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Abstract

In 1983, a preconditioner was proposed [J. Comput. Phys. 49 (1983) 443] based on the Laplace operator
solving the discrete Helmholtz equation efficiently with CGNR. The preconditioner is especially effective f
wavenumber cases where the linear system is slightly indefinite. Laird [Preconditioned iterative solution of
Helmholtz equation, First Year’s Report, St. Hugh’s College, Oxford, 2001] proposed a preconditioner where
extra term is added to the Laplace operator. This term is similar to the zeroth order term in the Helmholtz e
but with reversed sign. In this paper, both approaches are further generalized to a new class of preconditio
so-called “shifted Laplace” preconditioners of the form∆φ −αk2φ with α ∈ C. Numerical experiments for variou
wavenumbers indicate the effectiveness of the preconditioner. The preconditioner is evaluated in combina
GMRES, Bi-CGSTAB, and CGNR.
 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, the time-harmonic wave equation in 2D heterogeneous media is solved numerica
underlying equation governs wave propagations and scattering phenomena arising in acoustic p
in many areas, e.g., in aeronautics, marine technology, geophysics, and optical problems. In partic
look for solutions of the Helmholtz equation discretized by using finite difference discretizations.
the number of gridpoints per wavelength should be sufficiently large to result in acceptable so
for very high wavenumbers the discrete problem becomes extremely large, prohibiting the use o
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methods. Iterative methods are the interesting alternative. However, Krylov subspace methods are not
competitive without a good preconditioner. In this paper, we consider a class of preconditioners to
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improve the convergence of the Krylov subspace methods.
Various authors contributed to the development of powerful preconditioners for Helmholtz prob

The work in [2] and the follow-up investigation in [11] can be considered as the start for the cl
preconditioners we are interested in. A generalization has been recently proposed in [14]. In [2
the preconditioners are constructed based on the Laplace operator. In [14], this operator is pertu
a real-valued linear term. This surprisingly straightforward idea leads to very satisfactorily conver
Furthermore, the preconditioning matrix allows the use of SSOR, ILU, or multigrid to approxima
inversion within an iteration.

In this paper, we will generalize the approach in [2,11,14]. We give theoretical and num
evidence that introducing acomplex perturbation to the Laplace operator can result in a be
preconditioner than using a real-valued perturbation. We call the resulting class of precond
“shifted Laplace” preconditioners. This class of preconditioners is simple to construct and is e
extend to inhomogeneous media.

There are various other types of preconditioners for general indefinite linear systems, e.g., [7,9
In particular for Helmholtz problems, [9] proposed a class of preconditioners (so-called AILU) bas
a parabolic factorization of the Helmholtz operator. In [15] another approach is pursued by per
the real part of the matrix to make it less indefinite. An interesting alternative is also described i
where a preconditioner based on the separation of variables is proposed. This preconditioner ef
accelerates the convergence for high wavenumbers.

This paper is organized as follows. In Section 2 we describe the mathematical model a
discretization used to solve wave propagation problems. Iterative methods used to solve the r
linear system and the preconditioner will be discussed in Sections 3 and 4, respectively. In Se
we present the shifted Laplace preconditioners and show theoretically the convergence of this
preconditioner. Numerical results are then presented in Section 6.

2. Mathematical model

We solve wave propagations in a two-dimensional medium with inhomogeneous properties in
(scaled) domain governed by the Helmholtz equation

∆φ + k2(x,y)φ = f , Ω = [0, 1]2, (1)

where∆ ≡ ∂2/∂x2 + ∂2/∂y2, the Laplace operator, andk(x,y) ∈ R is the wavenumber, which depen
on the spatial position in the domain. We consider a so-called “open problem”, i.e., outgoing
penetrate at least at one boundary without (spurious) reflections. To satisfy this condition, a radiati
condition is imposed. Several formulations have been developed to model the nonreflecting cond
the boundary [1,4,5]. In this paper, the first order Sommerfeld condition is chosen of the form

∂φ

∂n
− ikφ = 0, on a part ofΓ = ∂Ω, (2)

with n an outward direction normal to the boundary. Even though may not be sufficiently ac
for inclined outgoing waves [5], it is state-of-the-art in industrial codes, easy to implement i
discretization, and requires only a few gridpoints (as compared to, e.g., perfectly matched lay
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In the implementation, a sufficiently large computational domain may help in reducing the effect of
spurious reflections due to inaccurate boundary conditions.
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To find numerical solutions of (1), the equation is discretized using the second-order diffe
scheme, inx-direction:

∂2φ

∂x2
=

1

∆x2
(φi−1 − 2φi + φi+1) +O

(
∆x2

)
, (3)

and similar iny-direction. The first-order derivative in (2) is discretized with the first-order forw
scheme

∂φ

∂n
=

1

∆n
(φi−1 − φi). (4)

Substituting (3) and (4) into (1) and (2), one obtains a linear system

Ap = b, A ∈ C
N×N , (5)

whereA is a large, sparse symmetric matrix, withN the number of gridpoints. MatrixA is complex-
valued and indefinite for large values ofk. Throughout this paper, we say “A is indefinite” if A has
eigenvalues with both positive and negative real part [7].

