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Abstract

In 1983, a preconditioner was proposed [J. ComphysP49 (1983) 443] based on the Laplace operator for
solving the discrete Helmholtz equation efficiently with CGNR. The preconditioner is especially effective for low
wavenumber cases where the linear system is slightly indefinite. Laird [Preconditioned iterative solution of the 2D
Helmholtz equation, First Year's Report, St. Hugh'sli€ge, Oxford, 2001] proposed a preconditioner where an
extra term is added to the Laplace operator. This term is similar to the zeroth order term in the Helmholtz equation
but with reversed sign. In this paper, both approaches are further generalized to a new class of preconditioners, the
so-called “shifted Laplace” preconditioners of the fakgh— ak?$ with « € C. Numerical experiments for various
wavenumbers indicate the effectiveness of the preconditioner. The preconditioner is evaluated in combination with
GMRES, Bi-CGSTAB, and CGNR.
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1. Introduction

In this paper, the time-harmonic wave equation in 2D heterogeneous media is solved numerically. The
underlying equation governs wave propagations and scattering phenomena arising in acoustic problems
in many areas, e.g., in aeronautics, marine technology, geophysics, and optical problems. In particular, we
look for solutions of the Helmholtz equation discretized by using finite difference discretizations. Since
the number of gridpoints per wavelength should be sufficiently large to result in acceptable solutions,
for very high wavenumbers the discrete problem becomes extremely large, prohibiting the use of direct
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methods. Iterative methods are the interesting alternative. However, Krylov subspace methods are not
competitive without a good preconditioner. In this paper, we consider a class of preconditioners to
improve the convergence of the Krylov subspace methods.

Various authors contributed to the development of powerful preconditioners for Helmholtz problems.
The work in [2] and the follow-up investigation in [11] can be considered as the start for the class of
preconditioners we are interested in. A generalization has been recently proposed in [14]. In [2,11,14],
the preconditioners are constructed based on the Laplace operator. In [14], this operator is perturbed by
a real-valued linear term. This surprisingly straightforward idea leads to very satisfactorily convergence.
Furthermore, the preconditioning matrix allows the use of SSOR, ILU, or multigrid to approximate the
inversion within an iteration.

In this paper, we will generalize the approach in [2,11,14]. We give theoretical and numerical
evidence that introducing aomplex perturbation to the Laplace operator can result in a better
preconditioner than using a real-valued perturbation. We call the resulting class of preconditioners
“shifted Laplace” preconditioners. This class of preconditioners is simple to construct and is easy to
extend to inhomogeneous media.

There are various other types of preconditioners for general indefinite linear systems, e.g., [7,9,15,17].
In particular for Helmholtz problems, [9] proposed a class of preconditioners (so-called AILU) based on
a parabolic factorization of the Helmholtz operator. In [15] another approach is pursued by perturbing
the real part of the matrix to make it less indefinite. An interesting alternative is also described in [17],
where a preconditioner based on the separation of variables is proposed. This preconditioner effectively
accelerates the convergence for high wavenumbers.

This paper is organized as follows. In Section 2 we describe the mathematical model and the
discretization used to solve wave propagation problems. Iterative methods used to solve the resulting
linear system and the preconditioner will be discussed in Sections 3 and 4, respectively. In Section 5,
we present the shifted Laplace preconditioners and show theoretically the convergence of this type of
preconditioner. Numerical results are then presented in Section 6.

2. Mathematical model

We solve wave propagations in a two-dimensional medium with inhomogeneous properties in a unit
(scaled) domain governed by the Helmholtz equation

Ap + K (x, )¢ =f, £2=[0,1 1)

whereA = 32/9x? + 82/dy?, the Laplace operator, ardx, y) € R is the wavenumber, which depends
on the spatial position in the domain. We consider a so-called “open problem”, i.e., outgoing waves
penetrate at least at one boundary without (spurious) reflections. To satisfy this condition, a radiation-type
condition is imposed. Several formulations have been developed to model the nonreflecting condition at
the boundary [1,4,5]. In this paper, the first order Sommerfeld condition is chosen of the form

0 .

a—d)—lk(pzo, onapartoff =442, (2)

n

with » an outward direction normal to the boundary. Even though may not be sufficiently accurate
for inclined outgoing waves [5], it is state-of-the-art in industrial codes, easy to implement in our
discretization, and requires only a few gridpoints (as compared to, e.g., perfectly matched layer [3]).
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In the implementation, a sufficiently large computational domain may help in reducing the effect of
spurious reflections due to inaccurate boundary conditions.

