
SEPRAN

SEPRA ANALYSIS

USERS MANUAL

GUUS SEGAL

USERS MANUAL

January 2013

Ingenieursbureau SEPRA
Park Nabij 3
2491 EG Den Haag
The Netherlands
Tel. 31 - 70 3871309

Copyright c©1993-2013 Ingenieursbureau SEPRA.

All Rights Reserved. No part of this publication may be repro-
duced, stored in a retrieval system or transmitted in any form or
by any means; electronic, electrostatic, magnetic tape, mechani-
cal, photocopying, recording or otherwise, without permission in
writing from the author.

UM Contents September 2006 1

Contents

1 Introduction

1.1 Some definitions used in SEPRAN

1.2 Boundary conditions

1.3 The solution of coupled problems at one mesh

1.4 The standard SEPRAN input file

1.5 The SEPRAN environment file

1.6 Manipulation of constants and variables (subroutine COMPCONS)

1.7 Definition of general constants

1.8 Overview of the SEPRAN commands

2 The pre-processing part of SEPRAN

2.1 Introduction

2.2 Input for program SEPMESH from the standard input file

2.2.1 Subroutine FUNCCOOR

2.3 Curve generators

2.3.1 Subroutine FUNCCV

2.3.2 Subroutine OWN CURVE

2.4 Surface generators

2.4.1 Surface generator GENERAL

2.4.2 Surface generator RECTANGLE

2.4.3 Surface generator QUADRILATERAL

2.4.4 Surface generator COONS

2.4.5 Surface generator PIPESURFACE

2.4.6 Surface generator MESHUS

2.4.7 Surface generator TRIANGLE

2.4.8 Surface generator PARSURF

2.4.9 Surface generator ISOPAR

2.4.10 Surface generator PAVER

2.4.11 Surface generator SPHERE

2.4.12 Surface generator FRAMESURF

2.5 Volume generators

2.5.1 Volume generator BRICK

2.5.2 Volume generator PIPE

2.5.3 Volume generator CHANNEL

2.5.4 Volume generator GENERAL

2.6 Some examples of meshes generated by SEPRAN

2.7 Special input for program SEPMESH from the standard input file

3 The computational part of SEPRAN

3.1 Introduction

3.2 Description of the input for program SEPCOMP

3.2.1 The main keyword START

3.2.2 The main keyword PROBLEM

UM Contents September 2006 2

3.2.3 The main keyword STRUCTURE

3.2.4 The main keyword MATRIX

3.2.5 The main keywords ESSENTIAL BOUNDARY CONDITIONS

3.2.6 The main keyword COEFFICIENTS

3.2.7 The main keywords CHANGE COEFFICIENTS

3.2.8 The main keyword SOLVE

3.2.9 The main keyword NONLINEAR EQUATIONS

3.2.10 The main keyword CREATE

3.2.11 The main keyword DERIVATIVES

3.2.12 The main keyword INTEGRALS

3.2.13 The main keyword OUTPUT

3.2.14 The main keyword BOUNDARY INTEGRAL

3.2.15 The main keyword TIME INTEGRATION

3.2.16 The main keyword CONTACT

3.2.17 The main keyword LOOP INPUT

3.2.18 The main keyword EIGENVALUES

3.2.19 The main keyword CAPACITY

3.2.20 The main keyword INVERSE PROBLEM

3.2.21 The main keyword REFINE

3.2.22 The main keyword NAVIER STOKES

3.2.23 The main keyword PRESSURE CORRECTION

3.2.24 The main keyword BEARING

3.3 Description of some function subroutines to be used

3.3.1 Subroutine FUNALG

3.3.2 Function subroutine FUNCSCAL

3.3.3 Subroutine FUNCFL

3.3.4 Subroutines FUNC1B and CFUN1B

3.3.5 Subroutines FUNCOL and CFUNOL

3.3.6 Function subroutines FUNCC1 and FUNCC3

3.3.7 Function subroutine FUNCTR

3.3.8 Function subroutine USERBOOL

3.3.9 Subroutine FUNCCR

3.3.10 Subroutine FUNCC2

3.3.11 Subroutine FUNCVECT

3.3.12 Function subroutines to get the values of constants and variables

3.3.13 Subroutines to put the values of constants and variables in common CUSCONS

3.3.14 Subroutines to get the positions of variables, constants and vectors in common
CUSCONS

3.3.15 Subroutine FUNCSOLCR

3.4 Description of the input for program SEPFREE

3.4.1 Introduction

3.4.2 Extra possibilities for the main keyword STRUCTURE

3.4.3 The main keyword ADAPT MESH

3.4.4 The main keyword ADAPT BOUNDARY

3.4.5 The main keyword STATIONARY FREE BOUNDARY

3.4.6 The main keyword INSTATIONARY FREE BOUNDARY

3.5 Description of some special files that may be used

UM Contents September 2006 3

3.5.1 Description of the file with the nodal point numbers

3.5.2 Description of the file with the nodal point numbers and corresponding values

3.5.3 Description of the file with the element numbers and corresponding values

3.5.4 Description of the file with the electrode pairs and corresponding capacities

3.6 Parallel computing

3.6.1 The command sepmakeparmesh

4 How to program your own element subroutines

4.1 Introduction

4.2 Subroutine ELEM

4.3 Subroutine ELEM1

4.4 Subroutine ELEM2

4.5 Subroutine ELDERV

4.6 Subroutine ELCERV

4.7 Function subroutine ELINT

4.8 Subroutine ELSTRM

5 The postprocessing part of SEPRAN

5.1 Introduction

5.2 General input for program SEPPOST

5.3 Print commands for program SEPPOST

5.4 PLOT commands for program SEPPOST

5.5 Special commands for time-dependent problems with respect to program SEPPOST

6 Some examples of complete SEPRAN runs

6.1 Introduction

6.2 Examples of elliptic equations with one degree of freedom per point.

6.2.1 An example of a simple potential problem.

6.2.2 An example of a simple potential problem with a user defined structure.

6.2.3 An example of a simple potential problem with a user defined element subroutine.

6.2.4 An example of a simple potential problem with a refinement of the mesh.

6.2.5 An example of how to compute derived quantities and integrals in combination
with a simple potential problem.

6.2.6 An example of how to use periodical boundary conditions in R2

6.2.7 An example of how to use periodical boundary conditions in R3

6.2.8 An example of the manipulation of scalars

6.2.9 An example of the use of the for loop

6.2.10 An example of the computation of capacities

6.2.11 An example of the solution of an inverse problem

6.2.12 An example of the use of arrays in the input block constants

6.3 Examples of non-linear problems.

6.3.1 An example of a simple Navier-Stokes problem.

6.3.2 An example of a simple Navier-Stokes problem with a user defined structure.

6.3.3 An example of a simple Navier-Stokes problem showing the use of the WHILE
option in the user defined structure.

6.4 Examples of time-dependent problems.

UM Contents September 2006 4

6.4.1 An example of a simple heat equation.

6.4.2 An example of a simple heat equation with a user defined structure.

6.4.3 An example of the solution of a coupled set of time-dependent equations.

6.4.4 An example of a stationary equation solved by the limit of a time-dependent
problem.

6.4.5 An example of a time-dependent equation coupled with a stationary equation

6.6 Examples of instationary free boundary problems.

6.6.1 An example of a simple Stefan problem

6.6.2 The dissolution of a disk-like particle in a disk-shape environment

6.6.3 The dissolution of two particles

6.7 Auxiliary examples.

6.7.1 An example of reading own data for postprocessing purposes.

6.8 Examples of eigenvalue computations.

6.8.1 Eigenvalues and eigenvectors for a potential problem in an L-shape.

7 References

8 Index

UM Introduction December 1993 1.1

1 Introduction

In the SEPRAN USERS MANUAL it is described how problems with SEPRAN can be solved. It
is supposed that the reader is already familiar with the SEPRAN INTRODUCTION.

The USERS MANUAL describes the complete input and usage of the main SEPRAN programs
like SEPMESH, SEPCOMP and SEPPOST. Besides that, it is described how function subroutines
and user element subroutines may be attached to these programs.

Besides the standard possibilities SEPRAN allows the user also to construct his own main program
using the standard subroutines SEPRAN provides. For the description of such usage the reader is
referred to the SEPRAN PROGRAMMERS GUIDE.

Finally the standard elements available as well as some examples of the usage of these standard
elements can be found in the manual STANDARD PROBLEMS.

In the next sections some remarks concerning the usage of SEPRAN, the treatment of boundary
conditions and so on is given.
Section 1.1 gives some general definitions used throughout the SEPRAN manuals. It is advised to
read these definitions before consulting the rest of the manuals.
In Section 1.2 the various types of boundary conditions that may be used in SEPRAN are treated.
This section also describes which actions should be taken in order to prescribe these types of
boundary conditions.
Section 1.3 treats how to couple problems on one mesh. For example if one wants to solve the
Navier-Stokes equations coupled with the temperature equation it is possible to solve the coupled
Boussinesq equations containing velocities and temperature as unknowns. But it is also possible to
solve first the velocity by the standard Navier-Stokes equations, and then the temperature from the
heat equation. This process may be used repeatedly. In that case we have two (coupled) problems
at one mesh.
In Section 1.4 some general remarks concerning the input file are given.
Section 1.5 treats the SEPRAN environment file. This file permits you to define defaults with
respect to SEPRAN globally or in a subdirectory only.

Chapter 2 describes the complete input for the program SEPMESH including the three-dimensional
input.
In Chapter 3 the complete input for program SEPCOMP is described.
How to program and add your own elements is the subject of Chapter 4.
Chapter 5 is devoted to the input for program SEPPOST.
Finally Chapter 6 treats some examples.

UM Definitions November 1995 1.1.1

1.1 Some definitions used in SEPRAN

Although it is supposed that the reader is familiar with the finite element method (FEM), for the
sake of completeness, a definition of what will be a FEM in this manual will be given.

General definition

• We consider a problem defined over a finite region Ω in Rn (n = 1, 2, 3, . . .), for example
an interval in R1, a rectangle in R2.

Ω is divided into subregions which will be called elements.

• In each element a number of nodal points is selected. In each nodal point some degrees of
freedom are chosen, not necessarily the same for each point. The number of degrees of freedom
is problem dependent.

• Characteristic is the definition of an approximate solution of the problem, that will be ex-
pressed in the selected degrees of freedom. In that way a system of equations arises. Depending
on the problem this system can be linear, non-linear, or of differential type.

• An essential part of the FEM is the storage of the contributions of each element to this
system of equations into an element matrix respectively an element vector. Using a well
known ”adding process”, the system of equations is computed.

Now we shall give some of the definitions frequently used throughout the SEPRAN manuals.

Some definitions

Standard Element The region is divided into NELGRP different types of elements (see the intro-
duction). Each group of elements is represented by a standard element. This is not an element
of the mesh, but gives the structure of the group of elements it represents. For example it
defines the shape of the elements, the number of nodal points, and in most cases also the
number of degrees of freedom, the type of approximation, and the differential equation that
is discretized.

Degrees of freedom degrees of freedom refer to the unknowns. Sometimes the degrees of freedom
refer to all unknowns in the mesh, in other cases only the unknowns in a nodal point are meant.

Prescribed degrees of freedom Some boundary conditions explicitly prescribe the values of the
unknowns. For example the temperature given in a part of the boundary is such a prescribed
boundary condition. Boundary conditions of this type are called essential boundary condi-
tions. The corresponding unknowns are referred to as prescribed degrees of freedom. The
number of unknowns is reduced by these boundary values.

Arrays of the structure of the solution vector The vector that contains the degrees of free-
dom in the nodal points is called the solution vector. Vectors that have exactly the same
degrees of freedom in the nodal points, are called vectors with the structure of the solution
vector.

Arrays of special structure Not all quantities that are computed, will be computed in exactly
the same points as the solution vector and with the same number of degrees of freedom in the
nodal points. Suppose for example that the solution φ of a problem is computed in the three
nodal points of a linear triangle. Let furthermore the gradient of φ: u = ∇φ be computed
in the same nodal points. Since the gradient has two components, it can not be stored in an
array with the structure of the solution vector. Therefore an extra type of arrays is introduced,
the so-called arrays of special structure. These arrays are defined in exactly the same way as
solution vectors, with the only difference that the number of degrees of freedom in the nodal
points differs from that of the solution vector. See for example Figure 1.1.1

UM Definitions November 1995 1.1.2

φ

φ

u

u

a b

1

3

2

φ
3

1

2

u

Figure 1.1.1: Standard elements: type a corresponds to solution vector, type b to array of special
structure

Various types of arrays of special structure are permitted in one program. These arrays are
defined in the input of program SEPCOMP, input block ”PROBLEM”, and different types
get a different sequence number. For standard problems, as defined in the manual ”Standard
Problems”, the possible arrays of special structure are defined, and no extension is possible.

Arrays of special structure can be used in most SEPRAN subroutines, however, they can
never be the result of solution subroutines, nor is the large matrix based on a structure
corresponding to such a vector of special structure.

Arrays that are defined per element Besides the arrays of special structure, where degrees of
freedom are defined in nodal points, it is also possible to define quantities related to elements.
For example when one stores the pressure in the centroid of an element, in fact this pressure
is related to the element, and not to some nodal point. Degrees of freedom of this type are
stored in a vector of the third category, the arrays that are defined per element. These arrays
do not need any definition in the input, they are defined element-wise and it is supposed that
the number of quantities is constant in each element. When an element has less then the
maximal number of quantities related to elements, the remaining positions are supplied with
zeros. Boundary elements, as defined in the input block ”PROBLEM”, are excluded from
these arrays.

Boundary Elements Boundary elements are only used for special types of boundary conditions,
the so-called natural boundary conditions. These elements do not influence the mesh, and
hence also not the renumbering process. It is not permitted that a boundary element, belongs
to more than one element, except when the boundary element is common for all the elements
it belongs to. When a user wants to define special boundary conditions that require boundary
elements connected to more elements, he must define these elements as regular elements (i.e.
to be generated by the mesh generator), for example line elements, and not as boundary
elements. These elements influence for example the renumbering process.

Coupled problems In some cases it is necessary to solve more than one equation separately on
the same mesh. In many occasions the solutions of the separate equations influence the
coefficients of the other equations and some iteration procedure may be necessary. If more
than one problem must be defined on the same mesh we speak about coupled problems. To
each of these problems a so-called problem sequence number is assigned. For each problem
number a new problem may be defined. In Section 1.3 more about coupled problems is
mentioned.

Element groups Each element with a different property is represented by a different standard
element. Each of these elements are clustered in a series of elements, the so-called element
groups.
Hence element groups are used to distinguish between elements with different properties.

UM Definitions November 1995 1.1.3

Boundary element groups Each boundary element with a different property is represented by a
different standard element. In the same way as element groups, for these elements boundary
element groups are defined.

Remarks

1. Abrupt refinements in a mesh are suboptimal; ensure that neighboring elements do not differ
to much in size.

2. Compatibility of nodal points

It is not necessary for the elements of neighboring submeshes to be of the same type. Although
the package allows for nodal points on common boundaries of elements to belong to only one
or few of them, the use of this facility is not recommended. In general nodal points on common
boundaries must belong to all the elements that share these boundaries.

3. Compatibility of degrees of freedom

It is not necessary that common nodal points in different elements, have the same number
of degrees of freedom. However, SEPRAN supposes that the common number of degrees of
freedom, corresponds to exactly the same degrees of freedom. Hence it is allowed to have three
degrees of freedom in a nodal point of an element, and to have only one degree of freedom in
the same nodal point of an another element, but in that case the first degree of freedom in
that nodal point is supposed to be the same for both elements. The user must be very careful
when using this facility.

UM Boundary conditions January 2013 1.2.1

1.2 Boundary conditions

In this section the various possible boundary conditions in SEPRAN are considered. It is treated
how these boundary conditions may be introduced in the program.

1.2.1 Essential boundary conditions

Boundary conditions are called essential if they prescribe the values of degrees of freedom at a
boundary. The user must indicate in the input block ”PROBLEM” on which boundaries which
degrees of freedom are prescribed. The values of the boundary conditions must be filled with the
aid of the input block ”ESSENTIAL BOUNDARY CONDITIONS” or alternatively with the input
block ”CREATE”.

1.2.2 Natural boundary conditions

Some boundary conditions give rise to the evaluation of boundary integrals. These boundary
conditions are called natural. For a definition of which boundary conditions are natural for a
specific problem the user is referred to the manual ”Standard Problems” For standard natural
boundary conditions, boundary elements must be introduced in the input block ”PROBLEM”.
In some special cases, for example when the finite element method is coupled with an integral
equation method in the outer region, the elements necessary for the evaluation of the boundary
integrals overlap more than one inner element. In that case the user must use line elements or
surface elements instead of boundary elements. These line elements and surface elements must
be created by the mesh generator (SEPMESH). The actual evaluation of the boundary integrals is
carried out in program SEPCOMP in the part building of matrices and right-hand sides (subroutine
BUILD).

1.2.3 Periodical boundary conditions

In some problems periodical boundary conditions are prescribed on opposite boundaries. For ex-
ample in Figure 1.2.1, the boundaries I and III may have periodical boundary conditions. In that
case the corresponding degrees of freedom must be identified. This is done in the problem file.

.

.

.

..
.
.
.

. .

IIII

IV

II

Figure 1.2.1: Periodical boundary conditions on sides I and III.

For an example of the use of periodical boundary conditions the user is referred to the Sections
6.2.6 (2D) and 6.2.7 (3D).

1.2.4 Essential boundary conditions not connected with degrees of free-
dom

Sometimes essential boundary conditions are prescribed that are not connected directly with the
degrees of freedom of the problem. For example in Figure 1.2.2 the condition u · n = 0 along the

UM Boundary conditions January 2013 1.2.2

skew boundary II (free surface condition) is an essential boundary condition.

x

y V

IV
III

II
I

Figure 1.2.2: Free surface condition along boundary II

However, this condition does not prescribe the degrees of freedom u and v of the problem, but a
linear combination of them. In order to incorporate this boundary condition it is necessary to make
a local transformation of unknowns along boundary II and to introduce new unknowns un (u · n)
and ut (u · t) with n the outward normal and t the unit tangential vector. It is then possible to
prescribe the unknown u · n without fixing u · t.
The local transformations must be defined by the user in the input block ”PROBLEM”. See
”local transformations”. Essential boundary conditions must be introduced in the input block
”PROBLEM” and the input block ”ESSENTIAL BOUNDARY CONDITIONS” or ”CREATE” for
the transformed degrees of freedom. For output purposes as well as the parts of SEPCOMP that
use solution vectors (for example solution of linear and non-linear equations and computation of
derivatives) the original degrees of freedom are submitted to the user.

1.2.5 Boundary conditions of the type u is constant along a part of the
boundary

When the constant is known this condition is an essential boundary condition and hence reduces to
the boundary conditions given in 1.2.1 or um-chap-1.2.4 However, for some problems we have the
boundary condition u is constant along a part of the boundary, with the constant unknown. This
may be for example the case when we consider the flow in a channel with an obstacle in it. See
Figure 1.2.3.

III

II

V

IV

I

Figure 1.2.3: Flow in a channel with obstacle.

Suppose we want to compute the stream function, then in general we have given boundary conditions
along the boundaries I, II, III and IV, but along boundary V we have the boundary condition Ψ
is unknown constant. Boundary conditions of this type must be defined by the user in the input
block ”PROBLEM”. See ”UNKNOWNCONSTANT”. (3.2.2.6)

UM Boundary conditions January 2013 1.2.3

1.2.6 Boundary conditions of the type ψr = c2ψl + c1

An extension of the notion of periodical boundary conditions are boundary conditions of the type
ψr = c2ψl+ c1, combined with the continuity equation ∂ψ

∂n |l = ∂ψ
∂n |r, where r is the so-called ”right”

boundary and l the ”left” boundary. See Figure 1.2.4 for a definition of these boundaries.

l r

Figure 1.2.4: Boundary conditions of the type ψr = c2ψl + c1 on the sides r and l

If c1 = 0, c2 = 1 this boundary condition reduces to a standard periodical boundary condition. To
apply boundary conditions of this type, the user must define them as periodical boundary conditions
with a factor and a constant in the input block ”PROBLEM”. All degrees of freedom in nodal points
of boundary r are identified with the corresponding degrees of freedom on boundary l times c2 plus
the constant c1.

A special application of boundary conditions of this type is when separate regions with different
coefficients are connected. In that case the equation ∂ψ

∂n |l = ∂ψ
∂n |r, changes into flux left = - flux

right × c2.
Examples of the use of these boundary conditions can be found in the manual Standard Problems,
Sections 3.1.9, 3.1.10 and 3.5.2.

UM coupled problems December 1993 1.3.1

1.3 The solution of coupled problems at one mesh

For some problems it is necessary to solve more than one equation at a time on the same mesh. In
the simple case first one equation is solved and next the second one using the solution of the first
one to create an initial estimate or to compute the coefficients of the differential equation.
In general, however, these combinations may be much more complex. For example it is possible
that a time-dependent temperature equation is solved and that at certain times the stresses in the
material are computed as function of the time. Or one may solve a system of time-dependent partial
differential equations where the solution of the other equations is used to compute the coefficients
of the next one.

Another typical example is formed by the stationary non-linear Boussinesq equations, which de-
scribe temperature dependent flow. In these equations the unknowns are velocities, pressure and
temperature. The Boussinesq equations consist of a set of 2 (2D) or 3 (3D) momentum equations,
a continuity equation and a temperature equation. Consult the manual Standard problems for the
exact formulation.
Now there are two possible ways to solve these equations. In the first one, the coupled approach all
equations are solved simultaneously. The advantage of such an approach is the faster convergence.
However, since the number of unknowns may be large in practice, the computation time may be
large due to the necessity of solving large linear systems per iteration step. An alternative, com-
monly used approach is first to solve the momentum equations coupled with the continuity equation
using an estimate of the temperature in order to compute the right-hand side and then to compute
the temperature by solving a convection-diffusion equation based on the just computed velocity.
This may result in a better estimate of the temperature and the process may be repeated using this
new temperature. Although the convergence of this process may be slower, it allows the solution of
smaller systems of equations.

It is clear that in the last approach we have to solve two different problems on the same mesh. For
that purpose in SEPRAN the notion problem sequence number or abbreviated problem number has
been introduced. Each of these problems is provided with a problem sequence number. Problem
sequence numbers are numbered from 1 to NPROB and are essential to distinguish between the
various problems. The user must introduce these problem sequence numbers in the input part
”PROBLEM”. In this part also the type of problem connected to these problem sequence numbers
is described. In many other input parts it is possible to connect quantities to specific problem
sequence numbers. Vectors corresponding to a problem contain the problem sequence number in
their administration and hence SEPRAN itself recognizes to which problem they belong. Of course
the first time they are created this information must be made available.

UM The SEPRAN input file January 2013 1.4.1

1.4 The standard SEPRAN input file

The input from the standard input file is organized in records. A record is a line in the input file.
Records must always be at most 240 positions long.
SEPRAN requires a special form of free format input.

The input file may be subdivided into several parts:

Part CONSTANTS In this part constants are defined and given a name. These constants may
be used in the rest of the input file.
If this part is used it must always be the first part of the file.

Part COMMANDS Contains the actual input

Part SET COMMANDS may be used anywhere in the input file.

Part INCLUDE may be used anywhere in the input file.

Part CONSTANTS The standard input file may start with a so-called constants part,provided
one of the standard SEPRAN programs is called (SEPMESH, SEPCOMP or SEPPOST). For
the use in user programs consult the Programmers Guide.
This part itself consists of three possible subparts that may be used in arbitrary order. Each
of these parts must end with an END line, and each subpart itself may be used only once.
It is always necessary that this part is read as first input by SEPRAN.
The following subparts are available:

CONSTANTS

DEBUG_PARAMETERS

GENERAL_CONSTANTS

Each of these subparts have the following meaning:

Part CONSTANTS Part to define user defined constants, vector names and variable names.
This part has the following layout:

CONSTANTS

INTEGERS

name = value

name

name = value

name = value1, value2, value3, ...

REALS

name = value

name = value

name = value

name = value1, value2, value3, ...

VARIABLES or SCALARS

name = value

name = value

name

name = value1, value2, value3, ...

VECTOR_NAMES

name

name

UM The SEPRAN input file January 2013 1.4.2

STRINGS

name = value

name

END

These records have the following meaning

CONSTANTS (mandatory). This keyword indicates that constants will be defined.
If this keyword is not present as first keyword in the file it is not possible to define
constants.

INTEGERS This keyword indicates that some integer constants will be defined.
It must be followed by the integers to be defined.
The layout of the integers is:

[sequence number] name_of_constant [value]

The square brackets ([and]) indicate that these parts are optional. The brackets
itself have no meaning in the input and are not required.
The sequence number defines a sequence number with respect to the integer constant.
Only sequence numbers between 1 and 1000 may be used. If a sequence number
appears twice the last presence is used and a warning is issued.
The sequence numbers indicate how the integer constants are stored internally. The
user can address these constants internally by their sequence number and in that
case he must know the relation between sequence number and integer constant.
If no sequence number is given, the next one is used.

name of constant is mandatory and defines the name of the constant. The name
must start with a letter and may consist of letters, digits and underscore signs only.
All other signs are treated as separation sign, including the blank space. The name
of the constant may be used in the rest of the input file as reference to the constant.

value must be a number according to standard FORTRAN rules. Spaces in the
number are treated as separation character. If value is given the constant gets an
initial value.
If a series of values is given the integer is considered as an integer array with length
equal to the number of values. In that case length sequence numbers are used. Array
values may be addressed as name of constant(j), with j the position. At this moment
an array with index may only be referred to in the input block STRUCTURE by
using:

SCALAR j = name_of_constant(3)

REALS This keyword indicates that some real constants will be defined.
It must be followed by the reals to be defined according to exactly the same rules
as for the integers. Reals and integers have there own sequence numbers. Names of
reals must be different from the names of the integers.
If a series of values is given the real is considered as a real array with length equal to
the number of values. In that case length sequence numbers are used. Array values
may be addressed as name of constant(j), with j the position. The same limitations
as for integers are valid.

The following constants are available without declaration in the constants block.

pi represents π.

VARIABLES This keyword indicates that some variables will be defined.
It must be followed by the variables to be defined according to exactly the same
rules as for the integers.
The difference between a variable and a real or integer constant is the following:
Constants that are used in the input file will be interpreted at the moment they
are read. Then the value of the constant is substituted instead of the name of the
constant. Hence if the constant changes later on this has no effect anymore.

UM The SEPRAN input file January 2013 1.4.3

Since all input is read at the start of the input, this means that there is hardly any
possibility to change the constant, except as described in Section 1.6.

On the other hand variables are connected to the scalars as defined in the input file.
See Section 3.2.3.
Scalars are evaluated at the moment they are used and may be recomputed during
the execution of the program. Hence they allow a larger flexibility to manipulate.
Internally this means that the value of the variable is not substituted during reading,
but that a reference to the variable is made. For more details about the storage of
the variables, the reader is referred to Section 1.6.
At this moment variables can only be used in combination with the keyword STRUC-
TURE as defined in Section 3.2.3.
Instead of VARIABLES also SCALARS may be used

The following variables are available without declaration in the constants block.

time represents the time during a time integration.

In general it is not necessary to define scalars or variables explicitly in this sub-block.
If by the context it is clear that a variable is defined, for example by var = value

or var = expression the variable is declared implicitly. Mark that this is only pos-
sible in the structure block.

VECTOR NAMES This part is used to define vector names explicitly. In this way
also the sequence of these vectors i prescribed.
In general it is not necessary to define vectors explicitly in this sub-block. If by the
context it is clear that a vector is defined, for example by vector = vector expression

or by other statements in the structure block, the vector is declared implicitly.
If a vector name is defined in sepcomp, this name is also known in the postprocessing
program seppost.
Just as for integers, vector names may be preceded by a sequence number.

The following vector names are available without declaration.

COOR defines the vector of coordinates (ndim values per point).

X COOR defines the vector of x coordinates (1 value per point).

Y COOR defines the vector of y coordinates (1 value per point).

Z COOR defines the vector of z coordinates (1 value per point).

STRINGS opens a set of strings that is stored. These strings may be used for example
for print purposes.

END (mandatory), defines the end of the ”CONSTANT” block.

The block CONSTANTS must always be read as first block. Simple expressions are al-
lowed in the SEPRAN input file, however, if the user wants to manipulate with constants
in a complex way he may also add a user written subroutine COMPCONS as described
in Section 1.6. This subroutine allows the user to change constants and in this way use
complex expressions based on FORTRAN.
Subroutine COMPCONS is called only once, immediately after the reading of the con-
stants block.

The user may get the values of all the constants and variables in each user written
subroutine, using the function subroutines:

GETINT 3.3.12.1,

GETCONST 3.3.12.2 and

GETVAR 3.3.12.3.

UM The SEPRAN input file January 2013 1.4.4

The positions of the variables or constants in common block CUSCONS can be found
using the subroutines

GETNAMEVAR 3.3.14.3

GETNAMEINT 3.3.14.1 and

GETNAMEREAL 3.3.14.2.

To get the sequence number of solution array use subroutine PRGETNAME 3.3.14.4.

To put values in the commons the user may use the subroutines:

PUTINT 3.3.13.1,

PUTREAL 3.3.13.2 and

PUTVAR 3.3.13.3.

Part DEBUG PARAMETERS This part is used to define some debug options. It is
meant for the experienced user and activates printing and plotting of intermediate quan-
tities.
This part has the following layout:

DEBUG_PARAMETERS

parameter_1

parameter_2

.

.

END

For a definition of the possible parameters the user is referred to Section 1.3 of the
Programmers Guide.

Part GENERAL CONSTANTS This part is used to define some general constants that
are used in the whole program.
This part has the following layout:

GENERAL_CONSTANTS

parameter_1 = ...

parameter_2 = ...

.

.

END

For a list of general constants that can be set, see Section 1.7.

Part COMMANDS We distinguish between so-called COMMAND records, data records and
comment records.

A COMMAND record consists of a name, which may not be abbreviated and may
not contain any spaces. Sometimes this name is followed by extra information.

A keyword is defined as a set of characters consisting of letters and the underscore sign ()
only. The SEPRAN input is in general case insensitive, which means that there is no difference
between capitals and small letters. The only exception is the input of texts to be used for
output purposes.

A data record contains additional information. Each data item that is described must be put
in one record, unless stated otherwise.
Data records are generally of two forms:

VARIABLE = (data1, data2, . . .)

or

VARIABLE = FUNCTION (data1, data2, . . .)

UM The SEPRAN input file January 2013 1.4.5

where VARIABLE is some name and data1, data2 are names consisting of letters and digits
or digits only.
FUNCTION is some function of the data.
The equal sign, parentheses and colons are special characters.

For example when the user must give the co-ordinates of point 1 (P1), which are for example
(0 , 0), a typical data record would be:

P1 = (0 , 0)

and when curve 1 (C1) is a straight line from point P1 to point P2, consisting of 4 equidistant
elements of 2 nodal points each, the data record would be:

C1 = LINE 1 (P1 , P2 , NELM = 4)

There are no restrictions on the place of data in a data record, as long as its length is not
longer than 80 positions. Leading and trailing spaces between names, numbers and special
characters are allowed in data records. Spaces and commas are always treated as separators
of information.
When a data record needs more than 240 characters, the user may end the record with the
character &, and continue in the next record. The character & is treated as a space.

Names in data records (not in command records!) may be abbreviated by using as much
characters as necessary to distinguish between the possible forms of input, however, this does
not improve the readability of the data and should therefore be avoided. Moreover, since
the number of allowed input forms is generally increasing, the abbreviation may become
ambiguous in the future. Colons in data records are essential and may not be removed!
Items in data records must always be given in the order as indicated in the manual. However,
if the format NAME = EXPRESSION for the variable is used, the order is not important.

When parameters are omitted in a data record, default values are used.

Numbers in records are represented as constants, for example: 1.0, 1.0D0, 1.0E-1, 1, .01 ; they
may not contain any spaces. The first character of a number must be a digit, minus sign or
a point.

Besides numbers the user may also make use of the constants (reals and integers only) defined
in the block CONSTANTS.
This is done by using the name of the variable. When reading this constant the value of the
constant is immediately substituted. Mark that substitution takes place when reading, so if
the constants get a different value in the program this has no effect unless the reading of the
input is done afterwards. How to do that is only described in the Programmers Guide.

expressions The SEPRAN input file allows for simple expressions.
Within the expressions you may use standard brackets (and), and the operators +, −, ∗
(multiplication), / division and ** or ^ as power symbol. Furthermore you may use any of
representations of the numbers given before and also previously defined constants may be
used.
Special mathematical symbols
At this moment only the number pi, hence given as pi is available.
The following mathematical functions are available sqrt, exp, cos, sin, tan, arcsin, arccos,
arctan and log (natural logarithm). In the input file the are represented by

sqrt

exp

sin

cos

UM The SEPRAN input file January 2013 1.4.6

tan

asin

acos

atan

log

A typical example might be:

a = exp(sin(2+cos(3))+5)

Variables or vectors may not be used in an expression, except stated otherwise.
The standard FORTRAN priority rules for operators are applicable.

comments There are three ways of providing comments to the input file. The first one defines a
complete record as a comment line: An asterisk (∗) in the first column of a record means that
the line is considered as a complete comment record, all other positions are free. Comment
records may be placed anywhere in the input, except between continuation records. Blank
records are also allowed.
The next possibility is to use comments within other types of lines. All input after a hash
(#) or an exclamation mark (!) is interpreted as comment for that line. So data followed by
may contain explaining comments after that #.

An extra option that is available, is that of the so-called set commands.

SET COMMANDS The user may place the following SET COMMANDS anywhere in the stan-
dard input, provided a read command is given by one of the standard SEPRAN subroutines.
So the best place to give the set commands is immediately before or after the first record to
be read by a subroutine, or before the END record. If placed after the END record, it is read
by the next subroutine requiring input from the standard input file.

The next SET COMMANDS are available:

SET WARN ON (default)

SET WARN OFF

SET TIME OFF (default)

SET TIME ON

SET OUTPUT OFF (default)

SET OUTPUT ON

SET OUTPUT NONE

SET OUTPUT LEVEL=l

SET MAX ERROR=e

SET MAX WARN=w

SET SKIP ON

SET SKIP OFF

The meaning of these commands is as follows:

If WARN is set off, then no warnings are printed from that moment. WARN ON reactivates
the printing of warnings.
From the moment TIME ON is read, the actual CPU time from the start of the program is
printed for each next SEPRAN subroutine, TIME OFF suppresses this printing.
OUTPUT ON activates the printing of the length used in the BUFFER array, as well as the
length of variable length user arrays. OUTPUT OFF deactivates this printing. OUTPUT
NONE deactivates all printing of SEPRAN messages, except for error messages and the print-
ing explicitly required by output or print subroutines. So even the echoing of input records is

UM The SEPRAN input file January 2013 1.4.7

stopped.
SET OUTPUT LEVEL=l defines the level of output produced by SEPRAN. At this moment
the following values of l are available:

-1 (equivalent to SET OUTPUT NONE)

0 (equivalent to SET OUTPUT OFF)

1 (equivalent to SET OUTPUT ON)

2 gives the same output as l=1, but besides that also gives a message for each writing to
or reading from the SEPRAN direct access file (files 1 to 4)

3 gives the same output as l=2, however, also each call of a memory management subrou-
tine is recorded to the output file.

SET MAX WARN=w defines the maximal number of warnings that is printed before the
printing of warnings is suppressed. The default value is w=10.

SET MAX ERROR=e defines the maximal number of errors that is printed before the program
is terminated. The default value is e=10.

SET SKIP ON may be used in the input file to skip the next lines until a SET SKIP OFF
command is found. The lines between are read but not printed nor interpreted. In this way
several options may be available in the input file from which only one is used. An extra option
that is available, is that of the so-called set commands.

INCLUDE Anywhere in the input the user may include another input file using:

include ’file_name’

Here file_name must be a file name between quotes. This file itself is included in the input
file and therefore may also contain include files.
If the first 7 letters of the file name are SPHOME/ (capitals) then this name is replaced by
the name of the sepran home directory followed by a /.

UM The SEPRAN input file January 2013 1.4.8

Example of the use of constants.

Suppose that the user wants to generate a mesh for a rectangle with size a× b, where a and b may
have different values for different experiments, then the following input file for SEPMESH might
be used.

constants

integers

nelm1 = 10

nelm2 = 15

reals

a = 2

b = 3

end

mesh2d

points

p1 = (0, 0)

p2 = (a, 0)

p3 = (a, b)

p4 = (0, b)

curves

c1 = line1(p1,p2,nelm=nelm1)

c2 = line1(p2,p3,nelm=nelm2)

c3 = line1(p3,p4,nelm=nelm1)

c4 = line1(p4,p1,nelm=nelm2)

surfaces

s1 = general3 (c1,c2,c3,c4)

plot

end

In this example it is also allowed to use an expression like:

constants

integers

nelm1 = 10

nelm2 = 1.5 * nelm1

reals

a = 2

b = 3

end

mesh2d

points

p1 = (0, 0)

p2 = (a, 0)

p3 = (a, b)

p4 = (0, b)

curves

c1 = line1(p1,p2,nelm=nelm1)

c2 = line1(p2,p3,nelm=nelm2)

c3 = line1(p3,p4,nelm=nelm1)

c4 = line1(p4,p1,nelm=nelm2)

surfaces

s1 = general3 (c1,c2,c3,c4)

plot

end

Both examples produce the same result.

UM environment file December 1993 1.5.1

1.5 The SEPRAN environment file

The SEPRAN environment file is used to define some general constants, file reference numbers,
names of files and types of plotting devices. The environment file has the name sepran.env and is
defined as a standard ASCII file. This file consists of comment records and records with a definition.

The standard sepran.env file can be found in the SEPRAN subdirectory instal. This file can only
be changed by the SEPRAN installation officer. However, it is also possible to make a copy of this
file and put it in your own directory. This copy may be changed according to your own personal
preferences. A disadvantage is that this copy is only valid in the directory where it is available, and
programs running from other directories do not read this file.
Each SEPRAN program that is started checks if there is a file named sepran.env in the local direc-
tory. If this file is available the file is read and the contents are used by the program. If this file does
not exist the general sepran.env file from the directory SEPRAN/instal is used, where SEPRAN is
a substitute for the SEPRAN home directory.

The sepran.env file is a standard file with comment records and data records. A comment record
starts with an asterisk, the data records start with an explanation followed by a colon (:), followed
by the actual data. The sepran.env file has, in contrast to most other input files, a fixed sequence.
Data records may not be interchanged. If this is done error messages may be the result, or more
severely, the program may produce incomprehensible messages.

Contents of the sepran.env file

The present version of the sepran.env file contains the following data records (in that sequence):

name of SEPRAN home directory
version number of environment file
type of operating system
name of computer
type of computer
version name of SEPRAN
name of executable
number of characters in a word
approximation of infinity
machine accuracy
accuracy of a half real
Unit number for reading of SEPRAN input
Unit number for writing of SEPRAN output
Unit number for error messages
Unit number for file 1
Unit number for SEPRAN backing storage file
Unit number for temporary file
Unit number for file containing menus
Unit number for default SEPRAN plot file
Unit number for mesh output file
Unit number for file sepcomp.inf
Unit number for file sepcomp.out
Default SEPRAN plot file (formatted/unformatted)
file 10 (formatted/unformatted)
file 74 (formatted/unformatted)
append mode (yes/no)
Name of file 1
Name of file 4
Name of file for menus

UM environment file December 1993 1.5.2

Name of temporary file
Name of SEPRAN input file
Name of SEPRAN output file
Name of (Binary mesh output file)
Name of sepcomp.inf (73)
Name of sepcomp.out (74)
Name of SEPRAN backing storage file
lenwor
Record length for file 1 (at least 1000)
Record length SEPRAN backing storage file
Record length for scratch file
defplo
cm
small
wide
aleng
posdev
nameplt
default plotter for interactive mode
default plotter for hard copies
carriage
isite
tem2
tem3
tem4
tem5
tem6
tem7
tem8
tem9
tem10

explanation of the data records

name of SEPRAN home directory
The complete path name of the SEPRAN home directory must be given.

version number of environment file
Do not change this number.

type of operating system
Answers that are recognized are:

msdos
unix
vax/vms

name of computer
Host name of the computer.

type of computer
Give type number from table below.

1 IBM
2 Cyber (NOS/VE)
3 Apollo (Unis/Aegis)
4 HP 9000 (HP/UX)
5 Unix
6 VAX VMS
7 Harris

UM environment file December 1993 1.5.3

8 Cray
9 IBM PC 386 + MSDOS + FTN77/386
10 CONVEX
13 Alliant
14 unknown

version name of SEPRAN
This item is generally not used.

name of executable
This item is generally not used.

number of characters in a word
Give an integer number.

approximation of infinity
The largest real (or double precision) number on the computer.

machine accuracy
The machine accuracy must be given as real number.
For example at a 32 bits computer with double precision arithmetic: 1d-16

accuracy of a half real
The machine accuracy for single precision reals.

Unit number for reading of SEPRAN input
if 5 is given usually standard input is meant, without file name.

Unit number for writing of SEPRAN output
if 6 is given usually standard output is meant, without file name.

Unit number for error messages
Unit number for file 1
Unit number for SEPRAN backing storage file
Unit number for temporary file
Unit number for file containing menus
Unit number for default SEPRAN plot file

Except the unit number iref plot for the default plot file, SEPRAN uses two
extra numbers for plotting files. These numbers are:
iref plot + 1 for HPGL and Postscript files,
iref plot + 3 for Tektronix (screen).

Unit number for mesh output file
Unit number for file sepcomp.inf
Unit number for file sepcomp.out
Default SEPRAN plot file (formatted/unformatted)

Indicates if the neutral SEPRAN plot files must be written in formatted or unformatted form.
Name of file 10 (formatted/unformatted)

Indicates if the mesh output file must be written in formatted or unformatted form.
Name of file 74 (formatted/unformatted)

Indicates if the sepcomp.out file must be written in formatted or unformatted form.
append mode (yes/no)

Indicates if the output must be appended to an existing file (yes) or not (no).
This possibility is usually not available.

Name of file 1
This name should not be changed.

Name of file 4
This name should not be changed.

Name of file for menus
This name should not be changed.

Name of temporary file
If no name is given a scratch file is used.

Name of SEPRAN input file
If no name is given standard input is used.

Name of SEPRAN output file

UM environment file December 1993 1.5.4

If no name is given standard output is used.
Name of (Binary mesh output file)
Name of sepcomp.inf (73)
Name of sepcomp.out (74)
Name of SEPRAN backing storage file
lenwor

Record length of some direct access files:
Record length in words.
In the open statement it is multiplied by lenwor

Record length for file 1 (at least 1000)
Do not change this length

Record length SEPRAN backing storage file
Record length for scratch file
defplo

Default plot size for pictures in cm’s.
cm

Multiplication factor to transform all quantities into cm’s.
If the plot package is based on cm’s, cm should be 1, is it
based on inches cm should be .3937.

small
Width of small paper in cm’s.

wide
Width of wide paper in cm’s.

aleng
Maximal length of plot paper in cm’s.

posdev
Default plot package, is used in non-interactive mode
Available packages:

fb Write input parameters in binary form to default SEPRAN plot
files, with names nameplt.001, nameplt.002 ...

fa Write input parameters in ascii form to default SEPRAN plot
files, with names nameplt.001, nameplt.002 ...

Each of these files contains information about one picture
The files may be plotted later on, for example by SEPDISPLAY

f1 Write formatted, make only 1 output file (nameplt)

The next packages are meant for immediate plotting, without
the intermediate step of a plot file

a Apollo code
c CalComp code
g GKS code
cg CGI code
hh StarBase code for HP-display, Color HiRes (1280x1024)
hl HP-display, Color LowRes (1024x768)
hm Same, Monochrome LowRes (1024x768)
hx StarBase code under X-Windows
t Tektronix 4010 code
tk Tektronix 4010 code, using MS-Kermit emulation
tp Tektronix 4010 code, using Plot-10 library
v PC, running FTN77/386 with VGA or EGA card

UM environment file December 1993 1.5.5

Possible hard copy devices:

p HP-GL plotter A4 format (file output)
pb HP-GL plotter A3
p0 HP-GL plotter A0
ps Postscript file (Portrait mode)
pl Postscript file (Landscape mode)

nameplt

Name of neutral SEPRAN plot file without extensions.
default plotter for interactive mode

default plotter for hard copies
carriage

Information about carriage control.
The parameter carriage indicates if the first character in a write statement
to a file is used as carriage control parameter (yes) or not (no).
For most unix computers no carriage control is used, however, for example
vax/vms uses carriage control.

isite
This parameter is only used at Eindhoven University.

The parameters tem2 to tem10 are meant for future purposes. They must be set equal to 0.

sample sepran.env file for DOS computer

The following sepran.env file is standard imposed on DOS computers. It gives an example of how
a sepran.env file looks like.