3. Krylov subspace method

For a large, sparse matrix, Krylov subspace methods are very popular. The methods are de
based on a construction of iterants in the subspace

Kj (A, r0) = span
{
r0,Ar0,A2r0, . . . ,Aj−1r0

}
, (6)

whereKj (A, r0) is thej th Krylov subspace associated withA andr0 (see, e.g., [19]).
The basic algorithm within this class is the conjugate gradient method (CG) which has th

properties that it uses only three vectors in memory and minimizes the error in theA-norm. However, the
algorithm mainly performs well if the matrixA is symmetric, and positive definite. In cases where on
these two properties is violated, CG may break down. For indefinite linear systems, CG can be ap
the normal equations since the resulting linear system becomes (positive) definite. Upon applic
CG to the normal equations, CGNR [19] results. Using CGNR, the iterations are guaranteed to co
The drawback is that the condition number of the normal equations equals the square of the c
number ofA, slowing down the convergence drastically.

Some algorithms with short recurrences but without the minimizing property are constructed
on the bi-Lanczos algorithm [19]. Within this class, BiCG [6] exists and its modifications: CGS
and Bi-CGSTAB [22]. In BiCG, the Krylov subspace is constructed from the orthogonalization o
residual vectors based on actual matrixA and its transposeAT. Accordingly, one extra matrix/vecto
multiplication and one transpose operation are needed. In CGS, the extra transpose operation is
One can accelerate the convergence by squaring the polynomial. Whenever the convergence is
CGS converges twice as fast as BiCG. However, if the BiCG iteration diverges, CGS also diverge
as fast as BiCG. To stabilize CGS, rather than taking the square of the polynomial, another poly
can be chosen and multiplied with the polynomial ofA. This results in Bi-CGSTAB. In many case
Bi-CGSTAB exhibits a smooth convergence behavior and often converges faster than CGS. Also
this class are QMR [8] and COCG [23].
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MINRES [16] can also be used to solve indefinite symmetric linear systems, as well as its
generalization to the nonsymmetric case, GMRES [20,19]. Both algorithms have the minimization
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property but GMRES uses long recurrences. GMRES has the advantage that theoretically the a
does not break down unless convergence has been reached. The main problem in GMRES is
amount of storage increases as the iteration number increases. Therefore, the application of
may be limited by the computer storage. To remedy this problem, a restarted version, GMRES(m), can
be utilized [20]. Since restarting removes the previous convergence history, GMRES(m) is not guaranteed
to converge. There is no specific rule to determine the restart parameterm. In cases characterize
by superlinear convergence,m should often be chosen very large which makes restarting much
attractive. Another way to remedy the storage problem in GMRES is by including a so-called
iteration” as in GMRESR [24] and FGMRES [18].

Since the convergence theory of GMRES is well established, in our numerical experiments mai
GMRES is used. Of course, experiments then become very restrictive (in this paper, up tok = 30) and
for large problems, restarts become necessary. Bi-CGSTAB, which requires much less storage b
more matrix/vector multiplications than GMRES, is also used for comparison. For completeness
the underlying theory for the preconditioners is developed based on the normal equations [14],
include the convergence results using CGNR in the last experiment.

4. Preconditioner

To improve the convergence of Krylov subspace methods, a preconditioner should be incorpo
By left preconditioning, one solves a linear system premultiplied by a preconditioning matrixM−1,

M−1Ap = M−1b. (7)

Often, right preconditioning is used, i.e.,

AM−1p̃ = b, (8)

wherep̃ = Mp. Both preconditionings show typically a very similar convergence behavior. How
for left preconditioning GMRES computes the residuals based on the preconditioned system. In c
for right preconditioning GMRES computes the actual residuals. This difference may affect the st
criterion to be used (see discussions in [19]).

The best choice forM−1 is the inverse ofA, which is impractical. IfA is SPD, one can approxima
A−1 by one iteration of SSOR or multigrid. However, most practical wave problems result in an ind
linear system, for which SSOR or multigrid are not guaranteed to converge (and do not converge

In general, one can distinguish two approaches for constructing preconditioners: matrix
and operator-based. Within the first class lie, e.g., incomplete LU (ILU) factorizations. Severa
techniques have been developed with different choices of the tolerated fill-in in the sparsity patterA,
e.g., zero fill-in ILU, or ILU with drop tolerance [15,13]. Another different approach but falling into
category is the approximate inverse (see, e.g., [19]). An example of an operator-based precond
analytic ILU (AILU) [9], which is based on the continuous Helmholtz operator.