To find numerical solutions of (1), the equation is discretized using the second-order difference
scheme, inc-direction:

2 1
% = 13 (#i1— 20 + ¢is1) + O(Ax%), (3)

and similar iny-direction. The first-order derivative in (2) is discretized with the first-order forward
scheme

dp 1

o E(d’z’fl_qﬁi)- 4)
Substituting (3) and (4) into (1) and (2), one obtains a linear system

Ap=b, AeCM¥V, )

where A is a large, sparse symmetric matrix, withthe number of gridpoints. Matrid is complex-
valued and indefinite for large values bf Throughout this paper, we say“is indefinite” if A has
eigenvalues with both positive and negative real part [7].

3. Krylov subspace method

For a large, sparse matrix, Krylov subspace methods are very popular. The methods are developed
based on a construction of iterants in the subspace

K/ (A, ro) = spar{ro, Aro, A%ro, ..., AT ro}, (6)

wherek’/ (A, rp) is the jth Krylov subspace associated withandry (see, e.g., [19]).

The basic algorithm within this class is the conjugate gradient method (CG) which has the nice
properties that it uses only three vectors in memory and minimizes the error Aartbemn. However, the
algorithm mainly performs well if the matriA is symmetric, and positive definite. In cases where one of
these two properties is violated, CG may break down. For indefinite linear systems, CG can be applied to
the normal equations since the resulting linear system becomes (positive) definite. Upon application of
CG to the normal equations, CGNR [19] results. Using CGNR, the iterations are guaranteed to converge.
The drawback is that the condition number of the normal equations equals the square of the condition
number ofA, slowing down the convergence drastically.

Some algorithms with short recurrences but without the minimizing property are constructed based
on the bi-Lanczos algorithm [19]. Within this class, BIiCG [6] exists and its modifications: CGS [21]
and Bi-CGSTAB [22]. In BIiCG, the Krylov subspace is constructed from the orthogonalization of two
residual vectors based on actual mattixand its transposé . Accordingly, one extra matrix/vector
multiplication and one transpose operation are needed. In CGS, the extra transpose operation is avoidec
One can accelerate the convergence by squaring the polynomial. Whenever the convergence is smoott
CGS converges twice as fast as BiCG. However, if the BiCG iteration diverges, CGS also diverges twice
as fast as BiCG. To stabilize CGS, rather than taking the square of the polynomial, another polynomial
can be chosen and multiplied with the polynomial Af This results in Bi-CGSTAB. In many cases,
Bi-CGSTAB exhibits a smooth convergence behavior and often converges faster than CGS. Also within
this class are QMR [8] and COCG [23].
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MINRES [16] can also be used to solve indefinite symmetric linear systems, as well as its
generalization to the nonsymmetric case, GMRES [20,19]. Both algorithms have the minimization
property but GMRES uses long recurrences. GMRES has the advantage that theoretically the algorithm
does not break down unless convergence has been reached. The main problem in GMRES is that the
amount of storage increases as the iteration number increases. Therefore, the application of GMRES
may be limited by the computer storage. To remedy this problem, a restarted version, GWMRES(
be utilized [20]. Since restarting removes the previous convergence history, GMRE®Et guaranteed
to converge. There is no specific rule to determine the restart paramethkr cases characterized
by superlinear convergence; should often be chosen very large which makes restarting much less
attractive. Another way to remedy the storage problem in GMRES is by including a so-called “inner
iteration” as in GMRESR [24] and FGMRES [18].

Since the convergence theory of GMRES is well established, in our numerical experiments mainly full
GMRES is used. Of course, experiments then become very restrictive (in this papek &p3@) and
for large problems, restarts become necessary. Bi-CGSTAB, which requires much less storage but some
more matrix/vector multiplications than GMRES, is also used for comparison. For completeness, since
the underlying theory for the preconditioners is developed based on the normal equations [14], we also
include the convergence results using CGNR in the last experiment.

4. Preconditioner

To improve the convergence of Krylov subspace methods, a preconditioner should be incorporated.
By left preconditioning, one solves a linear system premultiplied by a preconditioning métrix

M Ap =M. (7)
Often, right preconditioning is used, i.e.,
AM™p=b, (8)

where p = Mp. Both preconditionings show typically a very similar convergence behavior. However,
for left preconditioning GMRES computes the residuals based on the preconditioned system. In contrast,
for right preconditioning GMRES computes the actual residuals. This difference may affect the stopping
criterion to be used (see discussions in [19]).

