycle spectrum of I − L̃3gM̃3g(L̃3g)−1 from Fourier analysis for MG1 and the
corresponding ellipse which is used to calculate TE

m . For a more detailed discussion of
such values and spectra, see [24], as the main focus in this paper lies on the three-grid
analysis.

In the context of Galerkin coarsening for the rotated anisotropic diffusion equa-
tion, it is interesting to investigate the multigrid method, MG3,

• Galerkin coarse grid discretizations,
• matrix-dependent prolongation and restriction by de Zeeuw [27], and
• four-color Gauss–Seidel relaxation.

Comparing Tables 3.4 and 3.5, we see a remarkable improvement of the two-grid
convergence factor. For this example, however, Fourier one- and two-grid analysis
yield somewhat misleading results. At first sight, the coarse grid correction problem
seems to be solved since the two-grid value nearly recovers the smoothing factor. But
if we look at the increased three-grid values, one has to expect that the multigrid
convergence deteriorates further, which is validated by the numerical reference values
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Table 3.5
MG3 applied to the rotated anisotropic diffusion equation, β = 45◦, ε = 10−5, h = 1/128.

MG3 as a solver
Cycle ρ1g(h) ρ2g(h) ρ3g(h) ρn(3g) ρn(7g)

V (1,1) 0.28 0.36 0.63 0.61 0.87
W (1,1) 0.28 0.36 0.47 0.48 0.61

MG3 as a preconditioner, m = 5

Cycle TE
m ρacc3g (m) ρn(3g) ρn(7g)

V (1,1) 0.31 0.29 0.28 0.55
W (1,1) 0.21 0.19 0.19 0.27

for the related 7-grid iterations.
On the other hand, we see that the three-grid methods can be nicely accelerated

by GMRES(m) with a small Krylov subspace. Thus it can be expected also that the
corresponding multigrid iterations are appropriate preconditioners, which is confirmed
by the numerical values. The actual performance of the accelerated three-grid meth-
ods is very accurately estimated by ρacc3 (m) and TE

m . The V (1,1)-cycle spectrum of

I−L̃3gM̃3g(L̃3g)−1 from Fourier analysis for MG3 and the related ellipse are pictured
in Figure 3.2b.

Remark 7 (other Galerkin coarsenings). If the prolongation and restriction from
[27] in MG3 are replaced by the transfer operators from the nonsymmetric blackbox
multigrid by Dendy [7], we find very similar results. These transfer operators are
investigated in the next subsection. The application of MG2 to this problem cannot be
recommended. MG2 is mainly developed for elliptic problems and does not converge
well for the rotated anisotropic diffusion equation.

Finally, we would like to mention that there are other multigrid components like
ILU-type smoothers or nonstandard coarsening to overcome the coarse grid correc-
tion difficulty efficiently. De Zeeuw [27], for example, combines his matrix-dependent
Galerkin coarsening with a powerful smoother, the incomplete line LU decomposition
(ILLU), and obtains very fast multigrid convergence. These improvements might be
verified by a straightforward adaption of the presented three-grid analysis.

3.3. Convection diffusion equation. As a third example, we discuss the con-
vection diffusion equation with dominant convection in some detail. Here, it is impor-
tant to distinguish between entering flows with an inflow and outflow boundary and
recirculating flows for which no real inflow and outflow boundary exist and where the
boundary information is mainly diffusing into the domain. In principle, efficient multi-
grid iterations can be constructed for upstream discretizations if relaxation methods
are used with a downstream ordering of grid points. Then the relaxation acts not
only as a smoother but also partly as a solver and takes care of problematic charac-
teristic low-frequency error components; see [5]. For entering flows such smoothers
can be found among standard relaxation methods, whereas for recirculating flows it is
very difficult to construct a smoother with the desired property. Channel-type flows
employing higher order upwind discretizations are treated successfully in [13].