In the next sections, we will briefly discuss some preconditioners for Helmholtz problems.
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4.1. ILU preconditioner
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An ILU preconditioner can be constructed by performing Gauss elimination and dropping
elements based on certain criteria. One can, e.g., drop all elements except for those in the same
as the original matrix. This leads to ILU(0). ILU(p) allows fill-in in p additional diagonals. One ca
also drop elements which are smaller than a specified value, giving ILU(tol). In applications involving
M-matrices, this class of preconditioners is sufficiently effective. However, preconditioners from
class are not effective for general indefinite problems. Reference [9] shows some results in whic
type preconditioners are used to solve the Helmholtz equation using QMR. For high wavenumk,
ILU(0) converges slowly, while ILU(tol) encounters storage problems (and also slow convergence
sufficiently high wavenumbersk, the cost to construct the ILU(tol) factors may become very high.

Instead of constructing the ILU factors fromA, the Helmholtz operatorLh = ∆ + k2 can be used to
set upILU-like factors in so-called analytic ILU (AILU) [9]. Starting with the Fourier transform of
analytic operator in one direction, one constructs parabolic factors of the Helmholtz operator con
of a first order derivative in one direction and a nonlocal operator. To remove the nonlocal op
a localized approximation is proposed, involving optimization parameters. Finding a good approxi
for inhomogeneous problems is the major difficulty in this type of preconditioner. This is becau
method is sensitive with respect to small changes in these parameters. The optimization par
depend onk(x,y).

4.2. Shifted Laplace preconditioner

Another approach is found innot looking for an approximate inverse of the discrete indefin
operatorA, but merely looking for a form ofM , for whichM−1A has satisfactory properties for Krylo
subspace acceleration.A first effort to construct a preconditioner in such a way is in [2]. An ea
to-constructM = ∆ preconditioner is incorporated for CGNR. One SSOR iteration is used whe
operations involvingM−1 are required. The subsequent work on this preconditioner with multigrid
done in [11].

Instead of the Laplace operator as the preconditioner, [14] investigates possible improvem
an extra term−k2 is added to the Laplace operator. So, the Helmholtz equation with reversed s
proposed as the preconditionerM . This preconditioner is then usedin CGNR. One multigrid iteration is
employed wheneverM−1 must be computed. GMRES can also solve the preconditioned linear s
efficiently in less arithmetic operations. In the case of largek, the storage problem of full GMRE
can be overcome, e.g., by applying GMRES(m) or GMRESR. Bi-CGSTAB does not always perfor
satisfactorily as in [14]. (See also results in Section 6.)

In the next section, we concentrate on this type of preconditioners and present a generalizatio

5. Spectral properties of shifted Laplace preconditioners

In this section we provide some analysis to understand the performance of the shifted L
preconditioners. The analysis is based on eigenvalue properties of the preconditioned system. I
that the eigenvalue distribution can help in understanding the behavior of CG-like iterations. Sin
spectra ofM−1A andAM−1 are identical, we concentrate on left preconditioning.
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5.1. Real shifted–Laplace preconditioner
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The preconditioners in [2,14] can be motivated as follows. Consider the continuous 1D Helm
equation, subject to discretization. For simplicity, suppose that both boundary conditions are
Dirichlet or Neumann conditions.

We first consider the eigenvalues for the 1D Helmholtz operator without any preconditio
Eigenvalues of this standard problem, denoted byλs , are found to be

λs
n = k2

n − k2, kn = nπ , n ∈ N \ {0} . (9)

In (9), kn is the natural frequency of the system. (We usen to indicate the eigenmodes). If one consid
the modulus of the eigenvalues (which in this case is simply their absolute value), it is easily se
|λ| becomes unbounded if eithern or k are large. If thel2-condition numberκ = |λmax/λmin| is used to
evaluate the quality of eigenvalue clustering, one concludes also that for any sufficiently smallλmin the
condition number is extremely large. Now, suppose an operator of the form

d2

dx2
− αk2, α ∈ R, α � 0 (10)

is used as a preconditioner, which is later on discretized, and with the same boundary conditions
in the Helmholtz equation are imposed. The following generalized eigenvalue problem is obtaine(

d2

dx2
+ k2

)
φv = λ

(
d2

dx2
− αk2

)
φv, x ∈ [0, 1] ⊆ R. (11)

For (11), we find the eigenvalues to be

λn =
k2
n − k2

k2
n + αk2

=
1− (k/kn)

2

1+ α(k/kn)2
, n ∈ N \ {0} . (12)

For n → ∞, λn → 1, i.e., the eigenvalues are bounded above by one. Examining the low eigenm
for kn → 0, we obtainλ → −1/α. This eigenvalue remains below one unlessα � 1. The maximum
eigenvalue can thus be written as

|λmax| = max

(∣∣∣∣ 1

α

∣∣∣∣, 1

)
, α � 0∈ R. (13)