The best choice foM ! is the inverse ofd, which is impractical. IfA is SPD, one can approximate
A~ by one iteration of SSOR or multigrid. However, most practical wave problems result in an indefinite
linear system, for which SSOR or multigrid are not guaranteed to converge (and do not converge).

In general, one can distinguish two approaches for constructing preconditioners: matrix-based
and operator-based. Within the first class lie, e.g., incomplete LU (ILU) factorizations. Several ILU
techniques have been developed with different choices of the tolerated fill-in in the sparsity pa#tern of
e.g., zero fill-in ILU, or ILU with drop tolerance [15,13]. Another different approach but falling into this
category is the approximate inverse (see, e.g., [19]). An example of an operator-based preconditioner is
analytic ILU (AILU) [9], which is based on the continuous Helmholtz operator.

In the next sections, we will briefly discuss some preconditioners for Helmholtz problems.
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4.1. ILU preconditioner

An ILU preconditioner can be constructed by performing Gauss elimination and dropping some
elements based on certain criteria. One can, e.g., drop all elements except for those in the same diagonal
as the original matrix. This leads to ILU(0). ILpY} allows fill-in in p additional diagonals. One can
also drop elements which are smaller than a specified value, givingdD)UIh applications involving
M-matrices, this class of preconditioners is sufficiently effective. However, preconditioners from this
class are not effective for general indefinite problems. Reference [9] shows some results in which ILU-
type preconditioners are used to solve the Helmholtz equation using QMR. For high wavenimbers
ILU(O) converges slowly, while ILUl) encounters storage problems (and also slow convergence). For
sufficiently high wavenumbers, the cost to construct the ILt]) factors may become very high.

Instead of constructing the ILU factors from, the Helmholtz operatof, = A + k? can be used to
set uplLU-like factors in so-called analytic ILU (AILU) [9]. Starting with the Fourier transform of the
analytic operator in one direction, one constructs parabolic factors of the Helmholtz operator consisting
of a first order derivative in one direction and a nonlocal operator. To remove the nonlocal operator,
a localized approximation is proposed, involving optimization parameters. Finding a good approximation
for inhomogeneous problems is the major difficulty in this type of preconditioner. This is because the
method is sensitive with respect to small changes in these parameters. The optimization parameters
depend ork(x, y).

4.2. Shifted Laplace preconditioner

Another approach is found inot looking for an approximate inverse of the discrete indefinite
operatorA, but merely looking for a form oM, for which M~ A has satisfactory properties for Krylov
subspace acceleration. first effort to construct a preconditioner in such a way is in [2]. An easy-
to-constructM = A preconditioner is incorporated for CGNR. One SSOR iteration is used whenever
operations involving\/ ~* are required. The subsequent work on this preconditioner with multigrid was
done in [11].

Instead of the Laplace operator as the preconditioner, [14] investigates possible improvements if
an extra term-k2 is added to the Laplace operator. So, the Helmholtz equation with reversed sign is
proposed as the preconditiontf. This preconditioner is then us@gd CGNR. One multigd iteration is
employed wheneved, ~! must be computed. GMRES can also solve the preconditioned linear system
efficiently in less arithmetic operations. In the case of lakgehe storage problem of full GMRES
can be overcome, e.g., by applying GMRE$(©r GMRESR. Bi-CGSTAB does not always perform
satisfactorily as in [14]. (See also results in Section 6.)

In the next section, we concentrate on this type of preconditioners and present a generalization.

5. Spectral properties of shifted L aplace preconditioners

In this section we provide some analysis to understand the performance of the shifted Laplace
preconditioners. The analysis is based on eigenvalue properties of the preconditioned system. It is often
that the eigenvalue distribution can help in understanding the behavior of CG-like iterations. Since the
spectra off 14 andAM ! are identical, we concentrate on left preconditioning.
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5.1. Real shifted-Laplace preconditioner

The preconditioners in [2,14] can be motivated as follows. Consider the continuous 1D Helmholtz
equation, subject to discretization. For simplicity, suppose that both boundary conditions are either
Dirichlet or Neumann conditions.