For convection-dominated rotating flow problems like

−ε∆u(x) + a(x, y)ux(x) + b(x, y)uy(x) = 1 on Ω = (0, 1)2(3.3)

with ε = 10−5, a(x, y) = − sin(πx) cos(πy), and b(x, y) = sin(πy) cos(πx) ,

u(x) = sin(πx) + sin(13πx) + sin(πy) + sin(13πy) on Γ = [0, 1]2 \ Ω,
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the situation changes if standard smoothers are used, and we observe a similar coarse
grid correction difficulty as in the previous subsection. If the direct 2h-, 4h-, etc.
discretizations are applied on the coarser grids combined with standard coarsening,
the two-grid convergence is limited by the factor

ρ2g(h) ≥ 1 − 2−p,(3.4)

where p denotes the order of the discretization [6]. This results in a deterioration of
the V -cycle multigrid convergence on k grids given by ρkg(h) ≥ 1 − 2−(k−1)·p; see
above.

Remark 8 (reliability of the Fourier analysis). Dirichlet boundary effects are
neglected by the Fourier analysis as it is presented in this paper. For entering flows,
high-frequency boundary data may propagate far into the domain, and thus it should
be taken into account by a reliable analysis. This is done by the so-called half-space full
multigrid (FMG) analysis in [5]. For recirculating flows, however, the influence of the
domain boundary is negligible in the limit of small mesh size, and the (infinite-space)
Fourier analysis is again useful [6].

Remark 9 (Fourier analysis for operators with variable coefficients). A direct
application of the Fourier analysis is not possible if we deal with operators Lh(x)
that are characterized by variable coefficients. However, the analysis can be applied
to the locally frozen operator at a fixed grid point ξ. Replacing the variable x by a
constant ξ, one obtains an operator Lh(ξ) with constant frozen coefficients. In [3] it
is motivated that the smoothing or two-grid factor for Lh(x) can be bounded by the
suprenum over the smoothing or two-grid factors for the locally frozen operators. Thus
one may define the following convergence factors in the case of variable coefficients:

ρkg (h, Lh(x)) := sup
ξ∈Ω

ρkg (h, Lh(ξ)) for k = 1, 2, 3.(3.5)

This means for (3.3) that one has to investigate the whole range of convection angles
that occur in the problem. For an explicit calculation, we approximate (3.5) by a
repeated application of the Fourier analysis to discretizations of −ε∆u + a ux + b uy

with fixed a = cosβ and b = sinβ for multiples of 3◦ until the range of possible
convection angles β ∈ [0◦, 360◦] is passed through, as is proposed in [23]. Then, the
maximal values for ρ1g(h, β), ρ2g(h, β), ρ3g(h, β), and σ3g(h, β) are assumed to be
upper bounds for problem (3.3).

In this section, we do not consider the acceleration by GMRES(m) in the Fourier
analysis. For problems with varying coefficients the analysis from section 2.4 can be
adapted in the same way as it is explained in Remark 9, but it has to be interpreted
with care, as it has a more qualitative character. In the numerical experiments,
however, we often observe a considerable improvement, especially for rotating flow
problems.

3.3.1. First order discretization. A first order upwind discretization of (3.3)
is given by the following stencil:

ε

h2




−1
−1 4 −1

−1


+

1

2h

[
−a− |a| 2|a| a− |a|

]
+

1

2h




b− |b|
2|b|

−b− |b|


 .(3.6)

This discretization is studied in many papers, for instance, in [5, 14, 19, 26], where
the coarse grid correction difficulty for geometric multigrid with direct coarse grid
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Table 3.6
MG4 applied to the convection diffusion equation discretized by a first order upwind scheme,

ε = 10−5, h = 1/256.