*

* Version 2.1 Date 28-12-92

* Extension with respect to version 2.0:

* - Replace first dummy by isite

* Version 2.0 Date 17-10-92

* Extension with respect to version 1.1:

* - Addition of version number (second line)

* - Introduction of file for menus (part unit numbers and files)

* - Introduction of hard copy device identification (plots)

* Version 1.1 Date 27-12-91

* Extension with respect to version 1.0:

* - Addition of choice between carriage control or not

* - Addition of ten dummies for future purposes

*

* This file contains most of the machine-dependent quantities

* with respect to SEPRAN

* The file is read by each SEPRAN program and the information is stored

* in-core in some common blocks

* The sequence of the information is essential

* The file may be updated for your local computer

* Lines starting with * are treated as comments

* Only the information after the colon is interpreted

*

UM environment file December 1993 1.5.6

* PC version using FTN77/386

*

* Start with the SEPRAN home directory

*

SEPRAN home directory (SPHOME) :c:\sepran

version number of environment file :2

*

* Type of operating system

* Recognised are unix, vms, cms, msdos, unknown, nos/ve

*

type of operating system :msdos

name of computer :hp-vectra

*

* Give type of computer system. Possible values:

*

* 1 IBM

* 2 Cyber (NOS/VE)

* 3 Apollo (Unis/Aegis)

* 4 HP 9000 (HP/UX)

* 5 Unix

* 6 VAX VMS

* 7 Harris

* 8 Cray

* 9 IBM PC 386 + MSDOS + FTN77/386

* 10 CONVEX

* 13 Alliant

* 14 unknown

*

type of computer (number from list) :9

version name of SEPRAN :

name of executable :

*

* Some machine dependent constants

*

number of characters in a word : 4

approximation of infinity :1e307

machine accuracy :1e-15

accuracy of a half real :1e-6

*

* Unit numbers for files

*

Unit number for reading of SEPRAN input : 15

Unit number for writing of SEPRAN output : 16

Unit number for error messages : 14

Unit number for file 1 : 11

Unit number for SEPRAN backing storage file: 12

Unit number for temporary file : 13

Unit number for file containing menus : 17

Unit number for default SEPRAN plot file : 8

Unit number for mesh output file : 10

Unit number for file sepcomp.inf : 73

Unit number for file sepcomp.out : 74

*

* Remark:

*

UM environment file December 1993 1.5.7

* Except the unit number iref_plot for the default plot file, SEPRAN uses two

* extra numbers for plotting files. These numbers are:

* iref_plot + 1 for HPGL and Postscript files

* iref_plot + 3 for Tektronix (screen)

*

*

* Indication whether the files 10 and 74 are binary (unformatted) or formatted

* Recognised are formatted and unformatted

*

Default SEPRAN plot file :formatted

file 10 :unformatted

file 74 :unformatted

*

* Indication whether the output file must be appended to an existing output

* file (yes) or not (no)

*

append mode :no

*

* Standard and default names for files:

* If no name is given the file is supposed to be without name

* and only the unit number is used in the open statement

* The files 5 and 6 are not opened

* If the reading and writing SEPRAN files have other unit numbers than

* 5 and 6, they must have a name

* The temporary file may have no name in which case it is opened as

* a scratch file or it mat have the name

* tmp

* In the last case (only meant for UNIX computers) the temporary file is

* opened as a temporary file at the directory /tmp

*

file 1 :SPHOME\bin\stanelm

file 4 :SPHOME\bin\errormsg

file for menus :SPHOME\bin\menumsg

temporary file :

SEPRAN input file :sepran.dat

SEPRAN output file :sepran.out

(Binary mesh output file) :meshout.put

sepcomp.inf (73) :sepcomp.inf

sepcomp.out (74) :sepcomp.out

SEPRAN backing storage file :file2.sep

*

* Record length of some direct access files:

* Record length in words

* In the open statement it is multiplied by lenwor

*

lenwor :4

Record length for file 1 (at least 1000) :1000

Record length SEPRAN backing storage file :1157

Record length for scratch file :1024

*

* Information about plotting

*

* Meaning of the constants:

*

* defplo: Default plot size for pictures in cm’s

UM environment file December 1993 1.5.8

* cm: Multiplication factor to transform all quantities into cm’s

* If the plot package is based on cm’s, cm should be 1, is it

* based on inches cm should be .3937

* small: Width of small paper in cm’s

* wide: Width of small paper in cm’s

* aleng: Maximal length of plot paper in cm’s

*

* These parameters have only effect for some special plot packages

*

* posdev: Default plot package, is used in non-interactive mode

* Available packages:

*

* fb Write input parameters in binary form to default SEPRAN plot

* files, with names nameplt.001, nameplt.002 ...

* fa Write input parameters in ascii form to default SEPRAN plot

* files, with names nameplt.001, nameplt.002 ...

*

* Each of these files contains information about one picture

* The files may be plotted later on, for example by SEPDISPLAY

*

* f1 Write formatted, make only 1 output file (nameplt)

*

* The next packages are meant for immediate plotting, without

* the intermediate step of a plot file

*

* a Apollo code

* c Calcomp code

* g GKS code

* cg CGI code

* hh StarBase code for HP-display, Color HiRes (1280x1024)

* hl HP-display, Color LowRes (1024x768)

* hm Same, Monochrome LowRes (1024x768)

* t Tektronix 4010 code

* tk Tektronix 4010 code, using MS-Kermit emulation

* tp Tektronix 4010 code, using Plot-10 library

* v PC, running FTN77/386 with VGA or EGA card

*

* Possible hard copy devices:

*

* p HP-GL plotter A4 format (file output)

* pb HP-GL plotter A3

* p0 HP-GL plotter A0

* ps Postscript file

* nameplt: Name of default SEPRAN plot file

*

defplo :15

cm :.3937

small :20

wide :65

aleng :3600

posdev :fa

nameplt :sepplot

default plotter for interactive mode :v

default plotter for hard copies :ps

*

UM environment file December 1993 1.5.9

* The next part is extended at 27-12-91:

*

* Information about carriage control

* The parameter carriage indicates if the first character in a write statement

* to a file is used as carriage control parameter (yes) or not (no)

* For most unix computers no carriage control is used, however, for example

* vax/vms uses carriage control

*

carriage :no

*

* Extension of 19-12-92: Read site number for special calls

*

* Allowed numbers:

*

* 0: general

* 1: TUE

*

isite :0

*

* The next 9 positions are reserved for later use:

*

tem2 :0

tem3 :0

tem4 :0

tem5 :0

tem6 :0

tem7 :0

tem8 :0

tem9 :0

tem10 :0

UM Manipulation of constants March 2009 1.6.1

1.6 Manipulation of constants and variables(subroutine COMPCONS)

Description

As described in Section 1.4 the user may define constants to be used in the input file by
their name. Variables in the input file are also indicated by their name. So the names
of constants and variables must be unique. Usually they are referred to as scalars.
In some cases the constants are functions of other constants and it is easier to express
these constants as some function than to compute them before by hand.
Also one might consider to recompute the scalars at the start of the program.
For that purpose the user may provide the subroutine COMPCONS. This subroutine is
called by the SEPRAN main programs immediately after the reading of the constants,
but before the rest of the input file is read.
If the user provides this subroutine he has to link the main program with this subroutine
as described in the Sections 2.1, 3.1 and 5.1

Heading

subroutine compcons

Parameters

Subroutine COMPCONS has no parameters itself but information of the constants is
available through the common block CUSCONS. The source of this common block can
be found in the directory SEPRAN/common, where SEPRAN is the main SEPRAN
directory.
CUSCONS has the following shape:

integer maxints, maxreals, maxcls, maxvec

parameter (maxints=1000, maxreals=1000, maxcls=1000, maxvec=100)

double precision rlcons(maxreals), scalars(maxcls)

integer incons(maxints), numints, numreals, numscals

common /cuscons/ rlcons, scalars, incons, numints, numreals,

+ numscals

save /cuscons/

To include this common block into your program use:

include ’SPcommon/comcons1’

include ’SPcommon/cuscons’

Mark that the name in the include statement is case sensitive, hence the first two letters
must be capitals and all other ones must be in lower case.

The parameters have the following meaning:

MAXINTS Maximum number of integer constants that may be used. At this moment
this maximum is fixed to 1000 and the user may not change this number himself.

MAXREALS Maximum number of real constants that may be used. At this moment
this maximum is fixed to 1000 and the user may not change this number himself.

MAXCLS Maximum number of scalar variables that may be used. At this moment
this maximum is fixed to 1000 and the user may not change this number himself.
This parameter is only used in SEPCOMP.

UM Manipulation of constants March 2009 1.6.2

MAXVEC Maximum number of solution type vectors that may be used. At this
moment this maximum is fixed to 100 and the user may not change this number
himself.
This parameter is only used in SEPCOMP.

RLCONS Array of length MAXREALS in which the real constants are stored in the
sequence as defined in the input block ”CONSTANTS” (Section 1.4).

INCONS Array of length MAXINTS in which the integer constants are stored in the
sequence as defined in the input block ”CONSTANTS” (Section 1.4).
See RLCONS.

SCALARS Array containing the scalar variables as defined in program SEPCOMP,
input part STRUCTURE. All the variables are stored as scalars.

NUMINTS Highest sequence number of integers that have been defined in INCONS.
Integers that are skipped are automatically initialized to zero and their name to
10 blank spaces.

NUMREALS Highest sequence number of reals that have been defined in INCONS.
Reals that are skipped are automatically initialized to zero and their name to 10
blank spaces.

NUMSCALS Actual number of scalars that have been defined. This number may be
increased during the computations in program SEPCOMP.

Input

The common block CUSCONS and also the common block CUSNAME have been ini-
tialized by SEPRAN. The values read in the input block CONSTANTS have been sub-
stituted.

Output

The user may change the contents of the common block, provided he does not change
the parameter statements.
The user itself is responsible for the change and he must do it in a consistent way.

UM Manipulation of constants March 2009 1.6.3

Layout

Subroutine COMPCONS must be programmed as follows:

subroutine compcons

implicit none

include ’SPcommon/comcons1’

include ’SPcommon/cuscons’

statements to adapt the parameters in the common blocks

end

Remark 1

If the user wants to extract and change the constants nelm1, nelm2, a and b as described
in the example in Section 1.4 from cuscons and change these values, the following method
is recommended:

subroutine compcons

implicit none

include ’SPcommon/comcons1’

include ’SPcommon/cuscons’

integer nelm1, nelm2

double precision a, b

nelm1 = incons(1)

nelm2 = incons(2)

a = rlcons(1)

b = rlcons(2)

... statements to change these parameters

incons(1) = nelm1

incons(2) = nelm2

rlcons(1) = a

rlcons(2) = b

end

UM Manipulation of constants March 2009 1.6.4

Remark 2

A more simple way of using COMPCONS is with the aid of the subroutines GETINT
3.3.12.1, GETCONST 3.3.12.2, PUTINT 3.3.13.1 and PUTREAL 3.3.13.2.
We show the previous example using these subroutines.

subroutine compcons

implicit none

integer nelm1, nelm2, getint

double precision a, b, getconst

nelm1 = getint (’nelm1’)

nelm2 = getint (’nelm2’)

a = getconst (’a’)

b = getconst (’b’)

... statements to change these parameters

call putint (’nelm1’, nelm1)

call putint (’nelm2’, nelm2)

call putreal (’a’, a)

call putreal (’b’, b)

end

A clear advantage of this last approach is that one does have to include the common block, and more
important that if the sequence of the parameters in the input block CONSTANTS are changed, this
does not effect the program. There is no need anymore to know the sequence number of a constant
in the common block.

For an example of the use of COMPCONS the user is referred to Section 6.3.1.

UM General constants January 2001 1.7.1

1.7 Definition of general constants

In the input file the user may start with input defining CONSTANTS, GENERAL CONSTANTS
and DEBUG PARAMETERS.
In this section we describe the contents of the part GENERAL CONSTANTS.
This part has the following layout

GENERAL_CONSTANTS

accuracy_obstacle = eps

END

At this moment the following general constants may be defined:

accuracy obstacle This constant is used in those cases where an obstacle is present in the mesh
and the user needs to distinguish between points and elements that are in or out of the
obstacle.
All points that are really inside the obstacle as well as all points that are precisely on the
boundary of the obstacle are marked as internal points. However, from a computational
points of view points that are very close to the obstacle may also be considered as part of the
obstacle.
For that purpose the parameter accuracy_obstacle is used. All nodes that are closer to the
obstacle than ε × ∆s are considered as part of the obstacle. ∆s is defined as the smallest
element width at the beginning or end of all curves. So the finer the mesh, the closer a node
must be to the obstacle in order to be part of it.
The default value for ε is 0.3.

These constants are stored in common block cgenconst as described in the Programmers Guide
Section 21.21.

UM SEPRAN commands January 2013 1.8.1

1.8 Overview of the SEPRAN commands

Most of the commands to run SEPRAN have already been treated in the SEPRAN Introduction
(Chapter 3). Here we give a full overview of all the commands that are available to create and run
programs.

It concerns the following commands

sepmesh

sepcomp

sepfree

seppost

jsepview

sepget

compile

compiledbg

seplink

sepdbg

sepgetex

sepmpi

sepmakeparmesh

sepcombineout

sepcompoutdiff

sepman

These commands have the following meaning

sepmesh is used to create a SEPRAN mesh.
For a description see Section (2)

sepcomp is used to perform the finite element computations.
For a description see Section (3)

sepfree is used to perform the finite element computations in case of free or moving boundary.
For a description see Section (3.4)

seppost performs the post processing.
For a description see Section (5)

jsepview displays the plots created by one of the other programs.
For a description see Section (3.5) of the SEPRAN introduction.

sepget copies a standard SEPRAN subroutine or program into your local directory.
See for example Section (2.3.2)

compile compiles one of more fortran subroutines.
This can also be done by seplink, however, compile only compiles the subroutines indicated
and does not make an executable.
Usage: compile file1.f file2.f ...

compiledbg has exactly the same meaning as compile.
The only difference is that subroutines are compiled with the debug option on, which means
that they may be used in a debugger.

UM SEPRAN commands January 2013 1.8.2

seplink compiles and links a main SEPRAN program with the given set of .f files and also all .o
files in the directory.
It creates an executable and uses the SEPRAN libraries.
For a description see for example Section (2.1)

sepdbg has the same meaning as seplink.
In this case the program is compiled and linked with the debug option activated. Hence the
program may run in a sepbug environment.

sepgetexe copies the necessary files corresponding to a standard example into your local directory.
See for example Section (6.2.1)

sepmpi is used to compile and run a SEPRAN program in a parallel environment.
For a description see Section (3.6)

sepcombineout combines the local files sepcomp_par.xxx files into a global sepcomp.out file in
a parallel environment.
For a description see Section (3.6)

sepcompoutdiff Computes the difference between two sepcomp.out files with equal length but
different names and stores the result in a new file of the same shape.
Only the real numbers are subtracted.

Usage: sepcompoutdiff file1 file output_file

with file1 and file2 the two input files and output_file the file with the difference vectors

sepman activates acroread to display the manual required.

Usage: sepman <name_of_manual>

The following values of <name_of_manual> are available:

um shows the Users Manual.

sp manual Standard Problems

intro Introduction manual

exams manual with examples corresponding to the Standard Problems

pg Programmer’s Guide

userexams Demonstrates some user examples

th theoretical manual

UM pre-processing January 2013 2.1.1

2 The pre-processing part of SEPRAN

2.1 Introduction

In the pre-processing part of SEPRAN the mesh is created. In most problems this may be done be-
fore the actual computational part. The only exception is for free boundary problems in which the
boundaries and as a consequence also the mesh are adapted during each step of the computational
process. In the introduction it has been described how the program SEPMESH may be used for
simple one and two-dimensional problems. In this chapter the complete possibilities of SEPMESH
are described. If you need to solve free boundary problems, then it is necessary to consult the
SEPRAN PROGRAMMERS GUIDE in order to construct your own main program using the tools
SEPRAN provides.

Sometimes it may be necessary to provide SEPMESH with one or more function subroutines which
define curves or surfaces as functions defined by the user. In that case it is not possible to use
the standard program SEPMESH immediately, but the user must create a simple main program
consisting of 3 lines only and also provide the FORTRAN sources for the function subroutines.

The main program has the following structure:

program examplemesh

call startsepmesh

end

Subroutine STARTSEPMESH is in fact the body of program SEPMESH. The name of the program
(in this case EXAMPLEMESH) may be chosen freely.

If one or more function subroutines are provided the easiest way is to put these subroutines imme-
diately behind the main program. So in that case we get something like:

program examplemesh

call startsepmesh

end

subroutine funcsf (...)

.

.

.

end

In this example the parameters and the body of the function subroutines have intentionally been
skipped, they are treated in the next sections.

The main program and the subroutines must be created by a text editor and put into a file. This
file must have the extension .f or .f90 in a UNIX environment and .for in a MSDOS environment.
The user input must be stored in a separate file.

Once the file containing main program and subroutines has been created, this file must be translated
(compiled) and the program must be linked with the SEPRAN libraries. Both actions may be

UM pre-processing January 2013 2.1.2

performed in one step by the command seplink:

seplink file

where file is the name of the file containing the program without the extension .f.
For example the command:

seplink example

compiles and links the file example.f.

In the first step of seplink the fortran code is checked and translated. Fortran error-messages appear
on the screen. If the number of errors exceeds the size of one screen it is wise to redirect the output
to a file for example out.put. This file out.put can always be inspected with a standard text
editor. If the compilation has been carried out correctly, seplink links the program and subroutines
with the SEPRAN library. seplink automatically links all subroutines in the directory that have
been precompiled, i.e. all files with the extension .o in unix or .obj in msdos. So the user must
remove these files if they should not be included in the executable. If one or more subroutines are
missing seplink reacts with the message undefined symbol, followed by the name of the subroutine(s)
provided with an underscore at the end of the name. For example if you did provide a subroutine
funbs instead of funcsf you get the message

undefined symbol

funcsf

The error message ”subroutines missing” usually results from an incorrectly spelled subroutine
name or from the omission to declare an array.

Error messages of the linking phase are written directly to the screen. If both compilation and
linking have been carried out successfully seplink produces a file with the name of the seplink
parameter (that is without the extension .f). So seplink example produces a file example. To run
the program example you type:

example < inputfile > outputfile
or

example < inputfile

In outputfile the results of program example are written. These may be error messages of SEPRAN
or output written by the user. If outputfile is omitted all information is written to the screen.

The main program creates the file meshoutput.

Remark: the outputfile may have any name except meshoutput, or sepplot.∗ ∗ ∗.

In Section 2.2 the complete input for program SEPMESH is described. Detailed information about
curve generation can be found in Section 2.3. Section 2.4 is devoted to surface generation and
Section 2.5 to volume generation. Finally in Section 2.6 some examples of input files for SEPMESH
are given.

UM Input for SEPMESH January 2013 2.2.1

2.2 Input for program SEPMESH from the standard input file

The input for SEPMESH must be opened with the COMMAND MESH1D, MESH2D or MESH3D,
depending on whether the problem is one-, two- or three-dimensional, and must be closed with the
COMMAND END.
Besides the standard mesh generation SEPRAN has also the possibility to define a mesh by giving
the co-ordinates of all nodal points. In that case SEPRAN creates a mesh based on all these points.
This possibility is meant for example in the case that a user has made some measurements and
wants to use the SEPRAN or AVS postprocessing to show the results. The input for this special
case is described in Section 2.7.

The mesh generator recognizes the following input:

MESHnD

coarse (unit=u, maxratio=m)

scaling = s, type_scaling = t

maxpoints = mp

maxcurves = mc

maxsurfaces = ms

maxvolumes = mv

points

data records

curves

data records

surfaces

data records

volumes

data records

meshline

data records

meshsurf

data records

meshvolume

data records

meshconnect

data records

interface_elements

data records

meshdummy

data records

renumber, options

norenumber

notopology

intermediate points

data records

change_coordinates

data records

obstacles

data records

plot, options

refine, options

transform, options

check_level = i

parallel, options

END

UM Input for SEPMESH January 2013 2.2.2

Description of the COMMAND and DATA records.

The records must be given in the order as specified. An option is indicated like this: [option].

MESHnD (mandatory)
COMMAND record: opens the input for subroutine MESH, and defines the dimension of the
space NDIM. (NDIM = n).
After the COMMAND MESHnD a number of optional commands may be given. These
commands must be given between MESHnD and the mandatory command POINTS. Their
mutual sequence is arbitrary.

COARSE (UNIT=u, MAXRATIO=m) (optional)
COMMAND record: defines that coarseness is used, u defines the unit length. The parameter
MAXRATIO=m defines the maximum ratio between two successive edges on the boundary.
If this ratio is exceeded a warning is given. If m = 0, the maximum ratio is not checked.
The notion of coarseness is defined in the Introduction Section 4.1.2.
Default value: u = 1, m = 0.

SCALING = s (optional)
Defines if the coordinates of the boundary must be scaled before a submesh is created.
This option is only used for the volume generator GENERAL3D and will be used in the future
for the surface generators GENERAL and TRIANGLE.
Possible values for s are:

NO No scaling is applied.

ALWAYS The coordinates of the boundary are scaled and after the creation of the submesh
the coordinates are scaled back.
In this way it is possible to get a nice mesh even when the region is stretched.

DEPENDENT The coordinates of a selected set of surfaces and volumes are scaled.
This option has not yet been implemented.

Default value: No scaling.

TYPE SCALING = t (optional)
Defines the type of scaling applied. This keyword makes only sense if scaling is applied.
Possible values for t are:

ALL The scaling is applied in all Cartesian directions. This means that before creating the
mesh the Cartesian coordinates are mapped onto the region (0,1).
This option is only useful if a stretching in Cartesian coordinate directions is present.
The subdivision in each of the directions must be comparable, i.e. the number of elements
in all Cartesian directions must be of the same order.

X DIR The scaling is applied in the x-direction only.

Y DIR The scaling is applied in the y-direction only.

Z DIR The scaling is applied in the z-direction only.

DETECT The program detects the direction of the mesh and estimates a mean value of the
element size in that direction. Scaling is adapted to these values.

Default value: ALL.
Remark: at this moment only the option ALL has been implemented. If you want to use one
of the other options, please contact SEPRA.

MAXPOINTS = mp (optional)
mp defines the maximum number of user points that are allowed in the mesh. The default
value is 1000. If a smaller value is used, some arrays may be smaller, but in general this has
no effect on the total space. In fact, this option is meant for those cases that 1000 user points
do not suffice.

UM Input for SEPMESH January 2013 2.2.3

MAXCURVES = mc (optional)
mc defines the maximum number of curves that are allowed in the mesh. The default value
is 1000. Compare with MAXPOINTS.

MAXSURFACES = ms (optional)
ms defines the maximum number of surfaces that are allowed in the mesh. The default value
is 1000. Compare with MAXPOINTS.

MAXVOLUMES = mv (optional)
mv defines the maximum number of volumes that are allowed in the mesh. The default value
is 500. Compare with MAXPOINTS.

POINTS (mandatory)
COMMAND record: defines the points. Must be followed by data records of the type:

P1 = (x1, y1, z1 [, c])

P2 = (x2, y2, z2 [, c])

.

.

.

Pi = (xi, yi, zi [, c])

with i the point number and xi, yi and zi the coordinates of point i. For one-dimensional
problems only xi is required, etc. Default values for the co-ordinates: 0.
c must only be used when the command COARSE has been read. It defines the coarseness of
the elements in the neighborhood of the point Pi; default value: 1.

Remark: The sequence in which the points are given is arbitrary. If points are skipped, they
get the co-ordinates (0,0,0) automatically. The largest number i used in Pi = . . . defines the
maximal number of user points.
If the user wants he may also give the co-ordinates in polar co-ordinates instead of Cartesian
co-ordinates. In that case the input is

PDi = (ri, φi, zi), with φ in degrees or

PRi = (ri, φi, zi), with φ in radians

instead of Pi = (xi, yi, zi).

These co-ordinates are automatically transformed into Cartesian co-ordinates.

CURVES (mandatory)
COMMAND record: defines the curve. Must be followed by data records of the type:

Ci = LINEj (P1, P2, NELM=n [, RATIO=r, FACTOR=f])

Ci = ARCj (P1, P2, P3, NELM=n [, RATIO=r, FACTOR=f])

Ci = USERj (P1, P2, P3, . . . , Pn)

Ci = CLINEj (P1, P2 [,NODD=o])

Ci = CARCj (P1, P2, P3 [,NODD=o])

Ci = PARAM j (P1, P2, NELM=n [,INIT=t_0] [,END=t_1] [, RATIO=r, FACTOR=f])

Ci = CPARAM j (P1, P2 [,NODD=o [,INIT=t_0] [,END=t_1])

Ci = PROFILE j (P1, P2, NELM=n ,shape=s [,INIT=t_0] [,END=t_1] [, RATIO=r, FACTOR=f])

Ci = CPROFILE j (P1, P2, NELM=n ,shape=s [,NODD=o [,INIT=t_0] [,END=t_1])

Ci = SPLINE j (P1, P2, ... ,Pm, NELM=n [, RATIO=r, FACTOR=f] [ALPHA = a] //

[,TYPE=t [,tang=Pk, tang=Pl]])

Ci = CSPLINE j (P1, P2, ... ,Pm [, NODD=o] [ALPHA = \alpha] //

[,TYPE=t [,tang=Pk, tang=Pl]])

Ci = CURVES (Ck, Cl, Cm, . .)

Ci = TRANSLATE Cj (P1 [,P2, P3, ...])

UM Input for SEPMESH January 2013 2.2.4

Ci = ROTATE Cj (P1, P2, P3 [,P4, P5, ...])

Ci = REFLECT Cj (AXIS = P1, P2; P3 [,P4, P5, ...])

Ci = SPCURVE (Ck, Cl, Cm, . .)

Ci = CIRCLE (P1, P2, P3, NELM=n [, RATIO=r, FACTOR=f])

Ci = OWN_CURVE j (P1, P2, NELM=n [, IFUNC=i])

Ci = ELL_ARC j (P1, P2, P3, NELM=n [, RATIO=r, FACTOR=f])

Ci = CELL_ARC j (P1, P2, P3, [,NODD=o])

Curves that are not defined explicitly are treated as non-existing curves. These curves are
not available in the SEPRAN programs.
For an explanation of the various possibilities, see Section 2.3.

SURFACES (optional)
COMMAND record: defines the surfaces. Must be followed by data records of the type:

Si = GENERAL j (C1, C2, C3, C4, . . .)

Si = TRIANGLEj (C1, C2, C3, C4, . . .)

Si = QUADRILATERAL j (C1, C2, C3, C4 [,BLEND = b, CURVATURE = cu])

Si = RECTANGLE j ([N = n, M = m], C1, C2, . . .[, SMOOTH =i])

Si = USER j (NELEM = k, NPOINT = l, C1, C2, . . .)

Si = SURFACES (Sk, Sl, Sm, . .)

Si = ORDERED SURFACE ((Sk_1, Sk_2, ...), (Sl_1, Sl_2, . . .), (Sm_1, Sm_2, . . .), . .)

Si = TRANSLATE Sj (C1 [,C2, C3, ...])

Si = ROTATE Sj (C1 [, C2, C3, ...])

Si = REFLECT Sj (C1 [, C2, C3, ...])

Si = SIMILAR Sj (C1 [, C2, C3, ...])

Si = PIPESURFACE j (C1, C2, C3, [C4])

Si = COONS j (C1, C2, C3, C4[,BLEND = b, CURVATURE = cu])

Si = ISOPAR j (C1, C2, C3)

Si = PARSURF j (C1, C2, C3, C4[,umin=u1, umax=u2, vmin=v1, vmax=v2])

Si = SPHERE j (C1 [,CENTRE=Pi] [,type=t])

with Si the surface number.
The value of j gives the shape number of the elements to be created, see Table 2.2.1 (3 ≤ j ≤
6). Possibilities:

3 Linear triangle with 3 points

4 Isoparametric triangle with 6 points

5 Quadrilateral with 4 points

6 Isoparametric quadrilateral with 9 points

7 Isoparametric triangle with 7 points

8 Isoparametric triangle with 10 points

9 Isoparametric quadrilateral with 5 points

10 Triangle with 4 points

Surfaces that are not defined explicitly are treated as non-existing surfaces. These surfaces
are not available in the SEPRAN programs.
For an explanation of the various possibilities see Section 2.4.

VOLUMES (optional)
COMMAND record: defines the volumes. Must be followed by data records of the type:

Vi = BRICK j (N = n, M = m, L = l, S1, S2, . . .)

Vi = USER j (NELEM = n, NPOINT = k, S1, S2, . . .)

Vi = PIPE j (S1, S2, S3)

UM Input for SEPMESH January 2013 2.2.5

Vi = CHANNEL j (S1, S2, S3)

Vi = GENERAL j (S1)

Vi = TRANSLATE Vj (Sk)

Vi = ROTATE Vj (Sk)

Vi = REFLECT Vj (Sk)

with Vi the volume number.
The value of j gives the shape number of the elements to be created, see Table 2.2.1. Possi-
bilities:

11 Tetrahedral element with 4 points

12 Isoparametric tetrahedral element with 10 points

13 Hexahedral element with 8 points

14 Isoparametric hexahedral element with 27 points

15 Isoparametric tetrahedral element with 14 points

16 Isoparametric tetrahedral element with 15 points

17 Hexahedral element with 9 points

18 Tetrahedral element with 5 points

Volumes that are not defined explicitly are treated as non-existing volumes. These volumes
are not available in the SEPRAN programs.
For an explanation of the various possibilities, see Section 2.5.

MESHLINE (optional)
COMMAND card; defines the one-dimensional elements, point or line elements in R2 and R3.
Must be followed by data records of the type:

LELM i = (shape = j, C1, C2)[, int_property j = k, real_property l = r]

LELM i = (shape = 0, P1, P2)[, int_property j = k, real_property l = r]

These parameters have the following meaning:

i defines the element group number.
Standard elements must be generated with increasing element group number, first all
line elements, then all surface elements, and finally the volume elements.

SHAPE = j defines the shape number of the standard element. At this moment the follow-
ing values are available:

j=0 point elements

j=1 linear elements

j=2 quadratic elements

j=-1 the nodal points on the curves C1 to C2 are considered as the nodal points of one
super-element. Hence one element is created containing all these points.

C1,C2 line elements are generated along the curves C1 to C2; when C2 is not given, only
curve C1 is used.

P1,P2 the points P1 to P2 are used as point elements; when P2 is not given, only point P1
is used.

int property j = k with this option the user may connect one of more integer number
connected to the element group. The sequence number j defines the sequence number of
the property, k its value. Several or none (default) integer properties may be connected
to each element group.
These properties may later on be reused in the computational program, for example to
distinguish types of element groups.

UM Input for SEPMESH January 2013 2.2.6

real property j = k has the same meaning as int property, however, in this case it concerns
real properties.
These properties may later on be reused in the computational program.

MESHSURF (optional)
COMMAND record: defines the two-dimensional elements in R2 or surface elements in R3.
Must be followed by data records of the type:

SELM i = (S1, S2)[, int_property j = k, real_property l = r]

These parameters have the following meaning:

i defines the element group number.
Standard elements must be generated with increasing element group number, first all
line elements, then all surface elements, and finally the volume elements.

S1, S2 the elements generated on the surfaces S1, S1 + 1,. . ., S2 are appended to the mesh.
When S2 is not given only surface S1 is used.

int property j = k See the block MESHLINE.

real property j = k See the block MESHLINE.

MESHVOLUME (optional)
COMMAND record: defines the three-dimensional elements. Must be followed by data records
of the type:

VELM i = (V1, V2)[, int_property j = k, real_property l = r]

These parameters have the following meaning:

i defines the element group number.
Standard elements must be generated with increasing element group number, first all
line elements, then all surface elements, and finally the volume elements.

V1, V2 the elements generated on the volumes V1, V1 + 1, . . . , V2 are appended to the
mesh. When V2 is not given, only volume V1 is used.

int property j = k See the block MESHLINE.

real property j = k See the block MESHLINE.

Remarks

• When MESHLINE, MESHSURF nor MESHVOLUME are given, it is assumed that there
is only one type of internal element, with element group number 1. This element is a
line element when no surfaces nor volumes are defined, and a surface element when no
volumes are defined. Otherwise it is a volume element. Of course the shapes of elements
in different sub meshes must be equal.

• The element group sequence numbers must be given in increasing sequence, however, it
is allowed to make a jump in these sequence numbers. So it is possible that an element
group sequence number is skipped. In that case the number of elements corresponding
to that element group is zero and the type number of the elements as defined in the
computational part of the program is set equal to zero.

Special purpose elements

MESHCONNECT (optional)
COMMAND record: defines elements that connect user points or nodal points in curves or
surfaces.
Also it is possible to connect elements at curves or surfaces. In this way higher dimensional
connection elements arise.
Must be followed by data records of the type:

UM Input for SEPMESH January 2013 2.2.7

CELMi = POINTS (P1, P2)

CELMi = CURVES l (C1, C2)

CELMi = SURFACES [j] (S1, S2) [, EXCLUDE ([ALL] [, C3, C6])

with i the element group number. Standard elements must be generated with increasing
element group number, first all line, surface and volume elements, and then the connected
elements.

When CELMi = POINTS (P1,P2) is defined, an element is created from user point P1 to
user point P2.
When CELMi = CURVESj (C1,C2) is defined, elements are defined from nodal points on
curve |C1| to nodal points on curve |C2|, or from elements at curve |C1| to elements on curve
|C2|. When C1 is positive the elements are created in forward direction starting from the first
position, when C1 is negative the elements are created in reversed order. The same rules are
valid for C2.
The parameter l consists of two parts: l = j + 100 × EXCLUDE. If j=0 all corresponding
nodal points on the curves are connected. The statement CELMi = CURVES0 (C1,C2)
connects all nodal points on the curves C1 and C2. When this statement is followed by for
example

CELMi = CURVES0 (C3,C4),

where C3 and C4 have a point in common with C1 respectively C2, then two elements are
created connecting these common points. This situation may be avoided by defining new
curves consisting of the curves C1 and C3 respectively. C2 and C4. When the initial point
and end point of C1 and also of C2 coincide, then only one element is defined connecting the
initial points.
For EXCLUDE the following possibilities are available:

EXCLUDE = 0 All points of the curves C1 and C2 are used as indicated by i.

EXCLUDE = 1 All points except the begin point of C1 and C2 are used as indicated by i.

EXCLUDE = 2 All points except the end point of C1 and C2 are used as indicated by i.

EXCLUDE = 3 All points except the begin and end points of C1 and C2 are used as indicated
by i.

If j > 0, the parameter IEXCLUDE must be zero. In this case elements at the curves C1 and
C2 are connected in the direction indicated by the signs of C1 and C2. j=1 corresponds to
linear elements to be connected, resulting in 4 node elements and j=2 to quadratic elements,
resulting in 6 point elements.

The option CELMi = SURFACES [j] (S1,S2) connects all nodes or elements on the surfaces
S1 with corresponding nodes on S2. So S1 and S2 must have exactly the same topology. If
j=0 (default value) all points of the elements are connected.
The option EXCLUDE = (..), excludes the boundaries indicated between the brackets from
the connection. If ALL is chosen the complete outer boundary is excluded. If curves are given
explicitly then only those curves are excluded. Only the curves at the ”left” surface S1 must
be given, those at surface S2 are excluded in exactly the same way, since the surfaces have
the same topology.

If j=1, the part EXCLUDE may not be used. In this case elements at the surfaces S1 and S2
are connected. This means of course that the surfaces and elements at these surfaces must be
similar. The number of points at the connection elements are two times the number of points
at the elements in the surface S1.

These connection elements are treated as special elements, which also implies that they are
skipped in the postprocessing part. In this way it is for example possible to define double

UM Input for SEPMESH January 2013 2.2.8

points on a line, that are connected by these connection elements but introduce a discontinu-
ity.

The connection elements get special shape numbers. In case of points to be connected the
shape number is -10001, in case of elements to be connected -ishape-10001, where ishape is
the shape number at the curve or surface.

Auxiliary commands (The sequence of these commands is arbitrary)

INTERFACE ELEMENTS (optional)
COMMAND record: indicates that interface elements must be defined.
The shape of the records for the interface elements is the following:

INTERFACE_ELEMENTS

IELM ielgrp_1 = CURVES (Ci_1, Cj_1, SHAPE = s)

IELM ielgrp_2 = CURVES (-Ci_2, Cj_2, SHAPE = s)

.

.

.

IELM ielgrp_j = SURFACES (Sk, Si)

.

.

Curve interface elements consist of a double row of nodal points as shown in Figure 2.2.1.

12

1 3 5 7 9 11

2 4 6 8 10

Figure 2.2.1: Example of an interface element and its local numbering

The distance between the two rows may be zero, but both rows have different nodal point
numbers. The local numbering of the nodal points is as indicated in Figure 2.2.1. Hence at
one side all nodes are even and at the other side they have odd sequence numbers.
At this moment interface elements may only be used in R2.
Curve interface elements are defined between two curves. The sign of the curves defines the
direction of the interface element.

Surface interface elements are defined between two surfaces. Both surfaces must have positive
sign and must be identical in the sense that they have the same subdivision in elements and
the nodes must have the same coordinates. Such surfaces can for example be created by
copy_surface (2.4).
The interface elements are created by taking the nodes of an element in the first surface
followed by the nodes of the corresponding element in the second surface.

The parameters in the data records have the following meaning:

IELM ielgrp 1 defines the element group to which the interface elements will belong. The
element group number ielgrp 1 must satisfy the same requirements as for the other stan-
dard elements, i.e. it must be equal to the preceding element group number or equal to
this number plus one. The first interface element group number must be one larger than
the last element group created before, for example by MESHSURF or MESHCONNECT.

UM Input for SEPMESH January 2013 2.2.9

CURVES (Ci, Cj) indicates that the interface element connects the curves Ci and Cj. The
sign before the curve defines the direction of the element. The first curve is considered in
the direction of the curve (taking the sign into account), the second curve is considered
in opposite direction. For example if we must put interface elements with element group
sequence number 3 between the two curves C12 and C13 in Figure 2.2.2 from left to
right, than the two possible records could be:

C13

C12

Figure 2.2.2: Example of two curves that are used to create interface elements

ielm3 = curves (c12, -c13)

or

ielm3 = curves (-c13, c12)

In the first case the odd local nodal point numbers of the interface elements are positioned
at curve c12 in the second case at curve c13. In both cases numbering is from left to
right.

SHAPE=s defines the shape number of the interface elements. This shape number is equal
to 48 + n, where n is the number of nodes at one side of the interface element. Hence
a ”linear” interface element, consisting of 4 points, two at each side has shape number
50, and a quadratic one shape number 51. The maximum shape number allowed is
59, which implies 10 nodes along each side. If SHAPE=s is omitted, the shape of the
interface elements is detected by SEPRAN in the following way:

• If all surface elements are linear and no intermediate points are defined SHAPE =
50 is used.

• If intermediate points are used the shape is equal to 50 + number of side points.

• If all surface elements are quadratic SHAPE = 51 is used.

• In all other cases an error message is given.

SURFACES (Si, Sj) indicates that the interface element connects the surfaces Si and Sj.
Both surfaces must be identical.

MESHDUMMY (optional)
This special option is meant to create new element groups without actually combining this
with elements. The only information required is the number of nodes in each element group.
The reason to build such element groups is for example that in the computational program
one creates the corresponding elements during the computations as for example sometimes
using fictitious domain elements. However, for the description of the problem one does not
want to know whether these new elements are already available or not.
The input for these dummy element groups is as follows:

delm i (npelm = j)

where i refers to the new element group and j defines the number of nodes in this element
group.
Remember all element groups must be ordered in a natural sequence without gaps.

UM Input for SEPMESH January 2013 2.2.10

RENUMBER (optional)
COMMAND record: indicates that the nodal points must be renumbered internally, in order
to get an optimal ”profile”. In general renumbering is performed automatically except in
some special cases. Renumbering has only effect on the sequence of the degrees of freedom
and is not visible to the user.

This command may contain data. In that case it has the following shape:

RENUMBER method_part, preference_part, sequence_part, start_part, PRINT, NOT

with

method part defines the type of renumbering method to be used. method part consists of
one of the following keywords:

Cuthill_McKee

Sloan

Best

Cuthill McKee The classical Cuthill-McKee algorithm (1969) is used in order to op-
timize the profile or band width.

Sloan An algorithm due to Sloan (1986) is used in order to optimize the profile or band
width.

Best Both the Sloan and Cuthill-McKee algorithm are used.The best of the original
numbering and that of the two renumbering algorithms is used. Of course this
option is the most expensive.

preference part indicates how it is decided whether the original numbering or the renum-
bered one is used. preference part consists of one of the following keywords:

profile indicates that the best of the renumbered sequence and the original sequence is
used, where best is defined as the one with the smallest profile of the matrix. This
is the most suitable choice for a direct solution of the linear solvers.

band indicates that the best of the renumbered sequence and the original sequence is
used, where best is defined as the one with the smallest Band width of the matrix.

always indicates that the renumbering is used regardless of the fact that the profile or
band width may increase. Especially for iterative linear solvers the band width nor
the profile are of interest. In that case the new sequence may influence the speed of
convergence and always may be preferable.

sequence part makes it possible to distinguish between types of nodes in the renumbering
algorithm. This option is only useful if an iterative solver is used. For a direct solver the
computation time and size of the matrix is strongly increased of nodes are distinguished.
sequence part consists of the following keywords:

vertex_seq = i

mid_point_seq = i

centroid_seq = i

levels

Nodal points are subdivided into vertices, mid-points and centroids. All internal nodes in
an element are considered as centroids, all nodes at the boundary of an element, vertices
excluded, are considered as mid-side points. The action corresponding to sequence part
is applied after the renumbering algorithm has been applied and choices have been made.
The user may give each of the series of nodes a priority number i between 1 and 3. The
priority number is the value i behind the keyword xxx seq.
The already renumbered nodes (possibly the old numbering) are rearranged in such a
way that first all nodes with priority 1 are used, then with priority 2 and finally with
priority 3. If a type of node is not indicated it gets automatically the priority number 3.

UM Input for SEPMESH January 2013 2.2.11

If two types of nodes have the same priority number,then their mutual sequence remains
the old one.

The keyword levels indicates that this special renumbering of node types is applied per
level rather than for the complete mesh. The notion level originates from the Cuthill-
McKee algorithm. In order to make it independent of the type of renumbering scheme
we define a level in the following way:

Find the neighbor of nodal point 1 with the highest nodal point number. If the nodal
points are renumbered internally, the renumbered sequence is used. All nodes with
sequence number at least equal to this neighbor belong to level 1.

Find all neighbors of the present level that do not belong to a level itself. All nodes
with sequence number at least equal to the neighbor with maximal number belong
to the next level. This process is repeated until no nodes are left.

start part defines how the renumbering algorithm must be started. If omitted the start
nodes are detected automatically using some suitable not too expensive algorithm. Oth-
erwise this part must have one of the following shapes:

start = Pj

start = Ci

start = Si

which means the starting point is either user point Pj, or the starting nodes are all nodes
at curve Cj or surface Sj.

PRINT indicates that the reduction in profile and band width of the renumbering algorithm
is printed before the application of sequence part, regardless of the general output level.
If maximal output is required by the command SET OUTPUT ON this information will
always be printed.

NOT indicates that no renumbering may be applied.

METHOD=i Remark: In previous version of SEPMESH it was only possible to usemethod =
i as type of renumbering scheme. This option is still available but not longer recom-
mended.
The value of i indicates the type of renumbering to be used according to the following
rules:

method = 1 is equivalent to Cuthill-McKee profile

method = 2 is equivalent to Sloan profile

method = 3 is equivalent to Best profile

method = 4 is equivalent to Cuthill-McKee band

method = 5 is equivalent to Sloan band

method = 6 is equivalent to Best band

method = 7 is equivalent to Cuthill-McKee always

method = 8 is equivalent to Sloan always

Warning: each renumbering takes time, and the advantage compared to the other renum-
berings may be small, especially for small problems. Therefore, one is advised to find an
optimal numbering only in the case of large problems with many unknowns.
In case of a direct linear solver (Gaussian elimination; see input block ”SOLVE” of
SEPCOMP) renumbering directly influences the computation time and size of the large
matrix. A number of test examples indicates that the Sloan algorithm generally reduces
the profile better than Cuthill-Mckee, whereas Cuthill-Mckee gives better results with
respect to the band width. However, there are also examples with opposite outcomes.
The linear solver applied to a matrix constructed with METHOD = 1,2,3 or 4 in the
input block ”MATRIX” in SEPCOMP, uses a profile method, so in that case Sloan may
be the best choice.
In case of an iterative linear solver the ordering may influence the convergence speed.
This is certainly the case if a preconditioner is used.

UM Input for SEPMESH January 2013 2.2.12

NORENUMBER (optional)
COMMAND record: indicates that the renumbering of nodal points must be suppressed. This
keyword is in fact the same as RENUMBER NOT.

NOTOPOLOGY (optional)
COMMAND record: indicates that calling of the topology subroutine is suppressed. This
means that no renumbering takes place and that no information about neighbors will be
computed. This option may only be used if the mesh is created and immediately written
to the file meshoutput and no renumbering is required. Also if spectral elements are used in
combination with an iterative solution technique and possibly a finite element preconditioning.