We first consider the eigenvalues for the 1D Helmholtz operator without any preconditioning.
Eigenvalues of this standard problem, denoted.fyare found to be

A;:k}f—kz, k, =nm, n e N\ {0}. )

In (9), k,, is the natural frequency of the system. (We uge indicate the eigenmodes). If one considers
the modulus of the eigenvalues (which in this case is simply their absolute value), it is easily seen that
|1| becomes unbounded if eitheror k are large. If thd,-condition numbek = |Amax/Amin| iS used to
evaluate the quality of eigenvalue clustering, one concludes also that for any sufficiently.gmédle
condition number is extremely large. Now, suppose an operator of the form

@—ak, aeR, x>0 (10)
is used as a preconditioner, which is later on discretized, and with the same boundary conditions as those
in the Helmholtz equation are imposed. The following generalized eigenvalue problem is obtained, i.e.,

(s o? )
For (11), we find the eigenvalues to be
o k2—k?  1—(k/ky)?
"Uk2 4 ak? 1+ a(k/k,)?’

Forn — o0, A, — 1, i.e., the eigenvalues are bounded above by one. Examining the low eigenmodes,
for k, — 0, we obtainA — —1/«a. This eigenvalue remains below one unless: 1. The maximum
eigenvalue can thus be written as

neN\{0}. (12)

1
[Amaxl = Max
(07

,1>, a>0eR. (13)

To estimate the minimum eigenvalue, one can use a simple but rough analysis as follows. It is assumed
that the minimum eigenvalue is very close (but not equal) to zero. This assumption implies a condition
k; ~ k as obtained from (12). To be more precise iet= k + ¢, wheree is any small number. If this
relation is substituted into (12), and if higher order terms are neglectedkagdk? is assumed, then we

find
2 €
)\min = l-i-—Ot (%) (14)

From (14), the minimum eigenvalue can be very close to zesogages to infinity. The condition number
of the preconditioned Helmholtz operator now reads

[3Q+ak/e ifa>1,

_{%(Ha)k/s if0<a<l (15)
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If @ > 1, k is a monotonically increasing function with respectitolThe best choice ig = 1, which
gives minimalk. If 0 < o < 1, « is a monotonically decreasing function with respecata is minimal
in this range ife = 1. In the limit sense we find that

umxzumxzk/s, (16)

which is the minimum value of for « > 0 € R.
5.2. Generalization to complex «

The analysis on 1D shifted Laplace preconditionersofar R givesa = 1 as the optimum case. The
nice property of the real shifted Laplace operator, at least in 1D, is that the eigenvalues have an upper
bound. However, this property does not guarantee that the eigenvalues are favourably distributed. There
is still the possibility that one or some eigenvalues can be very close to zero. For example psetting
gives the minimalk but, at the same time, resultsip,, which is not better than that far = 0. We can
improve the preconditioner by still preserving the upper boundedness and at the same time shifting the
minimum eigenvalue as far as possible from zero. In this section, we generdbase complex-valued.
Consider the minimum eigenvalug,;, obtained from the 1D problem (14). We may shift this
eigenvalue away from zero by adding some real values.th general, this addition will shift all
eigenvalues, which is undesirable. An alternative is by multiplying the eigenvalues by a factor. From
(12) the relation between eigenvalues o= 0 anda = 1 can be derived, i.e.,

()"a=1)n = ()"aZO)n- (17)

1+ (k/kn)?
Eq. (17) indicates that,—o is scaled by a factor /{1 + (k/k,)?) to obtaini,—1. Similarly, using (14),
we obtain the following relation:

1
O\a:l)min = E()Lazo)min- (18)

Since the eigenvalues of a general matrix may be complex, relation (17) can be considered as a
particular case of scaling of the eigenvalues along the real axis in the complex plane. Our attempt to
improve the clustering is by possibly introducing additional shift along the imaginary axis which moves
the small eigenvalues further from zero. For that purpose, we introduce a complex coefficient of the form
a + 18, and consider a more general complex-valued shifted Laplace operator

2

@—(oH—i,B)kZ, aeR, a>0, BeR. (19)
Eigenvalues of the premultiplied equation, denoted.fyare
k2 _ k2 k2 _ k2 2
c n | c|2 _ ( n ) (20)

T K2+ @+ T (K2t ak?)? + Ak
EvaluatingAmax andAmin as in (13) and (14) one finds

c 12 1 c 12 4 €
| fmax| _max<m,1>, | Xsnin] —m&)- (21)
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Fig. 1. Generalized eigenvalues of the continuous 1D Helmholtz equatieri0.