Cycle ρ1g(h, β) ρ2g(h, β) ρ3g(h, β) σ3g(h, β) ρn(8g)

W (1,1) 0.29 (β = 3◦) 0.22 (β = 6◦) 0.22 (β = 6◦) 0.24 (β = 6◦) 0.20
W (2,1) 0.15 (β = 3◦) 0.17 (β = 6◦) 0.18 (β = 6◦) 0.20 (β = 6◦) 0.17

discretizations is overcome by different remedies, like an overweighting of residuals [5],
an additional Krylov acceleration [14], an application of AMG [19], or a special higher
order choice of coarse grid discretizations [26]. Many of these approaches can be well
analyzed by the Fourier three-grid analysis from section 2.

The convergence factors of the multigrid method by de Zeeuw [27] based on
matrix-dependent transfer operators gets worse for discretization (3.6) with an in-
creasing number of grids, even with a powerful relaxation like ILLU. This can be
confirmed by the Fourier three-grid analysis. It is possible to improve the conver-
gence properties with another Galerkin coarse grid operator applied in MG4:

• Galerkin coarse grid discretizations,
• transfer operators from the nonsymmetric blackbox multigrid by Dendy [7],

and
• damped (ω = 0.7) alternating zebra line Gauss–Seidel relaxation.

It was already stated in [26] that the application of this Galerkin coarsening should be
useful. The symmetric prolongation, based on the symmetric part of the respective
discretization operator 1/2(Ln + L∗

n), is similar to the well-known matrix-dependent
prolongations for jumping coefficients; see, for instance, [10, 23, 27]. The nonsymmet-
ric restriction, however, is defined as the transpose of a prolongation operator that is
based on L∗

n leading to an upstream restriction. This is particularly useful because
the coarse-grid operators remain upstream as well and tend to a second order com-
pact upstream discretization. This agrees with the observation that the coarse grid
operators must become higher order, at least in the cross-stream direction, to provide
a good coarse grid approximation; see [26].

Table 3.6 shows the maximal one-, two-, and three-grid factors for MG4 with the
corresponding convection angles in brackets; see Remark 9. As the two- and three-grid
factors are very similar or even equal, it can be expected that the multigrid conver-
gence for discretization (3.6) is close to these estimates, which is confirmed by the
numerical reference for an 8-grid method. The maximal norm values σ3g(h, β) differ
only slightly from the corresponding ρ3g(h, β), which indicates that the convergence
speed for a single iteration is not much larger than the asymptotic convergence factor.
Thus, ρ3g(h, β) is a “satisfactory” prediction for the multigrid convergence. This is
observed in the numerical convergence history. Furthermore, we see that the damped
alternating zebra line relaxation which is a robust smoother for the fine grid discretiza-
tion [23] keeps this property for the Galerkin coarse grid discretizations resulting from
the blackbox transfer operators.

3.3.2. Fourth order compact discretization. We continue with the fourth
order compact discretization of (3.3) from [9]. With respect to the Fourier analysis, it
is convenient to investigate the difference scheme for constant coefficients; see Remark
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Table 3.7
MG4 is applied to the convection diffusion equation discretized by a compact fourth order

scheme [9], ε = 10−5, h = 1/128.

Cycle ρ1g(h, β) ρ2g(h, β) ρ3g(h, β) σ3g(h, β)

W (1,1) 0.53 (β = 6◦) 0.59 (β = 3◦) 0.77 (β = 6◦) > 20 (β = 45◦)
W (2,2) 0.27 (β = 6◦) 0.54 (β = 9◦) 0.74 (β = 9◦) 0.85 (β = 18◦)

Table 3.8
The convection diffusion equation is discretized by a compact fourth order scheme [9] using

Galerkin coarsening based on the restriction from nonsymmetric blackbox multigrid [7] and biquintic
interpolation, alternating zebra line Gauss–Seidel relaxation (ω = 0.7), ε = 10−5, h = 1/128.