INTERMEDIATE POINTS (optional)
With this command record the user may extend linear elements with extra points. It is
possible to create new elements defining

- extra internal points on the sides of the elements (for each side of an element the same
number of extra points)

- extra internal points on the faces of the elements (for each triangle or quadrilateral the
same number of extra points)

- extra internal points in each volume element (tetrahedron or hexahedron).

This command expects data records of the following type:

definition of points, type of subdivision

where,
definition of points defines the number of intermediate points that must be added. This
command has the shape:

sidepoints = ns, facepoints = nf , volmpoints = nv (No spaces allowed in the keywords)

Sidepoints = ns defines the number of points on a side of an element, the two end points
excluded. With a side we always mean a one-dimensional quantity, i.e. for a line element
this is the element itself, for a two-dimensional element it is the side of an element and for a
three-dimensional element it is an edge. So ns should be at least 1. Points per side may not
be omitted.

Facepoints = nf defines the extra number of points in a surface element, the boundary points
excluded. The number of facepoints nf in a triangle is restricted to the choices 0 and 1 and
in a quadrilateral it is restricted to 0 and ns× ns if ns is the number of sidepoints given.

Volmpoints = nv defines how many internal points in the volumes have to be created, bound-
ary points excluded. At this moment the number of volume- points nv in a tetrahedron is
restricted to the choices 0 and 1 and in a hexahedron it is restricted to 0 and ns× ns× ns if
ns is the number of sidepoints given.

In stead of facepoints and volmpoints the user may give the command

midpoints = filled

In that case the program automatically takes the filled option for all triangles (nf = 1) ,
quadrilaterals (nf = ns×ns), tetrahedrons (nv = 1) and hexahedrons (nv = ns×ns×ns
) See for an example Figure 2.2.3. type of subdivision defines how the extra points must
be positioned on the sides (and as consequence internally). The following possibilities are
available:

subdivision = equidistant

UM Input for SEPMESH January 2013 2.2.13

subdivision = Legendre

If subdivision is equidistant (which is the default value) is used, the intermediate points are
positioned at equidistant step sizes, if Legendre is used the division of the nodes is according
to the characteristic values of a Gauss-Legendre polynomial.

Remark: After the use of the phrase intermediate points spectral elements have been created.
The ordering of spectral elements based on quadrilaterals and hexahedrons differs from
the ordering as given for the standard SEPRAN elements in Table 2.2.1. For an example
see Figure 2.2.3.

The following ordering rules for spectral elements are used in SEPRAN:

Quadrilateral - based : Ordering of the nodes is line following line. Example:

13 - 14 - 15 - 16 To the left there is an example of the spectral

| | | | ordering of a quadrilateral with ns = 2 and nf = 4.

9 - 10 - 11 - 12

| | | |

5 - 6 - 7 - 8

| | | |

1 - 2 - 3 - 4

Hexahedron - based: Ordering of the nodes is line following line and plane following
plane.
As a consequence of these rules a spectral quadrilateral with four nodes and a spectral
hexahedron with eight nodes has an ordering of nodes that differs from the ordering used
in Table 2.2.1. The spectral ordering is respectively :

7 - 8

3 - 4 / | / |

5 - 6 |

| | | 3 |- 4

| / | /

1 - 2 1 - 2

X

Y

1 2 3 4 5 6

12

18

24

30

363534333231

25

19

13

7 8 9 10 11

14 15 16 17

20 21 22 23

26 27 28 29

Figure 2.2.3: Example of a filled quadrilateral with corresponding numbering.

UM Input for SEPMESH January 2013 2.2.14

CHANGE COORDINATES indicates that the user wants to change the co-ordinates that have
been computed by the mesh generator in a function subroutine. This option might for example
be used, if in first instance a simple mesh is generated, but afterwards the coordinates must
be adapted in order to get a more complex mesh. A typical example is a brick in 3D that is in
first instance straight, but where the user wants a slightly curved surface given by some given
function. First the brick and co-ordinates are generated and afterwards the co-ordinates are
changed.
If this keyword is used, the user must add a subroutine FUNCCOOR (2.2.1) as described in
Section 2.2.1, in which he describes how the co-ordinates must be adapted.
This keyword must be followed by data records describing how the co-ordinates must be
adapted. These data records consist of two parts: the position part and the function descrip-
tion like:

position_part, function_description, when_part

The position part may have the following form:

all

POINT Pi to Pj

CURVE Ci to Cj

SURFACE Si to Sj

VOLUME Vi to Vj

all means that the co-ordinates of all points must be changed.

POINT Pi to Pj means that the co-ordinates of the user points Pi to Pj must be changed.
If only Pi is given, of course only Pi is changed.
The coordinates of the user points are changed before the curves are generated.

CURVE Ci to Cj means that the co-ordinates of the curves Ci to Cj must be changed. If
only Ci is given, of course only Ci is changed.

SURFACE Si to Sj means that the co-ordinates of the surfaces Si to Sj must be changed.
If only Si is given, of course only Si is changed.

VOLUME Vi to Vj means that the co-ordinates of the volumes Vi to Vj must be changed.
If only Vi is given, of course only Vi is changed.

The default value is all.

The function description must have the following form:

FUNC_CHAN = i

The parameter i defines the choice parameter ICHOICE CHANGE in subroutine FUNC-
COOR (2.2.1).
If this part is omitted i = 1 is assumed.

Hence if no data records are given all nodes may be changed by a call to FUNCCOOR (2.2.1)
with ICHOICE CHANGE = 1.

The when part must have the following form:

IMMEDIATELY

AT_END

These parameters decide when the coordinates are changed.

UM Input for SEPMESH January 2013 2.2.15

IMMEDIATELY The coordinates are changed immediately after the creation of the specific
coordinates, .i.e.
The coordinates of the user points are changed before the curves are generated.
The coordinates of the curves are changed before the surfaces are generated.
The coordinates of each surface is changed immediately after each surface has been
generated.
The coordinates of each volume is changed immediately after each volume has been
generated.
The coordinates as described by ALL are changed after all coordinates have been created.

AT END In this case the coordinates are changed after all coordinates have been created.

Default value: AT END

OBSTACLES (optional) COMMAND record: indicates that obstacles are defined. These obsta-
cles may be used in free surface problems to indicate that the free boundary is not allowed to
cross these obstacles. At this moment only obstacle curves and surfaces are allowed. These
obstacles must always be closed. The obstacles are always plotted when a mesh or a bound-
ary is plotted. However, as long as there are no nodal points of the mesh connected to the
obstacle, the obstacle has no special meaning. The OBSTACLES record must be followed by
data records describing the obstacles. These records have the following shape:

COBS1 = Cj

COBS2 = Ck

SOBSi = Sj

COBSi = Cj defines obstacle i as a curve obstacle. The boundary of the obstacle is given
by the curve Cj.
The boundary must consist of one curve only and this curve must be closed, i.e. the
begin and end point must be the same. Using the option curves of curves it always
possible to create such a curve from an ensemble of other curves.

SOBSi = Sj defines obstacle i as a surface obstacle. The boundary of the obstacle is given
by the surface Sj.
The boundary must consist of one surface only and this surface must be closed. Using the
option surfaces of surfaces it always possible to create such a surface from an ensemble
of other surfaces.

Obstacles may become active in the computational part. In that case the intersection with
the standard mesh is considered.
We distinguish between the following types of elements

• Elements that are completely inside the obstacle. All elements with all nodes inside the
obstacle or on the boundary of the obstacle belong to this group. If there are elements
with all nodes on the boundary, these elements are considered to be inside the obstacle,
even if these elements are actually outside the obstacle. This may be the case around
sharp corners.

• Elements that are partly inside the obstacle. All elements with at least one point inside
the obstacle (not on the boundary) and one point outside the obstacle (also not on the
boundary) are considered to be partly inside the obstacle.

• The rest of the elements is considered to be outside the obstacle.

Once the obstacle is made active in the computational part we also distinguish between the
various nodes in the mesh:

• IN ALL OBSTACLE All nodes that are inside or on the boundary of an obstacle belong
to this group.

UM Input for SEPMESH January 2013 2.2.16

• IN INNER OBSTACLE In this case it concerns all nodes that are in elements that are
completely inside an obstacle. If an element is completely inside the obstacle but has
some points on the boundary of the obstacle then all nodes of this element except those
on the boundary belong to this group
Compared to IN ALL OBSTACLE, this means that nodes on the boundary of the ob-
stacle are excluded, as well as nodes of elements that are partly outside the obstacle even
if they are inside the obstacle.

• IN BOUN OBSTACLE This refers to the nodes in the obstacle of those elements of the
mesh that are partly outside the obstacle.
So all the points that are excluded in in_inner_obstacle but are part of in_all_obstacle
belong to in_boun_obstacle.

• ON BOUN OBSTACLE refers to the nodes of those elements of the mesh that are on
the boundary of the obstacle.

• INON BOUN OBSTACLE refers to a subset of the class of nodes in ON_BOUN_OBSTACLE.
It concerns those nodes of the boundary of the obstacle that are only in volume (R3) or
surface (R2) elements that itself are part of the obstacle. So in fact these are nodes that
are on the boundary of the obstacle and possibly on the outer boundary of the region
but not in elements that are outside the obstacle.

PLOT (optional) COMMAND record: indicates that the points, curves, the surfaces and the mesh
must be plotted, each on a new picture. This COMMAND record may contain data. In that
case it has the following shape:

PLOT (LENGTH=l, YFACT=y, JMARK=j, NUMSUB=n, CURVE=c, NODES=no, USERPOINTS=u,

COLOUR=cl, SUPPRESS=su, ROTATE=r, NOMESH, NOSUBMESH, REN_PLOT,

EYEPOINT=(x_e,y_e,z_e)), ORIENTATION=i

LENGTH = l defines the length of the plot in centimeters.
Default value: depending on the computer installation, usually 15 or 20.
In order to be compatible with old SEPRAN version instead of LENGTH also PLOTFM
may be used.

SCALE = s may be used instead of PLOTFM = l. In that case the size of the plot of the
mesh and sub meshes is not fixed, but determined by the co-ordinates of the mesh and
sub meshes.
Hence the length in the x-direction is given by s dx and the length in the y-direction by
s dy, where dx is the maximal difference of the x-co-ordinates in the mesh or sub mesh,
and dy the same for the y-co-ordinates.

YFACT = y : Scale factor; all y-co-ordinates are multiplied by y before plotting the mesh.
y 6= 1 should be used when the co-ordinates in x and y direction are of different scales,
and hence the picture becomes too small. Default value: 1.

JMARK = j : Indication of how the plot of the mesh must be made. Possibilities:

0,3 Each nodal point is marked with a star and its nodal point number.

1,4 Each nodal point is marked with a star. Nodal point numbers are not plotted.

2,5 Nodal points are not marked, nor are nodal point numbers plotted.

When JMARK < 3 all element numbers are plotted in the centroid of the elements, when
JMARK ≥ 3 no element numbers are plotted.

Default value: 5

NUMSUB = n : The sub meshes with numbers ≤ NUMSUB are not plotted. Default
value: 0.

CURVE = c : indicates if the curves must be plotted in a separate picture. Possible values:

0 Curves are not plotted.

UM Input for SEPMESH January 2013 2.2.17

1 Curves are plotted without curve number.

2 Curves are plotted provided with curve number.

Default value: 2.

NODES = no : indicates if nodes along the curves must be plotted in the picture containing
the curves. So this parameter makes only sense for c > 0. Possible values:

0 Nodes are not plotted.

1 Each node is indicated with a CROSS-symbol.

> 1 Each node is indicated with a symbol from the symbol table. The sequence number
on the symbol table is equal to no− 1.
Which symbols are stored in the symbol table depends on your plotting package.

Default value: 0.

USERPOINTS = u : indicates if and how user points must be plotted. Possible values:

0 User points are not plotted

1 Plot user points without numbers.

2 Plot user points with numbers.

Default value: 0.

COLOUR= cl : indicates if colors must be used to distinguish certain quantities. The most
important object of the parameter is to plot each element group with a different color in
the final plot of the mesh. Possible values:

0 Only one color (the standard color) is used.

1 The default colors are used. Each element group gets a different color.

> 1 Colors are used. Each element group gets a different color. The first element group
gets color cl, the next one cl + 1, etc.

Default value: 0.

SUPPRESS = su : indicates if pictures must be provided with texts (su = 1) or not
(su = 0).
Default value: 1.

ROTATE = r : indicates whether plots must be rotated over 90 degrees or not. Possibilities:

0 The plots are made such that the plotting paper used is minimal.

1 The plot is not rotated.

2 The plot is always rotated over 90 degrees.

Default value: 0.

EYEPOINT = (xe, ye, ze) : makes only sense in case of a 3D region. The use of EYE-
POINT indicates that a final 3D mesh is plotted with hidden lines. In the case that
there are many elements this plot may take much time. (xe, ye, ze) defines the point
where the observer is positioned.
Remark: EYEPOINT must be written as one word.

In case of a 3D mesh only the sub meshes are plotted, without the removal of hidden lines,
except when EYEPOINT is given. For a final plot of the complete region with hidden
lines removed one may either use program PLOTMESH or the subroutines PLOTM3 or
PLOT3M, see the Programmers Guide.

NOMESH means that no separate plot of the mesh is made. Hence only the other plots
(plots of curves and submeshes) are made.

NOSUBMESH : indicates that no separate plots of surfaces and volumes are made. This
keyword makes the keyword NUMSUB superfluous.

REN PLOT makes a separate plot of the mesh, where all nodes are provided with their
renumbered node numbers. Each node is provided with a mark. Remember that the
renumbering of the nodal points is only internal, the original numbering is used for output
and input purposes.
In order to plot the original numbering use JMARK = 0 or 3

UM Input for SEPMESH January 2013 2.2.18

ORIENTATION = i defines the orientation of the base vectors in case of a three-dimensional
plot with hidden lines. Hence this option is only applicable in combination with EYE-
POINT. The following values of i are allowed:

1 The standard orientation of the axis (x-y-z) is used.

2 The orientation is defined as z-x-y

3 The orientation is defined as y-z-x

REFINE [n TIMES] (optional)
COMMAND record: indicates that the mesh created must be refined n times, i.e., all edges
must be subdivided into 2n pieces. If n times is omitted n = 1 is assumed.

TRANSFORM [TYPE=t] (optional)
COMMAND record: indicates that a mesh consisting of linear triangles and tetrahedrons only
must be transformed to a mesh consisting of elements of type t only. The original mesh may
contain linear elements only.
The parameter t has the following meaning:

t = 4 means that all linear triangles are transformed into quadratic triangles and each linear
tetrahedron into quadratic tetrahedrons.

t = 5 means that all linear triangles are subdivided into bi-linear quadrilaterals and all linear
tetrahedrons into trilinear hexahedrons.

t = 6 means that all linear triangles are subdivided into bi-quadratic quadrilaterals and each
linear tetrahedron into triquadratic hexahedrons.

t = 7 means that all linear triangles are transformed into extended quadratic triangles, i.e.
quadratic triangles with an extra point (7) in the center.

If TYPE=t is omitted, t = 5 is assumed.

CHECK LEVEL=i (optional)
With this command the quality of the mesh may be checked. The value of i defines which
checking level is available. Possible values:

0 No special checks. This is the default.

1 The volume of all elements is checked. If some element is too distorted to be acceptable
for an element subroutine, an error message is given.

2 See level 1. In this case not only the elements are checked but also the minimum and
maximum value of the volumes of all elements is printed. The ration of these two number
gives an indication of the quality of the mesh. A small ratio of volume largest element
divided by volume smallest element implies a smooth mesh. A large ratio may indicate
that the mesh has a poor quality and the user should inspect the mesh plot carefully.

3 See level 2. In this case also a selected part of the subarrays of KMESH is printed. This
option is meant for debugging purposes.

4 See level 2. In this case also array KMESH and all the subarrays of KMESH are printed.
This option is meant for debugging purposes.

PARALLEL, options (optional)
If this keyword is used, it means that the user wants to use parallel computations, i.e. the
process is carried on a number of computers at the same time. Of course this is only possible
if you have a parallel cluster at your disposal.
The following options are available: (all in one line)

method = m, num_processors = i

These subkeywords have the following meaning:

UM Input for SEPMESH January 2013 2.2.19

method = m defines the method that is used to subdivide the mesh into submeshes. These
submeshes act as a block in a multi-block approach, also called domain decomposition.
The following options for m are available:

surfaces

volumes

layers

blocks

elements_serial

threed_blocks

These methods have the following meaning

surfaces means that each block coincides with one surface in case surfaces are the
entities of highest dimension. If volumes form the entities of highest dimension,
each block coincides with one volume.

volumes has exactly the same meaning as surfaces

layers means that the region is subdivided in exactly num processors layers of elements.
Each such layer forms a block. These elements are created in the following way:

• First the nodes are subdivided into groups consisting of approximately npoint /
num processors nodes, where the (possibly renumbered) sequence of the nodes
is used.

• Next all elements are added to layer i if they do not belong to a previous layer
and if all nodes of the element belongs to the set of points in the groups 1 to i.

elements serial is specially meant for test purposes. The number of elements in each
region is approximately the same.
Elements are not renumbered and are subdivided in natural sequence

threed blocks is specially meant for test purposes. A 3d block of equal number of
elements (hexahedrons) in each direction is subdivided into subblocks of equal size
(block subdivision). The number of blocks must be a power of 3.

At this moment the default value is layers. This may be changed in the future.

num processors = i defines the number of processors or blocks. If method = surfaces or
method = volumes is used, this keyword is neglected.
Default value: 8

At this moment we have the following restrictions:

1. MPI must run on the parallel computer, since our implementation is based on mpi.

If the option parallel is found, sepmesh creates, besides the standard file meshoutput, also
the files meshoutput_par.000, meshoutput_par.001 to meshoutput_par.xxx, where xxx is
the number of processors.
If the keyword parallel is found, sepcomp (or your own program) will solve the problem in
parallel on a number of processors defined by the number of surfaces or volumes.
For the computational program you have to use the command sepmpi in order to link and
run or the command

END (mandatory)
End of the input for program SEPMESH.

Remark:

The input must be given in the sequence:

UM Input for SEPMESH January 2013 2.2.20

MESH record

optional commands

POINTS

CURVES

SURFACES

VOLUMES

MESHLINE

MESHSURF

MESHVOLUME

MESHCONNECT

INTERFACE_ELEMENTS

MESHDUMMY

special purpose elements

auxiliary commands

END

UM Input for SEPMESH January 2013 2.2.21

Table 2.2.1 Standard elements for mesh generation

shape number shape name

1 • •
1 2

line element
with 2 points

2 • ••
1 2 3

line element
with 3 points

3 •

•

•

•

1

3

2

............................
............................

............................
............................

............................
............................

...
................................

................................
................................

................................
................................

................................
................

triangle
with 3 points

4

•

••

•

•

•

1
2

3

4

5

6

..
..................

........
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
........
........
........
........
........
.........
.........
.........
.........
.......

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.

isoparametric
triangle
with 6 points

5

1 2

4 3

�
�
�
�
�
�

D
D
D
D
D
D

• •

• •

quadrilateral
with 4 points

6

•••

•

•
•

•

••

1 2 3

4

567

8 9

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
........
........
........
..........
..............

.................
......................

....................................
...

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......

isoparametric
quadrilateral
with 9 points

7

• • •

•

•

•
•

1
2

3

4

5

6

7

..
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

isoparametric
triangle
with 7 points

UM Input for SEPMESH January 2013 2.2.22

shape number shape name

8

• • • •

• • •

• •

•

1
2 3

4

5

6

7

8

9 10

...
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

isoparametric
triangle
with 10 points
not available
in the mesh
generator

9

1 2

4 3

5

�
�
�
�
�
�

D
D
D
D
D
D

• •

• •

• quadrilateral
with 5 points

10 •

•

•

•

1

3

24
............................

............................
............................

............................
............................

............................
...

................................
................................

................................
................................

................................
................................

................
triangle
with 4 points

UM Input for SEPMESH January 2013 2.2.23

shape number shape name

11

•
•

•

•

1

3

2

4

...
...

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......

. tetrahedral
element
with 4 points

12

• • •

•

•

•

• •

•

•

1
2 3

4

5

6

7 8

9

10

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

. .

isoparametric
tetrahedral
element
with 10 points

13

•

•

••

• •

•
•

1
2

3
4

5
6

78

...
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........
........
........
........
........
........
........
........
........
........
........
...........

..
..

...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.
.........
.........
.........
.........
.........
.........
.........
.........
.....

. . .
. . .

. . .
.

..........
hexahedral
element
with 8 points

14

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

•
••• • •

•
•• • •

•

•••
• •

1
2

3

4 5 6

7
8

9

bottom face

10
11

12
13 14 15

16
17

18

mid face

19
20

21

22 23 24

25
26

27

upper face

numbering:

...
.......
.......
.......
.......
.......
.......
.......
.......
...

...
.......
.......
.......
.......
.......
.......
.......
.......
..

...
.......
.......
.......
.......
.......
.......
.......
.......
...

..
..

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

..
...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

. .
. .

. .
. .

. .
..
..
..
..
..
.

.

isoparametric
hexahedral
element
with 27 points

UM Input for SEPMESH January 2013 2.2.24

shape number shape name

15

• •
•

•

•

•

•

•
•
•

•
•

•

•

1 2
3

4

5

9

10

7

12

14

6
8

11

13

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...........
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

...

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

. .

isoparametric
tetrahedron
with 14 points
comp. with 12,
extra points
are the
centroids
of the faces

16

• •
•

•

•

•

•

•
•
•

•
• •

•

•

1 2
3

4

5

9

10

7

12
15

14

6

8

11

13

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...........
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

..............
..............

...

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

. .

isoparametric
tetrahedron
with 15 points
comp. with 15,
extra point
is the
centroid
of the
tetrahedron

17

•

•

••

• •

•
•

•

1
2

3
4

5
6

78

9

...
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........
........
........
........
........
........
........
........
........
........
........
...........

..
..

...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.
.........
.........
.........
.........
.........
.........
.........
.........
.....

. . .
. . .

. . .
.

..........

hexahedral
element
with 9 points
point 9 is
centroid

18

•
•

•

•

•

1

3

2

4

5

...
...

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......

. tetrahedral
element
with 5 points

UM Input for SEPMESH January 2013 2.2.25

shape number shape name

21

• •

•

• •

•

1 2

3

4 5

6

..
..............

..............
..............

..............
..............

..............
..............

..............
...

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..
..............

..............
..............

..............
..............

..............
..............

..............
..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

isoparametric
prism
with 6 points

UM Subroutine FUNCCOOR March 2009 2.2.1.1

2.2.1 Subroutine FUNCCOOR

Description

Subroutine FUNCCOOR is used to modify the co-ordinates that have been generated
by the SEPRAN mesh generator. The call to this subroutine is activated by the input
block CHANGE COORDINATES.
FUNCCOOR must be written by the user.

Heading

subroutine funccoor (ichoicechange, ndim, coor, nodes, numnodes)

Parameters

DOUBLE PRECISION COOR(NDIM,∗)
INTEGER ICHOICECHANGE, NDIM, NODES(NUMNODES), NUMNODES

ICHOICECHANGE is identical to the parameter i corresponding to FUNC_CHAN = i

in the input block CHANGE COORDINATES. This parameter may be used by
the user to distinguish between several cases.

NDIM defines the dimension of the space.

COOR is a two-dimensional array of size NDIM × NPOINT (number of nodal points),
containing all co-ordinates of the mesh.
At input the co-ordinates as generated by the mesh generator are stored in this
array. At output the user may have changed some or all of these co-ordinates.

NODES is an integer array of length NUMNODES containing the nodal point numbers
of all nodes that are given by the position part in the input block.

NUMNODES length of array NODES.

Input

The parameters ICHOICECHANGE, NDIM and NUMNODES have been given a value
by the mesh generator before the call of FUNCCOOR.
The arrays NODES and COOR have been filled by the mesh generator before the call
of FUNCCOOR.

Output

The user is supposed to have changed the values of the co-ordinates in array COOR.

UM Subroutine FUNCCOOR March 2009 2.2.1.2

Interface

Subroutine FUNCCOOR must be programmed as follows:

SUBROUTINE FUNCCOOR (ICHOICECHANGE, NDIM, COOR, NODES, NUMNODES)

IMPLICIT NONE

INTEGER ICHOICECHANGE, NDIM, NUMNODES, NODES(NUMNODES)

DOUBLE PRECISION COOR(NDIM,*)

INTEGER i, nodal_point_number

if (ICHOICECHANGE==1) then

do i = 1, NUMNODES

nodal_point_number = NODES(i)

COOR(1,nodal_point_number) =

COOR(2,nodal_point_number) =

COOR(3,nodal_point_number) =

end do

else

.

.

.

.

end if

END

UM Curve generators September 2009 2.3.1

2.3 Curve generators

In this section the various curve generators will be treated. For the definition of the curves the
user may specify the number of nodal points on a curve as well as the distribution of these points.
Another possibility is to define an approximate length of the elements in the end points of the
curves. Elements in between are defined such that the mesh size increases or decreases monotone
and smoothly from one end to the other. When the user wants to utilize this possibility he must
give the command COARSE, and give a unit length (UNIT). Furthermore each user point must
be provided with a so-called coarseness (c). Then the approximate length of the elements in the
surroundings of these points is equal to c× UNIT, depending on the type of function that is used
for the creation of the curve.
These curve generators are activated by the command CURVES in the input for the program
SEPMESH. In Section 2.2 the following types of curve generators have been defined:

LINE
CLINE
ARC
CARC
USER
PARAM
CPARAM
SPLINE
CSPLINE
CURVES
TRANSLATE
ROTATE
REFLECT
SPCURVE
PROFILE
CPROFILE
CIRCLE
OWN CURVE
ELL ARC
CELL ARC

These curve generators have the following global functions:

LINE generates a straight line between two end points.

CLINE generates a straight line between two end points using the concept of coarseness.

ARC generates an arc from begin point to end point; the centroid must be given.

CARC generates an arc from begin point to end point; the centroid must be given. The division
of elements is based on the concept of coarseness.

USERi the user gives all coordinates of the nodal points on the line.

SPLINE A curve is defined by a spline through a number of points.

CSPLINE A curve is defined by a spline through a number of points. The division of elements is
based on the concept of coarseness.

PARAM The user defines a curve by a function subroutine FUNCCV (2.3.1) using a parameter
representation.

UM Curve generators September 2009 2.3.2

CPARAM The user defines a curve by a function subroutine FUNCCV (2.3.1) using a parameter
representation. The division of elements is based on the concept of coarseness.

TRANSLATE Copy a curve and translate it over a fixed distance.

ROTATE Copy a curve and translate and rotate this new curve.

REFLECT Make a reflection of a curve with respect to a given line.

CURVES Create a new curve by combining old curves.

SPCURVE Construct a curve through a number of old curves. The old curves are made obsolete.

PROFILE Define a curve with a specified profile.

CPROFILE Define a curve with a specified profile. The division of elements is based on the
concept of coarseness.

CIRCLE Define a circle in R2 or R3 with center and begin point.

OWN CURVE The user defines a curve by a user written subroutine OWN CURVE (2.3.2).

ELL ARC generates an arc along an ellipse from begin point to end point; the centroid of the
ellipse must be given. This option is only available in R2. So this almost identical to ARC,
except that the radius does not have to be constant.

CELL ARC is the coarse variant of ELL ARC, comparable to CARC.

The following options have a global meaning for each of the curves, where they may be used:

NELM=n gives the number of elements that must be created along the curve (linear or quadratic
depending on the value of j).

RATIO=r indicates the options for distribution of the nodal points. Possibilities:

r=0: equidistant mesh size (default)

r=1: the last element is f times the first one.

r=2: each next element is f times the preceding one.

r=3: the last element is 1/f times the first one.

r=4: each next element is 1/f times the preceding one.

r=5: the subdivision of the elements is symmetric with respect to midpoint of the curve.
The last element of each half is f times the first one.

r=6: See r=5.
Each next element of each half is f times the preceding one.

r=7: See r=5, but now with a factor 1/f .

r=8: See r=6, but now with a factor 1/f .

FACTOR=f the factor to be used when r >1. Default: f=1.

NODD=o The value of o defines whether the number of end points of the elements on the curve
is free, odd or even. Possibilities:

o=0,1: free

o=2: number of end points odd, which means that an even number of elements is generated
along the curve.

UM Curve generators September 2009 2.3.3

o=3: number of end points even, which means that an odd number of elements is generated
along the curve.

INIT=t0 gives the starting value of the parameter t along the curve. This parameter t is used in
the call of subroutine FUNCCV (2.3.1).
Default value: t0 = 0.

END=t1 gives the end value of the parameter t along the curve.
Default value: t1 = 1.

Extended description of the various curve generators

LINE The input for LINE must be defined in the following way:

Ci = LINEj (P1, P2, NELM=n [, RATIO=r, FACTOR=f])

This means that a straight line is generated from point P1 to point P2, with a division of
elements as indicated by the options.

CLINE The input for CLINE must be defined in the following way:

Ci = CLINEj (P1, P2 [,NODD=o])

When CLINE is used, a straight line is generated from P1 to P2, where the coarseness as
given in the points P1 and P2 is used to define the elements. The value of o indicates whether
the number of end points of the elements is free, odd or even.

ARC The input for ARC must be defined in the following way:

Ci = ARCj (P1, P2, P3, NELM=n [, RATIO=r, FACTOR=f])

When ARC is used an arc is generated from point P1 to P2 with center P3.
In R2 the sign of P3 indicates the direction of the arc. When P3 is given the arc is created
counter clockwise, when -P3 is given it is created clockwise.
In R3 the smallest arc from point P1 to point P2 is chosen. If the angle is exactly 180◦, that
is if the points P1, P2 and P3 are positioned on a straight line, then the direction of the arc
is undefined. The arc is positioned in the plane through P1, P2 and P3.

Remark: The user may give the centroid of an arc in an inaccurate way. The centroid is
computed as the projection of the centroid given by the user on the line orthogonal to the line
through the two end points of the arc and going through the midpoint of these two points.
See Figure 2.3.1. Of course this is only possible when initial point and end point of the arc
are essentially different points.

PC

P P12

c

Figure 2.3.1: Computation of the centroid of an arc

UM Curve generators September 2009 2.3.4

CARC The input for CARC must be defined in the following way:

Ci = CARCj (P1, P2, P3 [,NODD=o])

When CARC is used, an arc is generated from point P1 to P2 with center P3, where the
coarseness as given in the points P1 and P2 is used to define the elements. For the value of
o, see CLINE.
In R2 the sign of P3 indicates the direction of the arc. When P3 is given the arc is created
counter clockwise, when -P3 is given it is created clockwise.
In R3 the smallest arc from point P1 to point P2 is chosen. If the angle is exactly 180◦, that
is if the points P1, P2 and P3 are positioned on a straight line, then the direction of the arc
is undefined. The arc is positioned in the plane through P1, P2 and P3.
See also the remarks in ARC concerning the accuracy of the mid point.

USER The input for USER must be defined in the following way

Ci = USERj (P1, P2, P3, . . . , Pn)

When USER1 is used, the curve is defined by the points P1, P2, P3, . . . , Pn in that
sequence, when USER2 is used the curve is defined by the same points, but also the midpoints
are generated exactly in the middle of the lines (P1, P2), (P2, P3), . . . , (Pn-1 , Pn).

SPLINE: The input for SPLINE must be defined in the following way:

Ci = SPLINE j (P1, P2, ... ,Pm, NELM=n [, RATIO=r, FACTOR=f] &

[,TYPE=t [,tang=Pk, tang=Pl]] [ALPHA = a])

When SPLINEi is used, the curve is defined by a cubic spline through the points P1, P2, P3,
. . . , Pm. At least 3 points are required. The curve passes through all points P1, P2, Pm
and has continuous derivative and curvature. None of the internal points P2, P3, ... Pm-1 is
necessarily a nodal point. These points are not connected to nodal points either, so they can
not be used in later stages of SEPRAN programs. In each sub interval [Pi, Pi+ 1] the curve
is a polynomial of the third degree. In SEPRAN the following SPLINE types are accessible
by the option TYPE=t:

t=1 The tangent of the curve is zero in the end points P1 and Pm.

t=2 In [P1,P2] and [Pm− 1,Pm] the curve is a polynomial of degree 2.

t=3 The spline is a closed curve, i.e. there is no begin or end point: P1 and Pm must be the
same point!

t=4 The spline is defined by the points P1, P2, . . . , Pn with prescribed derivatives in both
begin and end point of the curve. The user must give the direction and magnitude of
these derivatives by the phrase tang = Pk, tang = Pl. It is assumed that the vector Pk
- P1 is the derivative in the initial point P1, and the vector Pl - Pm in the end point
Pm. Hence the points Pk and Pl must have been defined already in the section points.
Note that Pk is connected with the starting point and Pl with the end point.

If TYPE = t is omitted, t=1 is assumed.

The division of elements on the curve is defined by the parameter i, NELM=n, and (optional)
RATIO=r, FACTOR=f .
The factor α defines the type of spline to be used. α = 1, the default value, gives the so-called
cord-spline, α = 0.5, gives the so-called centripetal-spline and α = 0, so-called uniform-spline.
Any value of α between 0 and 1 is permitted. Which value of α is most suited depends on
the taste of the user.

CSPLINE The input for CSPLINE must be defined in the following way:

UM Curve generators September 2009 2.3.5

Ci = CSPLINE j (P1, P2, ... ,Pm [, NODD=o] [,TYPE=t [,tang=Pk, tang=Pl]] &

[ALPHA = a])

When CSPLINEi is used, the curve is defined by a cubic spline through the points P1, P2,
P3, . . . , Pm. At least 3 points are required. The curve passes through all points P1, P2,
.... Pm and has continuous derivative and curvature. None of the internal points P2, P3, ...
Pm is necessarily a nodal point. These points are not connected to nodal points either, so
they can not be used in later stages of SEPRAN programs. In each sub interval [Pi, Pi+ 1]
the curve is a polynomial of the third degree. In SEPRAN the following SPLINE types are
accessible by the option TYPE=t:

t=1 The tangent of the curve is zero in the end points P1 and Pm.

t=2 In [P1,P2] and [Pm− 1,Pm] the curve is a polynomial of degree 2.

t=3 The spline is a closed curve, i.e. there is no begin or end point: P1 and Pm must be the
same point!

t=4 The spline is defined by the points P1, P2, . . . , Pn with prescribed derivatives in both
begin and end point of the curve. The user must give the direction and magnitude of
these derivatives by the phrase tang = Pk, tang = Pl. It is assumed that the vector Pk
- P1 is the derivative in the initial point P1, and the vector Pl - Pm in the end point
Pm. Hence the points Pk and Pl must have been defined already in the section points.
Note that Pk is connected with the starting point and Pl with the end point.

If TYPE = t is omitted, t=1 is assumed.

The division of elements on the curve is defined by the parameter i, the coarseness and
(optional) NODD=o.
The parameter α has the same meaning as for SPLINE.

PARAM The input for PARAM must be given in the following way:

Ci = PARAM j (P1, P2, NELM=n [,INIT=t_0] [,END=t_1] [, RATIO=r, FACTOR=f])

PARAM generates a user defined curve. The user must give the co-ordinates x, y and z as
function of a parameter t with the aid of a user written subroutine FUNCCV (2.3.1). The
parameter t goes from t0 to t1. The initial point is given by P1 and the end point by P2.
In this case as well in the case of the function CPARAM, the length of the elements is created
according to the rules defined by the parameters NELM, RATIO and FACTOR (PARAM),
or the coarseness in the end points and the parameter NODD (CPARAM). As a consequence,
the parameter t does not have to be distributed according to these same rules. Therefore,
during the generation of the curves it is necessary for the program to compute the length of
the curve and hence the function FUNCCV is called far more times then may be expected
beforehand.

In the case of the function PARAM it is also permitted to give the distribution of the t-values
over the interval. To that end 5 negative values of RATIO = r are permitted, with the
following meaning:

r=-1: equidistant distribution of t, compare with r=0.

r=-2: the last t-value is f times the first one, compare with r=1.

r=-3: each next t-value is f times the preceding one, compare with r=2.

r=-4: the last t-value is 1/f times the first one, compare with r=3.

r=-5: each next t-value is 1/f times the preceding one, compare with r=4.

CPARAM The input for CPARAM must be given in the following way:

Ci = CPARAM j (P1, P2 [,NODD=o [,INIT=t_0] [,END=t_1])

UM Curve generators September 2009 2.3.6

When CPARAM is used, a user defined curve is created as and the parameter t, where t goes
from t0 to t1. The initial point is given by P1 and the end point by P2. The coarseness as
given in the points P1 and P2, is used for the definition of the curves.

TRANSLATE The input for TRANSLATE must be defined in the following way

Ci = TRANSLATE Cj (Pi [,Pj, Pk, ...])

When TRANSLATE is used, the curve Ci is a copy of curve Cj translated over a distance
d = ((P1i − P1j)x, (P1i − P1j)y, (P1i − P1j)z) with P1i the first point on Ci and P1j the
first point on Cj.
If the points Pi, Pj, Pk, ... are given, these points correspond to the second, third etc. user
points on Cj in that sequence. When these user points have co-ordinates (0,0,0), they get the
new co-ordinates as computed by the translation, otherwise it will be checked whether these
points have the correct co-ordinates, that is if these points are in fact positioned on Ci. The
point numbers i of Pi may not exceed the maximal number of user points.
For most applications it is necessary that both the initial and end point of a curve are identified
with user points. However, if the curve to be copied consists of many user points, defining the
end point of the new curve requires a large number of (possibly unnecessary) user points on
this new curve. For that reason the user may identify the last user point at the new curve by
preceding the point number by a minus sign. This is for example the case if the curve must
be connected to another curve.
So

TRANSLATE Cj (P1,−P5)

indicates that the begin point on curve Ci is the user point P1 and the end point is user point
P5. If more user points are defined on the new curve, then the point with the minus sign
must always be the last one in the row.

ROTATE The input for ROTATE must be defined in the following way:

Ci = ROTATE Cj (P1, P2, P3 [,P4, P5, ...])

When ROTATE is used, the curve Ci is a copy of curve Cj translated and rotated, such that
the first three user points at Ci (P1, P2 and P3) are the copies of the corresponding user
points at Cj. For two-dimensional meshes it suffices to give two points only. If a straight line
has to be translated and rotated in 3D it also suffices to give two user points on the curve Ci.
These user points define the translation as well as the rotation. ROTATE may only be used
for curves in a plane. j must be smaller than i.
If the points P4, P5, P6, ... are given, these points correspond to the fourth, fifth etc. user
points on Cj in that sequence. When these user points have co-ordinates (0,0,0), they get
the new co-ordinates as computed by the rotation, otherwise it will be checked whether these
points have the correct co-ordinates, that is if these points are in fact positioned on Ci. The
point numbers i of Pi may not exceed the maximal number of user points.
In the same way as for TRANSLATE the last user point in the case of ROTATE may be
identified by a minus sign.

For an example of the use of ROTATE see 2.6.

REFLECT The input for REFLECT must be given in the following way:

Ci = REFLECT Cj (AXIS = P1, P2; P3, P4[, P5, ...])

When REFLECT is used, curve Ci is a reflection of Cj with respect to the reflection line
P1 - P2. At least two user points P3 and P4 have to be given. If the points P5, P6, ... are
given, these points correspond to the third, fourth etcetera user points on Cj in that sequence.

UM Curve generators September 2009 2.3.7

When these user points have co-ordinates (0,0,0), they get the new co-ordinates as computed
by the reflection, otherwise it is checked whether these points have the correct co-ordinates,
that is if these points are indeed positioned on Ci. The point numbers i of Pi may not exceed
the maximal number of user points.
In the case that a curve has to be reflected in R3 instead of R2 AXIS = P1, P2; should be
replaced by RPLANE = P1, P2, P3; since in the three-dimensional space a reflection plane is
required.
In the same way as for TRANSLATE the last user point in the case of REFLECT may be
identified by a negative sign.

CURVES The input for CURVES must be defined in the following way:

Ci = CURVES (Ck, Cl, Cm, . .)

When CURVES is used, a curve is defined by the subsequent curves Ck, Cl, Cm, ... When the
sign of the curve number is positive, the positive direction will be used, otherwise (negative
sign), the reversed direction of the curve will be used. The curve number Ci must be larger
than Ck,Cl, and Cm.

SPCURVE The input for SPCURVE must be defined in the following way:

Ci = SPCURVE (Ck, Cl, Cm, . .)

In this case Ci is defined as a spline defined by the points created at the subsequent curves
Ck, Cl, Cm, ... When the sign of a curve number is positive, the positive direction will be
used, otherwise (negative sign), the reversed direction of the curve will be used. The curve
number Ci must be larger than Ck,Cl, and Cm.
The number of nodes at the curve Ci is the same as those on the composite curve defined
by Ck,Cl, ..., however, the distribution of the points is only defined by the length of the first
and the last element at the original compound curve. After creating the new curve, the old
ones are obsolete and can not be used anymore in SEPRAN. Their only task is to define the
shape of the curve Ci.

Mark that there are no nodes defined on the curves Ck,Cl, ..., and that these curve may not
be considered as subcurves if Ci.

PROFILE The input for PROFILE must be defined in the following way:

Ci = PROFILE j (P1, P2, NELM=n ,shape=s, INIT=t_0, END=t_1, RATIO=r, FACTOR=f)

Ci is defined as a profile defined by the shape parameter s. The number of elements n is
defined by NELM=n and the initial and end point by respectively P1 and P2.
The parameters RATIO and FACTOR have their usual meaning and are meant to define the
distribution of nodes.
The parameters t0 and t1 have exactly the same meaning as in PARAM. The only difference
is that both must be between 0 and 1, and that t1 must always be larger than t0. If omitted
the default values 0 and 1 are used, which correspond to a complete lower or upper profile.
The following shapes s of the profile are available:

upper_naca0012

lower_naca0012

upper naca0012 defines the upper part of a naca0012 profile where the leading edge is
positioned in P1 and the trailing edge in P2.

lower naca0012 defines the lower part of a naca0012 profile where the leading edge is posi-
tioned in P1 and the trailing edge in P2.

UM Curve generators September 2009 2.3.8

CPROFILE The input for CPROFILE must be defined in the following way:

Ci = CPROFILE j (P1, P2, shape=s, INIT=t_0, END=t_1, NODD=o)

Ci is defined as a profile defined by the shape parameter s. The number of elements n is
defined by the coarseness in the end points and the value of o in NODD = o.
The initial and end point are defined by respectively P1 and P2.
The shapes s of the profile are exactly the same as for PROFILE and also the parameters t0
and t1 have the same meaning.

CIRCLE The input for CIRCLE must be defined in the following way:

Ci = CIRCLE j (P1, P2, P3, NELM=n [, RATIO=r, FACTOR=f])

Ci is defined as a complete circle with center P1 and starting point P2.
The center P1 is not coupled to a node, P2 is always a nodal point.
P3 is only used in case of R3 and may be skipped in R2. It is merely used to define the plane
in which the circle is lying. Hence P3 must be positioned such that it is in the plane of the
circle and not on the line through P1 and P2. There are no nodes connected to P3.
The number of elements n is defined by NELM, and FACTOR and RATIO have their usual
meaning.

OWN CURVE The input for OWN CURVE must be defined in the following way:

Ci = OWN_CURVE j (P1, P2, NELM=n [, IFUNC=i])

Ci is defined as a user curve defined between the user points P1 and P2. The user must define
the curve himself through the user written subroutine OWN CURVE (2.3.2).
Points P1 and P2 form the start and end of the curve and it is checked if the user provided
coordinates are indeed equal to the ones stored in P1 and P2, unless P1 and P2 have not been
filled before.
NELM=n, defines the number of elements along the curve.
IFUNC = i, defines a choice parameter that is passed undisturbed to subroutine OWN CURVE,
and may be used to distinguish between various calls of OWN CURVE.

UM Subroutine FUNCCV December 1993 2.3.1.1

2.3.1 Subroutine FUNCCV

Description

Subroutine FUNCCV is used when curves must be generated using the PARAM or CPARAM mech-
anism. With this subroutine the user may define a curve as function of a parameter t. FUNCCV
must be written by the user.

Call

CALL FUNCCV (ICURVE, T, X, Y, Z)

Parameters

DOUBLE PRECISION T, X, Y, Z

INTEGER ICURVE

ICURVE Curve number. Subroutine MESH gives ICURVE the sequence number of the curve to
be generated.

T Parameter t for the definition of the curve. Program SEPMESH gives t values between t0 and
t1.

X,Y,Z the user must give X, Y and Z the values of the co-ordinates as function of the parameter
t and the curve number ICURVE.

Input

Program SEPMESH gives ICURVE and T a value

Output

The user must fill the co-ordinates X, Y and Z.

Interface

Subroutine FUNCCV must be programmed as follows:

SUBROUTINE FUNCCV (ICURVE, T, X, Y, Z)

IMPLICIT NONE

INTEGER ICURVE

DOUBLE PRECISION T, X, Y, Z

.

.

. statements to give x,y and z a value as function

. of t and ICURVE

.