These results give the following condition numbers

2_ i+ al;fj‘g"z)(k/s)z, a?+ B2< 1, 22)
(At )2+ Y k/e)? a®+ 221

Sincea? + 2 is nonnegative, for any givem taking the circlex® + 2 = 1 in the first expression in

(22) provides the smallest’. Likewise, for any giverw > 0, «2 is minimal for the second expression

in (22) whenever? 4 2 = 1. (One can verify that there is no other circle givinglower than that on

the circle with radius one. This can be seen, e.g., by introducing condifiong? = 1+ &1, &1 > 0).

With conditiona? 4 82 = 1, « is minimal if one takest = 0, implying 8 = 1. This combination gives

the lowest condition number possible for the shifted—Laplace preconditioner for the 1D model problem.
Fig. 1 shows spectra of the preconditioned systems of the 1D Helmholtz problem Mging—o,

My—1p—0, and M,—o—1 for our 1D problem. For simplicity, we denote these preconditionerd/@s

My, andM;, respectively. Fig. 1 shows that the preconditiomgrclusters the eigenvalues stronger than

M and pushes the eigenvalues in the negative real plane towards the imaginary axis. This clustering may

improve the performance of the preconditioned iterative methods. However, with this preconditioner

there is still a possibility that some eigenvalues lie very close to zero causing unsatisfactory numerical

performance. To estimate the position of these minimum eigenvalues, we consider the real part of (20).

Similar as in (14), one finds that

Re(Afin) = &/ k. (23)

This estimate is the same as the estimateMgrand smaller than that fa¥/,. However, the modulus
[Ainl = V2(e/k) > |Aﬁqi:nl| = ¢/k because of the imaginary shift (see Fig. 2). Because of the same upper
bound as\M1, M; may perform better tham, and M.

In Fig. 2, a comparison of the modulus of eigenvalueskfer 10 is shown, indicating boundedness
of eigenvalues ofM; and My near|x| = 0. The right-hand figure zooms in to show the minimih

Evidently, M; has small eigenvalues with the modulus slightly larger th&nbut smaller thari/,.
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Fig. 2. The modulus of eigenvalues of the continuous 1D Helmholtz equatica.10 and h~1 = 100 for various
preconditionersMg(x), M1(+), M; (o).

5.3. Soectrum of the discrete Helmholtz equation

We extend the analysis to the discrete formulation of (1). Suppose that the Helmholtz equation is
discretized using (3), we arrive at the linear systdmp,= b. Matrix A can be splitted into two parts: the
Laplace componens and the additional diagonal terkd! so thatA = B + k21 and therefore

(B+k%I)p=b. (24)

In the present analysis, we assume only Dirichlet or Neumann conditions at the boundaries in order to
keep the matri¥A real-valued. Sincd is symmetric, the eigenvalues are all real-valued. This assumption
of course is irrelevant for exterior problems we are interested in. However, this simplifies the analysis.
The inclusion of a Sommerfeld condition will lead to a different result. Our numerical experiments on
exterior problems, however, show consistency with the analysis based on the interior problem.

We precondition (24) using/ = B — (« + i)k, with the same boundary conditions as farThis
gives

(B —(@+ip)k21) {(B+k%I)p= (B — (a +ip)KI) . (25)
The generalized eigenvalue problem of (25) is accordingly
(B +K2I)p, =2, (B — (@ +iB)K*I) p,. (26)

Both systems (25) and (26) are indefinitekff is larger than the smallest eigenvalue BfIn such
the case, the convergence is difficult to estimate. Therefore, the subsequent analysis will be based on the
normal equations formulation of the preconditioned matrix system (as in [14]).