To estimate the minimum eigenvalue, one can use a simple but rough analysis as follows. It is a
that the minimum eigenvalue is very close (but not equal) to zero. This assumption implies a co
kj ≈ k as obtained from (12). To be more precise, letkj = k + ε, whereε is any small number. If this
relation is substituted into (12), and if higher order terms are neglected, andεk � k2 is assumed, then w
find

λmin =
2

1+ α

(
ε

k

)
. (14)

From (14), the minimum eigenvalue can be very close to zero asα goes to infinity. The condition numbe
of the preconditioned Helmholtz operator now reads

κ =
{ 1

2(1+ α)k/ε if α � 1,
1

2α
(1+ α)k/ε if 0 � α � 1.

(15)
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If α � 1, κ is a monotonically increasing function with respect toα. The best choice isα = 1, which
gives minimalκ . If 0 � α � 1, κ is a monotonically decreasing function with respect toα. κ is minimal
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in this range ifα = 1. In the limit sense we find that

lim
α↓1

κ = lim
α↑1

κ = k/ε, (16)

which is the minimum value ofκ for α � 0∈ R.

5.2. Generalization to complex α

The analysis on 1D shifted Laplace preconditioners forα ∈ R givesα = 1 as the optimum case. Th
nice property of the real shifted Laplace operator, at least in 1D, is that the eigenvalues have a
bound. However, this property does not guarantee that the eigenvalues are favourably distribute
is still the possibility that one or some eigenvalues can be very close to zero. For example, settinα = 1
gives the minimalκ but, at the same time, results inλmin which is not better than that forα = 0. We can
improve the preconditioner by still preserving the upper boundedness and at the same time shi
minimum eigenvalue as far as possible from zero. In this section, we generalizeα to be complex-valued

Consider the minimum eigenvalueλmin obtained from the 1D problem (14). We may shift th
eigenvalue away from zero by adding some real values toλ. In general, this addition will shift al
eigenvalues, which is undesirable. An alternative is by multiplying the eigenvalues by a factor.
(12) the relation between eigenvalues forα = 0 andα = 1 can be derived, i.e.,

(λα=1)n =
1

1+ (k/kn)2
(λα=0)n. (17)

Eq. (17) indicates thatλα=0 is scaled by a factor 1/(1 + (k/kn)
2) to obtainλα=1. Similarly, using (14),

we obtain the following relation:

(λα=1)min =
1

2
(λα=0)min. (18)

Since the eigenvalues of a general matrix may be complex, relation (17) can be consider
particular case of scaling of the eigenvalues along the real axis in the complex plane. Our att
improve the clustering is by possibly introducing additional shift along the imaginary axis which m
the small eigenvalues further from zero. For that purpose, we introduce a complex coefficient of th
α + iβ, and consider a more general complex-valued shifted Laplace operator

d2

dx2
− (α + iβ)k2, α ∈ R, α � 0, β ∈ R. (19)

Eigenvalues of the premultiplied equation, denoted byλc, are

λc =
k2
n − k2

k2
n + (α + iβ)k2

�⇒ ∣∣λc
∣∣2 =

(k2
n − k2)2

(k2
n + αk2)2 + β2k4

. (20)

Evaluatingλmax andλmin as in (13) and (14) one finds

∣∣λc
max

∣∣2 = max

(
1

α2 + β2
, 1

)
,

∣∣λc
min

∣∣2 =
4

(1+ α)2 + β2

(
ε

k

)
. (21)
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Fig. 1. Generalized eigenvalues of the continuous 1D Helmholtz equation,k = 10.

These results give the following condition numbers

κ2 =

{
1
4

(
1+ 1+2α

α2+β2

)
(k/ε)2, α2 + β2 � 1,

1
4

(
(1+ α)2 + β2

)
(k/ε)2, α2 + β2 � 1.

(22)

Sinceα2 + β2 is nonnegative, for any givenα taking the circleα2 + β2 = 1 in the first expression in
(22) provides the smallestκ2. Likewise, for any givenα � 0, κ2 is minimal for the second expressio
in (22) wheneverα2 + β2 = 1. (One can verify that there is no other circle givingκ2 lower than that on
the circle with radius one. This can be seen, e.g., by introducing conditionα2 + β2 = 1 + ε1, ε1 � 0).
With conditionα2 + β2 = 1, κ is minimal if one takesα = 0, implying β = 1. This combination give
the lowest condition number possible for the shifted–Laplace preconditioner for the 1D model pro

