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Abstract

We consider American options in a market where the underlying asset
follows a Variance Gamma process. We prove results on the continuity
of the exercise boundary, on the smooth fit principle and on the behavior
of the exercise boundary near maturity. We also propose a numerical
method to find the American option price and the exercise boundary.
It is known that the American option price satisfies a Partial Integro-
Differential Equation (PIDE) in a domain with a moving boundary. We
reformulate the problem as a Linear Complementarity Problem and solve
it iteratively by a convenient splitting with the help of the Fast Fourier
Transform. Finally, we verify the theoretical results obtained throughout
a series of numerical experiments.

Keywords: Integro-differential equations, Variance Gamma, finite differ-
ences, FFT.

1 Introduction

The Variance Gamma (VG) process was first introduced in financial modeling
by Madan and Seneta [18] to cope with the shortcomings of the Black-Scholes
model. Empirical studies of financial time series have revealed that the normal-
ity assumption in the Black-Scholes theory cannot capture heavy tails and asym-
metries present in the empirical log-returns. The empirical densities are usually
too peaked compared to the normal density; a phenomenon known as excess
of kurtosis. In addition, the Black-Scholes assumption on constant parameters
is inconsistent since, for example, a numerical inversion of the Black-Scholes
equation based on market prices from different strikes and fixed maturity, pro-
duces a so-called volatility skew or smile. In these aspects the VG modeling
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is superior to the Black-Scholes model: on one hand, it has the property that
daily log-returns have long tails and on the other hand, for longer periods it ap-
proaches normality, which is also consistent with empirical studies. Moreover,
by introducing extra parameters, one can control the kurtosis and asymmetry
of the log-return density, and one is also able to fit the smile in the implied
volatility; see [7, 18].

There exist however important drawbacks when modeling with the VG pro-
cess. For example, a hedging strategy for the writer of the option that will
completely remove the risk of writing the option does not exist in general, or
in other words, a portfolio that replicates any contingent claim cannot be con-
structed.

In this paper, we prove facts about the behavior of the free boundary and
in particular about the failure of the smooth fit principle for American options
under the VG process; see also [1, 4, 5, 19]. Secondly, we propose a tractable
numerical method based on a Linear Complementarity formulation of the free
boundary value problem for the VG prices. A numerical valuation of VG Amer-
ican options was carried out in [14], using finite differences on a non-linear
interpretation of the PIDE. Compared to [14], the method proposed here is dif-
ferent and more general, in the sense that it is easily extendible to other finite
variation processes, whereas [14] is specially tailored for the VG process. More-
over, the method presented can naturally handle the asymptotic behavior of the
free-boundary near expiry.

Another general model based on the Carr-Geman-Madan-Yor (CGMY) pro-
cess is numerically solved in [19], by a combination of variational inequalities and
the Galerkin method, with a convenient wavelet basis to compress the resulting
full matrix. Here, a simpler implicit-explicit method is proposed, which, in com-
bination with a fast convolution procedure based on the Fast Fourier Transform,
offers an effective pricing procedure for European and American vanilla options,
also applicable to the CGMY process. In a previous paper [2], we used similar
ideas to numerically solve jump-diffusion European vanilla options; see also the
work of d’Halluin et al. [11] for a similar treatment.

The outline of the paper is as follows. In Section 2 we offer a brief intro-
duction into the VG market model and the option pricing problem. Section 3
contains results on the American option price, properties of the free boundary,
a proof of the failure of the smooth fit principle and an asymptotic analysis of
the exercise boundary near maturity. The next two sections are dedicated to
the numerical valuation of a VG call option. In Section 4 we reformulate the
problem as a Linear Complementarity Problem and propose a fix-point type
iteration to solve it, and finally, in Section 5, we show numerical experiments
that confirm the theoretical findings.
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2 A market modeled by the Variance Gamma

process

This section offers a brief introduction into the theory and applications of the
VG process in finance. For further information, we refer the reader to [7, 18].
The VG process belongs to the family of Lévy process of infinite activity. Unlike
the classical Samuelson model, or any jump-diffusion model, this process does
not have any continuous component and it is of bounded variation. The process
is a so-called pure jump process, and the infinite activity means that the paths
jump infinitely many times, for each finite interval. Moreover, jumps that are
larger than a given quantity occur only a finite number of times.

The VG process is obtained by evaluating a drifted Brownian motion at
random times given by a gamma process. More precisely, consider the following
drifted Brownian motion:

Y (t; θ, σ) = θt+ σW (t), (1)

where θ ∈ IR is the drift, σ > 0 is the volatility and {W (t)}t≥0 is a standard
Brownian motion. Let γ(t, µ, ν) be a gamma process, independent of W (t). By
definition, the increments γ(t+ ∆t, µ, ν)− γ(t, µ, ν) are independently, gamma
distributed random variables with mean µ∆t and variance ν∆t on each interval
of length ∆t. More precisely,

γ(t+ ∆t, µ, ν)− γ(t, µ, ν) ∼ fγ(x;µ2∆t/ν, ν/µ), (2)

where fγ is the gamma density function:

fγ(x; a, b) =
1

baΓ(a)
xa−1e−x/b, x > 0. (3)

The VG process is defined by substituting t in the drifted Brownian motion (1)
by the gamma process γ(t, 1, ν), i.e.,

X(t;σ, ν, θ) := Y (γ(t, 1, ν); θ, σ) = θγ(t, 1, ν) + σW (γ(t, 1, ν)). (4)

The three parameters determining the VG process are: the volatility σ of the
Brownian motion, the variance ν of the gamma distributed time and the drift θ
of the time-changed Brownian motion with drift. Following [7], the parameter θ
measures the degree of skewness of the distribution and ν controls the excess of
kurtosis with respect to the normal distribution. For example, for the symmetric
case θ = 0, and for t = 1, the value of kurtosis results in 3(1 + ν) (see [18]).
Since the kurtosis of a normal distribution is 3, this result says that ν measures
the degree of “peakedness” with respect to the normal distribution. A large
value of ν results in fat tails, which is observed in the empirical log-returns.
Heuristically, for ν → 0, the time change is close to the linear time change, so
that the VG process approximates a drifted Brownian motion.