END

UM Subroutine OWN CURVE June 2004 2.3.2.1

2.3.2 Subroutine OWN CURVE

Description

Subroutine OWN CURVE is used when the user wants to define a curve himself through
the use of a own written subroutine. OWN CURVE must be written by the user.

Heading

subroutine own_curve (ifunc, icurnr, coor, npoints, ndim)

Parameters

INTEGER IFUNC, ICURNR, NPOINTS, NDIM

DOUBLE PRECISION COOR(NDIM,NPOINTS)

IFUNC This parameter, which may not be changed by the user, gets the value of
IFUNC in the input file. So it is passed undisturbed to this subroutine, and the
user may utilize this parameter to distinguish between several calls.

ICURNR Curve number. Subroutine MESH gives ICURNR the sequence number of
the curve to be generated.

COOR Array of size NDIM × NPOINTS that must be filled by the user with the
coordinates of all NPOINTS nodes along the curve in the sequence from P1 to P2,
with P1 and P2 defined in the input file (2.3). If the user points P1 and P2 have
been filled before, the coordinates of P1 and P2 must coincide with the coordinates
of the initial and point of the curve stored in COOR.

NPOINTS Number of nodes along the curve. This parameter is computed by SEPMESH
from the parameter NELM, and may not be changed by the user.

NDIM Defines the dimension of the space.

Input

Program SEPMESH gives IFUNC, ICURNR, NPOINTS and NDIM a value.

Output

The user must fill array COOR completely with the coordinates of the nodes along the
curve.

Interface

Subroutine OWN CURVE must be programmed as follows:

subroutine own_curve (ifunc, icurnr, coor, npoints, ndim)

integer ifunc, icurnr, npoints, ndim

double precision coor(ndim,*)

.

.

.

. statements to fill coor as function of ifunc

. and possibly ICURNR

.

END

UM Subroutine OWN CURVE June 2004 2.3.2.2

In order to get a sample subroutine OWN CURVE in your local directory, use the
command

sepget own_curve

In this sample subroutine one straight line is formed from the point (0,0) to (width,0),
where width is defined in the input file. The value of width is placed in the subroutine
by use of the function subroutine getconst (3.3.12).

UM Surface generators November 2008 2.4.1

2.4 Surface generators

Description

In this section the various surface generators are treated. These surface generators are activated
by the command SURFACES in the input for the program SEPMESH. In 2.2 the following types
of surface generators are available

GENERAL

TRIANGLE

QUADRILATERAL

RECTANGLE

USER

SURFACES

ORDERED SURFACE

TRANSLATE

COPY_SURFACE

ROTATE

REFLECT

SIMILAR

PIPESURFACE

COONS

ISOPAR

PARSURF

PAVER

SPHERE

FRAMESURF

COPY_SURFACE

These surface generators have the following global function:

GENERAL Creates a grid for a very general region in a plane (triangles and quadrilaterals).
Elements try to take the ideal shape, i.e. as close as possible to equilateral triangles and
squares. Sudden refinements are not allowed, the generator is relatively expensive. See 2.4.1
for a description of GENERAL.

TRIANGLE Creates a grid for a very general region in a plane (triangles only). The essential
difference with GENERAL is that TRIANGLE allows a much larger ratio from coarse to fine
elements, and therefore generates fewer elements in regions where coarse and fine elements
are used. Furthermore TRIANGLE requires less computing time than GENERAL, especially
for coarse grids. The use of TRIANGLE requires a special license. See 2.4.7 for a description
of TRIANGLE.

RECTANGLE The submesh generator RECTANGLE, creates sub meshes in a plane that can
be mapped onto a ”rectangle”. RECTANGLE is restricted in the sense that the region to be
subdivided must be topological equivalent to a rectangle, i.e. it must have some resemblance
with a ”curved” rectangle. Furthermore the number of points on opposite sides of this rect-
angle must be equal. RECTANGLE is much faster than GENERAL, and allows for oblong
elements. See 2.4.2 for a description of RECTANGLE.

QUADRILATERAL the submesh generator QUADRILATERAL creates sub meshes in a plane
that
can be mapped onto a ”rectangle”. Also this region must be topological equivalent to a
rectangle, but unlike RECTANGLE, there are no restrictions with respect to the number of
points situated on opposite sides. See 2.4.3 for a description of QUADRILATERAL.

USER a user provided mesh generator called MESHUS is called. See 2.4.6.

UM Surface generators November 2008 2.4.2

TRANSLATE Copy and translate a surface.

COPY SURFACE Copy a surface (no translation).

ROTATE Copy, translate and rotate a surface.

REFLECT Make a reflection of a surface with respect to a reflection surface.

PIPESURFACE When PIPESURFACE is used, a ”cylinder” type surface in R3 is generated
using the curves C1, C2, C3 and C4 as generating curves. See 2.4.5 for a description of
PIPESURFACE.

COONS The submesh generator COONS creates a mesh on a curved surface in 3D space, where the
region is topologically equivalent to a rectangle. The surface is mapped onto a rectangle and
this rectangle is subdivided into elements using the submesh generator QUADRILATERAL.
See 2.4.4 for a description of COONS.

ISOPAR The submesh generator ISOPAR creates a mesh on a curved surface in R3, or a surface
in R2, where the region is topologically equivalent to a triangle. The surface is mapped onto
a triangle and this triangle is subdivided into triangular elements only. See Section 2.4.9 for
a description of ISOPAR.

PARSURF The submesh generator PARSURF creates a mesh on a curved surface in 3D space,
where the region is topologically equivalent to a rectangle. The surface is mapped onto a rect-
angle and this rectangle is subdivided into elements using the submesh generator QUADRI-
LATERAL. The difference with the submesh generator COONS is that the surface is given
by the user in parameter form, whereas COONS defines the surface itself. See 2.4.8 for a
description of PARSURF.

PAVER The submesh generator PAVER creates a two-dimensional mesh. This generator is
especially meant for elements with large aspect ratios. The boundary may be very irregular.
It is supposed that the elements follow the boundary closely, and that the width of the elements
orthogonal to the boundary is small compared to the length in the boundary direction. Such
meshes are common for boundary layers like in aircraft industry. See 2.4.10 for a description
of PAVER.

SPHERE The submesh generator SPHERE creates a mesh on a sphere or a half sphere. All the
user has to give is one circle that defines the (half) sphere implicitly. In fact SPHERE is not
a separate mesh generator, the use of it merely decreases the amount of input for generating
a sphere. Internally the sphere is build by a number of calls to other submesh generators. To
that end extra user points, curves and surfaces are defined that are not visible to the user.
See 2.4.11 for a description of SPHERE.

SURFACES Create a surface consisting of surfaces, without ordering this surface.

ORDERED SURFACE Create a surface consisting of surfaces in an ordered way.

Extended description of some of the surface generators

SURFACES The input for SURFACES must be defined in the following way:

Si = SURFACES (Sk, Sl, Sm, . .)

When SURFACES is used, a surface is defined consisting of the surfaces Sk, Sl, Sm, . .
The surface is unordered and may only be used at those places where a surface created by
GENERAL is allowed.
All elements in these surfaces must have the same shape number.

ORDERED SURFACE The input for ORDERED SURFACE must be defined in the following
way:

UM Surface generators November 2008 2.4.3

Si = ORDERED SURFACE ((Sk1, Sk2, ...), (Sl1, Sl2, . . .), (Sm1, Sm2, . . .), . .)

When ORDERED SURFACE is used, a surface is defined consisting of the subsurfaces
Sk1, Sk2, ..., Sl1, Sl2, ..., Sm1, Sm2, In this case the surface is ordered in a fixed way.
The subsurfaces must all have been created by calls of submesh generator RECTANGLE or
by translation or rotation of such calls, or they must all be created by the generator PIPE
SURFACE. The subsurfaces can not be chosen arbitrarily, but must consist of rows of sub-
surfaces each with the same number of elements in the ”column” direction per ”row”. See
Figure 2.4.1 for an example.

S S S Sl l l lm

m

m

S S S S S

S S

n n n n n

k k

n

3 1 2 3 4

2 1 2 3 4 5

1 1 2

Figure 2.4.1: Example of an ordered surface consisting of subsurfaces

Surfaces corresponding to one row must be placed between brackets, and must be given in the
same sequence (i.e. in Figure 2.4.1 from right to left or left to right). The surfaces Sk1, Sk2, ...
must have the same number of elements in the ”m”-direction (m1). The same is true for the
subsurfaces Sl1, Sl2, ... and for the subsurfaces Sm1, Sm2, The number of elements in the
”n”-direction of each row must be constant (n). The statement
Si = ORDERED SURFACE (Sj, Sk, Sl, ...) is treated in the same way as
Si = ORDERED SURFACE ((Sj, Sk, Sl, ...)), hence using single brackets instead of double
ones implies that only one row of surfaces is used.

The subsurfaces must all start in the same relative position, in Figure 2.4.1 left under, and
follow the same direction. See Figure 2.4.2. When a subsurface has been generated from right
to left, then minus the subsurface number must be used. The upward direction, however,
must always be the same.

All elements in these surfaces must have the same shape number.

(a) (b)
n

1

23
4

m

Figure 2.4.2: Standard direction for subsurface. (a) RECTANGLE (b) PIPE SURFACE

TRANSLATE The input for TRANSLATE must be defined in the following way:

Si = TRANSLATE Sj (C1 [,C2, C3, ...])

When TRANSLATE is used, surface Si is a copy of surface Sj translated over a distance
∆x = ((P1i − P1j)x, (P1i − P1j)y, (P1i − P1j)z) with P1i the first point on the first curve
C1 of Si and P1j the first point on the first curve C1 of Sj. j must be smaller than i.
When the curves C2, C3, C4, ... are given, these curves correspond to the curves on surface

UM Surface generators November 2008 2.4.4

Sj. The curves must have been created in the section CURVES, for example by the command
TRANSLATE or ROTATE. It is checked whether the co-ordinates on C2, C3, C4, ... are indeed
positioned on the surface Si.

Remark: The curves C1, C2, C3 must completely enclose the surface Sj. It is not permitted
to use a half open boundary.

COPY SURFACE The input for COPY SURFACE is very simple:

Si = COPY_SURFACE Sj

The result is a surface Si that is a copy of surface Sj. Si is completely identical to Sj, so it
has the same coordinates. Only the nodal point numbers in the final mesh will be different.

ROTATE The input for ROTATE must be defined in the following way:

Si = ROTATE Sj (C1 [,C2, C3, ...])

When ROTATE is used, surface Si is a copy of surface Sj translated and rotated such that
the curve C1 on Si is a copy of the curve C1 on Sj. j must be smaller than i. ROTATE
may only be applied to surfaces lying in a plane. When C1 forms a straight line, then the
user must give at least as many curves such that these curves do specify a plane, i.e. not all
points on these curves are positioned on a straight line.
When the curves C2, C3, C4, ... are given, these curves correspond to the curves on surface
Sj. The curves must have been created in the section CURVES, for example by the command
TRANSLATE or ROTATE. It is checked whether the co-ordinates on C2, C3, C4, ... are indeed
positioned on the surface Si.

Remark: The curves C1, C2, C3 must completely enclose the surface Sj. It is not permitted
to use a half open boundary.

REFLECT The input for REFLECT must be defined in the following way:

Si = REFLECT Sj (C1 [,C2, C3, ...])

When REFLECT is used, surface Si is a reflection of surface SJ . The reflection is defined
by comparing the nodes in the curves C1, C2, ..., Cn with the corresponding nodes in the
curves of SJ . j must be smaller than i. The first node of the boundary of Sj and the first
node of the boundary of Si define the reflection axis or reflection plane. All other boundary
points are checked by SEPRAN to be reflections of each other for that same axis or plane. If
this is not the case an error message will be given.

Remark: The curves C1, C2, C3 must completely enclose the surface Sj. It is not permitted
to use an half open boundary.

SIMILAR The input for SIMILAR must be defined in the following way:

Si = SIMILAR Sj (C1 [,C2, C3, ...])

When SIMILAR is used, the element topology of the nodes in surface Si is a copy of the
topology of the elements in surface Sj (j must be smaller than i). The number of points on
the boundary as specified by the curves C1, C2, C3, ... must be the same as the number of
points on the boundary of surface Si. Contrary to ROTATE the whole boundary has to be
specified by the user. SIMILAR may only be used for 3-D problems. Although not required
it is recommended to use SIMILAR for surfaces that are lying in a plane.

FRAMESURF Creates a triangular grid in R3 on a curved surface. The user has to specify the
boundary of the surface in the usual way. Besides that it is assumed that the user has a rough
description of the surface in terms of triangles. These triangles are used to define points on
the surface, but will not be present in the triangulation. So they are used as a frame work for

UM Surface generators November 2008 2.4.5

the surface. The coarseness of the surface mesh is completely defined by the boundary.
See Section (2.4.12)

COPY SURFACE The input for copy surface is very simple:

Si = copy_surface Sj

Surface Si is an exact copy of surface Sj with the same coordinates and topology. The boundary
of the surface is not defined explicitly and hence can not be referred to.

UM Surface generator GENERAL April 1994 2.4.1.1

2.4.1 Surface generator GENERAL

The surface generator GENERAL is called by the program SEPMESH. The user may activate
GENERAL by data records of the type:

Si = GENERAL j (C1, C2, C3, . . .)

with Si the surface number, j the shape number of the elements created in this surface, and C1, C2,
. . . the curves enclosing Si. It is necessary that the curves are created in a direction such that the
surface is at the left side of the curves.

GENERAL has the following characteristics:

• A fine division of nodal points on a part of the boundary causes a fine mesh in the neighborhood
of this boundary; a coarse division, a coarse mesh. When the user wants to create a local fine
mesh inside the surface, he may use extra curves to force GENERAL to create such a mesh.
See for example Figure 2.4.1.1. In order to create a fine mesh in the center of S1 and a coarse
one at the boundaries, the user may introduce the inner point P3 and the inner curve C3.

A coarse division of nodal points on the curves C1, C2, C4, C5, C6 and a coarse to fine grid on
curve C3 (i.e. fine in the neighborhood of P3, coarse in the neighborhood of P2), will result
in the mesh required.

P C P

CPC
S

C

P C P C P 4

4

556

6 3
1

3

1 1 2 2

Figure 2.4.1.1: Surface S1 defined by S1 = (C1, C3,−C3, C2, C4, C5, C6)

• The mesh generator can not generate elements when a sudden refinement of the nodal points
of the boundary is present. Hence when the user wants to create elements on a long small pipe
(see Figure 2.4.1.2) GENERAL can not be used, or the user must transform his co-ordinates
such that the length/width ratio is not too large. Otherwise the user may use one of the other
available mesh generators, like TRIANGLE, RECTANGLE or QUADRILATERAL.

••
••
••
••
•

• • • • • • • • • • • • •

• • • • • • • • • • • • •

••
••
••
••
•

� -

?

6
h = 1

L = 10

Figure 2.4.1.2: Example of a region that can not be subdivided by GENERAL

• If the boundary is too random (Christmas tree), a subdivision into submeshes may be neces-
sary.

UM Surface generator GENERAL April 1994 2.4.1.2

• When quadrilateral elements are generated by GENERAL it is necessary that the number of
nodal points on the boundary of the surface is even in the case of linear elements, and the
number of vertices of elements on the boundary is even in the case of quadratic elements. The
user must take care of this demand.

• Quadrilateral elements require a smoother division of elements than triangular elements.
Therefore it may be necessary to define more submeshes when quadrilateral elements are
used. The user is advised to consider his plot and decide whether extra submeshes must be
created.

Figure 2.4.1.3 shows some meshes that are created by GENERAL.

Remark

In R3 submesh generator GENERAL may only be applied in a plane.

UM Surface generator GENERAL April 1994 2.4.1.3

Figure 2.4.1.3: Example of meshes created by GENERAL.

UM Surface generator RECTANGLE May 1999 2.4.2.1

2.4.2 Surface generator RECTANGLE

The surface generator RECTANGLE is called by the program SEPMESH. The user may activate
RECTANGLE by data records of the type:

Si = RECTANGLE j ([N = n, M = m,] C1, C2, C3, . . .[, SMOOTH = i]

[, diagonal_dir = d])

Si defines the surface number

j defines the shape number of the elements created in this surface

C1, C2, C3,... denote the curves enclosing Si.

N, M are necessary for the definition of the surface, except when the number of curves is exactly
four, see below.

SMOOTH = i With the parameter SMOOTH it is possible to define a kind of smoothing in
the grid. First the mesh is generated by a algebraic method and then, if i > 0, the mesh
is smoothed by a so-called potential smoother. The smoothing is stopped if the relative
difference between two steps in the smoothing process is less than 10−i. If SMOOTH is not
given i = 0 is assumed and no smoothing takes place.
Smoothing may be especially useful if the grid is used for a boundary fitted finite volume or
finite difference program.

diagonal dir = d may be used to prescribe the direction of the diagonals in case of triangular
elements. The triangles are generated by subdividing the quadrilaterals into 2 triangles.
Possible values:

0, 1 Standard case. If volume elements are generated, all diagonals are pointed in the same
direction.
If no volume elements are present the direction of the diagonal is chosen such that
the largest angle is subdivided. If all angles are approximately 90 degrees, a standard
direction is chosen.

2 Alternating case, the diagonals have alternating directions in subsequent quadrilaterals.

Default value: 0

Characteristics of RECTANGLE:

Generates a submesh that can be mapped onto a rectangular grid. It is therefore necessary to
define four ”vertices” on the boundary of the submesh. The first vertex coincides with the
first nodal point (and hence also the last one) of the boundary of the submesh. The next
points are chosen such that the number of elements in the first direction is equal to N and
in the second one is equal to M. Hence for linear elements (shape numbers 3 and 5 in Table
2.2.1) the ”vertices” are the points:
1 = (2N + 2M + 1) , N + 1 , N + M + 1 , and 2N + M + 1
along the boundary, where the points on the boundary are numbered from 1 to 2N + 2M +
1. For quadratic elements (shape numbers 4 and 6 in Table 2.2.1), these are the points:
1 = (4N + 4M + 1) , 2N + 1, 2N + 2M + 1, and 4N + 2M +1.
Therefore the number of nodal points along the boundary must be equal to
2 (N + M) + 1 for linear and 4 (N + M) + 1 for quadratic elements, including coinciding
nodal points. The so-called ”vertices” do not have to be ”physical” vertices, however, the
more the submesh to be generated resembles a ”rectangle”, the better the subdivision will be.
So it is clear that the number of curves defined for RECTANGLE is arbitrary as long as the

UM Surface generator RECTANGLE May 1999 2.4.2.2

number of points is in accordance with the parameters N and M. These parameters subdivide
the outer boundary into 4 parts.

A more general version of RECTANGLE, which does not demand equal number of points on
opposite points is the mesh generator QUADRILATERAL (2.4.3).

If the number of curves is exactly equal to four and the parameters N and M are not given in the
input, it is assumed that N is equal to the number of elements at the first curve and M equal to
the number of elements at the second one. Of course it is in that case necessary that the number
of points at the third curve is equal to the number of points at the first curve and the number of
elements at the fourth curve is also equal to M.

Figure 2.4.2.1 shows the grid in a l-shaped region using the non-smooth grid generated by the
following input:

mesh2d

points

p1=(0,0)

p2=(1,0)

p3=(1,3)

p4=(4,3)

p5=(4,4)

p6=(0,4)

curves

c1 = line1(p1,p2,nelm=16)

c2 = line1(p2,p3,nelm=16)

c3 = line1(p3,p4,nelm=16)

c4 = line1(p4,p5,nelm=16)

c5 = line1(p5,p6,nelm=16)

c6 = line1(p6,p1,nelm=16)

c7 = curves(c2,c3)

c8 = curves(c5,c6)

surfaces

s1 = rectangle5(c1,c7,c4,c8)

plot

end

In Figure 2.4.2.2 the result is shown once the record with RECTANGLE is replaced by:

mesh2d

points

p1=(0,0)

p2=(1,0)

p3=(1,3)

p4=(4,3)

p5=(4,4)

p6=(0,4)

curves

c1 = line1(p1,p2,nelm=16)

c2 = line1(p2,p3,nelm=16)

c3 = line1(p3,p4,nelm=16)

c4 = line1(p4,p5,nelm=16)

c5 = line1(p5,p6,nelm=16)

UM Surface generator RECTANGLE May 1999 2.4.2.3

c6 = line1(p6,p1,nelm=16)

c7 = curves(c2,c3)

c8 = curves(c5,c6)

surfaces

s1 = rectangle5(c1,c7,c4,c8,smooth=2)

plot

end

Remark

In R3 submesh generator RECTANGLE may only be applied in a plane.

UM Surface generator RECTANGLE May 1999 2.4.2.4

Examples

M

N+!

1
N

NM(M-1)N+1

Computational grid

N = 3, M = 5

Number of elements along the boundary:

2 (N + M)

Both triangles and quadrilaterals are permit-
ted.

Actual grids

1

N
M M

1

N

M

N

1

M

N1
Coinciding first and last boundary

UM Surface generator RECTANGLE May 1999 2.4.2.5

Figure 2.4.2.1: Mesh in L-shaped region without smoothing.

Figure 2.4.2.2: Mesh in L-shaped region with the effect of smoothing.

UM Surface generator QUADRILATERAL April 1994 2.4.3.1

2.4.3 Surface generator QUADRILATERAL

The surface generator QUADRILATERAL is called by the program SEPMESH. The user may
activate QUADRILATERAL by data records of the type:

Si = QUADRILATERAL j (C1, C2, C3, C4 [, BLEND=b, CURVATURE=cu)

The submesh generator QUADRILATERAL creates a mesh for regions that can be mapped onto
a rectangle. Besides that, the region must be topological equivalent to a rectangle. Topological
equivalent to a rectangle means that a mapping onto a rectangle must be possible. The sides of
the region may be curved, but the curvature may be not so extreme that there is no resemblance
with a rectangle. QUADRILATERAL works almost as fast as RECTANGLE while there are no
restrictions with respect to the number of points situated on opposite sides. When quadrilaterals
are required the number of points on the four curves together has to be even. The user has to take
care of this himself. The four curves C1, C2, C3, C4 must form the four ”sides” of the ”rectangle”.
If some of these sides consist of subcurves the user must combine these curves into one curve using
the option CURVES of curves.

The parameter BLEND defines the internal mapping of the nodal points. b may take the values 0
to 3, where for triangles 2 and 3 are equivalent to 0 and 1 respectively. b = 0 corresponds to some
local mappings, whereas b = 1 corresponds to global mappings. Which of the choices is the best
must be found out in practice for each specific region. b = 2 or 3 has the same meaning as b = 0 or
1, but a easy topology is used for quadrilateral elements. This solution may not be suited for long
strips where the number of elements on opposite sides differ too much.
Default value: b = 2

The parameter CURVATURE defines the curvature of quadratic and higher order elements. The
value of cu has the following meaning:

0 All element sides are straight, even on the boundary.

1 All element sides are straight, except those on the boundary. These sides may be curved if
the boundary is curved.

2 All element sides may be curved in correspondence with the mapping defined by BLEND.
Default value: cu = 1

Figure 2.4.3.1 shows some meshes created by QUADRILATERAL.

Remark

In R3 submesh generator QUADRILATERAL may only be applied in a plane. For curved surfaces
submesh generator COONS may be used.

UM Surface generator QUADRILATERAL April 1994 2.4.3.2

Figure 2.4.3.1: Example of meshes created by QUADRILATERAL.

UM Surface generator COONS November 2008 2.4.4.1

2.4.4 Surface generator COONS

The surface generator is COONS called by the program SEPMESH. The user may activate COONS
by data records of the type:

Si = COONS j (C1, C2, C3, C4 [, BLEND=b, CURVATURE=cu, diagonal_dir = d])

Si defines the surface number

j defines the shape number of the elements created in this surface

C1, C2, C3, C4 define the four curves that enclose the surface.

BLEND = b has exactly the same meaning as in QUADRILATERAL (Section 2.4.3). It is only
used if elements in the plane are created by QUADRILATERAL, see below.

CURVATURE=cu has exactly the same meaning as in QUADRILATERAL (Section 2.4.3). It
is only used if elements in the plane are created by QUADRILATERAL, see below.

diagonal dir = d has exactly the same meaning as in RECTANGLE (Section 2.4.2). It is only
used if elements in the plane are created by RECTANGLE, see below.

The submesh generator COONS creates a mesh on a curved surface in 3D space which is defined by
exactly four generating boundary curves. There are no restrictions with respect to the number of
points on opposite sides and it is not required that the four curves are in a plane as is the case for the
generators RECTANGLE (Section 2.4.2), GENERAL (Section 2.4.1), TRIANGLE (Section 2.4.7)
and QUADRILATERAL (Section 2.4.3). In fact COONS is based on a simple Coon’s formula,
which maps the curved surface onto a ”rectangular” surface in a plane. To create elements in this
plane submesh generator QUADRILATERAL is used. A typical example of the use of COONS is
given in example 2.4.4.1.

Remark

If the number of nodes at the curves C1 and C3 are equal and the number of nodes at the curves
C2 and C4 are equal, submesh generator RECTANGLE is used for the subdivision of the region
in the mapped plane. In all other cases QUADRILATERAL is used. In the specific case that
RECTANGLE is used, it is possible to apply the volume generator BRICK with curved surface
boundaries.

Example 2.4.4.1

In this example a ”bottle” in 3-D is created by the curve generators SPLINE and ARC, the surface
generator COONS and the volume generator GENERAL. The definition of the curves and surfaces
is given in Figure 2.4.4.1.

The input for this mesh is defined by:

*bottle.msh

mesh3d

points

p1 = (0.0, 0.0, 0.0)

p2 = (1.0, 0.0, 0.0)

p3 = (1.0, 1.0, 0.0)

p4 = (0.0, 1.0, 0.0)

p5 = (0.0, 0.0, 3.0)

p6 = (1.0, 0.0, 3.0)

UM Surface generator COONS November 2008 2.4.4.2

. . ..
.

.

P
C P C

PP
C P

C

C

CC C

P P
CPC

C P C

1
1

2

331

44
3

2

5

6

78

17

9 18 10
19

112012

Figure 2.4.4.1: Definition of the points, curves and surfaces for the bottle

p7 = (1.0, 1.0, 3.0)

p8 = (0.0, 1.0, 3.0)

p9 = (0.2, 0.2, 3.4)

p10 = (0.8, 0.2, 3.4)

p11 = (0.8, 0.8, 3.4)

p12 = (0.2, 0.8, 3.4)

p13 = (0.3, 0.3, 3.8)

p14 = (0.7, 0.3, 3.8)

p15 = (0.7, 0.7, 3.8)

p16 = (0.3, 0.7, 3.8)

p17 = (0.3, 0.3, 5.0)

p18 = (0.7, 0.3, 5.0)

p19 = (0.7, 0.7, 5.0)

p20 = (0.3, 0.7, 5.0)

p21 = (0.5, 0.5, 0.0)

p22 = (0.5, 0.5, 5.0)

curves

c1=arc1(p1,p2,p21,nelm=4)

c2=arc1(p2,p3,p21,nelm=4)

c3=arc1(p3,p4,p21,nelm=4)

c4=arc1(p4,p1,p21,nelm=4)

c5=spline1(p1,p5,p9,p13,p17,nelm=19,type=1)

c6=spline1(p2,p6,p10,p14,p18,nelm=19,type=1)

c7=spline1(p3,p7,p11,p15,p19,nelm=19,type=1)

c8=spline1(p4,p8,p12,p16,p20,nelm=19,type=1)

c9=arc1(p17,p18,p22,nelm=4)

c10=arc1(p18,p19,p22,nelm=4)

c11=arc1(p19,p20,p22,nelm=4)

c12=arc1(p20,p17,p22,nelm=4)

surfaces

s1=coons3(c1,c2,c3,c4)

s2=coons3(c1,c6,-c9,-c5)

s3=coons3(c2,c7,-c10,-c6)

s4=coons3(-c3,c7,c11,-c8)

s5=coons3(-c4,c8,c12,-c5)

s6=coons3(c9,c10,c11,c12)

UM Surface generator COONS November 2008 2.4.4.3

s7=surfaces(s1,s2,s3,s4,s5,s6)

volumes

v1=general11(s7)

plot

end

Figure 2.4.4.2 shows the mesh created by the program SEPMESH. Since hidden-line removal is
applied only a part of the surface is visible.

Figure 2.4.4.2: Bottle defined in example 2.4.4.1

UM Surface generator PIPESURFACE November 2003 2.4.5.1

2.4.5 Surface generator PIPESURFACE

The surface generator PIPESURFACE is called by program SEPMESH. The user may activate
PIPESURFACE by data records of the type:

Si = PIPESURFACE j (C1, C2, C3 [, C4], [diagonal_dir = d], [interpolation = g])

Si defines the surface number

j defines the shape number of the elements created in this surface

C1, C2, C3, C4 denote the three or four generating curves. See Figure 2.4.5.1 for an explanation.

diagonal dir = d may be used to prescribe the direction of the diagonals in case of triangular
elements. The triangles are generated by subdividing the quadrilaterals into 2 triangles.
Possible values:

0 Standard case, the diagonals have exactly the same direction as they would have in case
of the use of the submesh generator RECTANGLE.

1 Reversed case, the diagonals have the opposite direction as they would have in case of
the use of the submesh generator RECTANGLE.

2 Alternating case, the diagonals have alternating directions in subsequent quadrilaterals.

Default value: 0

interpolation = g may be used to define the type of interpolation that is used to generate nodes
in the pipe surface based on the boundary nodes. Note that pipesurface is a algebraic mesh
generator which means that the number of points is the same in each line from one side to
the opposite side of the boundary. Possible values for g are

default

hor_straight

vert_straight

default means that the standard interpolation is applied. This means that coordinates are
computed using a so-called Coon’s interpolation. The result is a set of lines that tries to
follow the boundary as good as possible. However, the result may be that all the lines
in the pipesurface may be curved.

hor straight prevents this ”curved” behavior of the internal grid lines. The grid lines are
forced to be straight lines from curve C1 to C2, where the subdivision along these internal
lines is based on the subdivision along C3 and C4. Since these lines are straight it is
possible that points are computed outside the original pipesurface. This might be the
case if C1 and C2 are very curved.

vert straight is the same as vert_straight, but now the straight lines are drawn between
C3 and C4.

A pipe surface is generated by three or four curves. At the ”bottom” and the ”top” exactly
one generating curve must be defined, whereas from ”bottom” to ”top” in general two curves are
required. Only when the ”top” and ”bottom” curves are closed, there is only one curve needed
from ”bottom” to ”top”. Figure 2.4.5.1 shows the situation of a closed pipe surface (3 curves), an
open pipe surface (4 curves) is given in Figure 2.4.5.2.

The curves C1 and C2 may be open or closed curves. Each of these curves may consist of more than
one curve, however, in that case these curves must be combined into one curve by the command
Ci = CURVES (Cj,Ck,Cl, ...). Furthermore C1 and C2 must be congruent curves, that is C2
may be mapped onto C1 only by a translation and a rotation, so when C1 is closed then C2 is also
closed etc.

UM Surface generator PIPESURFACE November 2003 2.4.5.2

C

C

C1

3

2

Figure 2.4.5.1: Closed PIPESURFACE with 3 generating curves

C

C

C1

3

2

C4

Figure 2.4.5.2: Open PIPESURFACE with 4 generating curves

The generating curves C3 and C4 must connect two corresponding points on the curves C1 and
C2. All other points on the curves C1 and C2 are connected by curves parallel to C3 and C4, thus
generating the surface. The distribution of points on C3 and C4 defines the position of elements in
the C3 direction.
The nodal points are numbered parallel to C1 from the first point of C1 to the last point of C1 etc.
until the last point of C2 is reached. C3 starts at the first point of C1 and ends at the first point
of C2, C4 starts at the last point of C1 and ends at the last point of C2.

To show the effect of the interpolation we show the various results of the interpolation of a pipe
where the upper part consists of a circle and the lower part of two perpendicular straight lines.
In order to get a set of curved lines in the standard case it was necessary to make an asymmetric
subdivision of elements along one of the straight lines. Figure 2.4.5.3 shows the standard (default)
interpolation and Figure 2.4.5.4 the horizontal straight interpolation with straight lines from top to
bottom. To show that you have to be careful with the option straight lines is shown in Figure 2.4.5.5

Figure 2.4.5.3: Default interpolation Figure 2.4.5.4: Horizontal straight

where a vertical straight interpolation is used and lines are drawn outside the original region. These
three examples can be copied into your local directory by the command sepgetex pipesurface0x,
with x 1, 2 or 3.

Remark

A pipe surface consisting of subpipe surfaces may contain double subpipe surfaces. See example
2.6.1. In that case it is necessary that the ordered surface starts with the double surface.

UM Surface generator PIPESURFACE November 2003 2.4.5.3

Figure 2.4.5.5: Vertical straight interpolation

UM Surface generator MESHUS December 2009 2.4.6.1

2.4.6 Surface generator MESHUS

The surface generator MESHUS is called by the program SEPMESH. The user may activate
MESHUS by data records of the type:

Si = USER j (NELEM=k, NPOINT=l, C1, C2, C3, ...)

where Si is the surface number, j the shape number of the elements to be created in this surface, and
C1, C2, ... the curves enclosing Si. The parameters NELEM and NPOINT must be overestimates
of the number of elements respectively number of nodal points in the submesh. These estimates
are used to define the working space necessary to long as the space needed in IBUFFR is available.
Subroutine MESHUS must be written by the user.

Call

CALL MESHUS (ISURF, NEW, COOR, KMESHC, INPELM, NBNDPT, KBNDPT, BCORD,

NPOINT, NELEM)

Parameters

INTEGER ISURF, NEW, KMESHC(∗), INPELM, NBNDPT, KBNDPT(∗), NPOINT, NELEM

LOGICAL NEW

DOUBLE PRECISION COOR(∗), BCORD(∗)

ISURF Surface number i of the data record Si.

NEW Indication whether it concerns a new mesh (NEW = true) or a mesh of which only the
co-ordinates must be changed (NEW = false).

COOR At output the co-ordinates of the nodal points of the submesh must be stored sequentially
in COOR from position 1.

KMESHC At output the local nodal point numbers of the elements of the submesh must be
stored sequentially in KMESHC from position 1.

INPELM Number of nodal points in an element. INPELM is computed by subroutine MESH
with the aid of the parameter j in the data record USERj.

NBNDPT Number of nodal points in the boundary of the submesh.

KBNDPT At output array KBNDPT of length NBNDPT must be filled with the local boundary
nodal points of the submesh sequentially in the sequence as given by C1, C2, ... in the data
record Si = USER j (...).

BCORD At input the co-ordinates of the boundary nodal points are stored in array BCORD in
the sequence as is given by C1, C2, . . . in the data record Si = USERj.

NPOINT At input NPOINT contains the overestimated value of NPOINT in the data record.
At output NPOINT must have exactly the number of nodal points in the submesh.

NELEM At input NELEM contains the overestimated value of NELEM in the data record. At
output NELEM must have exactly the number of elements in the submesh.

Input

Subroutine MESH gives ISURF, NEW, INPELM, NBNDPT, NPOINT and NELEM a value.
Array BCORD has been filled by MESH.
When NEW = false (only the co-ordinates must be changed), the arrays COOR and KMESHC
have been filled with the co-ordinates and the elements of the preceding mesh.

UM Surface generator MESHUS December 2009 2.4.6.2

Output

The user must give NPOINT and NELEM a value when NEW = true.
When NEW = true, the arrays KBNDPT (positions 1,. . ., NBNDPT), COOR (positions 1, . . .,
NPOINT×NDIM) and KMESHC (positions 1,. . ., INPELM×NELEM) must be filled by the user.
When NEW = false only array COOR must be changed by the user.

Interface

Only one submesh may be created in each call of subroutine MESHUS. The nodal points and
elements in the mesh have local numbers from 1 to NPOINT respectively 1 to NELEM. Subroutine
MESH generates the global numbering. The arrays KBNDPT and BCORD are filled in the sequence
as given by the user in the data record.

..

.
.

C

C
C

C2

3

4
1

Figure 2.4.6.1: Submesh with boundary

Hence for example for the boundary of the submesh in Figure 2.4.6.1. First all nodal points of C1
then of C2, C3 and finally of C4 are stored. These curves must be subsequent curves. Common
nodal points of curves are counted only once.

Array COOR must be filled in the sequence:

x1, y1, z1, x2, y2, z2, ..., xNPOINT , yNPOINT , zNPOINT
hence xi must be stored in COOR (NDIM × (i-1) + 1)

yi must be stored in COOR (NDIM × (i-1) + 2) etc.
NDIM denotes the dimension of the space.

The easiest way to fill COOR is to define it as a two-dimensional array of size NDIM × NPOINT,
with NDIM the actual dimension of the space. Since NPOINT may not be the actual value at input
the undefined size should be used for the second component, hence COOR(NDIM,*).

Array KMESHC must be filled in the sequence:

i1, i2, i3, ..., iINPELM : nodal points of element 1, followed by:
j1, j2, j3, ..., jINPELM : nodal points of element 2, etc.
Hence the nodal points in element k are stored in KMESHC positions INPELM × (k-1) + 1, . . .
, INPELM × (k-1) + INPELM.

The easiest way to fill KMESHC is to define it as a two-dimensional array of size INPELM ×
NELEM. Since NELEM may not be the actual value at input the undefined size should be used for
the second component, hence KMESHC(INPELM,*).

UM Surface generator MESHUS December 2009 2.4.6.3

Subroutine MESHUS must be programmed by the user in the following way:

SUBROUTINE MESHUS (ISURF, NEW, COOR, KMESHC, INPELM, NBNDPT, KBNDPT,

+ BCORD, NPOINT, NELEM)

IMPLICIT NONE

INTEGER NDIM

PARAMETER (NDIM=2)

INTEGER ISURF, INPELM, KMESHC(inpelm,*), NBNDPT, KBNDPT(*),

+ NPOINT, NELEM

DOUBLE PRECISION COOR(ndim,*), BCORD(ndim,nbndpt)

LOGICAL NEW

IF(NEW) THEN

statements to fill COOR, KMESHC and KBNDPT

statements to compute NPOINT and NELEM

ELSE

statements to change COOR

END IF

END

UM Surface generator TRIANGLE July 2008 2.4.7.1

2.4.7 Surface generator TRIANGLE

The surface generator TRIANGLE is called by program SEPMESH. The user may activate TRI-
ANGLE by data records of the type:

Si = TRIANGLE j (C1, C2, C3, ... [internal_points = pl,...,pm], [internal_curves = cl,...,cm])

with Si the surface number, j the shape of the elements created in this surface, and C1, C2, . . .
the curves enclosing Si.

The option internal_points = pl, ..., pm forces nodal points to coincide with the user points
pl, ..., pm. The local coarseness in these points are used for the coarseness of the mesh locally.
So by defining these points the user can create fixed points in the mesh, with a given accuracy,
without having to define curves containing these points.

With internal_curves = cl,...,cm the user can define curves inside the domain. The mesh is
adapted to these curves, which means that elements may have a common side with an element of
these curves, but never intersects these curves. All edges on the internal curves are present in the
final mesh, so the size of these edges also defines the local coarseness.

Unlike GENERAL, TRIANGLE may contain inner regions which are not filled with elements (See
Figure 2.4.7.1). The boundaries of these inner regions must be closed in itself. This means that the
user must first give the boundaries of the outer region consecutively such that a closed boundary
arises, and then the boundaries of the inner regions. At this moment no more than 5 inner regions
are allowed. Another difference with GENERAL is that double boundaries like boundary C3 in
Figure 2.4.4.1 (Section 2.4.1) are not permitted.

Figure 2.4.7.1: Example of a region with an inner region not to be filled with elements

TRIANGLE has the following characteristics:

• A fine division of nodal points on a part of the boundary causes a fine mesh in the neighborhood
of this boundary; a coarse division, a coarse mesh. When the user wants to create a local fine
mesh inside the surface, he may use extra curves to force TRIANGLE to create such a mesh.

• Their is no essential restriction with respect to the coarseness of nodal points along the
boundary. This means that TRIANGLE is able to treat more general meshes than GENERAL.

• A curve in the boundary of TRIANGLE may only be used once.

• TRIANGLE is able to treat at most five ”holes” in the region. These ”holes” are recognized
by the closed boundaries given in the COMMAND Si = TRIANGLE j (C1, C2, C3, . . .)
No line should be drawn to connect inner and outer boundaries. See Figure 2.4.7.1.

UM Surface generator TRIANGLE July 2008 2.4.7.2

• At this moment TRIANGLE is limited to 3-node linear triangles. Extensions will be made at
request.

• TRIANGLE is not a part of the standard SEPRAN package. A separate license is needed to
use TRIANGLE.

Remark

In R3 submesh generator TRIANGLE may only be applied in a plane.

UM Surface generator PARSURF January 2013 2.4.8.1

2.4.8 Surface generator PARSURF

The surface generator is PARSURF called by the program SEPMESH. The user may activate PAR-
SURF by data records of the type:

Si = PARSURF j (C1, C2, C3, C4 [, umin=u1, umax=u2, vmin=v1, vmax=v2])

The submesh generator PARSURF creates a mesh on a curved surface in 3D space which is defined
by exactly four generating boundary curves as well as a parameter representation of the surface.
There are no restrictions with respect to the number of points on opposite sides and it is not required
that the four curves are in a plane as is the case for the generators RECTANGLE, GENERAL,
TRIANGLE and QUADRILATERAL.

In first instance PARSURF defines a grid in the so-called u-v plane, where umin ≤ u ≤ umax and
vmin ≤ v ≤ vmax. The default values for umin and vmin are 0, for umax and vmax: 1. The grid
in the u-v plane is defined by the distances along the curves C1 to C4, where C1 coincides with
v = vmin, C2 with u = umax, C3 with v = vmax and C4 with u = umin. The co-ordinates in the
uv-plane are used as input for a user subroutine FUNCSF. It is the task of the user to transform
these co-ordinates to the xyz-plane, in this way defining the actual surface.

Subroutine FUNCSF must be written by the user in the following way:

subroutine FUNCSF (ISURF, COOR_UV, COOR_XYZ, NPOINT)

implicit none

integer ISURF, NPOINT

double precision COOR_UV(2,NPOINT), COOR_XYZ(3,NPOINT)

statements to fill array COOR_XYZ

end

In this subroutine ISURF denotes the surface number and is filled by subroutine MESH or program
SEPMESH.
NPOINT denotes the number of nodal points in the submesh and is also filled by MESH.
Array COOR UV contains the u-v co-ordinates of the nodal points in the uv-plane, according to:

u(node i) = COOR UV(1,i); v(node i) = COOR UV(2,i)

Array COOR XYZ must be filled by the user for all nodal points. It must contain the xyz co-
ordinates corresponding to the uv co-ordinates in the following way:

x(node i) = COOR XYZ(1,i); y(node i) = COOR XYZ(2,i); z(node i) = COOR XYZ(3,i)

A typical example of the use of PARSURF is given in example 2.4.8.1

Remark

If the number of nodes at the curves C1 and C3 are equal and the number of nodes at the curves
C2 and C4 are equal, submesh generator RECTANGLE is used for the subdivision of the region
in the mapped plane. In all other cases QUADRILATERAL is used. In the specific case that

UM Surface generator PARSURF January 2013 2.4.8.2

RECTANGLE is used, it is possible to apply the volume generator BRICK with curved surface
boundaries.

Example 2.4.8.1

In this example a sphere surface is created by the surface generator PARSURF. To that end the
sphere is subdivided into 6 surfaces, each surrounded by 4 arcs. Each of the 6 surfaces is generated
by PARSURF.
Figure 2.4.8.1 shows the definition of the curves on the sphere.

1

2

3

4

5 6

78
9

10

11

12

 Figure 2.4.8.1: Definition of the curves on the sphere

The input for this mesh is defined by:

* sphere_parsurf.msh

mesh3d

points

p1 = (0.0, 0.0, 0.0)

p2 = (1.0, 0.0, 0.0)

p3 = (1.0, 1.0, 0.0)

p4 = (0.0, 1.0, 0.0)

p5 = (0.0, 0.0, 1.0)

p6 = (1.0, 0.0, 1.0)

p7 = (1.0, 1.0, 1.0)

p8 = (0.0, 1.0, 1.0)

p9 = (0.5, 0.5, 0.5)

curves

c1 = arc1 (p1, p2, p9, nelm = 10)

UM Surface generator PARSURF January 2013 2.4.8.3

c2 = arc1 (p2, p3, p9, nelm = 10)

c3 = arc1 (p3, p4, p9, nelm = 10)

c4 = arc1 (p4, p1, p9, nelm = 10)

c5 = arc1 (p1, p5, p9, nelm = 10)

c6 = arc1 (p2, p6, p9, nelm = 10)

c7 = arc1 (p3, p7, p9, nelm = 10)

c8 = arc1 (p4, p8, p9, nelm = 10)

c9 = arc1 (p5, p6, p9, nelm = 10)

c10 = arc1 (p6, p7, p9, nelm = 10)

c11 = arc1 (p7, p8, p9, nelm = 10)

c12 = arc1 (p8, p5, p9, nelm = 10)

surfaces

s1 = parsurf3 (c1 , c2 , c3 , c4 , umin=0.0, umax=1.0, vmin=0,vmax=1.0)

s2 = parsurf3 (c1 , c6 , -c9 , -c5)

s3 = parsurf3 (c2 , c7 , -c10, -c6)

s4 = parsurf3 (-c3 , c7 , c11, -c8)

s5 = parsurf3 (-c4 , c8 , c12, -c5)

s6 = parsurf3 (c9 , c10, c11, c12, umin=0, umax=1.)

meshsurf

selm1 = (s1,s6)

plot (plotfm=15)

end

Since the user subroutine FUNCSF must be written, the standard program SEPMESH may not be
used. Below we give an example of the program MAKEMESH that is used to create the triangles
on the sphere.

program makemesh

call startsepmesh

end

subroutine funcsf (isurf, cooruv, coor3d, npoint)

! ===

!