Fig. 1 shows spectra of the preconditioned systems of the 1D Helmholtz problem usingMα=0,β=0,
Mα=1,β=0, andMα=0,β=1 for our 1D problem. For simplicity, we denote these preconditioners asM0,
M1, andMi , respectively. Fig. 1 shows that the preconditionerMi clusters the eigenvalues stronger th
M1 and pushes the eigenvalues in the negative real plane towards the imaginary axis. This cluste
improve the performance of the preconditioned iterative methods. However, with this precond
there is still a possibility that some eigenvalues lie very close to zero causing unsatisfactory nu
performance. To estimate the position of these minimum eigenvalues, we consider the real part
Similar as in (14), one finds that

Re
(
λc

min

)
= ε/k. (23)

This estimate is the same as the estimate forM1 and smaller than that forM0. However, the modulu
|λc

min| =
√

2(ε/k) > |λα=1
min | = ε/k because of the imaginary shift (see Fig. 2). Because of the same

bound asM1, Mi may perform better thanM0 andM1.
In Fig. 2, a comparison of the modulus of eigenvalues fork = 10 is shown, indicating boundedne

of eigenvalues ofM1 andM0 near|λ| = 0. The right-hand figure zooms in to show the minimum|λ|.
Evidently,Mi has small eigenvalues with the modulus slightly larger thanM1, but smaller thanM0.
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Fig. 2. The modulus of eigenvalues of the continuous 1D Helmholtz equation.k = 10 and h−1 = 100 for various
preconditioners:M0(×), M1(+), Mi(◦).

5.3. Spectrum of the discrete Helmholtz equation

We extend the analysis to the discrete formulation of (1). Suppose that the Helmholtz equa
discretized using (3), we arrive at the linear system,Ap = b. Matrix A can be splitted into two parts: th
Laplace componentB and the additional diagonal termk2I so thatA = B + k2I and therefore(

B + k2I
)
p = b. (24)

In the present analysis, we assume only Dirichlet or Neumann conditions at the boundaries in
keep the matrixA real-valued. SinceA is symmetric, the eigenvalues are all real-valued. This assum
of course is irrelevant for exterior problems we are interested in. However, this simplifies the an
The inclusion of a Sommerfeld condition will lead to a different result. Our numerical experimen
exterior problems, however, show consistency with the analysis based on the interior problem.

We precondition (24) usingM = B − (α + iβ)k2I , with the same boundary conditions as forA. This
gives(

B − (α + iβ)k2I
)−1(

B + k2I
)
p =

(
B − (α + iβ)k2I

)−1
b. (25)

The generalized eigenvalue problem of (25) is accordingly(
B + k2I

)
pv = λv

(
B − (α + iβ)k2I

)
pv. (26)

Both systems (25) and (26) are indefinite ifk2 is larger than the smallest eigenvalue ofB. In such
the case, the convergence is difficult to estimate. Therefore, the subsequent analysis will be base
normal equations formulation of the preconditioned matrix system (as in [14]).

Denote the ordered eigenvalues ofB as 0< µ1 � µ2 � · · · � µN . We find the eigenvalues of the fo
following cases:

λ
(
A∗A

)
=

(
µj − k2)2

, (27)

λ
((

M−1
0 A

)∗(
M−1

0 A
))

=
(

µj − k2

µj

)2

=
(

1− k2

µj

)2

, (28)

λ
((

M−1
1 A

)∗(
M−1

1 A
))

=
(

µj − k2

µj + k2

)2

=
(

1− 2k2

µj + k2

)2

, (29)
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λ
((

M−1
i A

)∗(
M−1

i A
))

=
(

µj − k2

µj + ik2

)(
µj − k2

µj + ik2

)
= 1− 2µjk

2

µ2 + k4
. (30)

e

es
j

We first consider the case wherek is small such that 0< k2 < µ1, whereµ1 the smallest eigenvalu
of B. Using (27)–(30), we find the minimal and maximal eigenvalues as follows:

λ
((

A∗A
))

min =
(
µ1 − k2)2

,

λ
((

A∗A
))

max=
(
µN − k2)2

, (31)

λ
((

M−1
0 A

)∗(
M−1

0 A
))

min =
(

1− k2

µ1

)2

,

λ
((

M−1
0 A

)∗(
M−1

0 A
))

max =
(

1− k2

µN

)2

, (32)

λ
((

M−1
1 A

)∗(
M−1

1 A
))

min =
(

1− 2k2

µ1 + k2

)2

,

λ
((

M−1
1 A

)∗(
M−1

1 A
))

max =
(

1− 2k2

µN + k2

)2

, (33)

λ
((

M−1
i A

)∗(
M−1

i A
))

min = 1− 2µ1k
2

µ2
1 + k4

,

λ
((

M−1
i A

)∗(
M−1

i A
))

max = 1− 2µNk2

µ2
N + k4

. (34)

Sincek2/µ1 < 1, one easily sees that

λ
((

M−1
0 A

)∗(
M−1

0 A
))

min > λ
((

M−1
1 A

)∗(
M−1

1 A
))

min.