Cycle ρ1g(h, β) ρ2g(h, β) ρ3g(h, β) σ3g(h, β)

W (1,1) 0.53 (β = 6◦) 0.46 (β = 6◦) 0.60 (β = 9◦) 0.69 (β = 9◦)
W (2,2) 0.27 (β = 6◦) 0.29 (β = 3◦) 0.46 (β = 9◦) 0.53 (β = 9◦)

Cycle ρ3g(h, β) σ3g(h, β)

W (1,1), ν1(2h) = ν2(2h) = 3 0.46 (β = 6◦) 0.50 (β = 6◦)
W (2,2), ν1(2h) = ν2(2h) = 4 0.31 (β = 9◦) 0.35 (β = 9◦)

9, which reads in stencil notation [25]

ε

6h2



−1 −4 −1
−4 20 −4
−1 −4 −1


+

1

12h



a− b −4b −a− b
4a 0 −4a

a + b 4b −a + b


+

1

24ε




ab −2b2 −ab
−2a2 4a2 + 4b2 −2a2

−ab −2b2 ab


 .

Here, a two-grid convergence factor of 0.9375 is predicted by (3.4) for the direct
coarse grid discretizations. Applying MG4 to this discretization, we find a remarkable
improvement of the two-grid factor compared to the standard variant, but the coarse
grid problem is not really solved, as is indicated by the increase of the two- and three-
grid factors compared to the one-grid values; see Table 3.7. This can be explained by
considering the orders of the transfer operators in a Galerkin process for singularly
perturbed problems [26]. The sum of these orders (mr +mp, where the subscripts are
abbreviations for restriction and prolongation, respectively) should be greater than
the order of the differential equation M plus the order of the discretization p, i.e.,

mr + mp > M + p.(3.7)

This requirement is fulfilled for the multigrid method from Table 3.6 for the first order
discretization of (3.3) (mr = 1,mp = 2,M = 1, p = 1) but is violated in Table 3.7
(mr = 1,mp = 2,M = 1, p = 4). Note that we set M = 1 in this situation because of
the dominating convection term. It is already indicated by the large value of σ3g for
the W (1,1)-cycle from Table 3.7 that this multigrid method has to be handled with
care.

We keep the restriction from MG4 in order to maintain the upstream properties
of the discretizations on the coarser grids (see [7]) but replace the prolongation by
biquintic interpolation (mp = 6). Thus, the above rule (3.7) is satisfied, which leads
to a considerable improvement of the multigrid method, as is shown in Table 3.8.
Regarding the norm values σ3g(h, β), one obtains a reliable multigrid method. How-
ever, although the one- and two-grid factors are similar, the three-grid factors still
increase in the upper part of Table 3.8. This is due to a deterioration of the smooth-
ing property on the coarse grids because there we have larger stencils resulting from
the very accurate interpolation in the Galerkin process. The three-grid convergence
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factors can be improved if we increase the numbers ν1(2h) and ν2(2h) of pre- and
postsmoothing steps on G2h, as is shown in the lower part of Table 3.8. In this way,
it is possible to recover the two-grid factors, which indicates that the coarse grid cor-
rection difficulty is solved. From section 3.3.1, it can be expected that the analytical
estimates match closely with numerical test calculations, and also for the fourth order
discretization. Because of the large stencils, however, this multigrid method cannot
be recommended for a practical implementation despite its good (regarding the highly
accurate discretization) convergence behavior.

4. Conclusions. We have presented Fourier three-grid analysis for multigrid as
a solver and as a preconditioner for GMRES(m). Applying this analysis, it is pos-
sible to obtain accurate convergence estimates for elliptic operators and to predict
the performance of V - and W -cycles or pre- and postsmoothing. For singularly per-
turbed problems with coarse grid correction difficulties, the three-grid analysis yields
additional valuable insight into the nature of the multigrid convergence problem and
allows for an investigation of the benefits of possible remedies, for example, based on
certain choices of Galerkin coarse grid discretizations. One can verify the qualitative
rule concerning the order of the transfer operators in a Galerkin process for singu-
larly perturbed problems from [26] by quantitative asymptotic convergence and norm
estimates.
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