!

! programmer Niek Praagman

!

! version 1.0 date 08-10-93 Example for manual

! ***

!

! KEYWORDS

!

! mesh_generation

! 3d

! surfaces

!

! ***

!

UM Surface generator PARSURF January 2013 2.4.8.4

! DESCRIPTION

!

! Example of user written routine for parameter-surface :

! Determine 3-D coordinates of generated (u,v)-points in surfaces

!

! ***

!

! INPUT / OUTPUT PARAMETERS

!

implicit none

integer isurf, npoint

double precision cooruv(2,*), coor3d(3,*)

!

! cooruv i Cooruv contains the (u,v)-coordinates

!

! coor3d o coor3d contains at output the (x,y,z)-coordinates

!

! isurf i number of surface to be considered

!

! npoint i number of points

!

! ***

!

! SUBROUTINES CALLED

!

! ***

!

!

! LOCAL PARAMETERS

!

integer i

double precision dx, dy, dz, t, u, v, xp2, yp2, zp2

! dx step in x-direction

! dy step in y-direction

! i general loop variable

! t line-parameter

! u local coordinate in plane

! v local coordinate in plane

! xp2 x-coordinate local point

! yp2 y-coordinate local point

! zp2 z-coordinate local point

!

! ***

!

! I/O

!

! none

! ***

!

! ERROR MESSAGES

!

! ***

!

UM Surface generator PARSURF January 2013 2.4.8.5

! PSEUDO CODE

!

! Check which surface

!

! Read or compute the parameter description of the surface

!

! Determine for each point the coordinates in the surface after

! that the local (u,v) coordinates have been determined

!

! ===

! Determine values in surface dependent on surf number :

! Determine the coordinates of all points in coor by direct

! parametrization :

do i = 1, npoint

u = cooruv(1,i)

v = cooruv(2,i)

! Check to which surface block this point belongs :

if (isurf==1 .or. isurf==6) then

! Determine the x,y,z coordinates :

xp2 = u

yp2 = v

if (isurf==1) then

zp2 = 0d0

else

zp2 = 1d0

end if ! (isurf==1)

else if (isurf==2 .or. isurf==4) then

! Determine the x,y,z coordinates :

xp2 = u

zp2 = v

if (isurf==2) then

yp2 = 0d0

else

yp2 = 1d0

UM Surface generator PARSURF January 2013 2.4.8.6

end if ! (isurf==2)

else if (isurf==3 .or. isurf==5) then

! Determine the x,y,z coordinates :

yp2 = u

zp2 = v

if (isurf==3) then

xp2 = 1d0

else

xp2 = 0d0

end if ! (isurf==3)

end if ! (isurf==1 .or. isurf==6)

dx = xp2 - 0.5d0

dy = yp2 - 0.5d0

dz = zp2 - 0.5d0

t = sqrt (0.75 / (dx*dx + dy*dy + dz*dz))

! Compute 3D coordinates :

coor3d(1,i) = 0.5d0 + t * dx

coor3d(2,i) = 0.5d0 + t * dy

coor3d(3,i) = 0.5d0 + t * dz

end do ! i = 1, npoint

end

Figure 2.4.8.2 shows the first surface created by PARSURF and Figure 2.4.8.3 the final mesh
generated by the program MAKEMESH. Since hidden-line removal is applied only a part of the
surface is visible.

UM Surface generator PARSURF January 2013 2.4.8.7

SURFACE 1

Figure 2.4.8.2: Surface 1 generated by PARSURF

x

y

z

Figure 2.4.8.3: Triangles on sphere generated by MAKEMESH

UM ISOPAR February 2002 2.4.9.1

2.4.9 Surface generator ISOPAR

The surface generator ISOPAR is called by the program SEPMESH. The user may activate ISOPAR
by data records of the type:

Si = ISOPAR j (C1, C2, C3, [mapping = m, centre = pi, subdivision = s]

Si defines the surface number

j defines the shape number of the elements created in this surface

C1, C2, C3 define the three curves that enclose the surface.

mapping = m means that the coordinates computed are mapped onto a three dimensional surface
of special shape. Hence this option is only used in R3

Possible values for m are

default

sphere

default means that no special mapping is applied. The coordinates are the ones computed
by ISOPAR.

sphere means that the coordinates are mapped on a sphere with center Pi. if no center is
given it is checked if there are generating curves that are of the type arc. If so the center
of the first arc is used as center of the sphere. The mapping takes place by multiplying
the distance between the center and the computed coordinates such that the new points
are exactly on the sphere.

centre = Pi is only used in case of a mapping of the type sphere. It defines user point Pi as the
centre of the sphere.

subdivision = s is a special option that defines the type of subdivision in case of triangles. For
quadrilaterals this keyword has no influence.
Possible values for s are

default

regular

default means that the default subdivision is applied without special restrictions.

regular means that the subdivision into triangles is made in exactly the same way as for
quadrilaterals. In fact it is a subdivision in quadrilaterals, where each quadrilateral is
subdivided into 2 triangles.
This means also that we have the same restriction as for quadrilaterals, i.e. the number
of elements along each side must be equal and the number of nodes along a side must be
odd.
A reason to use regular instead of default is that the number of elements is fixed, which
means that if the boundaries are similar also the subdivision into triangles is topologically
equivalent.
Due to rounding errors, this does not have to be the case when default is used.
For example if the surface is used to generate a pipe or a channel this option might be
necessary.

The sub mesh generator ISOPAR creates a mesh on a curved surface in R3 or a surface in R2, which
is defined by exactly three generating boundary curves, which should not intersect itself. There are
no restrictions with respect to the number of points on opposite sides and it is not required that
the three curves are in a plane.

UM ISOPAR February 2002 2.4.9.2

However, it is assumed that the surface is topological equivalent to a triangle, which means that it
can be mapped onto a triangle. ISOPAR may be considered as the extension of QUADRILATERAL
and COONS to regions which resemble a ”triangle” rather than a ”rectangle”.
ISOPAR may be used to create triangles and quadrilaterals. However, in the case of quadrilaterals
there are two restrictions:

• the number of elements on each of the three sides must be equal

• the number of elements on each side must be even

If a more general quadrilateral mesh must be created the user is advised to use submesh generator
COONS 2.4.4.
Example 2.4.9.1 demonstrates the use of ISOPAR in R2 and example 2.4.9.2 in R3. Mark that in
both examples check level = 2 is used in order to check the quality of the mesh.

Example 2.4.9.1

In this example a triangle is subdivided into linear triangles. The definition of the curves is given
in Figure 2.4.9.1.

1

23

Figure 2.4.9.1: Definition of the curves for the triangle

The input for this mesh is defined by:

* Example of the use of ISOPAR in R2

mesh2d

points

p1 = (.0 , .0)

p2 = (2. , .0)

p3 = (.0 , 2.)

curves

c1 = line1(p1, p2, nelm = 4)

c2 = line1(p2, p3, nelm = 4)

c3 = line1(p3, p1, nelm = 4)

surfaces

s1 = isopar3(c1, c2, c3)

UM ISOPAR February 2002 2.4.9.3

plot

check_level = 2

end

Figure 2.4.9.2 shows the mesh created by the program SEPMESH.

Figure 2.4.9.2: Triangle defined in example 2.4.9.1

Example 2.4.9.2

In this example one-eighth of a sphere is subdivided into tetrahedra. To that end the outer surface is
subdivided into triangles using the grid generator ISOPAR and the volume is subdivided into tetra-
hedra by the volume generator GENERAL. The definition of the curves is given in Figure 2.4.9.3.

1

2
3

4

5

6

 Figure 2.4.9.3: Definition of the curves for the 1
8 sphere

The input for this mesh is defined by:

#

partsphere.msh

example of the use of ISOPAR in 3D

one-eighth of a sphere is subdivided into elements

#

To get this example into your local directory use:

#

UM ISOPAR February 2002 2.4.9.4

sepgetex partsphere

#

To run this file use:

sepmesh partsphere.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

radius = 1 # radius of the sphere

integers

nelm = 8 # number of elements along each of the sides

end

#

Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1 = (0, 0, 0) # centre of the sphere

p2 = (radius, 0, 0) # corner points on sphere

p3 = (0, radius, 0)

p4 = (0, 0, radius)

#

curves

#

curves # See Users Manual Section 2.3

c1 = line1 (p1, p2, nelm = nelm) # line form centre to corner

c2 = arc1 (p2, p3, p1, nelm = nelm) # arc from corner to corner

c3 = line1 (p3, p1, nelm = nelm) # line form centre to corner

c4 = line1 (p1, p4, nelm = nelm) # line form centre to corner

c5 = arc1 (p2, p4, p1, nelm = nelm) # arc from corner to corner

c6 = arc1 (p3, p4, p1, nelm = nelm) # arc from corner to corner

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1 = isopar3 (c1 , c2 , c3) # pie point

s2 = isopar3 (c1 , c5 , -c4) # pie point

s3 = isopar3 (-c3 , c6 , -c4) # pie point

s4 = isopar3 (c2 , c6 , -c5, mapping = sphere, centre = p1)

sphere surface

s5 = surfaces (s1, s2, s3, s4) # complete surface

#

volumes

#

volumes # See Users Manual Section 2.4

v1 = general11 (s5) # complete region

plot, eyepoint = (-1,-2,3) # make a plot of the mesh

See Users Manual Section 2.2

UM ISOPAR February 2002 2.4.9.5

check_level = 2 # check the volumes of each element

end

Figure 2.4.9.4 shows the mesh created by the program SEPMESH. Since hidden line removal is
applied only the outer part of the sphere is visible.

x

y

z

 Figure 2.4.9.4: 1
8 sphere defined in example 2.4.9.2

2.5.3 The user is referred to Section for an example using quadrilaterals.

UM PAVER March 2009 2.4.10.1

2.4.10 Surface generator PAVER

The surface generator PAVER is called by the program SEPMESH. The user may activate PAVER
by data records of the type:

Si = PAVER j (C1, [t=a, f=b,] C2,[t=a, f=b,], ...)

The sub mesh generator PAVER creates a mesh along the curves C1, C2, ...
It is allowed to have a long aspect ratio of the elements, where the width of the elements (per-
pendicular to the boundary) is much smaller than the length (along the boundary). Such elements
currently appear in boundary layers (airplane body-wing configurations), but they may also be used
in other applications.
The general idea of the generator is as follows. Start at the closed boundary defined by C1, C2, ...
Cn. Create a row of elements of width tf i−1 along the present boundary. t defines the thickness of
the first layer and may vary per curve. The user may define this thickness himself. i is the sequence
number of the layer and f is user defined factor, which may be defined per curve. The region is
filled with such layers until it is fully filled. Of course overlapping elements are avoided and a kind
of smoothing is applied, in order to get nice elements.
Hence the thickness of the layers is equal to t, f t, f2 t, f3 t ...
If t = 0 at a part of the boundary this means that no layer is formed along that part, but that the
layers grow from other parts towards that boundary part. t must be non-zero for at least one of
the curves.
The parameters t and f define the thickness of the layers per curve. If they are not given for a
specific curve, the value of the previous curve at the boundary is used. The default values for the
first curve are f = 1 and t = 1.

A negative value of f means that the thickness t will be considered as the mean value of the length
of the adjacent elements. For example

s1 = paver3 (c1, t=0.1, f =1)

means that the thickness of the layer is 0.1 everywhere. However,

s1 = paver3 (c1, t=0.5, f =-1)

means that the thickness of the layer in node i is equal to one half of the length of the two line
elements adjacent to node i. In case of a uniform grid size of the nodes at C1, this implies that the
aspect ratio is equal to 0.5.

The boundary of the region must be created counterclockwise in order that the elements are created
on the inner side. If the region contains a hole the boundary of that hole must be created clockwise
since then the elements are created on the outer side of the curve.

At this moment only linear triangular elements are implemented in PAVER.

Example 2.4.10.1

As a very simple example of the use of paver we consider a rectangular region where the number
of elements at the opposite sides in the length direction is different and where there is reasonable
aspect ratio between length and width of the elements.
The input file is defined by

paver01.msh

Simple example of the use of paver

mesh2d

points

p1 = (0d0, 0d0)

UM PAVER March 2009 2.4.10.2

p2 = (10d0, 0d0)

p3 = (10d0, 3d0)

p4 = (0d0, 3d0)

curves

c1 = line1(p1,p2,nelm=9)

c2 = line1(p2,p3,nelm=1)

c3 = line1(p3,p4,nelm=4)

c4 = line1(p4,p1,nelm=1)

surfaces

s1 = paver3(c1,t=0.1,f=1.0,c2,c3,t=0.2,c4)

plot

end

Figure 2.4.10.1 shows the mesh created by SEPMESH.

Figure 2.4.10.1: Subdivision of mesh in example 2.4.10.1

Example of a circle2.4.10.2

The next example is also very simple. It concerns the subdivision of a circle in triangles by paver.
In this example we show the effect of the factor f.
The input file is defined by

paver07.msh

Simple example of the use of paver

In this case a circle is created and a layer of elements inside is made

#

See Users Manual Section 2.4.10

#

To run this file use:

sepmesh paver07.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

UM PAVER March 2009 2.4.10.3

reals

radius = 1 # radius of circle

thickness = 0.1 # thickness of elements

factor = 1.3 # factor to be used to decrease or increase element

thickness when far away from curves

factor < 1: decrease thickness

factor > 1: increase thickness

integers

n = 8 # number of elements along a half circle

shape_cur = 1 # shape number of elements along curve

shape_sur = 3 # shape number of elements inside surface

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Centroid of circle

p2=(radius,0) # Utmost right point

p3=(- radius,0) # Utmost left point

#

curves

#

curves # See Users Manual Section 2.3

c1 = arc shape_cur (p2,p3,p1,nelm= n) # half circle upper part

c2 = arc shape_cur (p3,p2,p1,nelm= n) # half circle lower part

c3 = curves (c1, c2) # Complete circle

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1 = paver shape_sur (c3, t = thickness, f = factor)

plot # make a plot of the mesh

See Users Manual Section 2.2

end

Figure 2.4.10.2 shows the mesh created by SEPMESH using factor f = 1.3 and 2.4.10.3 using factor
f = 0.95. Mark that making f a little bit smaller results in a huge increase of elements.

Example of a circle with a hole2.4.10.3

In this example we extend the previous example by taking an extra circle around the previous one
and creating elements between those circles only. So the curve in the inner circle must be considered
clockwise, which is achieved by providing it with a minus sign in the call to paver.
The input file is defined by

paver08.msh

Simple example of the use of paver

In this case a circle with an inner circle is created and a layer of elements

is made between those circles

#

See Users Manual Section 2.4.10

UM PAVER March 2009 2.4.10.4

Figure 2.4.10.2: Subdivision of circle
(2.4.10.2) with factor = 1.3

Figure 2.4.10.3: Subdivision of circle
(2.4.10.2) with factor = 0.95

#

To run this file use:

sepmesh paver08.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

radiusin = 1 # radius of inner circle

radiusout = 2 # radius of outer circle

thickness = 0.1 # thickness of elements

factor = 1.3 # factor to be used to decrease or increase element

thickness when far away from curves

factor < 1: decrease thickness

factor > 1: increase thickness

integers

n = 8 # number of elements along a half circle

shape_cur = 1 # shape number of elements along curve

shape_sur = 3 # shape number of elements inside surface

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Centroid of both circles

p2=(radiusin,0) # Utmost right point of inner circle

p3=(-radiusin,0) # Utmost left point of inner circle

p12=(radiusout,0) # Utmost right point of outer circle

p13=(-radiusout,0) # Utmost left point of outer circle

#

UM PAVER March 2009 2.4.10.5

curves

#

curves # See Users Manual Section 2.3

c1 = arc shape_cur (p2,p3,p1,nelm= n) # half inner circle upper part

c2 = arc shape_cur (p3,p2,p1,nelm= n) # half inner circle lower part

c3 = curves (c1, c2) # Complete inner circle

c11= arc shape_cur (p12,p13,p1,nelm= n) # half outer circle upper part

c12= arc shape_cur (p13,p12,p1,nelm= n) # half outer circle lower part

c13= curves (c11, c12) # Complete outer circle

#

surfaces

#

surfaces # See Users Manual Section 2.4

outer circle is used in counter clockwise direction

inner circle is used in clockwise direction

s1 = paver shape_sur (c13, t = thickness, f = factor //

-c3, t = thickness, f = factor)

plot # make a plot of the mesh

See Users Manual Section 2.2

end

Figure 2.4.10.4 shows the mesh created by SEPMESH using factor f = 1.3.

Figure 2.4.10.4: Subdivision of region between two circles (2.4.10.3)

Example 2.4.10.4

A more complex region is given in Figure 2.4.10.5. This figure shows the curves used.
The input file is defined by

paver02.msh

Example of the use of paver at a relatively simple region

mesh2d

points

p1 = (0d0, 0d0)

p2 = (2d0, 0d0)

p3 = (2d0, -2d0)

p4 = (1.5d0, -2d0)

p5 = (2d0, -2.5d0)

UM PAVER March 2009 2.4.10.6

p6 = (2.5d0, -2.5d0)

p7 = (2.5d0, 0.3d0)

p8 = (0d0, 0.3d0)

curves

c1 = line1(p1,p2,nelm=3)

c2 = line1(p2,p3,nelm=4)

c3 = line1(p3,p4,nelm=1)

c4 = line1(p4,p5,nelm=1)

c5 = line1(p5,p6,nelm=1)

c6 = line1(p6,p7,nelm=5)

c7 = line1(p7,p8,nelm=4)

c8 = line1(p8,p1,nelm=1)

c9 = curves(c1,c2,c3,c4,c5,c6,c7,c8)

surfaces

s1=paver3(c9,t=0.1d0,f=1d0)

plot

end

Figure 2.4.10.6 shows the mesh created by SEPMESH.

1

2

3

4

5

6

7
8

Figure 2.4.10.5: Definition of curves in
example 2.4.10.4

Figure 2.4.10.6: Subdivision of mesh
in example 2.4.10.4

Example 2.4.10.5

An extension of the region of example 2.4.10.4 is given in Figure 2.4.10.7. An extra surface has
been added in this example
The input file is defined by

paver03.msh

Example of the use of paver for two surfaces

mesh2d

points

p1 = (0d0, 0d0)

p2 = (2d0, 0d0)

p3 = (2d0, -2d0)

p4 = (1.5d0, -2d0)

p5 = (2d0, -2.5d0)

p6 = (2.5d0, -2.5d0)

UM PAVER March 2009 2.4.10.7

p7 = (2.5d0, 0.3d0)

p8 = (0d0, 0.3d0)

curves

c1 = line1(p1,p2,nelm=3)

c2 = line1(p2,p3,nelm=4)

c3 = line1(p3,p4,nelm=1)

c4 = line1(p4,p5,nelm=1)

c5 = line1(p5,p6,nelm=1)

c6 = line1(p6,p7,nelm=5)

c7 = line1(p7,p8,nelm=4)

c8 = line1(p8,p1,nelm=1)

c9 = curves(c1,c2,c3,c4,c5,c6,c7,c8)

c10 = line1(p1,p4,nelm=4)

surfaces

s1=paver3(c10,t=0.15d0,f=1d0,-c3,t=0.10d0,f=1d0,-c2,-c1)

s2=paver3(c9,t=0.1d0,f=1d0)

plot

end

Figure 2.4.10.8 shows the mesh created by SEPMESH.

1

2

3

4

5

6

7
8

10

Figure 2.4.10.7: Definition of curves in
example 2.4.10.5

Figure 2.4.10.8: Subdivision of mesh
in example 2.4.10.5

Example 2.4.10.6

A complex region corresponding to a more practical problem is given in Figure 2.4.10.9.
The input file is defined by

* paver04.msh

mesh2d

coarse (unit=1)

points

#> Fider Pattern <#

p01 = (0.2900D+02, 0.0000D+00, 0.1000D+02)

p02 = (0.2900D+02, 0.1200D+02, 0.1000D+02)

p03 = (0.2400D+02, 0.1700D+02, 0.1000D+02)

p04 = (0.2400D+02, 0.1200D+02, 0.1000D+02)

p05 = (-0.2400D+02, 0.1700D+02, 0.1000D+02)

p06 = (-0.2900D+02, 0.1200D+02, 0.1000D+02)

UM PAVER March 2009 2.4.10.8

p07 = (-0.2400D+02, 0.1200D+02, 0.1000D+02)

p08 = (-0.2900D+02, -0.1750D+02, 0.1000D+02)

p09 = (-0.2400D+02, -0.2250D+02, 0.1000D+02)

p10 = (-0.2400D+02, -0.1750D+02, 0.1000D+02)

p11 = (-0.2100D+02, -0.2250D+02, 0.1000D+02)

p12 = (-0.1600D+02, -0.1750D+02, 0.1000D+02)

p13 = (-0.2100D+02, -0.1750D+02, 0.1000D+02)

p14 = (-0.1600D+02, 0.8000D+01, 0.1000D+02)

p15 = (0.1600D+02, 0.8000D+01, 0.1000D+02)

p16 = (0.1600D+02, -0.1750D+02, 0.1000D+02)

p17 = (0.2100D+02, -0.2250D+02, 0.1000D+02)

p18 = (0.2100D+02, -0.1750D+02, 0.1000D+02)

p19 = (0.2400D+02, -0.2250D+02, 0.1000D+02)

p20 = (0.2900D+02, -0.1750D+02, 0.1000D+02)

p21 = (0.2400D+02, -0.1750D+02, 0.1000D+02)

#> Computed centroids of fider pattern <#

#> Cylinder Pattern <#

p22 = (0.2275D+02, 0.0000D+00, 0.1000D+02)

p23 = (0.2275D+02, 0.1400D+02, 0.1000D+02)

p24 = (0.2216D+02, 0.1541D+02, 0.1000D+02)

p25 = (0.2075D+02, 0.1400D+02, 0.1000D+02)

p26 = (0.2075D+02, 0.1600D+02, 0.1000D+02)

p27 = (-0.2075D+02, 0.1600D+02, 0.1000D+02)

p28 = (-0.2216D+02, 0.1541D+02, 0.1000D+02)

p29 = (-0.2075D+02, 0.1400D+02, 0.1000D+02)

p30 = (-0.2275D+02, 0.1400D+02, 0.1000D+02)

p31 = (-0.2275D+02, -0.1550D+02, 0.1000D+02)

p32 = (-0.2225D+02, -0.1600D+02, 0.1000D+02)

p33 = (-0.2225D+02, -0.1550D+02, 0.1000D+02)

p34 = (-0.2133D+02, -0.1600D+02, 0.1000D+02)

p35 = (-0.2075D+02, -0.1500D+02, 0.1000D+02)

p36 = (-0.2175D+02, -0.1400D+02, 0.1000D+02)

p37 = (-0.2175D+02, 0.1300D+02, 0.1000D+02)

p38 = (-0.2116D+02, 0.1441D+02, 0.1000D+02)

p39 = (-0.1975D+02, 0.1300D+02, 0.1000D+02)

p40 = (-0.1975D+02, 0.1500D+02, 0.1000D+02)

p41 = (0.1975D+02, 0.1500D+02, 0.1000D+02)

p42 = (0.2116D+02, 0.1441D+02, 0.1000D+02)

p43 = (0.1975D+02, 0.1300D+02, 0.1000D+02)

p44 = (0.2175D+02, 0.1300D+02, 0.1000D+02)

p45 = (0.2175D+02, -0.1400D+02, 0.1000D+02)

p46 = (0.2075D+02, -0.1500D+02, 0.1000D+02)

p47 = (0.2133D+02, -0.1600D+02, 0.1000D+02)

p48 = (0.2225D+02, -0.1600D+02, 0.1000D+02)

p49 = (0.2275D+02, -0.1550D+02, 0.1000D+02)

p50 = (0.2225D+02, -0.1550D+02, 0.1000D+02)

#> Computed centroids of cylinder pattern <#

curves

#> Fider Pattern <#

c01 = cline1(p01,p02)

c02 = carc1(p02,p03,p04)

c03 = cline1(p03,p05)

c04 = carc1(p05,p06,p07)

c05 = cline1(p06,p08)

UM PAVER March 2009 2.4.10.9

c06 = carc1(p08,p09,p10)

c07 = cline1(p09,p11)

c08 = carc1(p11,p12,p13)

c09 = cline1(p12,p14)

c10 = cline1(p14,p15)

c11 = cline1(p15,p16)

c12 = carc1(p16,p17,p18)

c13 = cline1(p17,p19)

c14 = carc1(p19,p20,p21)

c15 = cline1(p20,p01)

c16 = curves(c05,c06,c07,c08,c09,c10)

c17 = curves(c16,c11,c12,c13,c14,c15)

#> Cylinder Pattern <#

c18 = cline1(p22,p23)

c19 = carc1(p23,p24,p25)

c20 = carc1(p24,p26,p25)

c21 = cline1(p26,p27)

c22 = carc1(p27,p28,p29)

c23 = carc1(p28,p30,p29)

c24 = cline1(p30,p31)

c25 = carc1(p31,p32,p33)

c26 = cline1(p32,p34)

c27 = cline1(p34,p35)

c28 = cline1(p35,p36)

c29 = cline1(p36,p37)

c30 = carc1(p37,p38,-p39)

c31 = carc1(p38,p40,-p39)

c32 = cline1(p40,p41)

c33 = carc1(p41,p42,-p43)

c34 = carc1(p42,p44,-p43)

c35 = cline1(p44,p45)

c36 = cline1(p45,p46)

c37 = cline1(p46,p47)

c38 = cline1(p47,p48)

c39 = carc1(p48,p49,p50)

c40 = cline1(p49,p22)

c41 = curves(c18,c19,c20,c21,c22,c23,c24,c25,c26,c27)

c42 = curves(c41,c28,c29,c30,c31,c32,c33,c34,c35,c36)

c43 = curves(c42,c37,c38,c39,c40)

#> Cylinder pattern - Fider Pattern Connection

c44 = cline1(p01,p22)

c45 = curves(c17,c44,-c43,-c44)

surfaces

#> Surface inside Cylinder Pattern <#

s01 = paver3(c43,t=0.2d0,f=1d0)

#> Surface between Cylinder Patt. & Fider Patt. <#

s02 = paver3(c1,t=1,f=1,c2,t=0.4,f=1.1,c3,t=0.2,f=1.2,c4,t=0.4,f=1.1,//

c17,t=1,f=1,-c43,t=0.2,f=1.7)

plot

end

Figure 2.4.10.10 shows the mesh created by SEPMESH.

Example 2.4.10.7

UM PAVER March 2009 2.4.10.10

1

2
3

4

5

6
7

8

9

10

11

12
13

14

15

18

1920212223

24

25262728

29

3031 32 3334

35

36373839

40

44

Figure 2.4.10.9: Definition of curves in
example 2.4.10.6

Figure 2.4.10.10: Subdivision of mesh
in example 2.4.10.6

This example corresponds also to a more practical problem. The boundary is given in Figure
2.4.10.11.
The input file is defined by

*paver05.msh

mesh2d

points

p1 = (-26.025430, -18.081430)

p2 = (-26.519253, -17.199243)

p3 = (-25.969575, -18.047753)

p4 = (10.554302, 5.612942)

p5 = (10.829140, 5.188684)

p6 = (11.268208, 5.439185)

p7 = (24.615004, -17.954437)

p8 = (25.402135, -18.140416)

p9 = (25.448632, -17.943637)

p10 = (25.604989, -17.815433)

p11 = (26.973145, -16.693648)

p12 = (26.702484, -14.945223)

p13 = (26.973145, -16.693648)

p14 = (28.616441, -17.349250)

p15 = (28.991046, -17.498700)

p16 = (29.210329, -17.837196)

p17 = (32.252042, -15.866732)

p18 = (31.427526, -14.593963)

p19 = (32.744722, -13.842457)

p20 = (32.141943, -12.787421)

p21 = (30.824743, -13.538926)

p22 = (30.284834, -12.121790)

p23 = (30.356826, -12.310742)

p24 = (30.181196, -12.410942)

p25 = (31.332826, -14.427961)

UM PAVER March 2009 2.4.10.11

p26 = (31.157202, -14.528163)

p27 = (31.267135, -14.697865)

p28 = (29.907344, -15.578756)

p29 = (29.797408, -15.409055)

p30 = (29.621782, -15.509254)

p31 = (28.205769, -13.027344)

p32 = (27.766702, -13.277847)

p33 = (27.491862, -12.853590)

p34 = (24.990164, -14.474226)

p35 = (24.715325, -14.049971)

p36 = (24.276259, -14.300470)

p37 = (12.514733, 6.314567)

p38 = (12.953801, 6.565067)

p39 = (12.678959, 6.989323)

p40 = (15.276425, 8.671999)

p41 = (15.001587, 9.096254)

p42 = (15.440651, 9.346756)

p43 = (13.764923, 12.283890)

p44 = (13.940551, 12.384091)

p45 = (13.830613, 12.553794)

p46 = (15.190393, 13.434679)

p47 = (15.300329, 13.264976)

p48 = (15.475956, 13.365177)

p49 = (16.869688, 10.922313)

p50 = (17.045314, 11.022514)

p51 = (17.171344, 10.864396)

p52 = (16.226131, 12.050288)

p53 = (17.543328, 12.801793)

p54 = (14.930833, 17.380844)

p55 = (13.613633, 16.629339)

p56 = (12.789116, 17.902110)

p57 = (8.364518, 15.035792)

p58 = (9.189037, 13.763022)

p59 = (7.804570, 13.144132)

p60 = (7.989167, 13.226649)

p61 = (8.099102, 13.056946)

p62 = (13.520614, 16.569123)

p63 = (13.630550, 16.399421)

p64 = (13.806177, 16.499621)

p65 = (14.609058, 15.092369)

p66 = (14.433434, 14.992167)

p67 = (14.543370, 14.822467)

p68 = (12.043718, 13.203119)

p69 = (12.318559, 12.778862)

p70 = (11.879490, 12.528362)

p71 = (13.649922, 9.425232)

p72 = (-24.738383, -15.443259)

p73 = (-25.013223, -15.019004)

p74 = (-25.452289, -15.269504)

p75 = (-26.929417, -12.680467)

p76 = (-27.368484, -12.930969)

p77 = (-27.643322, -12.506711)

p78 = (-30.329368, -14.246771)

p79 = (-30.439304, -14.077070)

p80 = (-30.614930, -14.177269)

UM PAVER March 2009 2.4.10.12

p81 = (-31.417811, -12.770021)

p82 = (-31.242183, -12.669821)

p83 = (-31.352120, -12.500118)

p84 = (-29.162505, -11.081652)

p85 = (-29.272438, -10.911949)

p86 = (-29.121670, -10.777215)

p87 = (-30.252438, -11.787730)

p88 = (-31.076956, -10.514958)

p89 = (-32.252047, -11.276199)

p90 = (-31.427527, -12.548968)

p91 = (-32.744727, -13.300471)

p92 = (-30.574314, -17.104666)

p93 = (-30.223059, -16.904268)

p94 = (-30.067754, -17.277658)

p95 = (-30.223059, -16.904268)

p96 = (-29.833296, -16.796453)

p97 = (-28.128081, -16.324770)

p98 = (-27.822810, -14.582056)

p99 = (-28.128081, -16.324770)

p100 = (-26.684728, -17.347987)

p101 = (-26.272343, -17.640337)

curves

c1 = arc1(1, 3, 2 , nelm = 1)

c2 = line1(3, 4, nelm = 9)

c3 = arc1(4, 6, -5 , nelm = 2)

c4 = line1(6, 7, nelm = 7)

c5 = line1(7, 8, nelm = 2)

c6 = arc1(8, 10, 9 , nelm = 1)

c7 = arc1(10, 12, -11 , nelm = 3)

c8 = arc1(12, 14, -13 , nelm = 3)

c9 = arc1(14, 16, 15 , nelm = 2)

c10 = line1(16, 17, nelm = 3)

c11 = arc1(17, 19, 18 , nelm = 2)

c12 = line1(19, 20, nelm = 2)

c13 = arc1(20, 22, 21 , nelm = 2)

c14 = arc1(22, 24, 23 , nelm = 1)

c15 = line1(24, 25, nelm = 2)

c16 = arc1(25, 27, -26 , nelm = 1)

c17 = line1(27, 28, nelm = 2)

c18 = arc1(28, 30, -29 , nelm = 1)

c19 = line1(30, 31, nelm = 3)

c20 = arc1(31, 33, 32 , nelm = 2)

c21 = line1(33, 34, nelm = 3)

c22 = arc1(34, 36, -35 , nelm = 2)

c23 = line1(36, 37, nelm = 7)

c24 = arc1(37, 39, -38 , nelm = 2)

c25 = line1(39, 40, nelm = 3)

c26 = arc1(40, 42, 41 , nelm = 2)

c27 = line1(42, 43, nelm = 3)

c28 = arc1(43, 45, -44 , nelm = 1)

c29 = line1(45, 46, nelm = 2)

c30 = arc1(46, 48, -47 , nelm = 1)

c31 = line1(48, 49, nelm = 3)

c32 = arc1(49, 51, 50 , nelm = 1)

c33 = arc1(51, 53, 52 , nelm = 2)

UM PAVER March 2009 2.4.10.13

c34 = line1(53, 54, nelm = 3)

c35 = arc1(54, 56, 55 , nelm = 2)

c36 = line1(56, 57, nelm = 3)

c37 = arc1(57, 59, 58 , nelm = 2)

c38 = arc1(59, 61, 60 , nelm = 1)

c39 = line1(61, 62, nelm = 4)

c40 = arc1(62, 64, -63 , nelm = 1)

c41 = line1(64, 65, nelm = 2)

c42 = arc1(65, 67, -66 , nelm = 1)

c43 = line1(67, 68, nelm = 3)

c44 = arc1(68, 70, 69 , nelm = 2)

c45 = line1(70, 71, nelm = 3)

c46 = line1(71, 72, nelm = 9)

c47 = arc1(72, 74, -73 , nelm = 2)

c48 = line1(74, 75, nelm = 3)

c49 = arc1(75, 77, 76 , nelm = 2)

c50 = line1(77, 78, nelm = 3)

c51 = arc1(78, 80, -79 , nelm = 1)

c52 = line1(80, 81, nelm = 2)

c53 = arc1(81, 83, -82 , nelm = 1)

c54 = line1(83, 84, nelm = 2)

c55 = arc1(84, 86, 85 , nelm = 1)

c56 = arc1(86, 88, 87 , nelm = 2)

c57 = line1(88, 89, nelm = 2)

c58 = arc1(89, 91, 90 , nelm = 2)

c59 = line1(91, 92, nelm = 3)

c60 = arc1(92, 94, 93 , nelm = 1)

c61 = arc1(94, 96, 95 , nelm = 1)

c62 = arc1(96, 98, -97 , nelm = 3)

c63 = arc1(98, 100, -99 , nelm = 3)

c64 = arc1(100, 1, 101 , nelm = 2)

surfaces

s1=paver3(c1, t=0.2d0, c2, c3, c4, c5, c6, c7, c8, c9, c10 //

c11, c12, c13, c14, c15, c16, c17, c18, c19, c20 //

c21, c22, c23, c24, c25, c26, c27, c28, c29, c30 //

c31, c32, c33, c34, c35, c36, c37, c38, c39, c40 //

c41, c42, c43, c44, c45, c46, c47, c48, c49, c50 //

c51, c52, c53, c54, c55, c56, c57, c58, c59, c60 //

c61, c62, c63, c64)

plot(nodes=1,curve=1)

end

Figure 2.4.10.12 shows the mesh created by SEPMESH.

Example 2.4.10.8

Next we consider a three-dimensional example of the use of paver. The boundary is given in Figure
2.4.10.13.
The input file is defined by

*paver06.msh

mesh3d

points

p1 = (0d0, 0d0, 0d0)

p2 = (2d0, 2d0, 0d0)

p3 = (-2d0, 2d0, 0d0)

UM PAVER March 2009 2.4.10.14

Figure 2.4.10.11: Definition of curves
in example 2.4.10.7

Figure 2.4.10.12: Subdivision of mesh
in example 2.4.10.7

p4 = (-2d0, -2d0, 0d0)

p5 = (2d0, -2d0, 0d0)

p6 = (1d0,0d0,0d0)

p7 = (0d0,1d0,0d0)

p8 = (-1d0,0d0,0d0)

p9 = (0d0,-1d0,0d0)

p10 = (2d0,2d0,2d0)

curves

c1 = line1(p2,p3,nelm=4)

c2 = line1(p3,p4,nelm=4)

c3 = line1(p4,p5,nelm=4)

c4 = line1(p5,p2,nelm=4)

c5 = arc1(p6,p7,p1,nelm=4)

c6 = arc1(p7,p8,p1,nelm=4)

c7 = arc1(p8,p9,p1,nelm=4)

c8 = arc1(p9,p6,p1,nelm=4)

c9 = curves(c1,c2,c3,c4)

c10 = curves(c5,c6,c7,c8)

c11 = translate c9(p10)

c12 = line1(p2,p10,nelm=3)

surfaces

s1 = paver3(c9,t=0.0d0,f=1d0,-c10,t=0.40)

s2 = paver3(c10,t=0.2d0,f=1d0)

s3 = surfaces(s1,s2)

s4 = translate s3(c11)

s5 = pipesurface3(c9,c11,c12)

volumes

v1=pipe11(s3,s4,s5)

plot(curve=1,nodes=1,eyepoint(1000,1000,700))

end

UM PAVER March 2009 2.4.10.15

Figures 2.4.10.14 to 2.4.10.16 show the surfaces 1, 2 and 4 generated by SEPMESH. Figure 2.4.10.17
shows the created mesh.

Figure 2.4.10.13: Definition of curves
in example 2.4.10.8

Figure 2.4.10.14: Surface 1 in example
2.4.10.8

Figure 2.4.10.15: Surface 2 in example
2.4.10.8

Figure 2.4.10.16: Surface 4 in example
2.4.10.8

Figure 2.4.10.17: Subdivision of mesh in example 2.4.10.8

UM SPHERE November 2008 2.4.11.1

2.4.11 Surface generator SPHERE

The surface generator SPHERE is called by the program SEPMESH. The user may activate
SPHERE by data records of the type:

Si = SPHERE j (Ck, [,CENTRE=Pi] [,type=t] [,subsurfaces = (S1,S2)])

The sub mesh generator SPHERE creates a mesh along the surface of a sphere or a half sphere.
This surface generator itself is not a new surface generator, it is merely meant to reduce the amount
of input. Internally extra user points, curves and surfaces are defined so that actual other surface
generators are created.
The only curve that is needed is a complete circle on the sphere

Si defines the surface number.

j defines the shape of the elements created on the surface. At this moment only triangular elements
are allowed.

Ck defines the generating curve for the sphere. This curve may be either of the type CIRCLE or
a combination of arcs, clustered by curves of curves. In fact the user may decide himself how
to create C1 as long as it is a complete circle on the surface of the sphere. All points on
this circle will be nodal points on the sphere, and the distribution of the nodes on the circle
defines the distribution of elements on the sphere.

CENTRE=Pi defines the user point that is used as center of the sphere. If the curve Ck is of the
type CIRCLE or created by a combination of ARCs it is not necessary to define the center.
In that case the center of the circle or the arcs is used.

type=t defines the type of sphere to be created.
Possible values are

SPHERE

UPPER_HALF_SPHERE

LOWER_HALF_SPHERE

sphere means that a complete sphere is created

upper half sphere means that a half sphere is created. The plane through the circle is used
as part of the surface as well as the part of the sphere positioned above the circle. What
is above or below is defined by the direction in which the points on the circle are defined.
The left-handed screw rule is used to define the part that is above the circle.

lower half sphere has exactly the same meaning as upper half sphere, but of course now
the part below the circle is used.

Default value: SPHERE

subsurfaces=(Sk,Sl) connects a subsurface number to two parts of the surface, depending on the
type of surface to be created.
If type = sphere, the first surface corresponds to the upper half sphere and the second one
to the lower half sphere.
If type = upper_half_sphere or lower_half_sphere, the first surface corresponds to the
sphere and the second surface number to the plane through the circle.
If no subsurfaces are given, internally these subsurfaces are created by sequence numbers not
known to the user. If, however, the subsurfaces are given, then the sequence numbers must be
unique. They can not be used to create another surface. These surface numbers may be used
throughout the rest of the input, for example to prescribe boundary conditions or to create a
volume.

UM SPHERE November 2008 2.4.11.2

Example 2.4.11.0

As a very simple example of the use of SPHERE we create a sphere with radius 1 and center (0,0,0).
For a more complex example the user is referred to Section 2.6, example 2.6.4.
The input file is defined by

#

sphere.msh

example of the use of the submesh generator sphere

The outer surface of a sphere is subdivided into triangles

#

To get this example into your local directory use:

#

sepgetex sphere

#

To run this file use:

sepmesh sphere.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

radius = 1 # radius of the sphere

integers

nelm = 16 # number of elements along the circle

end

#

Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1 = (0, 0, 0) # centre of the sphere

p2 = (radius, 0, 0) # point on shpere

p3 = (0, radius, 0) # Extra point needed to define the

plane through the sphere

#

curves

#

curves # See Users Manual Section 2.3

c1 = circle1 (p1, p2, p3, nelm = nelm) # Circle with centre p1

First point is p2

p3 is needed to define the

plane

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1 = sphere 3 (c1) # sphere defined by the circle

plot, eyepoint(-1,-2,3) # make a plot of the mesh

in order to make a 3d-hiddenline plot

UM SPHERE November 2008 2.4.11.3

of the final mesh, eyepoint must be

given

See Users Manual Section 2.2

end

Figure 2.4.11.1 shows the mesh created by SEPMESH.

Figure 2.4.11.1: Subdivision of mesh in example 2.4.11

UM FRAMESURF July 2007 2.4.12.1

2.4.12 Surface generator FRAMESURF

The surface generator FRAMESURF is called by the program SEPMESH. The user may activate
FRAMESURF by data records of the type:

Si = FRAMESURF j (C1, C2, C3, ...)

The special purpose sub mesh generator generates a triangular mesh in R3, with the boundary given
between the brackets. The coarseness of the surface mesh is completely defined by the surrounding
curves. The set of curves C1, C2, must form a closed curve. Holes in the boundary are not
allowed.

The user must give a rough triangulation of the surface himself. This triangulation is only used to
define the curvature of the surface. So these triangles may be ill-shaped, with very small or large
angles. The number of triangles that is connected to a point has no influence to the coarseness. In
fact the triangulation is made on basis of the boundary and afterwards points are mapped onto the
triangle that is closest to that point.
The triangulation must be provided by the user in a file with name framesurf_x, where x is the
sequence number i of the surface. No spaces or leading zeros are allowed in x.
The file must have the following contents:

• line 1: npoints, ntrians
i.e. number of points and number of triangles

• lines 2 to 1+npoints, for each line:
inode, xinode, yinode, zinode
with inode the sequence number of the point (between 1 and npoints), and xinode, yinode,
zinode the coordinates of this point.

• lines 2+npoints to 1+npoints+ntrians, for each line:
node1, node2, node3

where the nodes refer to the points given previously. So these lines define the triangles.

UM Volume generators March 2006 2.5.1

2.5 Volume generators

Description

In this section the various volume generators are treated. These volume generators are activated
by the command VOLUMES in the input for the program SEPMESH. In 2.2 the following types of
volume generators have been defined.

BRICK

USER

PIPE

CHANNEL

TRANSLATE

ROTATE

REFLECT

GENERAL

These volume generators have the following global function:

BRICK the submesh generator BRICK, creating a mesh that can be mapped onto a ”BRICK” is
called. BRICK may be considered as the generalization of RECTANGLE. See 2.5.1.

USER A user provided mesh generator called MESHUS is called. See 2.4.6.

PIPE the submesh generator PIPE, creating a mesh in a pipe is called, see 2.5.2. In fact PIPE
may be considered as an extension of BRICK.

CHANNEL the submesh generator CHANNEL, creating a mesh between two topologically equiv-
alent faces is called. In fact this generator is completely the same as PIPE. The only difference
is that a different interpolation is used to connect points from ”upper” surface to ”lower” sur-
face. In fact these surfaces may be extremely curved, as long as it is possible to connect each
point in both surfaces by a straight line. Such an approach may be used for example for a
small channel. See 2.5.3.