As n → ∞, one finds also that

lim
µN→∞ λ

((
M−1

0 A
)∗(

M−1
0 A

))
max = lim

µN →∞ λ
((

M−1
1 A

)∗(
M−1

1 A
))

max = 1.

With respect to thel2-condition number, it becomes evident that fork <
√

µ1, preconditioning withM0

gives a lower condition number than preconditioning withM1. Hence, for smallk, M0 is more effective
thanM1.

ForMi , one can compute that

λ
((

M−1
i A

)∗(
M−1

i A
))

min

/
λ
((

M−1
0 A

)∗(
M−1

0 A
))

min =
(µ1 + k2)2

µ2
1 + k4

> 1,

lim
µN→∞ λ

((
M−1

i A
)∗(

M−1
i A

))
max = 1.

So, fork <
√

µ1, compared toMi , preconditioning withM0 still gives a better condition number. In cas
wherek is small,M0 is more effective thanM1 andMi .

We consider now the case wherek is large, such thatµ1 < k2 < µN . For the standardA∗A, one finds
that
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λ
(
A∗A

)
min =

(
µm1 − k2

)2
, where

∣∣µm1 − k2
∣∣ �

∣∣µj − k2
∣∣, ∀j ,

(35)( ) ( )

lways
en

ion-
λ A∗A max = µN − k2 2
.

The eigenvalues are unbounded either for largeµN or largek.
For the preconditioned system(M−1

0 A)∗(M−1
0 A) one finds

λ
((

M−1
0 A

)∗(
M−1

0 A
))

min =
(

µm2 − k2

µm2

)2

, where

∣∣∣∣µm2 − k2

µm2

∣∣∣∣ �
∣∣∣∣µj − k2

µj

∣∣∣∣, ∀j ,

λ
((

M−1
0 A

)∗(
M−1

0 A
))

max = max

((
µN − k2

µN

)2

,

(
µ1 − k2

µ1

)2)
. (36)

In this case, there will be a possible boundedness for largeµN , i.e., for µN → ∞, λN = 1 as long
ask is finite (because limk→∞((µj − k2)/(µj ))

2 = ∞). Furthermore, limµ1→0((µ1 − k2)/(µ1))
2 = ∞.

Therefore,λmax can become extremely large, which makesM0 less favorable for preconditioning.
For the preconditioned system(M−1

1 A)∗(M−1
1 A), one finds that

λ
((

M−1
1 A

)∗(
M−1

1 A
))

min =
(

µm3 − k2

µm3 + k2

)2

, where

∣∣∣∣µm3 − k2

µm3 + k2

∣∣∣∣ �
∣∣∣∣ µj − k2

µj + µm3

∣∣∣∣, ∀j ,

λ
((

M−1
1 A

)∗(
M−1

1 A
))

max = max

((
µN − k2

µN + k2

)2

,

(
µ1 − k2

µ1 + k2

)2)
. (37)

From (37), it is found that

lim
µN→∞

(
µN − k2

µN + k2

)2

= lim
µ1→0

(
µ1 − k2

µ1 + k2

)2

= lim
k→∞

(
µj − k2

µj + k2

)2

= 1. (38)

The preconditioned systemM−1
1 A is always bounded above by one, i.e., the eigenvalues are a

clustered. Ifλmin in the case of preconditioning withM0 andM1 is of the same order of magnitude, th
boundedness in case ofM1 provides a better condition number thanM0. For largek, M1 is more effective
thanM0.

Finally, we are looking at the complex shifted preconditioned system withMi . One finds that

λ
((

M−1
i A

)∗(
M−1

i A
))

min =
(µm4 − k2)2

µ2
m4

+ k4
, where

∣∣∣∣(µm4 − k2)2

µ2
m4

+ k4

∣∣∣∣ �
∣∣∣∣(µj − k2)2

µ2
j + k4

∣∣∣∣, ∀j ,

λ
((

M−1
i A

)∗(
M−1

i A
))

max = max

(
1− 2µ1k

2

µ2
1 + k4

, 1− 2µNk2

µ2
N + k4

)
. (39)

The following results follow from (39):

lim
µN→∞ λ

((
M−1

i A
)∗(

M−1
i A

))
max = lim

µ1→0
λ
((

M−1
i A

)∗(
M−1

i A
))

max

= lim
k→∞λ

((
M−1

i A
)∗(

M−1
i A

))
max= 1. (40)

Hence, the eigenvalues of(M−1
i A)∗(M−1

i A) are always bounded above by one. Typically, precondit
ing with Mi gives a better condition number than withM0.
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To compareMi with M1 we need to estimate the lower bound. In doing this, we assume thatλmin ≈ 0
implying µm = k2 + ε, ε > 0. After substituting this relation to (39), one finds that

x shift
in the

roblems

of the

itioners
tors,
of using
R and

ince the
SPD),
llows
y. As
er,
g
ce, the
r

λ
((

M−1
i A

)∗(
M−1

i A
))

min =
1

2

ε2

k4
. (41)