3



A market model

Consider a market consisting of one bank account B(t), with risk-free interest
rate r, and some risky asset S(t). The bank account evolves as usual according
to the law dB(t) = rB(t)dt and the asset {S(t)}t≥0 follows the exponential
dynamics:

S(t) = S0 exp(L(t)), (5)

where
L(t) = −αt+X(t;σ, ν, θ). (6)

Here −α is the drift of the logarithmic price of the asset. We assume also that
the asset pays its owner a continuous dividend q ≥ 0. The process {L(t)}t≥0 is a
so-called Lévy process, i.e., a process with stationary, independent increments.

Contrary to the classical Black-Scholes framework, a rational option price
cannot be found by replication. We must therefore rely on the no-arbitrage
assumption, which is closely related to the existence of a risk-neutral proba-
bility measure (commonly known as Equivalent Martingale Measure); see the
pioneering works of Harrison and Keeps [12] and Harrison and Pliska [13], and
a more complete answer in Delbaen and Schachermayer [10]. Assuming that
such a measure has been chosen, it is possible to derive an Integro-Differential
evolution equation satisfied by the option price.

Assume now the existence of some Equivalent Martingale Measure Q such
that the discounted process {e−(r−q)tS(t)}t≥0 becomes a martingale, and sup-
pose that the parameters σ, ν and θ are also chosen to be risk-neutral.

Having chosen a risk-neutral probability measure Q, we may write the Lévy-
Khintchine representation of L(t) with respect to this new measure as follows:

EQ(eizL(t)) = exp

[
t

(
−iαz +

∫

IR

(eizx − 1)k(x)dx

)]
, (7)

where k(x) is known as Lévy density.
In a risk-neutral world, it is possible to find the form of the drift α. Namely,

substituting z = −i in (7), and comparing the result with the so-called risk-
neutrality condition

EQ[S(t)] = S0e
t(r−q), (8)

where r and q are the risk-free interest rate and the dividend paid by the asset,
respectively, one arrives at

α = q − r − ω, (9)

where ω is some “compensation constant” given by

ω =

∫

IR

(1− ey)k(y)dy. (10)

Notice that the notation used here is as in [14] (the solution method however
will be completely different, as mentioned in the introduction). It is possible to
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compute ω directly (see Remark (3.4)), or by using the characteristic function
of the process {X(t)}t≥0 (see [7]):

EQ(eizX(t)) =
(
1− izθν + z2σ2ν/2

)−t/ν
. (11)

Substituting z = −i in this expression and using the risk-neutrality condition,
one finds the following form for ω:

ω =
1

ν
ln(1− θν − σ2ν/2). (12)

One important property of the VG process is that it may be written as a
difference between two increasing gamma processes: the first process represent-
ing the wins and the second corresponding to the losses. This property may be
readily derived by factoring the quadratic expression in z, in the right hand side
of (11), and identifying in each factor the characteristic function of some scaled
gamma process. Moreover, from this factorization, the following form for the
Lévy density k(x) follows:

k(x) =

{
1
ν

exp(−λ+|x|)
|x| if x > 0,

1
ν

exp(−λ
−
|x|)

|x| if x < 0,
(13)

and the positive parameters λ± have the form

λ−1
± =

√
θ2ν2

4
+
σ2ν

2
±
θν

2
. (14)

Note that the positive exponent λ+ must be larger than 1 for the constant ω to
be well defined.

2.1 European options in a VG market

Consider a European call option on the asset S(t), with time to expiration T ,
and strike price K. Assuming the existence of a risk-neutral measure, we may
define the price of the European call option by the formula:

v(t, s) = e−rtEQ

[
(sH(t)−K)+

]
, 0 ≤ s <∞, 0 ≤ t <∞, (15)

where the process H(t) is the price process starting at 1, or in other words,
S(t) = sH(t), with

H(t) := exp [(r − q)t+ ωt+X(t)] . (16)

Note that the time t here means actually the time to expiration T − t in the
standard framework. A formula for v(t, s) involving the modified Bessel function
and the degenerate hypergeometric function of two variables is shown in [7],
Theorem 2. A generalized version of this formula that includes the continuous
dividend is given in [14].
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Estimating the risk-neutral parameters

We briefly explain here a procedure by Carr et al. [7] to estimate the risk-neutral
parameters σRN , νRN and θRN .

Suppose we are given a sequence vi ofM observed option prices for European
call options, for some fixed maturity T and different strike prices Ki. Let v̂i be
the European VG price computed with some formula for (15). It is assumed by
Carr et al. that the relation between the VG prices and the observed prices is
of the form

vi = v̂ie
ηzi−η2/2, (17)

where zi is a sequence of independent, normally distributed variables with zero
mean and variance one. With this model for the error, the maximum likelihood
estimation of the risk-neutral parameters is asymptotically equivalent to the
minimization of the quantity

κ =

√√√√ 1

M

M∑

i=1

[ln(vi)− ln(v̂i)]
2
, (18)

over the set of parameters (σ, ν, θ).

2.2 American options in a VG market

In analogy with the log-normal case, in the VG case it is not optimal to wait
until maturity to exercise an American call on a dividend-paying asset. There
exists some “optimal” time at which the option should be exercised.