Denote the ordered eigenvalues®his 0< u; < uo < --- < uy. We find the eigenvalues of the four
following cases:

A(A*A) = (n; —K?)?, 27)
M(MgtA) (Mg A)) = ( " kz)z = (1— Z—Z)z (28)

i j — k2\? 2k \?
MMy A) (M) = (Z - k2> = (1— o kz) , (29)

=
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NP wi —k? wi —k? 21 ik?
o2y o) = (25 ) (e ) - - 22 )
J

We first consider the case wherés small such that & k% < w1, whereu, the smallest eigenvalue
of B. Using (27)—(30), we find the minimal and maximal eigenvalues as follows:

)‘((A*A))mln (Ml o kz)
)‘((A*A))max ('U“N _kz (31)

(M7 4) (v m.n=(1 2y

2(Mg A (M5 1A)) max:(l ) (32)
A(MTA) (MrA)) o= (1- m+k2)’

A(M1A) (M24)) max:(l MN+k2>, (33)
A) (70)) =1 22

A((M72A) (M72A)), =1 ;2:1 - (34)

Sincek?/uu1 < 1, one easily sees that

(Mgt A) (Mg A)) > A((MTHA) (MTHA)) i
Asn — oo, one finds also that

. -1 k -1 _ . -1 k 1
#JVITOO)‘((MO A) (MO A))max_m!llinoo)“((Ml A) (M A))max L
With respect to thé,-condition number, it becomes evident that ko . /ix1, preconditioning withig
gives a lower condition number than preconditioning with. Hence, for smalk, M, is more effective
than M.

For M;, one can compute that

M2 A) (2 4)), J (52 A (152 4)) = LR

ni+k*
. ,l k
ML'TOO’\((M" A)(M7tA)) =1
So, fork < ./m1, compared td4;, preconditioning with\fj still gives a better condition number. In cases
wherek is small, My is more effective tha/, and M;.
We consider now the case whekrés large, such that, < k% < uy. For the standard* A, one finds
that
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M(AA) = (g — kD)%, Where|pu,, — k2| < |u; — K%, Y,

min
)2 (35)
)‘(A A)max: ('U“N —k ) :
The eigenvalues are unbounded either for largeor largek.
For the preconditioned systeM, *A)*(M, ' A) one finds
* m _k2 2 m —k2 '—k2
H(M24) (52 ) o = (L2225 ) wnere] 222 | < |2
Mmy Mmy Hj
P py = kA\? (g — kB2
M5 4)" (45 4)) = ma (225 ) (5 )). (@)
“n M1

In this case, there will be a possible boundedness for largei.e., for uy — 0o, Ay = 1 as long
ask is finite (because lim, o ((; — k?)/(u;))? = 00). Furthermore, lim,.o((11 — k?)/(11))? = oc.
Therefore Amax Can become extremely large, which makégless favorable for preconditioning.

For the preconditioned syste; *A)*(M; *A), one finds that

_ k2 2 m . k2 Wi — k2
AM(M7AY (M7A)) . = (”’”37> , wh s \‘ : ' Vi,
(( 1 ) ( 1 ))mm Mm3+k2 where Mm3+k2 Mj+Mm3 J
_ * _ MN _k2 2 Ml_kz 2
)‘((Ml lA) (Ml 1A))max:max<(MN+k2) ’<M1+k2) ) (37)

From (37), it is found that

_ —k2\? —k2\? C—k?\?
lim (£¥ — lim (& — Jim (& =1 (38)
un—oo\ py + k? ni—0\ 1 + k? koo \ i + k2
The preconditioned syste; 1A is always bounded above by one, i.e., the eigenvalues are always
clustered. IfAmin in the case of preconditioning withly and M, is of the same order of magnitude, then
boundedness in case &, provides a better condition number thdf. For largek, M, is more effective

than M,.
Finally, we are looking at the complex shifted preconditioned system MjttOne finds that

1 \k 1 . (Mm4 - k2)2 (l‘Lm4 - k2)2 (I‘Lj - k2)2 .
)»((Mi A) (Mi A))min_ “514 KA where M,%u Y M?‘l‘kﬂ' ) )
— * — 2,LL]_k2 ZI,LNkZ
A(M7A) (M7rA)) = max(l— pa 1- Z +k4)' (39)
The following results follow from (39):
MUTOO)‘((MiilA)*(MiilA))max: MIITO)”((MiilA)*(MiflA))max
= Jim (M 2A)" (M7 24)) = 1 (40)

Hence, the eigenvalues CMi‘lA)*(Mi‘lA) are always bounded above by one. Typically, precondition-
ing with M; gives a better condition number than witf.
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To compareM; with M; we need to estimate the lower bound. In doing this, we assumea that 0
implying u,, = k? + ¢, ¢ > 0. After substituting this relation to (39), one finds that

(014 () = 55 @
For M1 we find that

M((720)" (M54)) = 255 @2
Therefore,

((720) (M2 4)) = 22((0172) (M524)) 3

With respect to thé,-condition number, one finds that

e(M72A) (M) = 2(’8‘_:) < e((MAA) (M52 A)) = 4(%).