ForM1 we find that

λ
((

M−1
1 A

)∗(
M−1

1 A
))

min =
1

4

ε2

k4
. (42)

Therefore,

λ
((

M−1
i A

)∗(
M−1

i A
))

min = 2λ
((

M−1
1 A

)∗(
M−1

1 A
))

min. (43)

With respect to thel2-condition number, one finds that

κ
((

M−1
i A

)∗(
M−1

i A
))

= 2

(
k4

ε2

)
< κ

((
M−1

1 A
)∗(

M−1
1 A

))
= 4

(
k4

ε2

)
.

Considering the above result, we conclude thatMi is more effective as the preconditioner thanM1.

Remark. For an interior problem where the resulting linear system is real-valued, using comple
preconditioner requires more arithmetic operations. In this situation, it is possible that the gain
convergence speed-up is overruled by the extra costs of the complex arithmetic operations.

6. Numerical results

We provide some numerical results for solving Eq. (1), and present three cases as the model p

(i) a 2-D closed-off problem with Dirichlet conditions at all boundaries,
(ii) a 2-D open problem in a homogeneous medium with Sommerfeld conditions on a part

boundary, and
(iii) a 2-D open problem in an inhomogeneous medium.

For all cases, we solve the resulting linear system with full GMRES and compare three precond
M0, M1, and Mi . We set the maximum number of GMRES iterations to 150. Storing 150 vec
however, is too expensive, requiring a restart parameter. The storage issue is the main drawback
GMRES. Therefore, for the third problem the GMRES convergence is compared to that of CGN
Bi-CGSTAB. The iteration is terminated at thekth step if‖b − Apk‖2/‖b‖2 < 10−6.

For the preconditioner solves, a direct method is used. In practice this process is very costly. S
matrix M is complex symmetric and both the real and imaginary parts are positive definite (or C
the LDLT factorization can always be done (without requiring pivoting) and is unique [12]. This a
us, e.g., to approximateM using ILU and then to use backward-forward substitution subsequentl
alternatives, we can also approximateM−1 using a few steps of SSOR or multigrid [10]. In this pap
we do not implement these cheaper processes. Rather, we computeM−1 exactly. We expect that havin
exact solution of the preconditioning step will provide us the detailed insights in the convergen
lowest iteration numbers and therefore, it can be used as reference for approximation methods foM−1.
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6.1. Closed-off problem

he
.
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al time
factorily
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We consider a problem in a rectangular homogeneous medium governed by(
∆ + k2)φ =

(
k2 − 5π2)sin(πx)sin(2πy), x = [0, 1], y = [0, 1],

(44)
φ = 0, at the boundaries.

The exact solution of (44) isφ = sin(πx)sin(2πy). Different grid resolutions are used to solve t
problem with various wavenumbersk = 2, 5, 10, 15, 20, 30, 40.k = 2 resembles the definite problem
In Fig. 3, spectra of the preconditioned system fork = 5, a “slightly” indefinite problem, are shown. A
spectra are bounded above by one.

Table 1 shows the computational performance in terms of number of iterations and computation
to reach the specified convergence. For low frequencies, all preconditioners show a very satis
comparable performance.M0 becomes less effective for increasing values ofk, where the number o
iterations increases somewhat faster than forM1 or Mi . For largek, preconditioning withMi gives
the fastest convergence. This behavior agrees with the theory. However, preconditioning withMi is
expensive. As Problem 1 only requires real arithmetic operations, usingMi destroys the cheap operation
Furthermore, the computational time shown in Table 1 is practically unacceptable due to the
inverse ofM . In real applications, some cheaper approximate methods for the preconditioner w
implemented.

Fig. 3. Some extreme eigenvalues of the preconditioned systems of Problem 1 withk = 5 and gridsizeh−1 = 20.

Table 1
Computational performance of GMRES for 2-D closed-off problem. The precondi-
tioner is the shifted Laplace operator. 30 gridpoints per wavelength are used

k M0 M1 Mi

Iter Time(s) Iter Time(s) Iter Time(s)

2 5 0.02 5 0.02 5 0.05
5 8 0.24 10 0.31 9 0.68

10 13 1.75 16 2.16 15 8.45
15 18 7.01 22 8.44 20 39.26
20 26 21.49 29 24.32 26 194.86
30 57 170.04 60 178.28 49 1190.32
40 103 729.54 99 709.94 80 6623.48
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6.2. 2-D open homogeneous problem

. We first
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ed.
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The second problem represents an open problem allowing waves to penetrate the boundaries
look at a homogeneous medium in which waves created at the upper surface propagate. We con