Optimal stopping

Consider an American call option on the underlying S(t), with expiry T , and
strike price K. The price of the American option is defined as:

v(t, s) = sup
τ∈τ0,t

EQ

[
e−rτ(sH(τ) −K)+

]
, (19)

where τ0,t is the set of stopping times taking values in [0, t] and H(t) is as in
(16). We will use the stochastic representation (19) to partially prove that the
exercise boundary is a continuous function.

A free boundary value problem

It is possible to prove that the function v(t, s) solves a certain Partial Integro-
Differential Equation on a moving domain, see e.g., [4, 14, 19]. This equation is
not of second order due to the lack of a Brownian component in the VG process.

To introduce the PIDE for the option price, let us first define the so-called
“continuation region”

C =
{
(t, s) ∈ (0,∞)× IR+ | v(t, s) > (s−K)+

}
, (20)
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and the corresponding sections

Ct =
{
s ∈ (0,∞) | v(t, s) > (s−K)+

}
for t > 0. (21)

In Lemma 3.3 we show that the sections Ct are intervals of the form (0, c(t)), for
a certain increasing function c(t), not known a-priori. The free boundary value
problem for the American option price is the following:

vt + (q − r − ω)svs + rv

−

∫

IR

(v(t, sey)− v(t, s))k(y)dy = 0 for t ∈ (0, T ], s ∈ (0, c(t)),
(22)

with initial and boundary conditions

v(0, s) = (s−K)+ for s ≥ 0, (23)

v(t, 0) = 0 for t ∈ [0, T ], (24)

v(t, c(t)) = c(t)−K for t ∈ (0, T ]. (25)

The formulation of (22) is already stated forward in time. Two extra conditions
on the solution must be imposed

vt + (q − r − ω)svs + rv

−

∫

IR

(v(t, sey)− v(t, s))k(y)dy ≥ 0 for t ∈ (0, T ], s ∈ (c(t),∞),
(26)

and
v(t, s) ≥ (s−K)+ for t ∈ (0, T ], s ∈ IR+. (27)

Condition (26) is saying that the integro-differential operator is constant in
sign on the exercise region. This is an important remark when reformulating
this problem as a Linear Complementarity Problem. The second condition has
a parallel in obstacle problems, where the obstacle in this case is the payoff
function.

3 Properties of the American call price and the

free boundary

In this section we provide some auxiliary results that are used to demonstrate
Theorem 3.6 in the next section. As we may see, the VG American option
price shares similar properties with the Black-Scholes price, but it differs in the
validity of the smooth fit principle. It is known that the exercise boundary for
Black-Scholes American call options is a continuous, increasing function; see
e.g., [17]. We prove that this is also the case for the VG price, under a certain
relation between the dividend payment and the interest rate. It is essential in
our arguments to prove that the smooth fit principle fails for the VG price.
This phenomenon was already noted in [19], and proved in [1, 5, 4], but only for
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perpetual American options under a general class of Lévy based models that did
not include the Variance Gamma process. Another issue that we study is the
behavior of the free boundary close to expiration. It is known from the classical
Black-Scholes situation [3, 17, 23], that the free boundary behaves differently,
depending on whether the interest rate r is less or greater than the dividend
payment q. With strike price K, the free boundary approaches rK/q, for q ≤ r,
and K for q > r. This fact is different for the VG price. We prove that
the boundary tends to K for q > r + ω−, where ω− depends on the process
parameters, and is a strictly positive number. If the opposite inequality occurs,
we show numerically that the boundary tends to the zero of some function
termed dividend process. Results on the asymptotic behavior of the boundary
for general jump-diffusion processes were also derived in [20].

Here, we assume that:

1. There exists an optimal stopping time in the pricing formula (19).

2. The price v(t, s) is continuous in both variables.

The first result concerns monotonicity of the option price.

Lemma 3.1. The mappings t 7→ v(t, s), s 7→ v(t, s) and s 7→ v(t, s) − s are
nondecreasing, nondecreasing and non-increasing respectively.

Proof. The proof is the same as in [17], Lemma 7.4. We include it here for the
sake of completeness. The first assertion follows from the fact that a stopping
time in [0, t] is also a stopping time in [0, t′], for t ≤ t′. The second assertion is
also immediate since the function s 7→ (sH(τ)−K)+ is nondecreasing. To prove
the third assertion, let 0 ≤ s1 < s2 < ∞ and let τ2 be some optimal stopping
time corresponding to s2. Then

v(t, s2)− v(t, s1) = EQ

[
e−rτ2(s2H(τ2)−K)+

]
− v(t, s1)

≤ EQ

[
e−rτ2

{
(s2H(τ2)−K)+ − (s1H(τ2)−K)+

}]

≤ (s2 − s1)EQ

[
e−rτ2H(τ2)

]
,

where we have used the inequality a+ − b+ ≤ (a − b)+, valid for any a, b ∈
IR. It remains to observe that, since {e−(r−q)tH(t)}t≥0 is a Q–martingale,
then {e−rtH(t)}t≥0 is a supermartingale. Hence, by Doob’s Optional Sampling
Theorem, EQ [e−rτ2H(τ2)] ≤ 1.

In the following lemma we prove that, for positive asset values, the American
option price is a strictly positive number. We follow the ideas in [20], where a
similar result is proved for general jump-diffusion American options.

Lemma 3.2. For t > 0 and s > 0, we have v(t, s) > 0.