TRANSLATE, ROTATE and REFLECT The volume generators TRANSLATE, ROTATE
and REFLECT are the three-dimensional extensions of the corresponding surface generators
with the same name. These generators expect exactly one surface surrounding the volume to
be subdivided, see the input for GENERAL3D. The user activates these generators by data
records of the type :

V i = Translate V j (Sk)

V i = Rotate V j (Sk)

V i = Reflect V j (Sk)

The new volume V i is a translation (rotation, reflection) of V j. Also the surface that is used,
in the example Sk, should be a translation (rotation, reflection) of the surface used for the
generation of V j. The main advantage of Translate, Rotate and Reflect is that they are very
quick compared to the time-consuming generator GENERAL3D.
At this moment V j must have been created by GENERAL3D, volumes created by BRICK or
PIPE may not be translated, rotated or reflected by TRANSLATE, ROTATE and REFLECT.

GENERAL the submesh generator GENERAL, creating a general mesh in a three-dimensional
region is called. GENERAL forms the 3D extension of the surface generator TRIANGLE.
GENERAL may only be applied if your institute has the corresponding license.
At this moment GENERAL may only be used to create tetrahedral elements.

GENERAL expects exactly one surface surrounding the region to be subdivided. Such a

UM Volume generators March 2006 2.5.2

surface may always be created by the option SURFACES of SURFACES. This surface of course
must be subdivided into triangles. Due to its generality GENERAL is more time-consuming
than the regular surface generators PIPE and BRICK. It is cheaper to use GENERAL on
several small regions, than once on the connected region. See 2.5.4

UM Volume generator BRICK November 2008 2.5.1.1

2.5.1 Volume generator BRICK

The volume generator BRICK is called by program SEPMESH. The user may activate BRICK by
data records of the type:

Vi = BRICK j ([N = n, M = m, L = l,] S1, S2, . .. , S6 [,orientation = o])

with Vi the volume number, j the shape number of the elements created in this volume, and S1,
S2, . . . the surfaces enclosing Vi. The parameters N, M and L are superfluous, but are kept in
order that old input files may be used. The parameter orientation may be used in case the surfaces
have another orientation than the standard one.

1 2

3
4

8

5
6

7

Figure 2.5.1.1: Rectangular region with 6 sides

Characteristics of BRICK:

Generates a sub mesh that can be mapped onto a rectangular (three-dimensional) grid. This
rectangular region is plotted in Figure 2.5.1.1.
The region is defined by the 6 surfaces. These surfaces must each be triangulated by the
surface generator RECTANGLE (2.4.2). The surfaces must be given in the sequence S1, S2,
. . . , S6, where

S1 is defined by the face 1,2,3,4,

S2 is defined by the face 1,2,6,5,

S3 is defined by the face 2,3,7,6,

S4 is defined by the face 4,3,7,8,

S5 is defined by the face 1,4,8,5,

S6 is defined by the face 5,6,7,8.

The numbers refer to the points in Figure 2.5.1.1. These surfaces must each be generated in
the way as indicated above, hence S1 must start with point 1, then point 2, point 3 and point
4, etc.
The parameters N, M and L correspond to the number of elements to be created along the
surfaces in the following way:

Curves (1,2), (5,6), (4,3), (8,7): n elements.

Curves (1,4), (2,3), (5,8), (6,7): m elements.

Curves (1,5), (2,6), (3,7), (4,8): l elements.

The surfaces may be curved and do not have to be part of a plane. The number of elements
to be created is equal to αnml where α=1 for hexahedral elements and α=6 for tetrahedral
elements.

The parameter j indicates the type of elements to be generated, see Table 2.2.1.

UM Volume generator BRICK November 2008 2.5.1.2

If the parameters N, M and L are not given in the input, it is assumed that N is equal to the number
of elements at the curve (1,2), M equal to the number of elements at curve (1,4) and L equal to the
number of elements at curve (1,5).

The orientation of the surfaces for the volume generator BRICK is fixed, which means that the
nodes and elements along the surfaces must be generated in the standard sequence. However, in
some problems (for example if several ”BRICKS” are coupled), it is impossible to define all surfaces
in the required sequence. For that reason the parameter orientation has been submitted. The
standard orientation of the surfaces is as described before. However, 7 alternative orientations are
allowed as shown in Figure 2.5.1.2. Orientation 1 refers to the standard orientation. The parameter

i

orientation 8

j i

j

i

j i

j

orientation 1 orientation 2 orientation 3 orientation 4

i

j i

j

i

j

j

i

orientation 5 orientation 6 orientation 7

Figure 2.5.1.2: Possible orientations of the surfaces

o in orientation = o, must consists of 6 digits, each digit in the range 1 to 8. Each digit refers to
one of the surfaces in the natural sequence, where the most left digit refers to the first surface, and
the most right digit to the sixth surface. The value of the digit gives the value of the orientation
as defined in Figure 2.5.1.2. If the orientation field is omitted, the default orientation o = 111111
is assumed.

Different orientations are always possible with quadrilaterals, but in case of triangles it is necessary
that the orientation of the ”diagonals” of corresponding quadrilaterals at opposite faces, are in the
same direction. In the case that only one brick is defined the volume generator BRICK automatically
takes care of this property. However, if multiple bricks are coupled, this may be a problem.

Remark

Instead of the surface generator RECTANGLE also the surface generators COONS and PARSURF
may be used to generate the surfaces, provided the number of nodes is the same at opposite curves.
In fact in these cases the underlying sub mesh generator is RECTANGLE.

Examples

Example 2.5.1.1 Simple brick

In this example we consider a brick of length 2, width 1 and height 0.5. The number of elements
in length direction is defined by nelml, in the width direction by nelmw and in the height direction
by nelmh.

UM Volume generator BRICK November 2008 2.5.1.3

The brick has exactly the structure of Figure 2.5.1.1. At the faces we use triangular elements (shape
3) and in the interior tetrahedrons (shape 11). The input file is given by:

*cube1.msh

constants

integers

nelml = 5

nelmw = 4

nelmh = 3

reals

length = 2

width = 1

height = 0.5

end

mesh3d

points

p1=(0,0,0)

p2=(length,0,0)

p3=(length, width,0)

p4=(0, width,0)

p5=(0,0, height)

p8=(0,0,0)

curves

c1 =line1(p1,p2,nelm= nelml)

c2 =line1(p2,p3,nelm= nelmw)

c3 =line1(p3,p4,nelm= nelml)

c4 =line1(p4,p1,nelm= nelmw)

c5 =line1(p1,p5,nelm= nelmh)

c6 =translate c5 (p2, p6)

c7 =translate c5 (p3, p7)

c8 =translate c5 (p4, p8)

c9 =translate c1 (p5, p6)

c10=translate c2 (p6, p7)

c11=translate c3 (p7, p8)

c12=translate c4 (p8, p5)

surfaces

s1=rectangle3(c1,c2,c3,c4)

s2=rectangle3(c1,c6,-c9,-c5)

s3=rectangle3(c2,c7,-c10,-c6)

s4=rectangle3(-c3,c7,c11,-c8)

s5=rectangle3(-c4,c8,c12,-c5)

s6=rectangle3(c9,c10,c11,c12)

volumes

v1=brick11(s1,s2,s3,s4,s5,s6)

end

Example 2.5.1.2 Brick with different orientations

In this example we consider the same brick as in example 2.5.1.1, however, to demonstrate the use
of the orientations each surface i has orientation i+1.

*cube2.msh

constants

integers

nelml = 5

nelmw = 4

UM Volume generator BRICK November 2008 2.5.1.4

nelmh = 3

reals

length = 2

width = 1

height = 0.5

end

mesh3d

points

p1=(0,0,0)

p2=(length,0,0)

p3=(length, width,0)

p4=(0, width,0)

p5=(0,0, height)

p8=(0,0,0)

curves

c1 =line1(p1,p2,nelm= nelml)

c2 =line1(p2,p3,nelm= nelmw)

c3 =line1(p3,p4,nelm= nelml)

c4 =line1(p4,p1,nelm= nelmw)

c5 =line1(p1,p5,nelm= nelmh)

c6 =translate c5 (p2, p6)

c7 =translate c5 (p3, p7)

c8 =translate c5 (p4, p8)

c9 =translate c1 (p5, p6)

c10=translate c2 (p6, p7)

c11=translate c3 (p7, p8)

c12=translate c4 (p8, p5)

surfaces

Each surface has a different orientation

s1=rectangle5(c2,c3,c4,c1)

s2=rectangle5(-c9,-c5,c1,c6)

s3=rectangle5(-c6,c2,c7,-c10)

s4=rectangle5(c8,-c11,-c7,c3)

s5=rectangle5(c4,c5,-c12,-c8)

s6=rectangle5(-c10,-c9,-c12,-c11)

volumes

v1=brick13(s1,s2,s3,s4,s5,s6, orientation=234567)

plot

end

The result of this input file is a standard brick file comparable with the one of example 2.5.1.1,
however, with the triangles and tetrahedra replaced by quadrilaterals and hexahedrons.

UM Volume generator PIPE November 2008 2.5.2.1

2.5.2 Volume generator PIPE

The volume generator PIPE is called by program SEPMESH. The user may activate PIPE by data
records of the type:

Vi = PIPE j (S1, S2, S3)

with Vi the volume number, j the shape number of the elements created in this volume, and S1,
S2, S3 the three surfaces enclosing Vi. See Figure 2.5.2.1 for an explanation.

S C
C

SC1 1
3

2 2

Figure 2.5.2.1: PIPE with generating surfaces

The surfaces S1 and S2 must have exactly the same topology, for example translated over some
distance and rotated over some angle. For example S2 may be created by the command TRANS-
LATE or SIMILAR. Surface S3 must be generated by the command PIPESURFACE.

A simple example of the use of pipe is given in the following example.

Example 2.5.2.1 Construction of a simple pipe

Consider the straight pipe in Figure 2.5.2.2. The user points, curves and surfaces have already been
placed in this figure.

In order to subdivide this pipe we have to generate three surfaces: the bottom surface, the top
surface and a pipe surface.
The bottom surface is generated by GENERAL. Its boundary is given by a circle. In R3 a circle
needs at least three generating points.
The top surface is copied from the bottom surface.
The pipe surface is defined by the two circles and one extra generating curve, which is a straight
line.
The following input file may be used to generate the mesh:

simplepipe.msh

#

Example of a simple pipe

See users Manual Section 2.5.2

#

To run this file use:

sepmesh simplepipe.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelmh =12 # Number of elements along the circles in bottom and

UM Volume generator PIPE November 2008 2.5.2.2

P

P

P

P

P

P

C
C

CC

C

C

S

S

S

1

2

3

1

2

3

4

5

1

23

4

6

6

7

Figure 2.5.2.2: Example of a simple pipe

top surface

nelmv = 3 # Number of elements in the vertical direction

(pipe surface)

shape_cur = 1 # Shape number of curve elements

shape_sur = 3 # Shape number of surface elements in horizontal dir

shape_vol = 11 # Shape number of volume elements

reals

radius = 1 # Radius of a circle in the bottom surface

height = 1 # Height of the pipe

end

#

Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

First points for bottom circle (3 points)

p1 = (0,0,0) # centroid of circle in bottom surface

p2 = (radius,0,0) # point on circle

p3 = (0,1,0) # point is not used, just to define the

plane the circle is lying in

Next points for top circle (3 points)

p11 = (0,0, height) # centroid of circle in top surface

p12 = (radius,0, height) # point on circle

p13 = (0,1, height) # point is not used, just to define the

plane the circle is lying in

UM Volume generator PIPE November 2008 2.5.2.3

#

curves

#

curves # See Users Manual Section 2.3

c1 = circle shape_cur (p1,p2,p3,nelm= nelmh) # circle in bottom surface

c2 = circle shape_cur (p11,p12,p13,nelm= nelmh) # circle in top surface

c3 = line shape_cur (p2,p12,nelm= nelmv) # straight line from p2 to p12

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1 = general shape_sur (c1) # bottom surface (circle)

s2 = translate s1 (c2) # top surface (circle)

This surface must be topological

equivalent to s1, hence translate

s3 = pipesurface shape_sur (c1,c2,c3) # pipe surface

#

volumes

#

volumes # See Users Manual Section 2.5

v1 = pipe shape_vol (s1,s2,s3) # Complete pipe

plot, eyepoint = (1.0, 0.5, 1.5) # make a plot of all parts

and also of the final mesh

See Users Manual Section 2.2

end

Figure 2.5.2.3 shows the mesh generated by these statements.

Figure 2.5.2.3: Pipe generated by sepmesh

UM Volume generator PIPE November 2008 2.5.2.4

Example 2.5.2.2 A straight pipe with a hole

In this example we consider a straight pipe, where the bottom and top surface consist of a rectangle
with a hole. This example has been supplied by Bas van Rens of the technical University Eindhoven.
Figure 2.5.2.4 shows the mesh as generated by sepmesh. In this example we show how a pipe with

Figure 2.5.2.4: straight pipe with hole generated by sepmesh

a hole can be generated, without constructing extra lines from outer boundary to hole. To that
end submesh generator triangle is used to generate the bottom surface, since general can not
produce a hole without extra connection lines. the pipe surfaces for the outer boundary and the
hole are created separately. They require each only one generating curve, a bottom curve and a
top curve. These two pipe surfaces, although not connected, can be made to one pipe surface by
using the ordered surface statement. Once that has been done and the top surface is generated as
a translation of the bottom surface, the pipe can be generated in one statement using only three
surfaces.
The corresponding input is given in the following lines:

* pipehole.msh

*

* Example of a straight pipe with a hole

*

*

* Define some general constants

*

constants # See Users Manual Section 1.4

integers

nelml = 6 # Number of elements along the length direction of

the bottom surface

nelmw = 6 # Number of elements along the width direction of

the bottom surface

UM Volume generator PIPE November 2008 2.5.2.5

nelmh = 4 # Number of elements along the heigth direction of the pipe

nelmholel = 4 # Number of elements along the length direction of

the hole

nelmholew = 6 # Number of elements along the width direction of

the hole

reals

length = 4 # Length of the lower and upper surface

width = 3 # Width of the lower and upper surface

height = 1 # Height of the pipe

xund_hole = 1 # x-coordinate of left under point of hole

yund_hole = 1 # y-coordinate of left under point of hole

xupp_hole = 2 # x-coordinate of right upper point of hole

yupp_hole = 2 # y-coordinate of right upper point of hole

end

*

* Define the mesh

*

mesh3d # See Users Manual Section 2.2

*

* user points

*

points # See Users Manual Section 2.2

p1 = (0, 0, 0) # Left under point of bottom surface

p2 = (length, 0, 0) # Right under point of bottom surface

p3 = (length, width, 0) # Right upper point of bottom surface

p4 = (0, width, 0) # Left upper point of bottom surface

p5 = (xund_hole, yund_hole, 0) # Left under point of hole (bottom)

p6 = (xupp_hole, yund_hole, 0) # Right under point of hole (bottom)

p7 = (xupp_hole, yupp_hole, 0) # Right upper point of hole (bottom)

p8 = (xund_hole, yupp_hole, 0) # Left upper point of hole (bottom)

p9 = (0, 0, height) # Left under point of top surface

p10 = (xund_hole, yund_hole, height) # Left under point of

hole in top surface

*

* curves

*

curves # See Users Manual Section 2.3

c1 = line1(p1,p2,nelm= nelml) # "lower" curve of bottom surface

c2 = line1(p2,p3,nelm= nelmw) # "right" curve of bottom surface

c3 = line1(p3,p4,nelm= nelml) # "upper" curve of bottom surface

c4 = line1(p4,p1,nelm= nelmw) # "left" curve of bottom surface

c5 = line1(p5,p6,nelm= nelmholel) # "lower" curve of bottom hole

c6 = line1(p6,p7,nelm= nelmholew) # "right" curve of bottom hole

c7 = line1(p7,p8,nelm= nelmholel) # "upper" curve of bottom hole

c8 = line1(p8,p5,nelm= nelmholew) # "left" curve of bottom hole

c9 = curves(c1,c2,c3,c4) # Outer boundary of bottom surface

c10 = translate c9(p9) # Outer boundary of top surface

c11 = line1(p1,p9,nelm= nelmh) # Generating curve along outer pipe

surface

c12 = curves(c5,c6,c7,c8) # Boundary of bottom hole

c13 = translate c12(p10) # Boundary of top hole

c14 = line1(p5,p10,nelm= nelmh) # Generating curve along hole pipe

surface

*

* surfaces

UM Volume generator PIPE November 2008 2.5.2.6

*

surfaces # See Users Manual Section 2.4

s1=triangle3(c9,-c12) # Bottom surface

s2=translate s1(c10,-c13) # Top surface

s3=pipesurface3(c9,c10,c11) # Outer pipe surface

s4=pipesurface3(-c12,-c13,c14) # Pipe surface along hole

s5=ordered surfaces(s3,s4) # The complete pipe surface consists

of two separate parts

*

* volumes

*

volumes # See Users Manual Section 2.5

v1=pipe11(s1,s2,s5) # The complete pipe is generated

plot, eyepoint=(1000,-3000,5000) # make a plot of all parts

and also of the final mesh

See Users Manual Section 2.2

end

Example 2.5.2.3 A conical pipe

This example is almost identical to the first one, with the exception that the top surface has a
radius that is different from the bottom surface. This implies that the surface can not be copied by
translate, but that we have to use the command similar, which creates a surface that is topologically
equivalent to the bottom surface. the input file is given by the following statements:

conepipe.msh

*

* Example of a simple conical pipe

*

* Define some general constants

*

constants # See Users Manual Section 1.4

integers

nelmh =12 # Number of elements along the circles in bottom and

top surface

nelmv = 3 # Number of elements in the vertical direction

(pipe surface)

reals

radius_bot = 1 # Radius of a circle in the bottom surface

radius_top = 2 # Radius of a circle in the top surface

height = 1 # Height of the pipe

end

*

* Define the mesh

*

mesh3d # See Users Manual Section 2.2

*

* user points

*

points # See Users Manual Section 2.2

First points for bottom circle (3 points)

p1 = (0,0,0) # centroid of circle in bottom surface

p2 = (radius_bot,0,0) # point on circle

p3 = (0,1,0) # point is not used, just to define the

UM Volume generator PIPE November 2008 2.5.2.7

plane the circle is lying in

Next points for top circle (3 points)

p11 = (0,0, height) # centroid of circle in top surface

p12 = (radius_top,0, height) # point on circle

p13 = (0,1, height) # point is not used, just to define the

plane the circle is lying in

*

* curves

*

curves # See Users Manual Section 2.3

c1 = circle(p1,p2,p3,nelm= nelmh) # circle in bottom surface

c2 = circle(p11,p12,p13,nelm= nelmh) # circle in top surface

c3 = line1(p2,p12,nelm= nelmv) # straight line from p2 to p12

*

* surfaces

*

surfaces # See Users Manual Section 2.4

s1 = general3 (c1) # bottom surface (circle)

s2 = similar s1 (c2) # top surface (circle)

This surface must be topological

equivalent to s1, hence similar

s3 = pipesurface3(c1,c2,c3) # pipe surface

*

* volumes

*

volumes # See Users Manual Section 2.5

v1 = pipe11(s1,s2,s3) # Complete pipe

plot, eyepoint = (10, 5, -5) # make a plot of all parts

and also of the final mesh

See Users Manual Section 2.2

end

Figure 2.5.2.5 shows the mesh generated by these statements.

UM Volume generator PIPE November 2008 2.5.2.8

x

y

z

Figure 2.5.2.5: Conical pipe generated by sepmesh

UM Volume generator CHANNEL June 2008 2.5.3.1

2.5.3 Volume generator CHANNEL

The volume generator CHANNEL is called by program SEPMESH. The user may activate CHAN-
NEL by data records of the type:

Vi = CHANNEL j (S1, S2, S3)

with Vi the volume number, j the shape number of the elements created in this volume, and S1,
S2, S3 the three surfaces enclosing Vi. See Figure 2.5.2.1 for an explanation.

In fact CHANNEL is completely identical to PIPE (2.5.2), with the exception of the computation
of the coordinates.

The surfaces S1 and S2 must have exactly the same topology, which means that corresponding
points in one surface are connected to the same points as the points in the other surface.

Surface S3 must be generated by the command PIPESURFACE using only one generating curve.
In fact it is assumed that the pipe surface connecting S1 and S2 consists of straight lines only. The
subdivision of elements along these lines is assumed to be the same for all lines.

The new points in the grid are all created by connecting corresponding points on S1 and S2 by
straight lines and subdividing these lines in exactly the same way as on S3. Although this may
seem a limitation compared to PIPE, it allows the surfaces S1 and S2 to be much more curved than
in the case of PIPE.

An example of the use of channel is given in the following example.

Example 2.5.3.1 Meshing a quarter of a TV tube

In this example we create a mesh that is to be used to simulate the construction of a TV tube from
liquid glass. In order to simulate the filling of the glass it is necessary to create a mesh between
inner and outer surface of the tube. For our computation it is sufficient to consider only one quarter
of the tube.
To get this example into your local directory use the command sepgetex:

sepgetex raytube

To run the example use:

seplink raytube

raytube < raytube.msh

sepview sepplot.001

Figure 2.5.3.1 shows the curves that are created in this example. It also shows the contours of the
construction. The most important curve numbers on the outer surface are plotted in Figures 2.5.3.2
and 2.5.3.3

In order to subdivide this tube we have to generate three surfaces: the outer surface, the inner
surface and a pipe surface connecting the two.
The outer surface is split into four parts:

1. the back plane together with the lower plane and the curved part between the two, see Figure
2.5.3.4

2. the right-hand side plane together with the curved part to the lower plane, see Figure 2.5.3.5

3. The circular part between right-hand side plane and back plane, see Figure 2.5.3.6

4. The sphere part connecting all planes, see Figure 2.5.3.7

UM Volume generator CHANNEL June 2008 2.5.3.2

Figure 2.5.3.1: curve in TV tube

The inner surface is constructed completely identical.
The pipesurface needs one generating curve and the two outer curves of outer and inner surface.
The outer curve must be constructed starting with the first curve of the first subsurface of the
complete surface. Otherwise outer and inner surface are not compatible with the pipe surface.
Figure 2.5.3.8 shows the pipe surface.

The following input file may be used to generate the mesh:

raytube.msh

#

Input file for the quarter of a TV tube as described in Section 2.5.3

of the Users Manual

#

First some general constants are defined

#

constants # See Users Manual Section 1.4

reals

l_x = 0.22 # length tube in x direction

l_y = 0.16 # length tube in y direction

l_z = 0.05 # length tube in z direction

b = 0.01 # thickness of tube tube

R_w = 0.02 # radius of circles at outer surface (wide)

R_s = 0.01 # radius of circles at inner surface (small)

y_w = l_y+ R_w # y coordinate of outer back plane

y_s = l_y+ R_s # y coordinate of inner back plane

z_w = l_z+ R_w # z coordinate of top of back plane

x_w = l_x+ R_w # x coordinate of outer plane at the right

x_s = l_x+ R_s # x coordinate of inner plane at the right

integers

nelmx = 5 # number of elements in x direction

nelmy = 5 # number of elements in y direction

nelmz = 5 # number of elements in z direction

nelmb = 3 # number of elements in width direction

UM Volume generator CHANNEL June 2008 2.5.3.3

2

4

5

6

7

8

9

10

Figure 2.5.3.2: curve numbers in back plane and lower plane in TV tube

nelmc = 4 # number of elements along the circles

shape_cur = 1 # linear elements along the curves

shape_sur = 5 # bilinear quadrilaterals along the surfaces

shape_vol = 13 # trilinear hexahedrons in the volume

end

#

Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

First the user points on the outer surface are defined

lower plane (z=0)

p4 = (0,0,0) # left under

p8 = (l_x, 0, 0) # right under

p3 = (0, l_y,0) # left upper

p7 = (l_x, l_y,0) # right upper

back plane (y=y_w)

p2 = (0, y_w, R_w) # left under

p6 = (l_x, y_w, R_w) # right under

p1 = (0, y_w, z_w) # left upper

p5 = (l_x, y_w, z_w) # right upper

circular part between back plane and lower plane

UM Volume generator CHANNEL June 2008 2.5.3.4

11

14

15

16

17

18

19

Figure 2.5.3.3: curve numbers in other planes in TV tube

p13 = (0, l_y, R_w) # Centre of outer circle left

p14 = (l_x, l_y, R_w) # Centre of outer circle right

Right-hand plane (x=x_w)

p10 = (x_w, l_y, R_w) # left under

p11 = (x_w,0, R_w) # right under

p9 = (x_w, l_y, z_w) # left upper

p12 = (x_w,0, z_w) # right upper

inner surface

the same numbering as for the outer surface is used increased by 20

lower plane (z=b)

p24 = (0,0, b) # left under

p28 = (l_x, 0, b) # right under

p23 = (0, l_y, b) # left upper

p27 = (l_x, l_y, b) # right upper

back plane (y=y_s)

p22 = (0, y_s, R_w) # left under

p26 = (l_x, y_s, R_w) # right under

p21 = (0, y_s, z_w) # left upper

p25 = (l_x, y_s, z_w) # right upper

Right-hand plane (x=x_s)

p30 = (x_s, l_y, R_w) # left under

p31 = (x_s,0, R_w) # right under

UM Volume generator CHANNEL June 2008 2.5.3.5

Figure 2.5.3.4: Back plane and lower plane

p29 = (x_s, l_y, z_w) # left upper

p32 = (x_s,0, z_w) # right upper

#

curves

#

curves # See Users Manual Section 2.3

outer surface

Back plane and lower plane together

first the four outer curves

c1 = curves (c5, c6, c7) # left-hand curve

c2 = line shape_cur (p4,p8,nelm= nelmx) # lower curve

c3 = curves (c8, c9, c10) # right-hand curve

c4 = translate c2 (p1, p5) # upper curve

Next the subcurves of c1 and c3

c1:

c5 = line shape_cur (p1,p2,nelm= nelmz) # back plane part

c6 = arc shape_cur (p2,p3, p13, nelm= nelmc) # circular part

c7 = line shape_cur (p3,p4,nelm= nelmy) # lower face

c3:

c8 = translate c5 (p5, p6) # back plane part

c9 = translate c6 (p6, p7) # circular part

c10= translate c7 (p7, p8) # lower face

Right-hand plane and circular part to lower plane

First outer curves (c10 has already been created!)

UM Volume generator CHANNEL June 2008 2.5.3.6

Figure 2.5.3.5: right-hand side plane

c11 = translate c10 (p9, p12) # upper curve

c12 = curves (c14, c15) # front curve

c13 = curves (c16, c17) # curve at the back

Next the subcurves of c12 and c13

c14 = translate c5 (p12, p11) # right=hand plane (c12)

c17 = arc shape_cur (p10,p7, p14, nelm= nelmc) # circular part on c13

c16 = translate c5 (p9, p10) # right=hand plane (c13)

c15 = translate c17 (p11, p8) # circular part on c12

curved part between Right-hand plane and back plane

c19 = arc shape_cur (p6,p10, p14, nelm= nelmc) # lower circle

c18 = translate c19 (p5, p9) # upper circle

The complete outer curve:

c20 = curves (c1, c2, -c15, -c14, -c11, -c18, -c4)

inner surface

Exactly the same construction as for the outer surface

curve numbers and point numbers are increased by 20

Back plane and lower plane together

first the four outer curves

c21 = curves (c25, c26, c27) # left-hand curve

c22 = line shape_cur (p24,p28,nelm= nelmx) # lower curve

c23 = curves (c28, c29, c30) # right-hand curve

UM Volume generator CHANNEL June 2008 2.5.3.7

Figure 2.5.3.6: curved part

c24 = translate c22 (p21, p25) # upper curve

Next the subcurves of c21 and c23

c21:

c25 = line shape_cur (p21,p22,nelm= nelmz) # back plane part

c26 = arc shape_cur (p22,p23, p13, nelm= nelmc) # circular part

c27 = line shape_cur (p23,p24,nelm= nelmy) # lower face

c23:

c28 = translate c25 (p25, p26) # back plane part

c29 = translate c26 (p26, p27) # circular part

c30= translate c27 (p27, p28) # lower face

Right-hand plane and circular part to lower plane

First outer curves (c30 has already been created!)

c31 = translate c10 (p29, p32) # upper curve

c32 = curves (c34, c35) # front curve

c33 = curves (c36, c37) # curve at the back

Next the subcurves of c32 and c33

c34 = translate c25 (p32, p31) # right=hand plane (c32)

c37 = arc shape_cur (p30,p27, p14, nelm= nelmc) # circular part on c33

c36 = translate c25 (p29, p30) # right=hand plane (c33)

c35 = translate c37 (p31, p28) # circular part on c32

curved part between Right-hand plane and back plane

c39 = arc shape_cur (p26,p30, p14, nelm= nelmc) # lower circle

UM Volume generator CHANNEL June 2008 2.5.3.8

Figure 2.5.3.7: Sphere

c38 = translate c39 (p25, p29) # upper circle

The complete outer curve:

c40 = curves (c21, c22, -c35, -c34, -c31, -c38, -c24)

One curve over the thickness

c41 = line shape_cur (p1, p21, nelm= nelmb)

surfaces

outer surface consisting of

back + lower plane

s1 = pipesurface shape_sur (c1, c3, c4, c2)

Right-hand plane

s2 = pipesurface shape_sur (c11, c10, c13, c12)

curved part between back plane and Right-hand plane

s3 = pipesurface shape_sur (c18, c19, c8, c16)

1/8 sphere

s4 = isopar shape_sur (c9, -c17, -c19, mapping=sphere, centre=p14)

These surfaces together

s5 = surfaces (s1, s2, s3, s4)

inner surface consisting of

back + lower plane

s6 = pipesurface shape_sur (c21, c23, c24, c22)

Right-hand plane

s7 = pipesurface shape_sur (c31, c30, c33, c32)

UM Volume generator CHANNEL June 2008 2.5.3.9

Figure 2.5.3.8: Pipe surface

curved part between back plane and Right-hand plane

s8 = pipesurface shape_sur (c38, c39, c28, c36)

1/8 sphere

s9 = isopar shape_sur (c29, -c37, -c39, mapping=sphere, centre=p14)

These surfaces together

s10 = surfaces (s6, s7, s8, s9)

Boundary surface between inner and outer surface

s11 = pipesurface shape_sur (c20, c40, c41)

#

volumes

#

volumes # See Users Manual Section 2.5

v1 = channel shape_vol (s5, s10, s11) # Complete region

plot, eyepoint = (-1, 5, -2) # make a plot of all parts

and also of the final mesh

See Users Manual Section 2.2

end

Figure 2.5.3.9 shows the mesh generated by these statements.

UM Volume generator CHANNEL June 2008 2.5.3.10

Figure 2.5.3.9: Final mesh

UM Volume generator GENERAL August 2008 2.5.4.1

2.5.4 Volume generator GENERAL

The volume generator GENERAL is called by program SEPMESH. The user may activate GEN-
ERAL by data records of the type:

Vi = GENERAL j (Sk [internal_points = pl,...,pm] &

[internal_curves = cl,...,cm] [internal_surfaces = sl,...,sm])

with Vi the volume number, j the shape number of the elements created in this volume, and Sk the
surfaces enclosing Vi.

At this moment GENERAL is only able to generate tetrahedrons. hexahedrons are not allowed.
The volume to be generated must be surrounded by one surface only, which of course may consists
of several subsurfaces, connected to each other by the command:

Sk = SURFACES (Sj, Sl, Sm, ...)

Usually Sk must be a closed surface, but it may also consist of a number of closed surfaces, as long
as it is clear which region is meant. For example it is allowed to generate a region with a hole in it
by letting the surface Sk consist of the outer surface and the inner surface together. In that case
GENERAL creates a mesh in the region between these two closed surfaces.

Due to its generality GENERAL takes more computer time than the other structured mesh gen-
erators, especially if the the number of elements is large. This computer time may be reduced by
starting with a coarse mesh and to refine it afterwards by the command refine. The size of the
elements is determined by the size of the elements in the surrounding surface.

The option internal_points = pl, ..., pm forces nodal points to coincide with the user points
pl, ..., pm. The local coarseness in these points are used for the coarseness of the mesh locally.
So by defining these points the user can create fixed points in the mesh, with a given accuracy,
without having to define curves containing these points.

With internal_curves = cl,...,cm the user can define curves inside the domain. The mesh is
adapted to these curves, which means that elements may have a common side with an element of
these curves, but never intersects these curves. All edges on the internal curves are present in the
final mesh, so the size of these edges also defines the local coarseness. internal curves must not be
part of one of the surfaces.

With internal_surfaces = sl,...,sm the user can define surfaces inside the domain. The mesh
is adapted to these surfaces, which means that elements may have a common side with an element
of these surfaces, but never intersects these surfaces. All edges on the internal surfaces are present
in the final mesh, so the size of these edges also defines the local coarseness.

Remark: in some extreme cases GENERAL may fail to create a mesh.
It is then possible to replace general by old_general, which corresponds to the previous version
of GENERAL. If GENERAL fails, sometimes OLD GENERAL may be able to create a mesh.

Below we give a number of examples of the use of GENERAL.

Example 2.5.4.1 Subdivision of a tetrahedron

Consider the tetrahedron in Figure 2.5.4.1. The curve numbers have also been plotted in this fig-
ure. In order to create a mesh in this tetrahedron we use the mesh generator GENERAL. As a
consequence the outer surface must be joined into one surface. The following input file may be used
to create elements in this case. In order to reduce the computing time a coarse mesh is created that
is refined afterwards.

tetrahedron.msh

UM Volume generator GENERAL August 2008 2.5.4.2

1

23

4 5

6

Figure 2.5.4.1: Tetrahedron and corresponding curves

#

Example of a mesh in a tetrahedron created by general

#

See users manual Section 2.5.4

#

#

To run this file use:

sepmesh tetrahedron.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

size = 1 # Size of the tetrahedron

integers

nxy = 2 # Number of elements along a curve in the xy-plane

nz = 3 # Number of elements along other curves

shape_cur = 1 # Shape number of elements along curves

1 = linear elements

shape_sur = 3 # Shape number of elements along surfaces

3 = linear triangles

shape_vol = 11 # Shape number of elements along volumes

11 = linear tetrahedrons

end

#

Define the mesh

UM Volume generator GENERAL August 2008 2.5.4.3

#

mesh3d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1 = (0, 0, 0) # 4 vertices of tetrahedron

p2 = (size, 0, 0)

p3 = (0, size, 0)

p4 = (0, 0, size)

#

curves

#

curves # See Users Manual Section 2.3

c1 = line shape_cur (p1, p2, nelm = nxy)

c2 = line shape_cur (p2, p3, nelm = nxy)

c3 = line shape_cur (p3, p1, nelm = nxy)

c4 = line shape_cur (p1, p4, nelm = nz)

c5 = line shape_cur (p2, p4, nelm = nz)

c6 = line shape_cur (p3, p4, nelm = nz)

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1 = triangle shape_sur (c1, c2, c3) # 4 surfaces defining the

s2 = triangle shape_sur (c1, c5, -c4) # tetrahedron

s3 = triangle shape_sur (c2, c6, -c5)

s4 = triangle shape_sur (-c4, -c3, c6)

s5 = surfaces (s1, s2, s3, s4) # all surfaces combined to 1

#

volumes

#

volumes # See Users Manual Section 2.5

v1 = general shape_vol (s5)

#

Refine the mesh 2 times, i.e. the number of elements along each side

is multiplied by 4

#

refine 2 times

plot, eyepoint=(5,10,-2) # make a plot of the mesh

See Users Manual Section 2.2

end

Figure 2.5.4.2 shows the mesh created in this example.

Example 2.5.4.2 Subdivision of a block with a hole

Consider the block in Figure 2.5.4.2 provided with a conical hole inside. The curve numbers have
also been plotted in this figure. We want to create a mesh in the block, but outside the hole. This

UM Volume generator GENERAL August 2008 2.5.4.4

x
y

z

Figure 2.5.4.2: Mesh created in tetrahedron

may be done by GENERAL provided the complete outer surface including the surface of the hole
is joined into one surface. GENERAL automatically detects the region between the two surfaces.
The following input file may be used to create elements in this case. In order to reduce the computing
time a coarse mesh is created that is refined afterwards.

generalhole.msh

#

Example of a mesh in a block with an internal hole

#

See users manual Section 2.5.4

#

#

To run this file use:

sepmesh tetrahedron.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

integers

nelmh = 2 # Number of elements in the horizontal direction

nelmv = 2 # Number of elements in the vertical direction

reals

z_block_bottom =-2 # Z-coordinate of the block bottom

z_block_top = 2 # Z-coordinate of the block top

z_hole_bottom =-1 # Z-coordinate of the hole bottom

z_hole_top = 1 # Z-coordinate of the hole top

UM Volume generator GENERAL August 2008 2.5.4.5

12

3 4

5

1112

13 14

15

16

2122

23 24
25

3132

33 34
35

36

Figure 2.5.4.3: Block with hole and corresponding curves

end

#

Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1 = (2 , 0 ,z_block_bottom)

p2 = (0 , 2 ,z_block_bottom)

p3 = (-2 , 0 ,z_block_bottom)

p4 = (0 ,-2 ,z_block_bottom)

p11 = (2.5 , 0 ,z_block_top)

p12 = (0 , 2.5 ,z_block_top)

p13 = (-2.5 , 0 ,z_block_top)

p14 = (0 ,-2.5 ,z_block_top)

p21 = (1 , 0 ,z_hole_bottom)

p22 = (0 , 1 ,z_hole_bottom)

p23 = (-1 , 0 ,z_hole_bottom)

p24 = (0 ,-1 ,z_hole_bottom)

p31 = (1.2 , 0 ,z_hole_top)

p32 = (0 , 1.2 ,z_hole_top)

p33 = (-1.2 , 0 ,z_hole_top)

UM Volume generator GENERAL August 2008 2.5.4.6

p34 = (0 ,-1.2 ,z_hole_top)

#

curves

#

curves # See Users Manual Section 2.3

bottom face

c1 = line1(p1,p2,nelm=nelmh)

c2 = line1(p2,p3,nelm=nelmh)

c3 = line1(p3,p4,nelm=nelmh)

c4 = line1(p4,p1,nelm=nelmh)

c5 = curves(c1,c2,c3,c4) # block bottom curve

top face

c11 = line1(p11,p12,nelm=nelmh)

c12 = line1(p12,p13,nelm=nelmh)

c13 = line1(p13,p14,nelm=nelmh)

c14 = line1(p14,p11,nelm=nelmh)

c15 = curves(c11,c12,c13,c14) # block top curve

outer face

c16 = line1(p1,p11,nelm=nelmv) # First edge of block surface

bottom face of hole

c21 = line1(p21,p22,nelm=nelmh)

c22 = line1(p22,p23,nelm=nelmh)

c23 = line1(p23,p24,nelm=nelmh)

c24 = line1(p24,p21,nelm=nelmh)

c25 = curves(c21,c22,c23,c24) # hole bottom curve

top face of hole

c31 = line1(p31,p32,nelm=nelmh)

c32 = line1(p32,p33,nelm=nelmh)

c33 = line1(p33,p34,nelm=nelmh)

c34 = line1(p34,p31,nelm=nelmh)

c35 = curves(c31,c32,c33,c34) # hole top curve

outer face of hole

c36 = line1(p21,p31,nelm=nelmv) # First edge of hole conical surface

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1 = general3(c5) # block bottom surface

s2 = general3 (c15) # block top surface

s3 = pipesurface3(c5,c15,c16) # block outer surface

s4 = surface(s1,s2,s3) # block boundary

s5 = general3(c25) # hole bottom surface

s6 = general3(c35) # hole top surface

s7 = pipesurface3(c25,c35,c36) # hole outer surface

s8 = surface(s5,s6,s7) # hole boundary

s9 = surfaces(s4,s8) # All surfaces together

#

volumes

UM Volume generator GENERAL August 2008 2.5.4.7

#

volumes # See Users Manual Section 2.5

v1 = general11(s9) # block with internal hole

plot, eyepoint = (10, 5, 10) # make a plot of all parts

and also of the final mesh

See Users Manual Section 2.2

end

Figure 2.5.4.4 is a plot of the complete outer surface including the surface of the hole, Figure 2.5.4.5
shows the mesh created in this example.

Figure 2.5.4.4: Surface of block with hole

x
y

z

Figure 2.5.4.5: Mesh created in block with hole

UM examples of meshes November 2008 2.6.1

2.6 Some examples of meshes generated by SEPRAN

In this section we give some examples of meshes generated by SEPRAN. The complete input and
definition of these meshes is described.

Example 2.6.1 Three coupled pipes

In this example we consider three pipes with the same axis, but with different radius. Figure 2.6.1
shows a sketch of the situation. Each of the pipes has a separate volume number (V1, V2 and V3).

V V1 2

Figure 2.6.1: Definition of the three coupled pipes (V1, V2 and V3)

The pipes will be generated by the volume generator PIPE. To that end exactly three surfaces are
needed to define each pipe. In Figures 2.6.2 and 2.6.3 the surfaces S1, S2, andS3 defining V1, S5, S8

and S9 defining V2 and S6, S10 and S11 defining V3 are indicated. The definition of the curves and
points defining these surfaces are given in Figures 2.6.4, 2.6.5 and 2.6.6. Since S2 and S6 are parts
of the surfaces S5 respectively S8, the surfaces S5 and S8 must be defined as surfaces of surfaces.

S1

S

S

V1

3

2

S

V3

6

Figure 2.6.2: Definition of the surfaces at the volumes V1 and V3

S

S

V

5

2

9

Figure 2.6.3: Definition of the surfaces at the volume V2

Surface S1 is the bottom surface of pipe V1, and is defined by the curve C5 which consists of the
subcurves C1, C2, C3 and C4. The surface is generated by the surface generator GENERAL. Linear
triangles are used in the surfaces. The curves C1, ..., C4 each define one quarter of the generating
circle C5.

Surface S2 is the top surface of pipe V1, and is defined by translation of S1, since PIPE requires
congruent top and bottom surfaces. The generating curve C6 is defined by translation of C5 over
the distance P6 − P1. The third surface is generated by PIPESURFACE with generating curves

UM examples of meshes November 2008 2.6.2

..

.

. .

. .

P
C

PPP

C

C C
P

S1

1

1

2

2
3

3

4

4

5

C

P
S2

6

6
C C

CP P
S3

1 13 6

65

C = C + C + C + C5 1 2 3 4

Figure 2.6.4: Definition of curves and points in surfaces of volume V1

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

P

C C
S

CS
PP P

P
CC C

P

S = S + S S = S + S S

P

C P

S
C

CS

C

CP

9

9
4

8

6
22

10 11 8

6
1210 77

7

5 2 4 8 6 7 9

12

15
13

6
16

1414147

11

7

Figure 2.6.5: Definition of curves and points in surfaces of volume V2

C5, C6 and C13.

Surface S5 is the bottom surface of pipe V2. Since S2 is a part of S5, S5 must be a surface of
surfaces. The rest of S5 is the subsurface S4 defined by the curves C11 (C11 = C7 +C8 +C9 +C10),
C12,−C6,−C12. This subsurface is also generated by GENERAL.

Surface S8 is the top surface of pipe V2. S8 consists of the subsurfaces S6 and S7 where S6 is the
result of translation of S2 and S7 of translation of S4. The generating curve of S6 is C16 which
is created by translation of C6; S7 has generating curves C14, C15,−C16,−C15 each of which is
translated from C11, C12, C6 and C12 respectively.

Surface S10 is translated from S6 with curve C17 as translation from C16.

The surfaces S8 and S11 are standard PIPE SURFACES.

The following input file may be used to generate the pipe:

*

* Example of a mesh for three connected pipes

*

mesh3d

coarse(unit=.5)

points

p1 = (0, -1, 0)

. .

C

P

S

C

P
S

C C

CP P
S

16 17

16 17

141418

11

1314

106

13

Figure 2.6.6: Definition of curves and points in surfaces of volume V3

UM examples of meshes November 2008 2.6.3

p2 = (1, 0, 0)

p3 = (0, 1, 0)

p4 = (-1, 0, 0)

p5 = (0, 0, 0)

p6 = (0, -1, 1)

p7 = (0, -2, 1)

p8 = (2, 0, 1)

p9 = (0, 2, 1)

p10= (-2, 0, 1)

p11= (0, 0, 1)

p12= (0, -2, 2)

p13= (0, -1, 2)

p14= (0, -1, 3)

curves

c1 = carc1(p1,p2,p5)

c2 = carc1(p2,p3,p5)

c3 = carc1(p3,p4,p5)

c4 = carc1(p4,p1,p5)

c5 = curves(c1,c2,c3,c4)

c6 = translate c5(p6)

c7 = carc1(p7,p8,p11)

c8 = carc1(p8,p9,p11)

c9 = carc1(p9,p10,p11)

c10= carc1(p10,p7,p11)

c11 = curves(c7,c8,c9,c10)

c12=cline1(p7,p6)

c13=cline1(p1,p6)

c14=translate c11 (p12)

c15=translate c12 (p12,p13)

c16=translate c6 (p13)

c17=translate c16 (p14)

c18 = cline1(p13,p14)

c19 = cline1(p7,p12)

surfaces

s1 = general3 (c5)

s2 = translate s1(c6)

s3 = pipesurface 3(c5,c6,c13)

s4 = general 3 (c11,c12,-c6,-c12)

s5 = surfaces (s2,s4)

s6 = translate s2(c16)

s7 = translate s4 (c14,c15,-c16,-c15)

s8 = surfaces(s6,s7)

s9 = pipesurface 3 (c11,c14,c19)

s10 = translate s6(c17)

s11 = pipesurface 3 (c16,c17,c18)

volumes

v1 = pipe11(s1,s2,s3)

v2 = pipe11(s5,s8,s9)

v3 = pipe11(s6,s10,s11)

plot, eyepoint=(0,-5,1.5), rotate=2

end

The resulting mesh is plotted in Figure 2.6.7.