∆φ + k2φ = f , Ω = [0, 1]2,

f = δ

(
x − 1

2

)
δ(y), x = [0, 1], y = 0,

φ = 0, y = 0,
∂φ

∂n
− ikφ = 0, x = 0, 1, y = 1, (45)

with k constant inΩ . The performance of GMRES with preconditionersM0, M1, andMi is compared.
In the construction of the preconditioning matrix, the same boundary conditions as in (45) are us

Table 2 shows the number of GMRES iterations to solve Problem 2. For all frequencieMi

outperformsM0 andM1. M0 still performs reasonably well compared toMi . This is not explained by th
theory and may be due to the influence of Sommerfeld boundary conditions imposed in construc
preconditioning matrix, which is not taken into account in our analysis.

Fig. 4 shows the updated residual computed at each iteration fork = 20. The residual curve indicate
slow convergence for the first few iterations and a convergence improvement later on, indic
superlinear convergence. The slow convergence part is mainly due to the small eigenvalues. O
are removed from the spectrum the convergence rate increases.

Fig. 4. Relative residual of preconditioned GMRES iterations,k = 20. rk = M−1(b − Apk).
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Table 2
Computational performance of GMRES to solve Problem 2. The preconditioner is

m. The

) in
s using

ns
sed

y.
ce
r,

he
of the
the shifted Laplace preconditioners. 30 gridpoints per wavelength are used

k M0 M1 Mi

Iter Time(s) Iter Time(s) Iter Time(s)

2 6 0.05 7 0.06 6 0.07
5 10 0.80 13 0.96 11 0.85

10 20 11.72 25 15.78 22 14.70
15 33 64.87 41 92.31 37 84.43
20 52 358.03 67 449.42 54 401.06
30 102 3382.82 136 4059.72 97 2819.53

Table 3
Computational performance of GMRES, CGNR, and Bi-CGSTAB to solve Problem 3.
The preconditioner is the shifted Laplace operator. 30 gridpoints perkref are used

kref GMRES CGNR Bi-CGSTAB

M0 M1 Mi M0 M1 Mi M0 M1 Mi

2 7 9 8 10 13 11 5 6 5
5 14 19 16 22 31 26 10 13 10

10 34 42 36 77 83 65 50 53 26
15 64 82 63 210 160 122 206 115 36
20 107 136 91 – – 185 448 159 50
30 >150 >150 140 – – – – – 70

6.3. 2-D open inhomogeneous problem

In this example we repeat the computation of Problem 2 but now in an in-homogeneous mediu
wavenumber varies inside the domain according to

k =

{
kref 0� y � 1/3,
1.5kref 1/3� y � 2/3,
2.0kref 2/3� y � 1.0.

(46)

The number of gridpoints used is 5× kref (i.e., approximately 30 gridpoints per reference wavelength
thex andy directions. Numerical results are presented in Table 3. Here, we compute the solution
full GMRES, and compare the computational performances with CGNR and Bi-CGSTAB.

In this harder problem,Mi again outperformsM0 andM1 indicated by the smaller number of iteratio
required to reach convergence. Compared toM0, M1 shows a less satisfactorily performance, and ba
on our computational restrictions restart is needed. For GMRES, restarting is needed fork > 20.

From Table 3, we also see that the preconditioned Bi-CGSTAB does not perform well forM0 andM1,
as already indicated in [14]. However, the convergence withMi as the preconditioner is still satisfactor
Compared to GMRES, Bi-CGSTAB preconditioned byMi shows better convergence performan
(despite of requiring two preconditioning steps within one iteration). IfMi is used as the preconditione
Bi-CGSTAB can be the alternative to replace full GMRES.

From Table 3, one also concludes that CGNR may not be a good iterative method to solve t
Helmholtz problem with the shifted Laplace preconditioners. This is mainly due to the squaring
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original eigenvalues in the case of the Normal Equations, causing too many small eigenvalues. With such
a spectrum, CG often exhibits very slow convergence. However, since our analysis for the preconditioners

lmholtz
ads to the

have
onstruct
tter, this
vocate

r

–457.
94) 185–

–

)

Biennal
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er.

zation,

Trans.
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, New

. 67 (3)

the
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is based on the normal equations, the results ofCGNR are included and confirm our analysis.

7. Conclusion

In this paper, a class of preconditioners based on the shifted Laplace operator for the He
equation has been presented and analyzed. We find that the complex shifted–Laplace operator le
most effective preconditioning matrix within this class of preconditioners. Numerical experiments
been presented to show the effectiveness of the preconditioner. This preconditioner is easy to c
and to extend to inhomogeneous medium cases. Our numerical experiments show that for the la
preconditioner performs effectively. With respect to storage and CPU time requirements, we ad
the complex shifted preconditioner in combination with Bi-CGSTAB.
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