Proof. Since the American option price is larger or equal than the European
price, the following inequalities hold:

v(t, s) ≥ EQ

[
e−rt(sH(t)−K)+

]
≥
K

2
e−rtQ([sH(t) ≥

3

2
K]). (28)
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We show now that the event [sH(t) ≥ 3
2K] has positive probability of oc-

currence. Since the VG process may be written as a difference between two
independent gamma process

X(t, ν) = γ+(t)− γ−(t), (29)

we may write

[sH(t) ≥
3

2
K] = [γ+(t) ≥ ln(3K/2s) + αt+ γ−(t)]. (30)

Thus, by the independence of the gamma processes, one has

Q([γ+(t) ≥ ln(3K/2s) + αt+ γ−(t)])

=

∫

IR

(1− Fγ+
)(ln(3K/2s) + αt+ x)fγ

−

(x)dx > 0

where Fγ+
denotes the distribution function of γ+(t) and fγ

−

is the density
function of γ−(t).

The next lemma corresponds to Proposition 7.6 in [17]. It essentially explains
the form of the sections Ct for each t > 0.

Lemma 3.3. For every t ∈ (0,∞), there exists a number c(t) > K, not nec-
essarily finite, such that Ct = (0, c(t)). If c(t) < ∞, the function t 7→ c(t) is
nondecreasing and left continuous.

Proof. Let s2 ∈ Ct and 0 < s1 < s2. By the third property in Lemma 3.1

v(t, s1) ≥ v(t, s2) + s1 − s2 > (s2 −K)+ + s1 − s2 ≥ s1 −K.

Now, from the positivity of v(t, s1) proved in Lemma 3.2, it follows that v(t, s1) >
(s1 − K)+, hence s1 ∈ Ct. Therefore Ct is some interval of the form (0, c(t)).
For s ≤ K, v(t, s) > 0 = (s−K)+, which proves that c(t) > K for t > 0.

Let c(t) be finite. Observe that, for all ε > 0 and δ > 0

v(t+ ε, c(t)− δ) ≥ v(t, c(t)− δ) > (c(t) − δ −K)+.

This inequality implies c(t+ ε) > c(t)− δ. Since δ is arbitrary, we deduce that
c(t+ ε) ≥ c(t), or, in other words, that c(t) is a nondecreasing function.

To prove the left continuity, consider a sequence {tn}
∞
n=1 such that tn ↑ t0.

From the continuity of v(t, s) it follows that C is open, and since (tn, c(tn)) /∈ C,
then (t0, c(t

−
0 )) /∈ C, therefore c(t0) ≤ c(t−0 ). The opposite inequality, c(t0) ≥

c(t−0 ), also holds because of c(t) being nondecreasing.

Splitting the compensation constant ω

The role of the compensation constant ω (cf. (10)) is to render the process
{exp(ωt +X(t))}t≥0 into a martingale. As mentioned in the introduction, the
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free boundary changes its behavior, according to a certain relation between the
interest rate r, the dividend q and the “negative” part of ω.

Recall that ω is given by

ω =

∫

IR

(1− ey)k(y)dy.

Denote by ω− and ω+ the integral above over the negative semiaxis and the
positive semiaxis, respectively, that is,

ω = ω− + ω+. (31)

We derive now a simple formula for each component ω+ and ω−.

Proposition 3.4. The following expression for ω− holds:

ω− =
1

ν
ln(1 + λ−1

− ). (32)

For λ+ > 1 we have

ω+ =
1

ν
ln(1− λ−1

+ ). (33)

Proof. We give a short sketch of the algebraic derivation. Observe that

∫ ∞

0

(exy − 1)

y
e−ydy =

∞∑

k=1

xk

k!

∫ ∞

0

yk−1e−ydy =

∞∑

k=1

xk

k
= − ln(1− x)

for −1 < x < 1. The left hand side defines some analytic function for Rex < 1
(the integrand may be written as [e(x−1)y−e−y]/y) and coincides with the right
hand side on the interval (−1, 1). Hence, this formula may be extended to the
set {x ∈ C | Rex < 1}.

We then have
∫ ∞

0

e−y − 1

y
e−λydy = − ln(1 + λ−1),

and (32) follows. For (33) the proof is similar.

Note now that adding (32) and (33) we recover (12).

The smooth fit principle

The smooth fit principle (or smooth paste principle) was first introduced in the
financial literature by Samuelson in [21] under the name “high contact condi-
tion”. The principle essentially states that the derivative of the Black-Scholes
American option price is a continuous function, also at the exercise boundary.
The geometrical interpretation is that, for each fixed t > 0, the function v(t, s)
as a function of the asset value s, smoothly enters into the payoff function g(s).
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To prove the principle, the key idea in [17] for the Black-Scholes American
put option, and in [20] for general jump-diffusion models, was to find a lower
bound for the second derivative and later prove that the boundary is right and
left continuous. We cannot proceed in the same way since the PIDE for the VG
prices has no second order spatial derivative. However, we can give a similar
argument using the first derivative, and at the same time prove that the smooth
fit principle fails.

We need the following assumption:

q > r + ω−. (34)

For the definition of ω− see (31).The proof of the next lemma also provides a
lower bound for the jump in the derivative.

Lemma 3.5. Assume (34) and c(T ) < ∞. Then there exists an ε > 0, such
that

(1− vs) ≥ ε, ∀t ∈ (0, T ) and ∀s ∈ [K, c(t)). (35)

Proof. By Lemma 3.1, vt is nonnegative. Hence

(q − r − ω)svs + rv −

∫

IR

(v(t, sey)− v(t, s))k(y)dy ≤ 0. (36)

Rewriting this inequality as

(q − r − ω)s(1− vs) ≥ (q − r − ω)s+ rv −

∫

IR

(v(t, sey)− v(t, s))k(y)dy (37)

and noting that, for y < 0, v(t, sey)− v(t, s) ≤ 0, and that v ≥ s−K, we arrive
at

(q − r − ω)s(1− vs) ≥ qs− ωs− rK −

∫ ∞

0

(v(t, sey)− v(t, s))k(y)dy. (38)

As proved in Lemma 3.1, given that sey > s, for y > 0,

v(t, sey)− v(t, s) ≤ s(ey − 1), (39)

so that the right hand side in (38) may be bounded from below by qs−ω−s−rK,
which for s ≥ K gives

(q − r − ω)s(1− vs) ≥ K(q − r − ω−), (40)

hence

1− vs ≥
K

c(T )

q − r − ω−

q − r − ω
. (41)
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3.1 Behavior of the exercise boundary near maturity

In this section we prove the continuity of the exercise boundary and also the
analogue of the classical result by Kim [16] on the asymptotic behavior of the
exercise boundary near maturity. Remarkably, the proof of the continuity of
the free boundary relies on the fact that the smooth fit principle is not true. If
(34) does not hold, as it may be the case for practical situations, we indicate
why the boundary changes its behavior near maturity.