&
Considering the above result, we conclude tatis more effective as the preconditioner thih.

Remark. For an interior problem where the resulting linear system is real-valued, using complex shift
preconditioner requires more arithmetic operations. In this situation, it is possible that the gain in the
convergence speed-up is overruled by the extra costs of the complex arithmetic operations.

6. Numerical results
We provide some numerical results for solving Eg. (1), and present three cases as the model problems

(i) a 2-D closed-off problem with Dirichlet conditions at all boundaries,
(i) a 2-D open problem in a homogeneous medium with Sommerfeld conditions on a part of the
boundary, and
(iif) a 2-D open problem in an inhomogeneous medium.

For all cases, we solve the resulting linear system with full GMRES and compare three preconditioners
My, M1, and M;. We set the maximum number of GMRES iterations to 150. Storing 150 vectors,
however, is too expensive, requiring a restart parameter. The storage issue is the main drawback of using
GMRES. Therefore, for the third problem the GMRES convergence is compared to that of CGNR and
Bi-CGSTAB. The iteration is terminated at théh step if||b — Apy|l2/|1b]l2 < 107.

For the preconditioner solves, a direct method is used. In practice this process is very costly. Since the
matrix M is complex symmetric and both the real and imaginary parts are positive definite (or CSPD),
the LDLT factorization can always be done (without requiring pivoting) and is unique [12]. This allows
us, e.g., to approximat® using ILU and then to use backward-forward substitution subsequently. As
alternatives, we can also approximate using a few steps of SSOR or multigrid [10]. In this paper,
we do not implement these cheaper processes. Rather, we comptitexactly. We expect that having
exact solution of the preconditioning step will provide us the detailed insights in the convergence, the
lowest iteration numbers and therefore, it can be used as reference for approximation metids for
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6.1. Closed-off problem

We consider a problem in a rectangular homogeneous medium governed by

(A+ k%) ¢ = (k* — 5r?) sin(rx) sin2ry), x=[0,1], y=10,1],

¢ =0, atthe boundaries (44)

The exact solution of (44) ig = sin(rx) sin(2ry). Different grid resolutions are used to solve the
problem with various wavenumbeks= 2,5, 10, 15, 20, 30,40 = 2 resembles the definite problem.
In Fig. 3, spectra of the preconditioned systemifet 5, a “slightly” indefinite problem, are shown. Al
spectra are bounded above by one.

Table 1 shows the computational performance in terms of number of iterations and computational time
to reach the specified convergence. For low frequencies, all preconditioners show a very satisfactorily
comparable performancé{, becomes less effective for increasing values ofvhere the number of
iterations increases somewhat faster thanMaror M;. For largek, preconditioning withM; gives
the fastest convergence. This behavior agrees with the theory. However, preconditioning/; wsh
expensive. As Problem 1 only requires real arithmetic operations, liingstroys the cheap operations.
Furthermore, the computational time shown in Table 1 is practically unacceptable due to the exact
inverse of M. In real applications, some cheaper approximate methods for the preconditioner will be
implemented.

05 ...... 0'5 .. 05
o o
g ot o] O CHE» 0 N oNest 0 S o
- o]
05t PR . —05}t- - . ~05} -
1 : » : 1 :
-1 0 1 -1 0 1 -1 0 1
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Fig. 3. Some extreme eigenvalues of the preconditioned systems of Problemil-wirand gridsize:~1 = 20.

Table 1
Computational performance of GMRES for 2-D closed-off problem. The precondi-
tioner is the shifted Laplace operator. 30 gridpoints per wavelength are used

k Mg Mq M;
Iter Time(s) Iter Time(s) Iter Time(s)
2 5 002 5 Q02 5 Q05
5 8 024 10 031 9 068
10 13 175 16 216 15 845
15 18 701 22 844 20 3926
20 26 2149 29 2432 26 19486
30 57 17004 60 17828 49 119032

40 103 72%4 99 70994 80 662348
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6.2. 2-D open homogeneous problem

The second problem represents an open problem allowing waves to penetrate the boundaries. We firs
look at a homogeneous medium in which waves created at the upper surface propagate. We consider