UM examples of meshes November 2008 2.6.4

Figure 2.6.7: Hidden surface plot of mesh corresponding to three coupled pipes.

Example 2.6.2 Two concentric pipes with different material properties

In this example we consider two concentric pipes with common axis. The inner pipe has material
properties which are different from the outer pipe. Therefore different element groups must be
connected with each of the pipes. The pipes are generated by the volume generator PIPE (volumes
V1 and V2). For each pipe exactly three surfaces are needed. Figure 2.6.8 defines the two concentric
pipes; the corresponding surfaces are sketched in Figure 2.6.9.

V2

V1

Figure 2.6.8: Definition of concentric pipes (V1 and V2)

S1

S

S

V1

3

4

S

S
V

2

2

8

Figure 2.6.9: Definition of the surfaces at the volumes V1 and V2

Volume V1 has bottom surface S1, top surface S4 and pipe surface S3; V2 has bottom surface S2, top
surface S5 and pipe surface S8. The pipe surface S8 is rather complicated because of the fact that
V2 is a hollow pipe. The definition of the curves and points of each surface is given in Figures 2.6.10
and 2.6.11.

Surface S1 is the bottom surface of pipe V1, and is defined by the curve C10 which consists of the
subcurves C1, C2, C3 and C4. The surface is generated by the surface generator GENERAL. Linear
triangles are used in the surfaces.

Surface S4 is the top surface of pipe V1, and is defined by translation of S1, since PIPE requires
congruent top and bottom surfaces. The generating curve C13 is defined by translation of C10 over
the distance P2 − P10.

Surface S3 is the pipe surface for the pipe. It has three generating curves: C10 (bottom), C13 (top)

UM examples of meshes November 2008 2.6.5

.

.

. .

. .

P
C

PPP

C

C C
P

S1

1

23

4

C

P
S

C C

CP P
S

2

3315

4
13

10

4 3

2 5 10

131310

Figure 2.6.10: Definition of curves and points in surfaces of volume V1

and C5 (vertical curve). Since the pipe surface is closed, there is only one curve in vertical direction.

Surface S2 is the bottom surface of pipe V2. It contains a hole enclosed by curve C10. The curves
defining S2 are C5, C6,−C5 and −C10. The surface is generated by GENERAL.

Surface S5 is created by translation of S2 with defining curves: C16, C15,−C16 and −C13.

Surface S8 is the most complicated one, since it contains surface S3 as subsurface. Therefore S8

must be a surface of surfaces, and because the pipe generator PIPE requires a surface generated
by PIPE SURFACE, the surface of surfaces must be an ordered surface. The bottom line of the
pipe surface is defined by the curves C5, C11,−C5 and −C10, where C11 consists of the subcurves
C6, C7, C8 and C9. We have already defined the pipe surface S3 corresponding to curve C10. The
curve C5 is a double curve in the definition of the bottom curve of S8. Therefore, it is necessary to
define a pipe surface based on this bottom curve, and furthermore the ordered surface must start
with this subsurface. Surface S7 is the pipe surface defined with bottom curve C5, top curve C16

and vertical curves C14 and C17. The envelop surface S6 is defined by the curves C11, C15 and C17.
Finally S8 is an ordered surface defined by the subsurfaces S7, S6,−S7 and −S3. In this example
there is only one row of subsurfaces.

Volume V1 is connected to element group 1, V2 to element group 2.

The following input file may be used to generate the concentric pipes:

*

* mesh input for concentric pipes

*

mesh3d

coarse (unit=.5)

points

p1 = (0, 0, 0)

p2 = (0, -1, 0)

p3 = (1, 0, 0)

p4 = (0, 1, 0)

p5 = (-1, 0, 0)

p6 = (0, -2, 0)

p7 = (2, 0, 0)

p8 = (0, 2, 0)

p9 = (-2, 0, 0)

p10= (0, -1, 1)

p11= (0, -2, 1)

curves

c1 = carc1(p2,p3,p1)

c2 = carc1(p3,p4,p1)

UM examples of meshes November 2008 2.6.6

c3 = carc1(p4,p5,p1)

c4 = carc1(p5,p2,p1)

c5 = cline1(p2,p6)

c6 = carc1(p6,p7,p1)

c7 = carc1(p7,p8,p1)

c8 = carc1(p8,p9,p1)

c9 = carc1(p9,p6,p1)

c10 = curves(c1,c2,c3,c4)

c11 = curves(c6,c7,c8,c9)

c12 = curves(c5,c11,-c5,-c10)

c13= translate c10(p10)

c14= line1(p2,p10,nelm=2)

c15=translate c11 (p11)

c16=translate c5 (p10,p11)

c17=translate c14 (p6,p11)

surfaces

s1 = general3 (c10)

s2 = general3 (c12)

s3 = pipesurface 3(c10,c13,c14)

s4 = translate s1(c13)

s5 = translate s2 (c16,c15,-c16,-c13)

s6 = pipesurface 3(c11,c15,c17)

s7 = pipesurface 3(c5,c16,c14,c17)

s8 = ordered surface((s7,s6,-s7,-s3))

volumes

v1 = pipe11(s1,s4,s3)

v2 = pipe11(s2,s5,s8)

plot, eyepoint=(-3,-3,-5),rotate=2

end

The resulting mesh is plotted in Figure 2.6.12.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

P

C C

C

PP P

P
CC C

P

C P

C

C

C C CC

P C P C P C P -C-

P C P C P C P- -C

S : S S -S -S8 7 6 7 3

2 5 6 11 6 5 2 10

14 17 17 14

10 16 11 15 11 16 10 13

1016

13

157

8

8

9 1 7

10

2
9 5 6

6S S
P 11

52

Figure 2.6.11: Definition of curves and points in surfaces of volume V2

UM examples of meshes November 2008 2.6.7

Figure 2.6.12: Hidden surface plot of mesh corresponding to two concentric pipes

Example 2.6.3 Region around naca0012 profile

In this example we consider the region around a naca0012 profile, which is a standard airfoil profile
that is used in all kinds of benchmark problems. The explanation of this example is given in the
input file itself.
In order to get this example into your local directory, use:

sepgetex naca0012

The input file is given by:

naca0012.msh

#

mesh file for the flow around a naca0012 profile

#

To run this file use:

sepmesh naca0012.msh

#

Creates the file meshoutput

#

Mesh has the following shape:

#

p5 c5 p4

| |

| |

| c1 | c4

| _________ |

| p1 / ____________________|

c6 | _________/ p2 c3 | p3

| c2 |

| |

| | c8

| |

| |

p6 c7 p7

#

UM examples of meshes November 2008 2.6.8

Additional remarks:

* c9 = c8 + c4

* length profile = 1

* coordinates leading edge must be: (0,0)

* coordinates trailing edge must be: (1,0)

#

#

Define some general constants

#

constants

integers

nelm1 = 3 # number of elements along curve 1

nelm2 = 3 # number of elements along curve 2

nelm3 = 1 # number of elements along curve 3

nelm4 = 2 # number of elements along curve 4

nelm5 = 3 # number of elements along curve 5

nelm6 = 3 # number of elements along curve 6

nelm7 = 2 # number of elements along curve 7

nelm8 = 2 # number of elements along curve 8

reals

xlea = 0.0 # x-coordinate leading edge

ylea = 0.0 # y-coordinate leading edge

xtra = 1.0 # x-coordinate trailing edge

ytra = 0.0 # y-coordinate trailing edge

xout = 1.5 # x-coordinate of outflow boundary

xinf = -0.5 # x-coordinate of inflow boundary

yups = 1.0 # y-coordinate of upper free slip surface

ylow = -1.0 # y-coordinate of lower free slip surface

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1 = (xlea, ylea) # leading edge

p2 = (xtra, ytra) # trailing edge

p3 = (xout,0) # mid point of outflow boundary

p4 = (xout, yups) # upper point at outflow boundary

p5 = (xinf, yups) # upper point at inflow boundary

p6 = (xinf, ylow) # lower point at inflow boundary

p7 = (xout, ylow) # lower point at outflow boundary

#

curves

#

curves # See Users Manual Section 2.3

c1 = profile1(p1,p2,nelm= nelm1,shape=upper_naca0012) # upper side of

profile

c2 = profile1(p1,p2,nelm= nelm2,shape=lower_naca0012) # lower side of

profile

c3 = line1(p2,p3,nelm= nelm3) # connection line between trailing

edge and outflow boundary

UM examples of meshes November 2008 2.6.9

is only used in order to connect

the profile with outer boundary

This is necessary since general

is used to create the surface

it is an internal curve

c4 = line1(p3,p4,nelm= nelm4) # upper part of outflow boundary

c5 = line1(p4,p5,nelm= nelm5) # upper side of bounding box

c6 = line1(p5,p6,nelm= nelm6) # inflow boundary

c7 = line1(p6,p7,nelm= nelm7) # lower side of bounding box

c8 = line1(p7,p3,nelm= nelm8) # lower part of outflow boundary

Contraction of curves

c9 = curves(c8,c4) # profile

c10= curves(c1,c3,c4,c5,c6,c7,c8,-c3,-c2) # Complete boundary for the

#surface generator

#

surfaces

#

surfaces # See Users Manual Section 2.4

linear triangles are used

s1 = general3(c10)

plot # make a plot of the mesh

end

Figure 2.6.13 shows the curves for this mesh with corresponding curve numbers.

1
2

3

4

5

6

7

8

Figure 2.6.13: curves for naca0012 mesh

The mesh created is shown in Figure 2.6.14

UM examples of meshes November 2008 2.6.10

Figure 2.6.14: Plot of naca0012 mesh

Example 2.6.4 Sphere in a pipe

In this example we consider the situation of a sphere that is positioned within a circular pipe. In
the sphere we have a different type of material than in the surrounding pipe. As a consequence 2
element groups must be used.
Consider a sphere with radius 1 and centre (0,0,0). This sphere is surrounded by a circular pipe
with radius 2 and height 4. The upper surface of the pipe is at z=2 and the lower surface at z=-2.
Since the 3d generator general does not allow holes in the mesh, it is necessary to split the pipe
into two parts. To that end the pipe is cut into two parts by the plane z=0.
Elements in the sphere are created by the submesh generator GENERAL (3D).
The pipe parts can not be generated by the submesh generator PIPE since upper surface and lower
surface of the pipe parts are different of shape. For that reason also the pipe is triangulated by
GENERAL.
However, in the case of a long pipe, one might consider to split the pipe into four parts, two in
the neighborhood of the sphere and two for the rest. The last other two might be triangulated by
PIPE.
This example shows how to create a sphere and to fill it by tetrahedrons. Furthermore it shows
how submesh generator triangle can be used in combination with holes in the surface.
In order to get this example into your local directory, use:

sepgetex sphere_in_pipe

The input file is given by:

#

sphere_in_pipe.msh

example of the use of the submesh generator sphere in combination with

other submesh generators

UM examples of meshes November 2008 2.6.11

The outer surface of a sphere is subdivided into triangles

The sphere is located in a pipe

Elements in the sphere get element group number 1

Elements outside the sphere get element group number 2

#

To get this example into your local directory use:

#

sepgetex sphere_in_pipe

#

To run this file use:

sepmesh sphere_in_pipe.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

Sradius = 1 # radius of the sphere

Pradius = 2 # radius of the pipe

HalfH = 2 # one half of the pipe length

integers

Snelm = 16 # number of elements along the circle of the sphere

Pnelm = 32 # number of elements along the circle of the pipe

PHnelm = 4 # number of elements along the lower part of the pipe

in vertical direction

end

#

Define the mesh

#

mesh3d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p 1= (0, 0, 0) # centre of the sphere

p 2= (Sradius, 0, 0) # point on shpere

p 3= (0, Sradius, 0) # Extra point needed to define the

plane through the sphere

p 4= (Pradius, 0, 0) # point on pipe in middle plane

p 5= (0, 0, - HalfH) # centre of the lower circle

p 6= (Pradius, 0, - HalfH) # point on the lower circle

p 7= (0, Pradius,- HalfH) # Extra point needed to define the

lower circle

p 8= (0, 0, HalfH) # centre of the upper circle

p 9= (Pradius, 0, HalfH) # point on the upper circle

p10= (0, Pradius, HalfH) # Extra point needed to define the

upper circle

#

curves

#

curves # See Users Manual Section 2.3

c1 = circle1 (p1, p2, p3, nelm = Snelm) # Inner circle with centre p1

First point is p2

p3 is needed to define the

UM examples of meshes November 2008 2.6.12

plane

c2 = circle1 (p1, p4, p3, nelm = Pnelm) # Outer circle with centre p1

c3 = circle1 (p5, p6, p7, nelm = Pnelm) # Circle with centre p5

Lower plane

c4 = circle1 (p8, p9, p10, nelm = Pnelm) # Circle with centre p8

Upper plane

c5 = line1 (p6, p4, nelm = PHnelm) # Line from lower circle to

outer circle in middle plane

c6 = line1 (p9, p4, nelm = PHnelm) # Line from upper circle to

outer circle in middle plane

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1 = sphere 3 (c1, subsurfaces(S2,S3)) # sphere defined by the circle

The upper half is called S2

The lower half is called S3

s4 = triangle 3 (c1, c2) # Part of disk outside the sphere in the

middle plane

Mark that this surface contains a hole

and that the boundary consists of two

closd parts

s5 = triangle 3 (c3) # Lower disk

s6 = pipesurface 3 (c3, c2, c5) # Lower half of pipe surface

s7 = surfaces (s3, s4, s5, s6) # Lower half of pipe

s8 = triangle 3 (c4) # Upper disk

s9 = pipesurface 3 (c4, c2, c6) # Upper half of pipe surface

s10= surfaces (s2, s4, s8, s9) # Upper half of pipe

#

volumes

#

volumes # See Users Manual Section 2.4

v1 = general11 (s1) # sphere

v2 = general11 (s7) # Lower half of pipe

v3 = general11 (s10) # Upper half of pipe

#

Connect elements to element groups

#

meshvolume # See Users Manual Section 2.1

velm1 = v1 # element group 1 is the sphere

velm2 = (v2,v3) # element group 2 is the pipr outside the sphere

plot, eyepoint(5,0,0) # make a plot of the mesh

in order to make a 3d-hiddenline plot

of the final mesh, eyepoint must be

given

See Users Manual Section 2.2

end

Figure 2.6.15 shows the curves for this mesh with corresponding curve numbers.

The mesh created is shown in Figure 2.6.16

Figure 2.6.17, shows the submesh (with hole) in the cutting plane, generated by triangle.

Figure 2.6.18, shows the submesh generated for the sphere.

UM examples of meshes November 2008 2.6.13

12

3

4

5

6

78

9 10

11
12

13
14

15
16

17
18

Figure 2.6.15: curves for sphere in pipe mesh

Figures 2.6.19 and 2.6.20, show the submeshes generated for the lower and the upper sphere.

UM examples of meshes November 2008 2.6.14

Figure 2.6.16: mesh for sphere in pipe mesh

Figure 2.6.17: submesh in cutting plane for sphere in pipe mesh

UM examples of meshes November 2008 2.6.15

Figure 2.6.18: sphere submesh for sphere in pipe mesh

Figure 2.6.19: submesh of lower pipe for sphere in pipe mesh

UM examples of meshes November 2008 2.6.16

Figure 2.6.20: submesh of upper pipe for sphere in pipe mesh

UM Special input for SEPMESH June 1996 2.7.1

2.7 Special input for program SEPMESH from the standard input file

In the case that the user gives the co-ordinates of all nodal points, and he wishes that SEPRAN
generates a mesh based upon these points; the input for program SEPMESH is completely different
from the standard input. In this section this special input is described.

The special input has the following structure:

MESHnD

NODAL_POINTS, options

BOUNDARY_POINTS

co-ordinates

INTERNAL_POINTS

co-ordinates

PLOT, options

END

COMMAND and DATA records.

The records must be given in the order as specified. An option is indicated like this: [option].

MESHnD (mandatory)
COMMAND record: opens the input for subroutine MESH, and defines the dimension of the
space NDIM. (NDIM = n).
At his moment only n = 2 and n = 3 is allowed.
After this command it is necessary to give the command NODAL POINTS instead of POINTS,
indicating that the special mesh generation must be carried out instead of the standard one.

NODAL POINTS, options (mandatory)
COMMAND record: defines the special situation. The options must be given at the same
line, where the standard SEPRAN rule for continuation may be applied.
The following options are available:

UNSTRUCTURED

STRUCTURED (NX=n, NY=m, NZ=k)

RECTANGULAR (NX=n, NY=m, NZ=k, DX=dx, DY=dy, DZ=dz, ORIGIN = (Ox,Oy,Oz))

ELEMENT_SHAPE = i

The options UNSTRUCTURED, STRUCTURED and RECTANGULAR are mutually exclu-
sive. Meaning of the options:

UNSTRUCTURED indicates that the mesh to be created through all the nodal points is
unstructured. The nodes may be positioned anywhere in the domain.
This is the default.

STRUCTURED indicates that the nodal points are positioned in a structured grid. Hence
the nodal points may be mapped onto a rectangular (computational) grid. In this ”com-
putational” grid the number of points in the x-direction is given by NX = n, in the
y-direction by NY = m, and in the z-direction by NZ = k. Hence exactly n ×m (2D)
or n×m× k (3D) nodal points are present.
The default values for m,n and k are 1.

RECTANGULAR is a special case of structured. In this case not only the computational
grid is rectangular, also the original grid. Hence it is not necessary for the user to give
the co-ordinates of all points, but it suffices to give the origin and the spacing.
ORIGIN = (Ox, Oy, Oz) defines the origin and DX = ∆x, DY = ∆y, DZ = ∆z the
spacing. The default origin is (0, 0, 0) and the default spacing is (1, 1, 1)

UM Special input for SEPMESH June 1996 2.7.2

ELEMENT SHAPE = i defines the element shape to be used in the generation of the
elements. These element shapes refer to Table 2.2.1 in Section 2.2. In 2D the shape
numbers 3 to 6 may be used, in 3D the shape numbers 11 to 14.
The default shape number in 2D is 3 for an unstructured grid and 5 for a structured one.
In 3D the default shape number is 11 for an unstructured grid and 13 for a structured
one.

BOUNDARY POINTS In the case of an unstructured 2D grid, the user has the option to define
the boundary of the region explicitly. This is done by the command BOUNDARY POINTS
followed by data records containing the co-ordinates of the boundary points. The sequence of
these co-ordinates define the sequence of the nodes along the boundary. The node numbers
are set to 1, 2, .. number of boundary points.
If the option BOUNDARY POINTS is not present, SEPRAN defines the boundary itself
assuming a convex region.

The co-ordinates of the boundary points must be given on the lines following the command
BOUNDARY POINTS.
Of course the sequence is always x1, y1, z1, x2, y2, z2, In R2 the z-coordinate must not
be given. These co-ordinates must be given as numbers defined in the standard SEPRAN
sense. Newline, parenthesis and commas are used as separator between two numbers. A text
indicates the end of the input. This text is interpreted as a keyword, hence it is not allowed
to put any text between the numbers. Of course comment is allowed in the usual way.

INTERNAL POINTS defines the rest of the co-ordinates in the mesh. Also in this case the
sequence of the input defines the sequence of the nodes. The boundary nodes given before
are always used as first nodes. Mark that it is necessary to give the boundary points first and
then the internal nodes.
The same rules with respect to the input, as for the boundary points are valid in this case.

PLOT (options) indicates that the user wants a plot of the mesh. The following options (all in
one line) are available:

LENGTH = l

SCALE = s

YFACT = y

JMARK = j

ROTATE = r

SUPPRESS = su

EYEPOINT = (x_e, y_e, z_e)

ORIENTATION = i

The meaning of these options is exactly the same as those given in Section 2.2.

UM Computational part of SEPRAN May 1996 3.1.1

3 The computational part of SEPRAN

3.1 Introduction

In the computational part of SEPRAN the solution is computed. At this moment there are two
main programs for the computational part available: SEPCOMP and SEPFREE.
Program SEPCOMP is meant for the standard problems. It assumes that a mesh has been made
before and computes the solution corresponding to that mesh. The output is written to the file
sepcomp.out so that postprocessing may be performed by program SEPPOST.
Program SEPFREE is developed for free surface and moving boundary problems. For these prob-
lems the boundary of the mesh may change in each step of the process. As a consequence it is nec-
essary that SEPFREE creates its mesh itself and does not use the output of program SEPMESH.
Besides that, SEPFREE has exactly the same possibilities as SEPCOMP, extended with some extra
options that are meant for adapting the boundary and the mesh for free surface problems.

In the introduction it has been described how the program SEPCOMP may be used for simple lin-
ear or non linear problems. In this chapter the complete possibilities of SEPCOMP are described.
Should SEPCOMP be insufficient for your purposes, then it is necessary to consult the SEPRAN
PROGRAMMERS GUIDE in order to construct your own main program using the tools SEPRAN
provides.

How to call program SEPCOMP, or how to link your program if it is a version of SEPCOMP ex-
tended with your own subroutines, is already described in the SEPRAN INTRODUCTION Sections
3.2 and 5.2.

Furthermore we refer to Section 5.3 of the SEPRAN INTRODUCTION with respect to some pro-
gramming considerations.

In Section 3.2 the complete input for program SEPCOMP is described.

Program SEPFREE may be used in exactly the same way as program SEPCOMP. An important
difference is of course that the body of SEPFREE is another one than that of SEPCOMP.
The body of SEPCOMP is called startsepcomp, that of SEPFREE is called startsepfree. So when a
user needs function subroutines he has to make his own main program in the same way as described
in Section 5.2 of the INTRODUCTION, however, with sepcom replaced by freebsub anywhere in
the text.
The complete input description of program SEPFREE or actually subroutine startsepfree is given
in Section 3.4.

UM input for SEPCOMP November 1995 3.2.1

3.2 Description of the input for program SEPCOMP

The input for program SEPCOMP is subdivided into a number of blocks. Some of these blocks
must be given in a fixed sequence; all others are free. Each block starts with a specific main keyword
and ends with the keyword END. Unless stated otherwise all commands in a block must be given
on a new line. It is advised to indent the input between main keyword and the keyword END to
make the block more visible. The same is advised for subblocks. The end of the input is indicated
by the physical end of file or by the keyword END OF SEPRAN INPUT. This last keyword may
be necessary if the user reads his own input in the standard SEPRAN input file.
SEPCOMP starts with reading all SEPRAN input before carrying out the necessary computations.
In this way input errors are checked immediately. The present version of SEPCOMP recognizes the
following blocks at least the following main keywords indicating the beginning of a block:

• START

• PROBLEM

• STRUCTURE

• MATRIX

• ESSENTIAL BOUNDARY CONDITIONS (3 keywords)

• COEFFICIENTS

• CHANGE COEFFICIENTS (2 keywords)

• SOLVE

• NONLINEAR EQUATIONS

• TIME INTEGRATION

• CREATE

• DERIVATIVES

• INTEGRALS

• BOUNDARY INTEGRAL

• OUTPUT

If the block START is used, it must always be the first block. This block is, however, optional.

The block PROBLEM must be given as first or second block, it may only be preceded by the block
START.

All other blocks may be given in any sequence. The information of a block, however, must always be
positioned between the main keyword and the keyword END. The block PROBLEM is mandatory,
all other blocks are optional.
If no input for a block is given default values are used.

Except the blocks START, PROBLEM and STRUCTURE all blocks may be used more than once.
This makes, however, only sense if these multiple inputs can also be addressed. Usually this is the
case in combination with STRUCTURE, but also in the case of NONLINEAR EQUATIONS it is
possible to address more inputs.
In order to distinguish between the various inputs for one type of block, each block of a kind is
provided by a sequence number. This sequence number may be explicitly given by the user by
providing the main keyword by the option SEQUENCE NUMBER = i. If the user does not give
the sequence number the sequence number is computed implicitly by the sequence the input is read.

UM input for SEPCOMP November 1995 3.2.2

The sequence number given is always the next one compared to a previous one given for that type
of block. If no previous one consists the sequence number is automatically equal to 1.

Hence, if the following blocks are given in that sequence:

Block 1 COEFFICIENTS

END

Block 2 COEFFICIENTS, SEQUENCE NUMBER = 5

END

Block 3 INTEGRALS, SEQUENCE NUMBER = 2

END

Block 4 COEFFICIENTS

END

Block 5 INTEGRALS

END

then block 1 is of type COEFFICIENTS and gets sequence number 1, block 2 is of the same type
with sequence number 5 and block 4 with sequence number 6. Block 3 is of type INTEGRALS and
gets sequence number 2, block 5 is of the same type and gets sequence number 3.

It is advised to use the implicit way of numbering only in the case that there is only one block of
the specific type. Explicit numbering avoids unwanted effects because of miscalculation.

The main blocks have the following meaning:

START In this block some information about defaults to be used may be given. In fact START
is used to change defaults of SEPRAN for example the name of files and so on.

PROBLEM Defines the type of problems to be solved, i.e. the type of differential equations to
be solved, the type of boundary conditions, at which boundaries these boundary conditions
are given etcetera PROBLEM only defines types not values. So in the part PROBLEM it is
fixed at which boundaries essential boundary conditions must be prescribed, but not what
the values of these boundary conditions are.

STRUCTURE The part STRUCTURE is only necessary if the user wants to perform more ac-
tions than provided by the standard possibilities. For example if the user wants to solve a
linear or non-linear problem, without any extras there is no need to define the block STRUC-
TURE.
However, if the standard possibilities do not suffice and the user wants to define his own
structure of the main program then this block should be used. Another reason why the block
STRUCTURE may be used is that it allows the user to define extra output.
In fact the block structure may be seen as a very simple way of defining your own main pro-
gram.

If the block STRUCTURE is not in the input file, SEPCOMP checks if he finds the block
NONLINEAR EQUATIONS. If so he expects to solve a non-linear problem, otherwise a stan-
dard linear problem is solved.

UM input for SEPCOMP November 1995 3.2.3

MATRIX Defines the type of storage to be used for the large matrix. In this part it is given
whether the large matrix is symmetrical, complex, etcetera. But also the user defines whether
the storage scheme corresponds to a direct method or a compact method. Implicitly this
defines the type of solver that will be used to solve the systems of linear equations. If a direct
storage is used, a profile solver will be called (direct method), if a compact storage is used,
the linear system is solved by an iterative method.
If the part MATRIX is skipped it is assumed that the matrix is real, non-symmetric and that
a direct method is used.

ESSENTIAL BOUNDARY CONDITIONS Defines the values of the essential boundary con-
ditions. It is only necessary to define the non-zero essential boundary conditions, all other
essential boundary conditions are made equal to zero automatically.
If the part ESSENTIAL BOUNDARY CONDITIONS is skipped all essential boundary con-
ditions are set equal to zero.

COEFFICIENTS Defines the values of the coefficients in the partial differential equations and
the natural boundary conditions. In some cases this part defines also extra information of how
to compute matrices and vectors. For example this part may be used to define the numerical
integration rule, the type of co-ordinate system to be used and so on.
The part COEFFICIENTS is mandatory if standard elements as described in the manual
STANDARD PROBLEMS are used. It may only be skipped if all element subroutines are
written by the user.

CHANGE COEFFICIENTS Makes only sense if a non-linear problem is used. In that case it
is possible to change some of the coefficients during the iteration process. This may be for
example useful if after some iterations the user wants to change to another iteration scheme,
but also if he wants to use a kind of continuation process in which a specific parameter is
increased or decreased during the iteration process in order to get a better convergence.
Whether the part CHANGE COEFFICIENTS must be used, depends on the part NONLIN-
EAR EQUATIONS.

SOLVE Gives information with respect to the linear solver to be used. For example in the case
of a direct method, it is possible to tell the solver that the matrix is positive definite. In the
case of an iterative solver, the user may give extra information about the type of linear solver
etcetera
If the part SOLVE is skipped, the default values are used. This means that in the case of
a storage scheme corresponding to a direct solver, a profile method is used and it is not
assumed that the matrix is positive definite. In the case of an iterative solver this means that
the default iterative solver, with the default accuracy and the default set of parameters is
used.

NONLINEAR EQUATIONS Indicates that the partial differential equation to be solved is sta-
tionary and non-linear. In that case an iterative procedure is necessary to solve the non-linear
problem. In each step of the non-linear iteration a linear system of equations is solved. In
this part the user gives some information about the iteration process.
If the keyword NONLINEAR EQUATIONS is skipped it is assumed that the partial differ-
ential equation to be solved is linear and no iteration is carried out.

TIME INTEGRATION Indicates that a time-dependent problem must be solved. In this case
a time integration method is applied and the solution is computed during a number of time-
steps from initial time to end time. If the keyword TIME INTEGRATION is found and
not the keywords STRUCTURE or NONLINEAR EQUATIONS automatically the time de-
pendent problem will be solved. If the keyword NONLINEAR EQUATIONS is present and
also the keyword TIME INTEGRATION without the keyword STRUCTURE the input for
TIME INTEGRATION is read, but no action is taken.

CREATE Indicates that a vector must be created. This vector may be used for example as
starting value of an iteration process, but also as vector to be used to compute coefficients for

UM input for SEPCOMP November 1995 3.2.4

the differential equations. Another application of CREATE is that it can be used to define
essential boundary conditions for the solution. In fact the body of the subroutine activated
by CREATE is the same as the one activated by ESSENTIAL BOUNDARY CONDITIONS.

CREATE is only activated if the block STRUCTURE is used. Otherwise it is read but no
action is taken.

DERIVATIVES This block is used to define derived quantities. DERIVATIVES is only activated
if the block STRUCTURE is used. Otherwise it is read but no action is taken.

INTEGRALS This block is used to define integrals to be computed. INTEGRALS is only acti-
vated if the block STRUCTURE is used. Otherwise it is read but no action is taken.

BOUNDARY INTEGRALS This block is used to define boundary integrals to be computed.
BOUNDARY INTEGRALS is only activated if the block STRUCTURE is used. Otherwise
it is read but no action is taken.

OUTPUT Defines which output is written to the file sepcomp.out. This output may be used in
the post-processing part of SEPRAN.
If the keyword OUTPUT is skipped only the computed solution is written to the output file.
Otherwise it is also possible to compute derivatives or other derived quantities and to write
these to the file sepcomp.out

SEPCOMP may compute both vectors and scalars. At this moment each vector and each scalar
is distinguished by a sequence number. The number of available vectors and scalar is limited. At
this moment this limit is set equal to 25, which means that only vectors and scalars with sequence
numbers 1 to 25 may be used. Of course it is possible to overwrite the vectors and scalars during
the computation process.

In the next subsections the input of each of the blocks is described.

Remark: at this moment program SEPCOMP is not yet provided with time-dependent options. If
you want to solve a time-dependent problem it is necessary to use the more complicated way of
using SEPRAN, i.e. you have to write the main program yourself.

UM START February 2004 3.2.1.1

3.2.1 The main keyword START

The block defined by the main keyword START may be used to influence some default parameters
in SEPCOMP but also in SEPPOST and programs written by the user itself. If this part is omitted,
the standard defaults are used.

The block defined by the main keyword START has the following structure (options are indicated
between the square brackets ”[” and ”]”):

START (optional)

DATABASE = d

ROTATE

NOROTATE

RENUMBER r

SEPCOMP = s

NAME_BACK = ’name_backing_storage_file’

NAME_PLOT = ’name_plot_files’

NAME_SEPINF = ’name_sepcomp.inf’

NAME_SEPOUT = ’name_sepcomp.out’

NAME_MESH = ’name_mesh_file’

NAME_SEPCOMP_IN = ’name_sepcomp.in’

MAXPLOTS = m

ITIMEFIRST = i

ITIMELAST = i

CPU_TIME

WALL_CLOCK_TIME

NO_WRITE_SEP

INPUT_SEPCOMP_OUT

END

The sequence of the keywords between START and END is arbitrary, necessary is that they start
with START and end with END.
Meaning of the keywords:

START This keyword is optional. It must be followed by subkeywords indicating which default
setups must be changed.

DATABASE = d Indicates whether the permanent file 2 is used or created.

Possible values for d are

not File 2 is not used.

new File 2 is used, all preceding information on this file is destroyed, or the file is a new one.

old File 2 is used, all preceding information on this file is kept. This possibility may only be
used if file 2 has been created before by a SEPRAN program.

Default: DATABASE = not

NOROTATE means that PLOTS are not rotated.
Default: depending on the size of the picture.

ROTATE means that the plots are rotated over an angle of 90o.
The options ROTATE and NOROTATE are mutually exclusive.
Default: depending on the size of the picture.

Remark: in general SEPCOMP does not produce pictures. However, in the case of non-linear
equations it is possible to trace the iteration process with some simple pictures. These pictures
are effected by the options ROTATE/NOROTATE. Furthermore START may also be used
in SEPPOST in which case the option ROTATE/NOROTATE may be useful.

UM START February 2004 3.2.1.2

RENUMBER r Indicates the type of renumbering to be used for the mesh. Possible values for r
are:

Cuthill band

Cuthill profile

Cuthill always

Sloan band

Sloan profile

Sloan always

Best band

Best profile

not

not indicates that no renumbering is performed. Remember that SEPMESH does not renum-
ber the nodes.

Cuthill band/profile/always means that the Cuthill-McKee renumbering is used. The
renumbered sequence is compared with the original numbering.
If profile is used the best of the original numbering and the Cuthill-McKee is used with
respect to the size of the profile.
Band refers to the optimal band width, and
always means that no comparison is made, but that always the Cuthill-McKee numbering
is used.

Sloan band/profile/always has the same meaning, however, with respect to the Sloan
renumbering.

Best has the same effects, but uses both Cuthill-McKee and Sloan to compare with the
original numbering in order to find an optimal choice.

Default: Sloan profile

Remark: in general renumbering is essential in order to decrease the computation time of the
linear solver except in some exceptional cases as for example a rectangular mesh numbered
in smallest direction. In the case of iterative methods renumbering is less important than for
direct methods but still a gain a computation time may be possible.

SEPCOMP = s indicates how the file sepcomp.out should be used.
Possible values for s are:

not

formatted

unformatted

not sepcomp.out is not used.

formatted both files are used as formatted files.

unformatted sepcomp.out is treated as an unformatted file.

Default: unformatted

NAME BACK = ’name backing storage file’ defines the name of the backing storage file (file
2). This file gets the name name_backing_storage_file.
Do not forget the quotes ” around the file name.
Default name: the name stored in the file sepran.env (usually sepranback).

NAME PLOT = ’name plot files’ defines the names of the default plot files. These files get
the name name_plot_files.001, name_plot_files.002,...
Do not forget the quotes ” around the file name.
Default name: the name stored in the file sepran.env (usually sepplot).

UM START February 2004 3.2.1.3

NAME SEPINF = ’name sepcomp.inf ’ defines the name of the so-called sepcomp.inf file (file
73). This file gets the name name_sepcomp.inf.
Do not forget the quotes ” around the file name.
Default name: the name stored in the file sepran.env (usually sepcomp.inf).

NAME SEPOUT = ’name sepcomp.out’ defines the name of the so-called sepcomp.out file (file
74). This file gets the name name_sepcomp.out.
Do not forget the quotes ” around the file name.
Default name: the name stored in the file sepran.env (usually sepcomp.out).

NAME MESH = ’name mesh file’ defines the name of the mesh output file (file 10). This file
gets the name name_mesh_file.
Do not forget the quotes ” around the file name.
Default name: the name stored in the file sepran.env (usually meshoutput).

NAME SEPCOMP IN = ’name sepcomp.in’ defines the name of the sepcomp.out file to be
used for input.
If also output is written to a sepcomp.out file, both names must be different.
Default name: sepcomp.in

NO WRITE SEP indicates that no output is written to the sepcomp.out file. So this file is not
opened.

INPUT SEPCOMP OUT indicates that the file indicated by name_sepcomp_in (or the default
name) is used as input file. This is meant for example to do some postprocessing or for
example for a restart.
If this keyword is found, the problem definition is read from the sepcomp.out file, and there
should be no input block PROBLEM.
It also reads all vector names that have been defined in the sepcomp.out file.
The keyword itself does not activate the reading of the solution vectors. To do that you need
the keyword READ_SOLUTIONS in the STRUCTURE block.

MAXPLOTS = m defines the number of plot files that may be created.
At this moment only two values are allowed: m = 1000 (default) or m = 10000. In the last
case a plot file uses a number with 4 digits instead of 3.

ITIMEFIRST = i is only used in the program SEPPOST.
If ITIMEFIRST > 1, the first ITIMEFIRST-1 solutions in the file sepcomp.out are skipped
and not stored.

ITIMELAST = i is only used in the program SEPPOST.
It defines the last solution that is read for postprocessing. All the rest of the arrays are
skipped.

CPU TIME Forces the printing of time in terms of CPU time. This is the default, except for
parallel computing.

WALL CLOCK TIME Forces the printing of time in terms of wall clock time. This is the default
in case of parallel computing.

END (mandatory). Indicates the end of the input block.

UM PROBLEM January 2013 3.2.2.1

3.2.2 The main keyword PROBLEM

The block defined by the main keyword PROBLEM defines which problem is to be solved by pro-
gram SEPCOMP. For each element group defined in SEPMESH the user must indicate what type
of problem has to be solved. Problems are indicated by so-called type numbers. Each type number
corresponds uniquely to a type of partial differential equations. To know which type number corre-
sponds to a specific partial differential equation it is necessary to consult the manual STANDARD
PROBLEMS.
SEPRAN also allows for the definition of your own elements. For that reason the group of element
numbers between 1 and 99 is strictly reserved for user defined elements, whereas type numbers
larger than 99 correspond to SEPRAN standard elements. Type numbers smaller than 1 have a
special meaning.

For each differential equation it is necessary to give boundary conditions. SEPRAN distinguishes
between so-called essential boundary conditions and natural boundary conditions. An essential
boundary condition is a boundary condition that prescribes unknowns at the boundary explicitly,
natural boundary conditions in general give some information about derivatives or combinations of
unknowns and derivatives at the boundary. Which type of boundary conditions are essential and
which are natural for a specific partial differential equation, can be found in the manual STAN-
DARD PROBLEMS.

Natural boundary conditions require extra elements, the so-called boundary elements. These ele-
ments may be defined in the mesh generator as line elements (R2) or surface elements (R3), but
they may also be defined in the part PROBLEM as boundary elements. The essential difference
between line elements defined in the mesh generator and boundary elements, is that line elements
are always used in the post-processing part as separate elements, whereas boundary elements are
skipped. With post-processing also computation of derivatives and integrals is meant. In general
there is no reason why boundary conditions have anything to do with post-processing, so it is ad-
vised, if possible, to use boundary elements instead of line elements. Besides that the use of line
elements in post-processing makes things more complicated and may even result in unwanted error
messages.

The block defined by the main keyword PROBLEM has the following structure:

PROBLEM [,SEQUENCE_NUMBER = s]

TYPES

data corresponding to TYPES

NATBOUNCOND

data corresponding to NATBOUNCOND

BOUNELEMENTS

data corresponding to BOUNELEMENTS

ESSBOUNDCOND

data corresponding to ESSBOUNDCOND

PERIODICAL_BOUNDARY_CONDITIONS

data corresponding to PERIODICAL_BOUNDARY_CONDITIONS

LOCALTRANSFORM

data corresponding to LOCALTRANSFORM

UNKNOWNCONSTANT

data corresponding to UNKNOWNCONSTANT

GLOBAL_UNKNOWNS

data corresponding to GLOBAL_UNKNOWNS

GLOBAL_ELEMENTS

data corresponding to GLOBAL_ELEMENTS

GLOBAL_RENUMBERING

data corresponding to GLOBAL_RENUMBERING

FICTITIOUS_UNKNOWNS

UM PROBLEM January 2013 3.2.2.2

data corresponding to FICTITIOUS_UNKNOWNS

FICTITIOUS_ELEMENTS

data corresponding to FICTITIOUS_ELEMENTS

SKIP_ELEMENTS

data corresponding to SKIP_ELEMENTS

NUM_LEVELSET = i

LEVELSET i, data

REORDER

data corresponding to REORDER

PRINT_LEVEL = k

END

The keywords PROBLEM, END and TYPES are mandatory. All subkeywords may be given in
arbitrary order as long as they appear only once. The data corresponding to these subkeywords
must be given immediately after the keywords themselves.
The sequence number is optional. It has only effect if more than one input block problem is found
in the input file.
The first input block problem must always be read as first input block, following the constants
part. The other input blocks problem may be put at ant place in the input block before the
end_of_sepran_input keyword.
In first instance the first input block read is made active.
To go to another input block you have to give the command NEW_PROBLEM_DESCRIPTION in the
structure block 3.2.3.20.
If the keyword NATBOUNCOND is given then also the keyword BOUNELEMENTS must be
present and NATBOUNCOND must always precede BOUNELEMENTS.
If the keyword GLOBAL UNKNOWNS is given then also the keyword GLOBAL ELEMENTS must
be present and GLOBAL UNKNOWNS must always precede GLOBAL ELEMENTS.
If the keyword GLOBAL RENUMBERING is given then also the keyword GLOBAL UNKNOWNS
must be present and GLOBAL UNKNOWNS must always precede GLOBAL RENUMBERING.
If the keyword FICTITIOUS UNKNOWNS is given then also the keyword FICTITIOUS ELEMENTS
must be present and FICTITIOUS UNKNOWNS must always precede FICTITIOUS ELEMENTS.

A special possibility is the use of the keyword PROBLEM followed by DEFAULT:

PROBLEM DEFAULT

This possibility is actually meant for the special case that the user does not want to compute a
solution by SEPRAN, but instead provides the solution in some other way, for example by reading it
from a file. (See the input block ”STRUCTURE” for this possibility). Once the keyword DEFAULT
is found immediately behind the keyword PROBLEM, no extra input with respect to the input block
”PROBLEM” is expected. In this case the default problem description is assumed. This implies
that for all element groups elements of type 800 are used (general second order elliptic equation with
one unknown per point). Furthermore no boundary conditions are present, i.e. neither essential
nor natural. None of the special possibilities in this section can be applied.

Explanation of the subkeywords and description of the data records (options are indicated between
the square brackets ”[” and ”]”):

PROBLEM (mandatory)
COMMAND record: opens the input this block.

TYPES (mandatory)
defines the problem definition numbers of the standard elements.
See (3.2.2.1).

NATBOUNCOND (optional)
indicates that standard boundary elements are used.
See (3.2.2.2). If used, it must be followed by:

UM PROBLEM January 2013 3.2.2.3

BOUNELEMENTS (must only be used when NATBOUNCOND is used)
indicates that boundary elements are created.
See (3.2.2.3).

PERIODICAL BOUNDARY CONDITIONS (optional)
indicates that periodical boundary conditions will be prescribed and where.
See (3.2.2.15).

ESSBOUNCOND (optional)
indicates that essential boundary conditions will be prescribed and where.
See (3.2.2.4).

LOCALTRANSFORM (optional)
indicates that local transformations must be defined in the points created on the curves and
surfaces defined by the data records.
See (3.2.2.5).

UNKNOWNCONSTANT (optional)
COMMAND record: indicates that along one or more parts of the boundary we have the
boundary condition u equals unknown constant.
See (3.2.2.6).

GLOBAL UNKNOWNS This command is used when the user wants to define special unknowns
that are not coupled to specific nodal points but have a more global character.
See (3.2.2.7).

GLOBAL ELEMENTS must be used to specify the region to which the global unknown is
coupled. The corresponding elements are used to compute the extra rows and columns in the
matrix and right-hand side.
See (3.2.2.8).

GLOBAL RENUMBERING If global unknowns are introduced one usually uses less boundary
conditions than in the case without global unknowns.
See (3.2.2.9).

FICTITIOUS UNKNOWNS This command is meant for the use of the fictitious domain
method. This is a special free surface method.
See (3.2.2.10).

FICTITIOUS ELEMENTS must be used to specify the region to which the fictitious unknown
is coupled.
See (3.2.2.11).

SKIP ELEMENTS This record indicates that certain elements as indicated by the data records
must be skipped while creating the large matrix and vector.
See (3.2.2.12).

REORDER [LEVELS] i1, i2, (i3, i4, i5), i6 (optional)
With this command the user can influence the internal numbering of the unknowns.
See (3.2.2.13).

PRINT LEVEL = k (optional)
Defines the amount of extra information that is printed.
This option is only meant for debugging purposes.
The following values of k are permitted:

0 (Default) No extra information besides the standard is printed.

1 A selected part of the sub arrays of KPROB are printed.

2 The complete array KPROB with all its sub parts are printed.

UM PROBLEM January 2013 3.2.2.4

If omitted k=0 is assumed.