Theorem 3.6. Under condition (34), the function t 7→ c(t) is continuous in
(0, T ] and c(0+) = K.

Proof. Let t0 ∈ (0, T ) and note that we only need to prove the inequality c(t+0 ) ≤
c(t0). To achieve this, choose a sequence tn ↓ t0, and a number η > 0 such that
c(tn) > c(tn)− η ≥ c(t0)− η > K.

From the continuity condition v(t, c(t)) = g(c(t)), with g(s) = s −K. Ap-
plying now Lemma 3.5, we may write

v(tn, c(tn)− η)− g(c(tn)− η) =

∫ c(tn)

c(tn)−η

(gs(s)− vs(tn, s))ds

≥ ηε.

Letting n→∞ in this inequality, and using the continuity of v gives

v(t0, c(t
+
0 )− η) > g(c(t+0 )− η),

or what accounts to saying that c(t+0 )− η < c(t0). Since η was arbitrary, we get
c(t+0 ) ≤ c(t0).

Suppose now that c(0+) > K. Repeating the previous argument, with tn ↓ 0
and η such that c(0+)− η > K, we obtain the following contradiction:

c(0+)− η = v(0, c(0+)− η) > g(c(0+)− η) = c(0+)− η.

So far we have used condition (34) to describe the behavior of the boundary
close to expiry. With the following analysis we intend to understand the case
that (34) is not satisfied.

Proposition 3.7. Let 0 < q ≤ r + ω−. Then the function

τ(s) = qs− rK −

∫ ln(K/s)

−∞

(K − sey)k(y)dy, s > 0, (42)

is strictly increasing and has only one zero s̄ ∈ [K,+∞).

Proof. Since

τ ′(s) = q +

∫ ln(K/s)

−∞

eyk(y)dy, (43)
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it follows that τ(s) is a strictly increasing smooth function.
To prove that τ(s) has one zero in the interval [K,+∞), let us verify that

τ(s) changes sign in some finite subinterval of [K,+∞). At s = K we have
τ(K) = K(q − r − ω−) ≤ 0. We are done if we check that τ(s) ∼ qs, as s tends
to infinity. Indeed

τ(s)/s = q − rK/s−K

[∫ ln(K/s)

−∞

k(y)dy

]
/s+

∫ ln(K/s)

−∞

eyk(y)dy, (44)

and note that ln(K/s)→ −∞, as s→∞.

With this proposition at hand it is possible to deduce the estimate c(0+) ≥ s̄,
where s̄ is such that τ(s̄) = 0. To this end, we assume that the continuity of
the free boundary also holds in the case 0 < q ≤ r + ω−. Let

Lsv = αsvs + rv −

∫

IR

(v(t, sey)− v(t, s))k(y)dy. (45)

In the exercise region {s > c(0+)} the solution is (s−K)+, so that, by equation
(26), τ(s) = Ls((s −K)+) ≥ 0. If we assume c(0+) < s̄, then by continuity,
there is a t0 > 0 such that c(t0) < s̄. But the existence of some s0 ∈ (c(t0), s̄)
contradicts the fact that τ(s0) ≥ 0, since in such a case, by the above proposi-
tion, s0 ≥ s̄.

Note that a simple corollary of these ideas is the following: It is never optimal
to exercise a VG American call option on a non-dividend paying stock. The
reason is that, if q = 0, the function τ(s) remains negative for all s ≥ K.

4 Numerical valuation of the American VG price

Our goal here is to solve the free boundary problem (22)-(27) numerically, when
the asset pays a positive dividend.

We are interested in the effect of adding a diffusion part to the VG process:
The new coefficient will then be denoted by σ̄. This parameter is later used to
compare numerically the regularity of the free boundary with diffusion (Gen-
eralized VG process, σ̄ > 0) and without diffusion (VG process, σ̄ = 0 ). The
omission of this parameter is not really affecting the numerical method that
we are about to explain, since a discretization of the integral term close to the
singularity gives rise anyway to some artificial diffusion (which in probabilistic
terms means that small jumps are approximated by a Brownian motion).

We will not work directly on (22)-(27), but rather on its logarithmic version,
i.e, we change to the variable x = ln s and solve for the new function

u(t, x) := v(t, ex). (46)

To transform equations (22)-(27) to these new variables, it is also convenient to
define the “logarithmic continuation region”:

C̃ =
{
(t, x) ∈ (0,∞)× IR | u(t, x) > (ex −K)+

}
, (47)
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and the optimal logarithmic asset value at which the option should be exercised:

c̃(t) = sup
{
x ∈ IR | u(t, x) > (ex −K)+

}
, t ∈ (0,∞). (48)

In Section 3 we studied some properties of the free boundary c̃(t).
We are ready now to present the formulation of (22)-(27) in the logarithmic

price:

ut −Lu = 0, t > 0, x < c̃(t), (49)

u(t, x) = ex −K, t > 0, x ≥ c̃(t), (50)

u(t, x) ≥ (ex −K)+, t > 0, x ∈ IR, (51)

ut −Lu ≥ 0, t > 0, x > c̃(t), (52)

u(0, x) = (ex −K)+, x ∈ IR, (53)

where the operator L is defined in the following way:

Lϕ :=
σ̄2

2
ϕxx − (q − r +

σ̄2

2
)ϕx − rϕ

+

∫

IR

[ϕ(t, x + y)− ϕ(t, x) − (ey − 1)ϕx(t, x)] k(y)dy.