Ap + k2 = f, 2 =1[0,17,

f= 6(x - %)6@), x=[0,1], y =0,

$»=0, y=0,

%—ikd)zo, x=0,1,y=1, (45)
on

with k& constant inf2. The performance of GMRES with preconditionéiy, M1, and M, is compared.
In the construction of the preconditioning matrix, the same boundary conditions as in (45) are used.
Table 2 shows the number of GMRES iterations to solve Problem 2. For all frequendjes,
outperformsMy and M;. M still performs reasonably well comparedif. This is not explained by the
theory and may be due to the influence of Sommerfeld boundary conditions imposed in constructing the
preconditioning matrix, which is not taken into account in our analysis.
Fig. 4 shows the updated residual computed at each iteratian=d20. The residual curve indicates
slow convergence for the first few iterations and a convergence improvement later on, indicating a
superlinear convergence. The slow convergence part is mainly due to the small eigenvalues. Once they
are removed from the spectrum the convergence rate increases.

1

-2F

3t

_4+

10 20 30 40 50 60 70
Iterations

Fig. 4. Relative residual of preconditioned GMRES iteratidns, 20.r, = M~1(b — Apy).
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Table 2
Computational performance of GMRES to solve Problem 2. The preconditioner is
the shifted Laplace preconditioners. 30 gridpoints per wavelength are used

k Mo M1 M;
Iter Time(s) Iter Time(s) Iter Time(s)
2 6 005 7 Q06 6 Qo7
5 10 Q80 13 096 11 085
10 20 1172 25 1578 22 1470
15 33 6487 41 9231 37 8443
20 52 35803 67 44942 54 40106
30 102 338282 136 405972 97 281953
Table 3

Computational performance of GMRES, CGNR, and Bi-CGSTAB to solve Problem 3.
The preconditioner is the shifted Laplace operator. 30 gridpoint&peare used

kref GMRES CGNR Bi-CGSTAB
Mo My M; Mo My M; Mo My M;

2 7 9 8 10 13 11 5 6 5

5 14 19 16 22 31 26 10 13 10
10 34 42 36 77 83 65 50 53 26
15 64 82 63 210 160 122 206 115 36
20 107 136 91 - - 185 448 159 50
30 >150 >150 140 - - - - - 70

6.3. 2-D open inhomogeneous problem

In this example we repeat the computation of Problem 2 but now in an in-homogeneous medium. The
wavenumber varies inside the domain according to

kref 0< y< 1/31
k=1{ 15ket 1/3<y<2/3, (46)
2.0kref 2/3 < y < 1.0.

The number of gridpoints used is&k,s (i.€., approximately 30 gridpoints per reference wavelength) in
thex andy directions. Numerical results are presented in Table 3. Here, we compute the solutions using
full GMRES, and compare the computational performances with CGNR and Bi-CGSTAB.

In this harder problem}/; again outperforma4, and M, indicated by the smaller number of iterations
required to reach convergence. Comparediftp M, shows a less satisfactorily performance, and based
on our computational restrictions restart is needed. For GMRES, restarting is neeéded 20t

From Table 3, we also see that the preconditioned Bi-CGSTAB does not perform wd} fand M,
as already indicated in [14]. However, the convergence witlas the preconditioner is still satisfactory.
Compared to GMRES, Bi-CGSTAB preconditioned By, shows better convergence performance
(despite of requiring two preconditioning steps within one iteration)s;lis used as the preconditioner,
Bi-CGSTAB can be the alternative to replace full GMRES.

From Table 3, one also comtles that CGNR manot be a good iterative method to solve the
Helmholtz problem with the shifted Laplace preconditioners. This is mainly due to the squaring of the
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original eigenvalues in the case of the Normal Equations, causing too many small eigenvalues. With such
a spectrum, CG often exhibits very slow convergence. However, since our analysis for the preconditioners
is based on the normal equations, the resultS@GNR are inalded and confirm our analysis.

7. Conclusion

In this paper, a class of preconditioners based on the shifted Laplace operator for the Helmholtz
equation has been presented and analyzed. We find that the complex shifted—Laplace operator leads to th
most effective preconditioning matrix within this class of preconditioners. Numerical experiments have
been presented to show the effectiveness of the preconditioner. This preconditioner is easy to construct
and to extend to inhomogeneous medium cases. Our numerical experiments show that for the latter, this
preconditioner performs effectively. With respect to storage and CPU time requirements, we advocate
the complex shifted preconditioner in combination with Bi-CGSTAB.
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