(54)

Note that we have included a second order term.
This problem may be cast as the following so-called Linear Complementarity

Problem 




ut −Lu ≥ 0 in (0, T ]× IR,
u ≥ ψ in [0, T ]× IR,
(ut −Lu) (u− ψ) = 0 in (0, T ]× IR,
u(0, x) = ψ(x),

(55)

where the initial condition is given by

ψ(x) := (ex −K)+. (56)

This formulation of the problem is the basis for the numerical method presented.

4.1 Discretization

We discretize the Linear Complementarity Problem (55) by finite differences.
The idea of the method is to consider one part of the integral term implicitly
and the remaining explicitly. The implicit part will provide a less stringent
stability condition on the time step than a “fully explicit” method.

Consider a computational domain of the form [0, T ]× [xmin, xmax]. Let the
time interval [0, T ] be divided into L equal parts: 0 = t0 < t1 < · · · < tL = T ,
with tj = j∆t, j = 0, 1, . . . , L and ∆t = T/L. The spatial interval [xmin, xmax]
contains the point lnK, and xmin = x0 < x1 < · · · < xN = xmax, with
xi = xmin + ih, i = 0, . . . , N , and h is such that h = (xmax − xmin)/N .
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We split the operator L into a sum of two operators A and B, where

Aϕ :=
σ̄2

2
ϕxx − rϕ

+

∫

|y|≤h

[ϕ(t, x+ y)− ϕ(t, x)− (ey − 1)ϕx(t, x)] k(y)dy,
(57)

and

Bϕ := −(q − r +
σ̄2

2
)ϕx

+

∫

|y|≥h

[ϕ(t, x+ y)− ϕ(t, x) − (ey − 1)ϕx(t, x)] k(y)dy.
(58)

Now, define the time approximations uj ≈ u(tj , x) and consider the following
implicit-explicit iteration to solve (55):






uj+1 − uj

∆t
−Auj+1 − Buj ≥ 0.

uj+1 ≥ ψ,

(
uj+1 − uj

∆t
−Auj+1 − Buj

)
(uj+1 − ψ) = 0,

u0 = ψ.

(59)

This method is related to [24] for the computation of the American put for
Merton’s model.

Spatial discretization of A

Before proceeding with the discretization, let us introduce a short-hand notation
for the classical finite differences for the first and second order terms. Let
wi := w(xi) for i = 0, 1, . . . , N , and write

δ1(w) :=
wi+1 − wi−1

2h
,

δ2(w) :=
wi+1 − 2wi + wi−1

h2
.

The trapezoidal rule applied to the integral operator gives, for the positive
interval

∫ h

0

[w(xi + y)− w(xi)− (ey − 1)wx(xi)] k(y)dy

=

∫ h

0

[w(xi + y)− w(xi)− ywx(xi)− (ey − 1− y)wx(xi)] k(y)dy

≈
h

2
k(h) [wi+1 − wi − hδ1(w)] −

δ1(w)

2

∫ h

0

y2k(y)dy.
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Here, the term ey − 1 − y has been substituted by y2/2 with an error of the
order O(y3). Applying the trapezoidal rule again gives the approximation

∫ h

0

[w(xi + y)− w(xi)− (ey − 1)wx(xi)] k(y)dy ≈
h3

4
k(h)[δ2(w)− δ1(w)].

(60)

Similarly, for the negative interval we obtain

∫ 0

−h

[w(xi + y)− w(xi)− (ey − 1)wx(xi)] k(y)dy ≈
h3

4
k(−h)[δ2(w) − δ1(w)].

(61)
Using (60) and (61), we arrive at the following approximation for Aw at the

point xi:

(Aw)i ≈
σ̄2 + σ2(h)

2
δ2(w) −

σ2(h)

2
δ1(w) − rwi, (62)

where we have introduced the second order artificial diffusion

σ2(h) :=
[k(h) + k(−h)]h3

2
. (63)

A similar artificial diffusion appears in the discretization given in [14] on a
non-linear formulation of the American option price problem. The idea of the
splitting is rigorously discussed in [8], however, the authors choose a different
approach that only gives first order accuracy in the solution. We show by a
numerical experiment that second order in space may be achieved for a VG
European put option.

Spatial discretization of B

Away from the origin, the integral term in B may be split into a sum of three
terms:

∫

|y|≥h

[w(xi + y)− w(xi)− (ey − 1)wx(xi)] k(y)dy

= Ji − wiλ(h) + δ1(w)ω(h),

(64)

with the obvious notation

Ji =

∫

|y|≥h

w(xi + y)k(y)dy, (65)

λ(h) =

∫

|y|≥h

k(y)dy, (66)

ω(h) =

∫

|y|≥h

(1− ey)k(y)dy. (67)
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Now it is possible to write the approximations for the implicit and the explicit
part of the iteration. Equations (62) applied to (59) give for the implicit part,
the following result (for w equal to uj+1)

(
1

∆t
w −Aw

)

i

≈

(
1

∆t
+ r

)
wi −

σ̄2 + σ2(h)

2
δ2(w) +

σ2(h)

2
δ1(w). (68)

For the explicit term we get, on applying (64) and the definition of the operator
B, that

(
uj

∆t
+ Bw

)

i

≈
1

∆t
uj

i −

[
q − r − ω(h) +

σ̄2

2

]
δ1(w) + Ji − λ(h)wi, (69)

for uj instead of w. We easily see now that the entries of the tridiagonal matrix
for the implicit part are given by

a = −
P

h2
−
σ2(h)

4h
, (70)

b =
1

∆t
+ r +

2P

h2
, (71)

c = −
P

h2
+
σ2(h)

4h
, (72)

with the quantity P := σ̄2+σ2(h)
2 . The tridiagonal matrix whose entries are a, b

and c is constant along its diagonals:

T =




b c
a b c

. . .
. . .

. . .

a b c
a b



. (73)

One has to take into account that the right-hand side term dj = uj/∆t+Buj

need also be updated for the boundary condition. For American call options
this is done by updating the first and the last entry in dj , i.e.,

dj
1 ← 0, dj

N−1 ← dj
N−1 − c(e

xmax −K). (74)

Summarizing, the problems we wish to solve for j = 0, 1, . . . , has the following
form: 





Tuj+1 ≥ dj ,
uj+1 ≥ ψ,
(Tuj+1 − dj , uj+1 − ψ) = 0.

(75)

The matrix T is defined by (70)-(73), dj is given by the expression (69) with
the update (74) and ψ is the vector [ψ1, ψ2, . . . , ψN−1]

T , with ψi = ψ(xi).
Because of the particular form of the problem and of the matrix T , the

Brennan-Schwartz algorithm may be used to find the solution to this LCP. This
will be explained in a later paragraph. The quantities Ji appearing in dj will
be treated separately in the next paragraph.
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The integral term J

The most expensive part of the above implicit-explicit scheme lies in the com-
putation of the numbers Ji. In his paragraph, we explain first how these entries
may be computed approximately, and later we will give one method to acceler-
ate the resulting convolutions. We also assume here that the number of spatial
points N is an even number.

Let M be an integer larger than 1. The trapezoidal rule on a truncation of
the integral gives:

Ji =

∫

|y|≥h

w(xi + y)k(y)dy ≈

∫

h≤|y|≤Mh

w(xi + y)k(y)dy

≈ h

M∑

m=−M

wi+mkmρm, i = 0, 1, . . . , N.(76)

The following notation was employed:

km = k(mh), m 6= 0, (77)

ρm =

{
1/2 if m ∈ {−M,−1, 1,M},

1 otherwise,
(78)

and for m = 0 we have redefined k(0) as 0. For indices i+m such that xi+m ≤
xmin (i.e., i+m ≥ 0) or xi+m ≥ xmax (i.e., i+m ≥ N), we put wi+m := ψi+m.
In other words, we substitute w by the payoff function for points lying outside
the computational domain. For the coefficients λ(h) and ω(h) we may use the
same approximation. For example

λ(h) =

∫

|y|≥h

k(y)dy ≈ h
M∑

m=−M

kmρm. (79)

The Brennan-Schwartz algorithm

The well-known Brennan–Schwartz algorithm was originally developed for Amer-
ican put options, for which a rigorous justification can be found in [15]. The
algorithm needs to be adapted for handling American call options, as men-
tioned in [15]. The natural modification needed is a straightforward reordering
of indices, as explained in this section.

Let a tridiagonal matrix

T =




b1 c1
a2 b2 c2

. . .
. . .

. . .

an−1 bn−1 cn−1

an bn




(80)
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and vectors d = [d1, . . . , dn]T and ψ = [ψ1, . . . , ψn]T be given. Consider the
following problem: Find a vector u satisfying the system





Tu ≥ d,
u ≥ ψ,
(Tu− d, u− ψ) = 0.

(81)

The following algorithm results for an American call:

• Step 1: Compute recursively a vector b̃ as

b̃1 = b1,

b̃j = bj − ajcj−1/b̃j−1, j = 2, . . . , n.

• Step 2: Compute recursively a vector d̃ as

d̃1 = d1,

d̃j = dj − aj d̃j−1/b̃j−1, j = 2, . . . , n.

• Step 3: Compute u backwards:

un = max
[
d̃n/b̃n , ψn

]
,

uj = max
[(
d̃j − cjuj+1

)
/b̃j , ψj

]
, j = n− 1, n− 2, . . . , 1.

We apply this algorithm using the matrix T given in (73). The algorithm for
the put option is analogous to the above algorithm, but the numbering of the
indices must be reversed; see [15].

Remark 4.1. A more general method by Cryer [9] allows the solution of (81)
with the only requirement that T is an M -matrix. Cryer’s algorithm may be
used to tackle problems where the exercise boundary is not connected, as in
e.g., American butterfly spread options. This algorithm only requires O(n)
operations.

Remark 4.2. The splitting proposed in (57)-(58) is meant to guarantee the valid-
ity of Brennan-Schwartz algorithm. However, the term containing the derivative
in B may be included in A instead, with only a minor change in the entries of
matrix T . The new LCP may be also solved by Brennan-Schwartz algorithm,
and the solution obtained is the same, even if the sufficient conditions on the
algorithm are violated. This alternative splitting seems to converge in less iter-
ations.

Fast convolution by FFT

The Fast Fourier Transform is an algorithm that evaluates the Discrete Fourier
Transform (DFT) of a vector f = [f0, f2 . . . , fR−1] in O(R logR) operations.
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The Discrete Fourier Transform is defined as:

Fk =

R−1∑

n=0

fne
−i2πnk/R, k = 0, 1, . . . , R. (82)

One of the multiple applications of the DFT is in computing convolutions. Let
us first introduce the concept of circulant convolution. Let {xm} and {ym} be
two sequences with period R. The convolution sequence z := x ∗ y is defined
component-wise as

zn =

R−1∑

m=0

xm−nym. (83)

We use now FFT to compute the vector [z0, . . . , zR−1]. The periodic structure
of x allows the derivation of the following simple relation:

Zk = Xk · Yk, (84)

where X,Y and Z denote the Discrete Fourier Transform of the sequences x, y
and z respectively. That is, DFT applied to the convolution sequence is equal
to the product of the transforms of the original two sequences. The vector
[z0, . . . , zR−1] may be recovered by means of the Inverse Discrete Fourier Trans-
form (IDFT):

zn =
1

R

R−1∑

k=0

Zke
i2πkn/R, n = 0, 1, . . . , R. (85)

In the language of matrices, a circulant convolution may be seen as the
product of a circulant matrix times a vector. For example, let R = 3, and use
the periodicity xk = xk+R to arrive at



z0
z1
z2


 =



x0 x1 x2

x2 x0 x1

x1 x2 x0






y0
y1
y2


 . (86)

A circulant matrix is thus a matrix in which each row is a “circular” shift of the
previous row.

We are interested in the convolution (76), where the vector w is not periodic.
The associated matrix is a so-called Toeplitz matrix, which by definition is a
matrix that is constant along diagonals. A circulant matrix is hence a particular
type of Toeplitz matrix. The next idea is to embed a Toeplitz matrix into a
circulant matrix. As an example, let M = 1 and N = 2, so that the matrix-
vector notation for (76) reads



w1 w0 w−1

w2 w1 w0

w3 w2 w1







k1/2
k0

k−1/2


 . (87)

The matrix above may be embedded in a circulant matrix C of size 5 in the
following way (For computational efficiency of the FFT algorithm, it is advisable
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to use a circulant matrix whose size is a power of 2.):

C =




w1 w0 w−1 w3 w2

w2 w1 w0 w−1 w3

w3 w2 w1 w0 w−1

w−1 w3 w2 w1 w0

w0 w−1 w3 w2 w1



. (88)

If we define the vector η := [k1/2, k0, k−1/2, 0, 0]T , then the product (87) is the
vector consisting of the first three elements in the product Cη. As explained
before, a product of a circulant matrix and a vector may be efficiently done by
applying the FFT algorithm.

As a summary, following the ideas explained above, it is possible to compute
the convolution (76), with M = N/2, by “embedding” the resulting matrix into
a circulant matrix. The product of a circulant matrix and a vector is carried
out in three FFT operations, namely, two DFT and one IDFT.

For further details on the computation of convolutions by FFT we refer to
[22].

5 Numerical experiments

Firstly, we carry out a reference experiment where we compute a European put
option. The parameters are:

r = 0, q = 0, σ = 0.25, θ = 0, ν = 2, K = 10, T = 5. (89)

It is shown that the method is second order in space by comparing the numerical
solution with a numerical integration of the analytical solution from [6]. Since
only an implicit Euler scheme has been implemented, we show the h2–accuracy
by dividing the time step by four and the spatial mesh-size by two. The results
are summarized in Table 1.

N M `∞-error
50 5 0.1079
100 20 0.0326
200 80 0.0065
400 320 0.0017

Table 1: Second order convergence for a VG European put.

In the second experiment we compute the American call price using the
following parameters:

σ = 0.2, θ = 0.085, ν = 1, K = 1, N = 2500, and M = 500.

It is assumed first that the condition q > r+ ω− is not satisfied, so r = 0.1 and
q = 0.1 are chosen. Observe in Figure 1 that the principle of smooth fit does
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not hold, as already pointed out in [19]. The same picture 1 (right-hand) shows
the smearing effect on the continuity of the derivative ∆ after including a small
diffusion σ̄ in the VG model. For σ̄ = 0 the figure shows that the smearing
does not appear. Related theoretical results for finite activity processes may be
found in the work of Pham [20].

In the third experiment we study the behavior of the free boundary near
expiry. Two cases are distinguished: a) q ≤ r + ω− and b) q > r + ω−. In the
first case we let r = 0.1 and q = 0.1 and find the asymptotic behavior of the
free boundary to be c(∆t) = 1.1246 (see Figure 2, left). It is not difficult to
verify that τ(1.1246) ≈ 0 (cf. (42)). In the second situation we choose r = 0.1
and q = 0.21, since ω− = 0.1. Figure 2 (right-hand) shows that c(0+) ≈ 1 = K.
This confirms the result in Theorem 3.6.
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Figure 1: Left picture: VG option value and payoff function; Right picture:
Delta for σ̄ = 0.1 (dashed line) and for σ̄ = 0 (continuous line). The parameters
are: r = 0.1, q = 0.1, σ = 0.2, θ = 0.085, ν = 1, K = 1, N = 2500, M = 500
and T = 9.

6 Conclusions

In the first part of this paper it was shown that the smooth fit principle fails
for the VG American call. The failure of the principle had already been pointed
out in the financial literature for a large family of pure-jump processes, but to
the best of our knowledge, the literature does not include the VG process. An
asymptotic analysis for the free boundary near maturity is also provided together
with a proof of the continuity of the exercise boundary. In the second part we
proposed a numerical method to deal with the American call. This method
is easy to implement and may be used for the valuation of American options
under general Lévy processes, even when the Lévy measure is obtained from
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Figure 2: Left picture: Free boundary when q < r + ω−; parameters: T = 9,
r = 0.1, q = 0.1, σ = 0.2, θ = 0.085, ν = 1, K = 1, M = 2000 and number
of spatial points N = 8000. Right picture: Free boundary when q > r + ω−;
parameters: T = 2, r = 0.1, q = 0.21 and the other parameters are the same as
in the left picture.

calibration. The method does not require the knowledge of the characteristic
function to find the European price, as in, e.g., [6].
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