NUM LEVELSET = k (optional)
Defines the number of level set functions, see (3.2.2.14).

LEVELSET = k (optional)
Defines information about the level set, see (3.2.2.14).

END (mandatory)
end of input for the input block ”PROBLEM”.

UM PROBLEM January 2013 3.2.2.5

In the case of coupled problems to be solved uncoupled as described in Section 1.3 the user must
define more problems. In that case the input in the input block ”PROBLEM” is as follows:

PROBLEM 1, sequence_number = 1

TYPES

.

.

.

PROBLEM 2

TYPES

.

.

.

PROBLEM 3

.

.

.

END

PROBLEM i refers to the ith problem. Only one END record must be used; this record closes the
input of the input block ”PROBLEM”.

In case of more problem descriptions, for example to change the type of boundary conditions, the
input would look like:

PROBLEM 1, sequence_number = 1

TYPES

.

.

.

PROBLEM 2

TYPES

.

.

.

PROBLEM 3

.

.

.

END

PROBLEM 1, sequence_number = 2

TYPES

.

.

.

PROBLEM 2

TYPES

.

.

.

PROBLEM 3

.

.

.

END

UM PROBLEM January 2013 3.2.2.6

.

.

.

Warning in case of user built SEPRAN programs

If Local Transformations are used, the user must be very careful with respect to boundary conditions
and solution. SEPRAN supposes always that boundary conditions are filled for the transformed
degrees of freedom (for example normal and/or tangential velocity). The solution subroutines,
however, transform the solution BACK, and hence these boundary conditions into the original form
(for example Cartesian velocities). As a consequence, if the computed solution must be used in a
new call of one of the matrix building subroutines, and if this solution must contain the boundary
conditions, then either the boundary conditions must be refilled, or the non-transformed array
should be used. This concerns primarily array ISOL in the call of the matrix builder. In almost all
applications, however, array ISLOLD in these subroutines should be available in original (i.e. back-
transformed) form. The linear solver provides the possibility to suppress the back-transformation,
or to carry out the back-transformation only.

UM PROBLEM January 2013 3.2.2.7

3.2.2.1 The subkeyword TYPES

The subkeyword TYPES defines the problem definition numbers of the standard elements. Must
be followed by data records of the type:

ELGRP 1 = (type = n1 [, n2, n3, . . .])

ELGRP 2 = (type = n1 [, n2, n3, . . .])

ELGRP i = (type = n1 [, n2, n3, . . .])

with i the element group number; exactly NELGRP (is number of element groups) data records are
necessary.
Instead of ELGRP i one may also use ELGRP i to j if all element groups i to j have exactly the
same type number(s).
n1 is the problem definition number of the ith element group.
The element group number refers to the element group number defined in the mesh generation
part. The number of element groups to be defined in this part TYPES must be exactly equal to
the number of element groups defined in the mesh generation.
The type numbers n1, n2, ... define which types of problems are to be solved. These type numbers
have the following meaning:

-1 Type number for periodical boundary conditions. See also Section 1.2.3. This type number
may only be used for elements defined by MESHCONNECT as described in Section 2.2.

0 Type number 0 means that all elements for this group must be skipped. For all these elements
the number of unknowns per point is equal to zero. This type number is especially meant for
test procedures, in which case it may be useful to skip element groups not yet programmed.

1-99 When the user wants to define his own problems (standard elements), he has to use problem
definition numbers between 1 and 99. SEPRAN does not distinguish between the various type
numbers in the range 1 to 99. However, these type numbers are submitted to the element
subroutines as parameter ITYPE in common block CACTL (See Chapter 4) and may be used
to distinguish between various types of differential equations or boundary conditions.

>99 corresponds to the standard problems provided by SEPRAN. For a description which type
numbers correspond to what problems, the user is referred to the manual Standard Problems.
For example type number 800 refers to potential problems and type number 900 to incom-
pressible Navier-Stokes.

When the user wants to use other problem definition numbers to construct the large matrix and
vector, however, with exactly the same mesh and the same type of boundary conditions, alternative
problem definition numbers may be given (n2, n3 , ...). This is for example the case when the user
wants to built a stiffness matrix and a mass matrix. The problem definition numbers n1 are used
throughout the program until subroutine CHTYPE is used to change to another group of problem
definition numbers. See the Programmers Guide for details. At this moment SEPCOMP does not
offer this possibility.

When all problem definition numbers n1, n2, . . . of an element group are in the range 1 to 100,
the data record ELGRP i, (type = . . .) may be followed by the next data record:

NUMDEGFD = (d1, d2, . . . , dn)

with di the number of degrees of freedom in the ith nodal point of the standard element. When
only d1 is given, then the number of degrees of freedom in each nodal point of the standard element
is equal to d1.
If this record is omitted it is assumed that all nodes contain exactly one degree of freedom.

When vectors of special structure are used (see Section 1.1), the next data records must be given:

UM PROBLEM January 2013 3.2.2.8

VEC1 = (d1, d2, . . . ,dn)

VEC2 = (d1, d2, . . . ,dn)

.

.

VECi = (d1, d2, . . . ,dn)

where VECi corresponds to the ith vector of special structure. dj gives the number of degrees of
freedom in the jth nodal point of the standard element, corresponding to the ith vector of special
structure. When only d1 is given, the number of degrees of freedom in each nodal point of the
standard element, corresponding to the ith vector of special structure, is equal to d1.

In some cases the ith degree of freedom in a nodal point has a different physical meaning for different
nodes. Consider for example the element in Figure 3.2.2.1, with degrees of freedom ψ, u and v in
the vertices and ut in the mid-side points.

ψ ψ

ψ

u u

t

u

v v

v

u

u
u

t

t

Figure 3.2.2.1: Example of element with different physical meaning of first degree of freedom in
different nodes.

In such a case we wish to distinguish between the first degree of freedom ψ in the vertices and the
first degree of freedom ut in the mid-side points. For such problems the next data records must be
given to couple a physical unknown with a specific degree of freedom

NUMBER 1 = (d1, d2, . . . ,dn)

NUMBER 2 = (d1, d2, . . . ,dn)

.

.

NUMBER i = (d1, d2, . . . ,dn)

where NUMBER i corresponds to the ith physical unknown in local nodal point j. When dj = 0,
it means that the physical unknown i is not present in node j.
If for example we couple the physical unknown ψ in Figure 3.2.2.1 with number 1, u with number
2, v with number 3 and ut with number 4 then the following records are necessary:

NUMBER 1 = (1, 0, 1, 0, 1, 0)

NUMBER 2 = (2, 0, 2, 0, 2, 0)

NUMBER 3 = (3, 0, 3, 0, 3, 0)

NUMBER 4 = (0, 1, 0, 1, 0, 1)

Where, in a subroutine a specific degree of freedom is asked, the number corresponding to the phys-
ical unknown is meant. So if we prescribe the degree of freedom 1 in the input block ”ESSENTIAL
BOUNDARY CONDITIONS” or ”CREATE”, for this example only ψ is prescribed.

These records are not necessary if the ith degree of freedom in a node always corresponds to the

UM PROBLEM January 2013 3.2.2.9

ith physical unknown, even if a nodal point does not contain i degrees of freedom. So in most
applications there is no need to give the data records with NUMBER = ...

In some cases the user might want to extend the number of vectors of special structure in case
of standard elements (type number ≥ 100). This is possible by replacing, the first type number
ITYPE for the element groups it concerns, by ITYPE+10000×IEXTRA, where IEXTRA denotes
the extra number of vectors of special structure, the user wants to add. These vectors of special
structure are only coupled to nodes, never to elements.
For each of the IEXTRA vectors a record must be supplied immediately after the
ELGRP i = (type = ... record. These records must have the following shape:

n_vertex = n1, n_midside_points = n2, n_centroid = n3, n_face = n4

n vertex = n1 defines the number of degrees of freedom in the vertices of the elements corre-
sponding to the element group. If omitted n1 = 0 is used.

n midside points = n2 defines the number of degrees of freedom in the midside points of the
elements corresponding to the element group. If omitted n2 = 0 is used.

n centroid = n3 defines the number of degrees of freedom in the centroid of the elements corre-
sponding to the element group. If omitted n3 = 0 is used.

n face = n4 defines the number of degrees of freedom in the centroids of the faces of the elements
corresponding to the element group. If omitted n4 = 0 is used.

UM PROBLEM January 2013 3.2.2.10

3.2.2.2 The subkeyword NATBOUNCOND

The subkeyword NATBOUNCOND indicates that standard boundary elements are used. Must be
followed by data records of the type:

BNGRP i = (type = n1 [, n2, n3, . . .])

with i the boundary element group number.
n1 is the boundary problem number of the ith boundary element group. n2, n3 etc. have the same
meaning as under TYPES.
The boundary element groups must be defined sequentially from 1. No boundary element group
numbers may be skipped. The largest boundary element group number defines NUMNATBND, the
number of boundary element groups.

When the user wants to define his own boundary elements, he has to use problem definition numbers
between 1 and 99.
Problem definition numbers above 99 correspond to SEPRAN standard problems.

When all problem definition numbers n1, n2, . . . of a boundary element group are smaller than
100, then the data record BNGRP i may be followed by a data records of the type:

NPELM = j

NUMDEGFD = (d1, d2, ... , dn)

VEC 1 = (d1, d2, ... , dn)

.

.

.

VEC i = (d1, d2, ... , dn)

NUMBER 1 = (d1, d2, . . . ,dn)

NUMBER 2 = (d1, d2, . . . ,dn)

.

.

NUMBER i = (d1, d2, . . . ,dn)

If ITYPE> 10000, ITYPE consists of two subparts ITYPE act and IEXTRA, according to ITYPE act+10000×IEXTRA.
ITYPE act denotes the actual type number and IEXTRA denotes the extra number of vectors of
special structure, the user wants to add. These vectors of special structure are only coupled to
nodes, never to elements.
For each of the IEXTRA vectors a record must be supplied immediately after the
BNGRP i = (type = ... record. These records must have the following shape:

n_vertex = n1, n_midside_points = n2, n_centroid = n3, n_face = n4

NPELM = j defines the number of nodes j in the boundary element. If this record is omitted
the number of nodes in the elements is detected from the corresponding boundary elements
given in the input part BOUNELEMENTS.

NUMDEGFD = (d1, d2, ... , dn) has exactly the same meaning as in the case of standard
element groups.
If this record is not given it is supposed that the number of unknowns in each point is the
same as the maximum of unknowns in that point as defined by the internal elements.

VEC i = (d1, d2, ... , dn) has exactly the same meaning as in the case of standard element
groups.
If omitted, information is copied from the internal elements.

UM PROBLEM January 2013 3.2.2.11

NUMBER i = (d1, d2, ... , dn) has exactly the same meaning as in the case of standard
element groups.
If omitted, information is copied from the internal elements.

Remark: If boundary elements are lying within more than one internal element, without being the
common side of these elements, the user must define line elements instead of boundary elements.
Furthermore it is assumed that the number of unknowns in the boundary element per point is
defined by the number of unknowns present in the nodal point. If the user wants to use a different
number he has to use line elements.

UM PROBLEM January 2013 3.2.2.12

3.2.2.3 The subkeyword BOUNELEMENTS

The subkeyword BOUNELEMENTS indicates that boundary elements are created. Must be fol-
lowed by data records of the following type:

BELMi = POINTS (P3, P6, P8, . . .)

BELMi = CURVES (SHAPE = 1, C1 to C2)

BELMi = SURFACES (S1 to S2)

BELMi = CURVES (SHAPE = 2, C5)

BELMi = OBSTACLE k, SHAPE = 2

BELMi = CONTACT_ELEMENTS j

BELMi = NO_CONTACT_ELEMENTS j

BELMi = CONTACT_POINTS j

BELMi = NO_CONTACT_POINTS j

BELMi = CURV_POINTS (C1 to C2)

BELMi = SURF_POINTS (S1 to S2)

BELMi = CROSSSECTION_OBSTACLE i, EXCLUDE_TYPE = k, EXCLUDE_CURVES (C1 to C2)

BELMi = ZERO_LEVELSET i, EXCLUDE_CURVES (c1, c2, c3, ...)

These records take care of the generation of the boundary elements.
meaning of the various parameters:

i is the boundary element group number. More than one boundary group number may be used. Also
a specific number i may be used more than once, provided the boundary elements correspond
to the same group.
If boundary element group numbers are not used, the number of elements for that group is
equal to zero. The boundary elements must be created with increasing boundary element
group number.

POINTS defines boundary elements that consist of user points only. POINTS must be followed
by a series of user points. Only points that coincide with nodal points may be used.

Pi, Pj, ... define the user point numbers. It is also to possible to use Pi TO pj in which
case all user points Pi, Pi + 1, ... , Pj are used. Both possibilities may be used in
combination, like

POINTS P3, P5, P7 TO P10, p15 TO p23

CURVES defines boundary elements that are defined on curves. CURVES must be followed by
the shape number and the curve numbers.

SHAPE = .. defines the shape number of the standard elements. See Table 2.2.1.
If SHAPE = .. is omitted the shape of the boundary elements is derived from the
internal elements. If all internal elements are quadratic, quadratic boundary elements
are assumed, otherwise linear ones.
If INPELM = .. has been given, this may also define the shape number.

C1 to C2 boundary elements are generated along the curves C1 to C2, when C2 is not given
only curve C1 is used. When C2 is given, the curves C1 to C2 must be subsequent curves
with coinciding initial and end point, i.e. the end point of C1 must be equal to the initial
point of C1 + 1 etc.
The boundary elements must always be created counter-clockwise with respect to the
inner region. Hence the corresponding curves must also be generated counter-clockwise.

SURFACES defines boundary elements that are defined on surfaces. SURFACES must be fol-
lowed by the surface numbers. The shape number is copied from the surfaces S1 to S2. Hence
these surfaces must have been created with the same shape number.

UM PROBLEM January 2013 3.2.2.13

S1 to S2 surface elements from the surfaces S1 to S2 are used. When S2 is not given only
S1 is used.

OBSTACLE j defines boundary elements that are defined for all active elements along OBSTA-
CLE j. An active element is an element consisting of nodal points of the mesh that all lie on
the obstacle. During the computation, elements may become active or may be deactivated.
Hence the number of obstacle boundary elements varies during the computations. The shape
number may be 1 (linear elements) or 2 (quadratic elements). The default value is 1.

CONTACT ELEMENTS j defines boundary elements that are defined for all elements along
CONTACT j that make contact. An element makes contact if all nodes of that element make
contact. The shape of the elements is defined by the surface at which the contact takes place.

NO CONTACT ELEMENTS j defines boundary elements that are defined for all elements
along the surface corresponding to CONTACT j that make no contact. An element makes
contact if all nodes of that element make contact. The shape of the elements is defined by the
surface at which the contact takes place. In this case all other elements along that surface are
used.

CONTACT POINTS j defines boundary elements that are defined for all points along CON-
TACT j that make contact. In this case point elements are defined (for example for concen-
trated loads) and the shape number is set equal to 0

NO CONTACT POINTS j defines boundary elements that are defined for all points along the
surface corresponding to CONTACT j that make no contact. In this case point elements are
defined (for example for concentrated loads) and the shape number is set equal to 0

CURV POINTS Ci to Cj defines point boundary elements along the curves Ci to Cj. These
curves must form a contiguous set of curves.

SURF POINTS Si to Sj defines point boundary elements along the surfaces Si to Sj.

CROSSSECTION OBSTACLE i defines a very special boundary element.
This element can only be used in combination with elements of type 922 as described in the
manual Standard problems Section xxx.
The element is meant for a fluid problem in a fixed mesh where an obstacle is present. i is
the obstacle sequence number.
The obstacle may be situated anywhere in the mesh and does not have to coincide with the
mesh itself. In order to make the velocity of the points on the boundary of the obstacle equal
to the obstacle velocity these elements must be used. The intersection of the fixed mesh with
the obstacle is computed and line elements are defined that correspond with the edges of the
fixed grid that intersect the obstacle. The cross-section points are situated in these elements.
These new line elements are used to express the given velocity in the intersection point of
the obstacle into the velocity of the two end points of the line element. This condition is
formulated as a constraint and as a consequence two (2D) or three (3D) extra Lagrangian
multipliers are introduced.
The new line elements are only introduced for edges with a point completely inside the obstacle
and a point outside the obstacle. If a point is on the boundary of the obstacle (or very close
to it), no cross-section element is introduced.
In order to avoid to many constraints the option exclude_type = k may be used.
The parameter k has the following meaning:

1. To each point outside the obstacle only one line element may be connected. Which of
the possibilities is chosen in case of more cross-section elements connected to that point,
is arbitrary.

2. To each point inside or outside the obstacle only one line element is connected. This is
more restrictive than k = 1.

UM PROBLEM January 2013 3.2.2.14

The default value is k = 1.

The user may exclude curves of the obstacle to be part of the cross-section by using the option
exclude_curves (c1 to c2), in which case intersections with the curves C1 until C2 are
excluded.
The default value is that no curves are excluded.

ZERO LEVELSET i defines boundary elements in case of the level set method. The boundary
elements are defined along the line (2D) or face (3d) with level set zero. This is in general the
interface we are interested in.
i refers to the level set sequence number.
In 3D the option exclude_curves defines the set of curves where we do not define the bound-
ary elements.

UM PROBLEM January 2013 3.2.2.15

3.2.2.4 The subkeyword ESSBOUNCOND

The subkeyword ESSBOUNCOND indicates that essential boundary conditions will be prescribed.
Must be followed by data records of the type:

[degrees of freedom] [location part]

in arbitrary order. The part degrees of freedom has the following shape:

DEGFD k [,DEGFD l [, DEGFD m]]

DEGFDj indicates that the jth degree of freedom will be prescribed (the value of these degrees of
freedom must be given by the input block ”ESSENTIAL BOUNDARY CONDITIONS” or ”CRE-
ATE”. Hence DEGFD1, DEGFD3 indicates that the first and third degree of freedom in the
corresponding nodal points are prescribed. At most 20 degrees of freedom are permitted in one
record.
When DEGFDj = is omitted, all degrees of freedom are supposed to be prescribed in the corre-
sponding nodal points. This is identical to DEGFD0.

The location part has the following shape

POINTS (Pk, Pl, . . . , Pm)

CURVES [l] (Cj [to Cm])

SURFACES [i1, i2, i3, ...] (Sj [to Sm]), [SKIP_BOUNDARY] &

[SKIP_CURVES (Ci, Cj, Ck, ...),] [INCLUDE_CURVES (Ci, Cj, Ck, ...)]

VOLUMES [i1, i2, i3, ...] (Vj [to Vm])

NODES (Nj [to Nm])

ELEMENTS i [to j] (RN1)

GROUP ielgrp [(RN1, RN2, RN3, ...)]

OBSTACLE i

CONTACT i

NO_CONTACT i

NODAL_POINTS = (i1, i2, i3, ...)

FILE_NODAL_POINTS = ’name_of_file’

IN_ALL_OBSTACLE i

IN_INNER_OBSTACLE i

IN_BOUN_OBSTACLE i

ON_BOUN_OBSTACLE i

INON_BOUN_OBSTACLE i

OUTER_CURVES

OUTER_SURFACES

ZERO_LEVELSET i

CAVITATION i

INTERSECTION (Si, Sj, Sk, ...)

POINTS indicates that essential boundary conditions are given in user defined points, POINTS
must be followed by a series of user points. Only points that coincide with nodal points may
be used.

Pi, Pj, ... define the user point numbers. It is also to possible to use Pi TO pj in which
case all user points Pi, Pi + 1, ... , Pj are used. Both possibilities may be used in
combination, like

POINTS P3, P5, P7 TO P10, p15 TO p23

CURVES indicates that essential boundary conditions are given on curves.

UM PROBLEM January 2013 3.2.2.16

Cj to Cm essential boundary conditions of this type are defined on the curves Cj to Cm,
or Cj only when Cm is omitted. When C5 is given, the curves Cj to Cm must be
subsequent curves with coinciding initial and end point, i.e. the end point of Cj must
be equal to the initial point of Cj+ etc. Only if the step to be used for the curves is
equal to 1, which means that all nodes are used, then it is not necessary that all curves
are contiguous.

l consists of two parts: l = i + 100 × EXCLUDE

i may take one of the following values:

i=0 all nodal points on the curves are prescribed as indicated by DEGFDj.

i>0 only the nodal points 1, 1+(i+1), 1+2×(i+1), . . . on these curves are prescribed
as indicated by DEGFDj.

i<0 all nodal points except the points 1, 1-(i-1), 1-2×(i-1), . . . on these curves are
prescribed as indicated by DEGFDj.

Hence i=0
××××××××××××

degrees of freedom DEGFDj are prescribed in all nodal points.

i=2 ⊗××⊗××⊗××⊗××⊗
6 6 6 6 6

degrees of freedom DEGFDj are prescribed in the nodal points indicated by ⊗.

i=-2 ×⊗⊗×⊗⊗×⊗⊗×⊗⊗×
66 66 66 66

degrees of freedom DEGFDj are prescribed in the nodal points indicated by ⊗.

Remark: i must be so that the last nodal point of the curves C1 to C5 is equal to 1
+ k i with k integer (> 0 or < 0).

EXCLUDE may take one of the following values:

0 All points of the curves C1 to C5 are used as indicated by i.

1 All points except the begin point of C1 are used as indicated by i.

2 All points except the end point of C5 (or C1 if C5 is omitted) are used as
indicated by i.

3 All points except the begin point of C1 and the end point of C5 (or C1 if C5 is
omitted) are used as indicated by i.

Remark: EXCLUDE > 0 may only be used in combination with i ≥ 0.

SURFACES must be used to define essential boundary conditions on surfaces.

i1, i2, i3, have the following meaning:

When omitted, all nodal points on the surface get the prescribed degrees of freedom as
indicated by DEGFD1, DEGFD2, Otherwise, the degrees of freedom are only
prescribed in the i1th, i2th, i3th, ... nodal point of each element of the surfaces. When
degrees of freedom in the other points must be prescribed, a new record is necessary.

(S1 to S2) define the surfaces on which the essential boundary conditions are prescribed;
when S2 is omitted, only S1 is used, otherwise the surfaces S1 to S2 are used. The
brackets around S1 to S2 may not be removed.

SKIP BOUNDARY indicates that only the internal points of the set of surfaces are trans-
formed. If this keyword is not given all points, including the points on the curves sur-
rounding the set of surfaces, are transformed.

UM PROBLEM January 2013 3.2.2.17

INCLUDE CURVES has exactly the same meaning as skip_boundary, except that the
curves given in the list are included in the part of the surface to be transformed.
Also the end points of the curves are included.

SKIP CURVES has exactly the same meaning as skip_boundary, except that of the set
of outer curves only those given in the list are skipped.
Also the end points of the curves are skipped. Hence there is a slight difference between
including a curve, or skipping the other ones.

Mark that the keywords skip_boundary, include_curves and skip_curves are mutu-
ally exclusive.

VOLUMES must be used to define essential boundary conditions on surfaces.

i1, i2, i3, have the following meaning:

When omitted, all nodal points on the volume get the prescribed degrees of freedom as
indicated by DEGFD1, DEGFD2, Otherwise, the degrees of freedom are only
prescribed in the i1th, i2th, i3th, ... nodal point of each element of the volumes. When
degrees of freedom in the other points must be prescribed, a new record is necessary.

(V1 to V2) define the volumes on which the essential boundary conditions are prescribed;
when V2 is omitted, only V1 is used, otherwise the volumes V1 to V2 are used. The
brackets around V1 to V2 may not be removed.

NODES must be used to define essential boundary conditions in all nodal points with absolute
nodal point numbers (not user point numbers) N1 to N2. When N2 is omitted, only N1 is
used.

ELEMENT must be used to define essential boundary conditions for all elements.

RN1 defines the relative nodal point. Hence the essential boundary condition is defined in
the RN1th node of all elements.
Let, for example, in Figure 3.2.2.2 nodal point 17 be the start point of the element, and
let the direction of the nodal points be counter clockwise, then point 30 has relative
nodal point number 4.

...

. .
.34

26

17
19

22

30

Figure 3.2.2.2: Nodal points in element.

i, j defines the range of the element numbers for which the essential boundary condition is
prescribed. If j is omitted, only i is used.

GROUP must be used to define essential boundary conditions for a complete group of elements.

RN1, RN2, ... , RNl define the relative nodal points RN1, RN2, ... , RNl of these elements.
When the relative nodal points are omitted, all nodal points in the elements are used.

UM PROBLEM January 2013 3.2.2.18

ielgrp defines the element group number.

OBSTACLE must be used to define essential boundary conditions along active obstacle points. It
may only be used in combination with free or moving boundary problems. If in the boundary
adapting subroutine obstacles are defined it makes sense to use this option, otherwise it is
neglected.
If this option is given, all active points along OBSTACLE j get the prescribed boundary
conditions as indicated by DEGFD. Active points are all nodes of the mesh that lie on the
obstacle. During the computation, nodes may become active or may be deactivated. Hence
the number of obstacle boundary conditions varies during the computations.

CONTACT indicates that all nodal points at the contact surface corresponding to contact i, that
make contact, have essential boundary conditions of the prescribed type.

NO CONTACT indicates that all nodal points at the contact surface corresponding to contact
i, that make no contact, have essential boundary conditions of the prescribed type.

NODAL POINTS = (...) indicates that a series of nodal points is given by the user in which
essential boundary conditions are valid.

FILE NODAL POINTS=’file name’ indicates that a series of nodal points is given by the user
in which essential boundary conditions are valid.
file name indicates the name of a file in which the nodal point numbers are stored. This name
must be positioned between two quotes. If this option is used, the user must provide a file of
this name as described in Section 3.5.1.
At the moment the file is used, it is opened with reference number 75, the contents are read
and the file is closed again. This means that the user may not have opened a file with reference
number 75 at the same time, and moreover that if the file is reused again reading starts from
the first record.

IN ALL OBSTACLE i Essential boundary conditions are prescribed in all nodes of the mesh
that are situated within the obstacle with obstacle sequence number i

IN INNER OBSTACLE i Essential boundary conditions are prescribed in the nodes of those
elements of the mesh that are completely within the obstacle with obstacle sequence number
i. If an element is completely inside the obstacle but has some points on the boundary of the
obstacle then all nodes of this element except those on the boundary belong to this group
Compared to IN ALL OBSTACLE, this means that nodes on the boundary of the obstacle
are excluded, as well as nodes of elements that are partly outside the obstacle even if they are
inside the obstacle.

IN BOUN OBSTACLE i Essential boundary conditions are prescribed in the nodes of those
elements of the mesh that are partly outside the obstacle with obstacle sequence number i.
So all the points that are excluded in in_inner_obstacle but are part of in_all_obstacle
belong to in_boun_obstacle.

ON BOUN OBSTACLE i Essential boundary conditions are prescribed in the nodes of those
elements of the mesh that are on the boundary of the obstacle with obstacle sequence number
i.

INON BOUN OBSTACLE i Essential boundary conditions are prescribed in the nodes of those
elements of the mesh that belong to on_boun_obstacle, but besides that are only inside
elements that are completely inside the obstacle and not in elements that are outside the
obstacle.

OUTER CURVES Essential boundary conditions are prescribed in all the nodes of the mesh
that are on the outer boundary of a 2D mesh. At this moment it is only possible to prescribe
all the unknowns in these curves.

UM PROBLEM January 2013 3.2.2.19

OUTER SURFACES Essential boundary conditions are prescribed in all the nodes of the mesh
that are on the outer boundary of a 3D mesh. At this moment it is only possible to prescribe
all the unknowns in these surfaces.

ZERO LEVELSET i Essential boundary conditions are prescribed in all the nodes of the mesh
where the level set function φi has the value 0. This is exactly the boundary made by the
command make_levelset_mesh in the structure block. See (3.2.3.18).

CAVITATION i Essential boundary conditions are prescribed in all the nodes in a bearing with
pressures below the cavitation pressure.
The parameter i in this case must always be 1.
See Section 3.2.24 and 3.2.3.21

INTERSECTION (Si, Sj, Sk, ...) Essential boundary conditions are prescribed in all the nodes
in the intersection of each couple of surfaces given in the corresponding list.
Hence in case of 3 surfaces S1, S5 and S7 it concerns the common nodes of S1 and S5, S1 and
S7 and S5 and S7.

UM PROBLEM January 2013 3.2.2.20

3.2.2.5 The subkeyword LOCALTRANSFORM

The subkeyword LOCALTRANSFORM indicates that local transformations must be defined in the
points created on the curves and surfaces defined by the data records. These records consist of the
following parts

[degrees of freedom] [location part] [transformation_information]

in arbitrary order. These parts itself must be stored in one record, but for each new definition a
new record must be used.

The part degrees of freedom has the following shape

DEGFD k [,DEGFD l [, DEGFD m]]

If omitted DEGFD 0 is assumed

The location part has one of the following structures:

CURVES [l] (Cj [to Cm])

SURFACES [i1, i2, i3, ...] (Sj [to Sm]), [SKIP_BOUNDARY] &

[SKIP_CURVES (Ci, Cj, Ck, ...),] [INCLUDE_CURVES (Ci, Cj, Ck, ...)]

OBSTACLE i, JSTEP = j

CONTACT i, JSTEP = j

The brackets may not be removed from these records.

Transformation information has the following shape:

TRANSFORMATION = s, MATRIXR = (r1,r2,r3,r4), MATRIXV = (v1,v2,v3,v4), &

TANG_DIR = t, NORMAL = n, TANG_CURVE = (k_1, k_2, ...)

degrees of freedom

DEGFD1,DEGFD2 indicates that the DEGFD1th and the DEGFD2th degree of freedom must
be transformed (2D only). If omitted the first and the second degree of freedom are transformed.

DEGFD1,DEGFD2,DEGFD3 indicates that the DEGFD1th, DEGFD2th and the DEGFD3th

degree of freedom must be transformed (3D only). If omitted the first, the second and the third
degree of freedom are transformed.

location part

CURVES When local transformations must be defined on curves the function CURVES must be
used followed by l and the curve numbers Ck and Cj, indicating that local transformations
must be defined on the curves Ck to Cj, or Ck when Cj is omitted. When Cj is given, the
curves Ck to Cj must be subsequent curves with coinciding initial and end point, i.e. the end
point of Ck must be equal to the initial point of Ck+1 etc.
l consists of two parts: l = i + 100 × EXCLUDE
i has the following meaning:

If i is omitted, i=0 is assumed.
When i=0 all nodal points on the curves are transformed as indicated by DEGFD1 and
DEGFD2.
When i>0 only the points 1, 1 + (i+1), 1 + 2×(i+1), . . . on these curves are transformed
as indicated by DEGFD1 and DEGFD2.

UM PROBLEM January 2013 3.2.2.21

When i<0 all nodal points except the points 1, 1 - (i-1), 1 - 2×(i-1), . . . on these curves are
transformed as indicated by DEGFD1 and DEGFD2.
Compare with the essential boundary conditions.

For EXCLUDE the following possibilities are available:

EXCLUDE=0 All points of the curves C1 to C5 are used as indicated by i.

EXCLUDE=1 All points except the begin point of C1 are used as indicated by i.

EXCLUDE=2 All points except the end point of C5 (or C1 if C5 is omitted) are used as
indicated by i.

EXCLUDE=3 All points except the begin point of C1 and the end point of C5 (or C1 if
C5 is omitted) are used as indicated by i.

Remarks: EXCLUDE > 0 may only be used in combination with i ≥ 0.

Curves may also be transformed in R3, however, if the standard transformation is applied,
only the tangential direction is defined uniquely. The first two new local coordinates, referring
to 2 normals are defined in some arbitrary way, which means that this option makes only sense
if the essential boundary conditions corresponding to these normal directions are both zero.

SURFACES is used to define local transformation along surfaces.

i1, i2, i3, have the following meaning:

When omitted, all nodal points on the surface are transformed Otherwise, only the
i1th, i2th, i3th, ... nodal point of each element of the surfaces are transformed.

(S1 to S2) define the surfaces on which the transformation must take place; when S2 is
omitted, only S1 is used, otherwise the surfaces S1 to S2 are used. The brackets around
S1 to S2 may not be removed.

SKIP BOUNDARY indicates that only the internal points of the set of surfaces are trans-
formed. If this keyword is not given all points, including the points on the curves sur-
rounding the set of surfaces, are transformed.

INCLUDE CURVES has exactly the same meaning as skip_boundary, except that the
curves given in the list are included in the part of the surface to be transformed.
Also the end points of the curves are included.

SKIP CURVES has exactly the same meaning as skip_boundary, except that of the set
of outer curves only those given in the list are skipped.
Also the end points of the curves are skipped. Hence there is a slight difference between
including a curve, or skipping the other ones.

Mark that the keywords skip_boundary, include_curves and skip_curves are mutu-
ally exclusive.

OBSTACLE indicates that the local transformation is defined along obstacle i. That means that
all points at the obstacle that are active will be transformed. The complete obstacle is used
to define the tangential vector.
If JSTEP > 0, only the points 1 1+JSTEP, 1+2×JSTEP along the obstacle curve are used.

CONTACT has not yet been implemented.

transformation information

The parameter s behind the keyword TRANSFORMATION defines how the transformation must
be carried out. The following values for s are available:

UM PROBLEM January 2013 3.2.2.22

STANDARD

SYMMETRIC

NON_SYMMETRIC

MIN_UN_UT

If this part is omitted, STANDARD is assumed.

STANDARD implies that a standard symmetric transformation is applied. The unknowns are
redefined in the sequence (un, ut) according to the following definition:[

uDEGFD1

uDEGFD2

]
= R

[
un
ut

]
(3.2.2.1)

with (uDEGFD1, uDEGFD2) the old, and (un, ut) the new degrees of freedom (in that sequence).
The tangential vector is computed and has the direction of the curves from the first nodal
point on Ci to the last point on Cj, the normal is taken clockwise from the tangential vector.
See Figure 3.2.2.3.

......
.

C1
n t

Figure 3.2.2.3: Normal and tangential vectors on a curve.

When the user wants to start at the end of a curve he must use negative values for the curve
numbers.
Hence DEGFD1,DEGFD2 = CURVES i (-Ci, -Cj)
In that case all curves from Ci to Cj are considered from end point to begin point.

Warning

The direction of the tangential vectors is computed by taking the line between the two neigh-
boring points, except for the two end points where the two last points are connected. As
a consequence in a sharp corner an average tangential vector is defined. At the end of the
curves with local transformations one must be very careful with the prescription of boundary
conditions, since in the endpoints the degrees of freedom may be rotated. Especially if such
an endpoint is a corner of a region this may introduce severe complications. For example let
in Figure 3.2.2.4 a local transform be along curve C1 are (un, ut), which is equal to (-uy, ux)
whereas the untransformed degrees of freedom at C2 are (ux, uy). In point P we therefore
have also the degrees of freedom (-uy, ux) and in that respect P differs from the rest of curve
C2.

Remark

If the curves are in R3, then the standard transformation is defined as follows:
Let t be the tangential vector along the curve. Let i be the smallest component of t. Then
the ith element of the vector n1 is set equal to 0, and the other two components are created

UM PROBLEM January 2013 3.2.2.23

y

x

C1
P

C2

..
t

n

Figure 3.2.2.4: Corner of a region where local transformations have been defined along one curve.

such that t ·n1 = 0 and ||n1|| = 1. The second normal vector n2 is made orthogonal to t and
n1, by computing the outer product and normalizing.
The transformation matrix R is defined as: R = (n1,n2, t).
Since the directions n1 and n2 are more or less arbitrary, this transformation makes only
sense, if one wants to make both normal components equal to 0.

MIN UN UT is identical to standard, however, the new degrees of freedom are not (un, ut) but
(−un, ut). This may be for example necessary in case of anti-symmetric periodical boundary
conditions. See the manual Standard Problems Section 7.1.10 for an example.

SYMMETRIC is identical to STANDARD, however, the user must define the transformation
matrix R himself. In this case it is necessary to give the option MATRIXR explicitly according
to:

MATRIXR = (R_11, R_12, R_21, R_22)

These numbers define the transformation matrix by:

R =

[
R11 −R12

R21 R22

]
(3.2.2.2)

The matrix must be symmetrical hence R12 = R21 In the case of STANDARD this transfor-
mation is

R =

[
nx −ny
ny nx

]
(3.2.2.3)

with n2
x + n2

y = 1.
Rij may have one of the following shapes:

v

VALUE = v

FUNC = i

v or VALUE = v defines the value explicitly.

FUNC = i indicates that the matrix element is a function of space. The user written func-
tion subroutine FUNCTR (See Section 3.3.7) must be provided by the user. The param-
eter i is used to distinguish between various functions.

The matrix R defines the relation between old and new degrees of freedom according to[
uDEGFD1

uDEGFD2

]
= R

[
unew1

unew2

]
(3.2.2.4)

For an example of the use of this option see the manual Standard Problems Section 7.1.10.

UM PROBLEM January 2013 3.2.2.24

NON SYMMETRIC This special option not only transforms the unknowns but also the so-
called test functions. This option is only necessary for very special boundary conditions.
In this case the unknowns are transformed with a matrix R as is the case with the option
SYMMETRIC and the test functions are transformed with a matrix V. Both matrices may
be unsymmetrical. The effect of this transformation is:[

uDEGFD1

uDEGFD2

]
= R

[
unew1

unew2

]
(3.2.2.5)

Furthermore in each transformation point the part of the large matrix corresponding to this
point and the indicated degrees of freedom and the part of the right-hand side are transformed
according to the relations:

Stransform = VTSR Ftransform = VTF (3.2.2.6)

with S the matrix and F the right-hand side.

The option NON SYMMETRIC requires the matrix R defined by MATRIXR:

MATRIXR = (R_11, R_12, R_21, R_22)

and also the matrix V defined by

MATRIXV = (V_11, V_12, V_21, V_22)

Vij may be of the same shape as Rij given above.

TANG DIR = t defines the direction of the first tangential component. This keyword is only
used in combination with SURFACES. The normal on a surface is uniquely defined, however,
to define the tangential directions extra input to define the direction is needed. If this keyword
is given the first tangential direction is defined by the subkeyword t. The following options
for t are available:

LINE(P1,P2)

XDIR

YDIR

ZDIR

Meaning of these subkeywords:

LINE(P1,P2) The first tangential direction (t1) is given along the line P1 to P2. P1 and
P2 must be standard user points.

XDIR t1 = (1,0,0)

YDIR t1 = (0,1,0)

ZDIR t1 = (0,0,1)

The second tangential direction is defined in the direction given by the outer product of the
normal and the first tangential direction.
If the tangential direction is not given, some local tangential directions are defined, which are
unknown to the user, and certainly not uniquely defined.

NORMAL = n defines the direction of the normal component. This keyword is only used in
combination with SURFACES.
The following values of n are permitted:

outward

inward

UM PROBLEM January 2013 3.2.2.25

If outward is used, the normal component in the outward direction is used, in the case of
inward the inward directed normal is used.
if omitted the default value: outward is used.

TANG CURVE = k1, k2, . . . defines the direction of the second tangential vector along curves
k1, k2, This option is meant to make a special transformation along a set of curves in
a surface. The normal vector is defined in the standard way, perpendicular to the surface.
The second tangential vector is defined tangent to the curves and the first tangential vector
is defined perpendicular to both other vectors.
So after this option the first component along the curve is perpendicular to the surface, the
second in the surface but perpendicular to the curve and the third one in the direction of the
curve. Such an option can for example be used to force a vector in the direction of the curve,
by setting the first and second degree of freedom equal to 0.

UM PROBLEM January 2013 3.2.2.26

3.2.2.6 The subkeyword UNKNOWNCONSTANT

The subkeyword UNKNOWNCONSTANT indicates that along one or more parts of the boundary
we have the boundary condition u equals unknown constant. The parts of the boundaries are
defined by data records consisting of the following parts:

[degree of freedom] [location part]

in arbitrary order. These parts itself must be stored in one record, but for each new definition a
new record must be used.
The part degrees of freedom has the following shape

DEGFD k

The location part has one of the following structures:

CURVES [i] (Cj [to Cm])

SURFACES [i1, i2, i3, ...] (Sj [to Sm])

The brackets may not be removed from these records.

degrees of freedom

DEGFD k indicates that the kth degree of freedom is constant along the part of the boundary
indicated by the location part. If omitted the k = 1 is assumed.

location part

When the boundary condition is defined on curves the function CURVES must be used followed by
i and the curve numbers Ck and Cj, indicating that the constant value is defined on the curves Ck
to Cj, or Ck when Cj is omitted. When Cj is given, the curves Ck to Cj must be subsequent curves
with coinciding initial and end point, i.e. the end point of Ck must be equal to the initial point of
Ck+1 etc.
i has the following meaning:

If i is omitted, i=0 is assumed.
If i=0 all nodal points on the curves are assumed to contain the degree of freedom DEGFDl that
has constant value along Ck to Cj.
If i>0 only the points 1, 1 + (i+1), 1 + 2×(i+1), . . . on these curves have the constant value.
If i<0 all nodal points except the points 1, 1 - (i-1), 1 - 2×(i-1), . . . on these curves have the
constant value.
Compare with the essential boundary conditions.
If the boundary condition is given along surfaces the same rules as for the essential boundary
conditions apply for the location part.

UM PROBLEM January 2013 3.2.2.27

3.2.2.7 The subkeyword GLOBAL UNKNOWNS

The subkeyword GLOBAL UNKNOWNS is used when the user wants to define special unknowns
that are not coupled to specific nodal points but have a more global character. For example if we
have a flow in a straight channel with periodical boundary conditions on instream and outstream
boundary and an unknown pressure jump over the inflow and outflow boundary. In order to compute
this pressure jump it is necessary to prescribe also the amount of fluid that flows into the channel.
The pressure jump is not coupled to one specific point but for example to the complete inflow
boundary (or outflow boundary). For this specific unknown one may define a global unknown,
which is treated as an extra unknown with an extra equation.
For each global unknown (or in case it is a vector of unknowns: for each vector of global unknowns)
a new so-called global group must be introduced. The record GLOBAL_UNKNOWNS must be followed
by extra records defining the type numbers corresponding to the global unknowns according to:

glgrp i = type = t

if types number t positive and < 100 possibly followed by:

numdegfd = n

glgrp i type = t, defines the sequence number i of the global group and the corresponding type
number t of the elements corresponding to this group. Only one type number is permitted.

numdegfd = n defines the number of unknowns n coupled to this global group. This statement
may only be used if the type number t is between 1 and 99. If omitted and the type number
is in that range n = 1 is assumed.

If GLOBAL UNKNOWNS are defined it is necessary to introduce also the keyword
GLOBAL ELEMENTS to specify where the global unknowns are defined.
For an example of the use of global unknowns the user is referred to the manual Standard Problems,
Sections 7.1.9 and 7.1.11.

UM PROBLEM January 2013 3.2.2.28

3.2.2.8 The subkeyword GLOBAL ELEMENTS

The subkeyword GLOBAL ELEMENTS must be used to specify the region to which the global
unknown is coupled. The corresponding elements are used to compute the extra rows and columns
in the matrix and right-hand side. The following extra records are required

gelm2 = curves ([shape = k,] c1 to c2)

gelm3 = surfaces (s1 to s2)

gelm4 = volumes (v1 to v2)

gelm5 = all

gelmi = curves (shape = k, c1 to c2) Means that the unknown(s) corresponding to global element
group i are defined on the curves c1 to c2. The shape number indicates what type of elements
are used in the building of the matrix or right-hand side. k=1 refers to linear line elements,
k=2 to quadratic line elements. These elements are necessary to evaluate the integrals that
are used to compute rows and columns in the matrix corresponding to the global unknowns.
This option is at this moment only available for two and three-dimensional regions containing
surface or volume elements.

gelmi = surfaces (s1 to s2) Means that the unknown(s) corresponding to global element group
i are defined on the surfaces s1 to s2.
This option is at this moment only available for three-dimensional regions containing volume
elements.

gelmi = volumes (v1 to v2) Means that the unknown(s) corresponding to global element group
i are defined on the volumes v1 to v2.
This option has not yet been implemented

all Means that the unknown(s) corresponding to global element group i are defined on the complete
domain.
This option has not yet been implemented

UM PROBLEM January 2013 3.2.2.29

3.2.2.9 The subkeyword GLOBAL RENUMBERING

If global unknowns are introduced one usually uses less boundary conditions than in the case
without global unknowns. It is common practice that the global unknowns are introduced to prevent
prescribing unknown boundary conditions. In the standard case the unknowns are numbered in
the sequence: standard unknowns, followed by global unknowns. However, in some cases it may
be possible that the sub-matrix created by the standard unknowns only, is itself singular. The
global unknowns are used to make the matrix non-singular. Unfortunately, the linear solver does
not use pivoting, and when using the profile solver first the standard matrix is decomposed. If the
corresponding sub-matrix is singular this leads to an error message about a small pivot and either
the process stops or the result is very inaccurate. In order to solve this problem it is necessary
to perform a kind of renumbering. In general it is sufficient to replace each row and column
corresponding to a global unknown by a row and column of a corresponding standard internal
unknown, preferably the last one corresponding to the global unknown.
In order to activate such a renumbering it is necessary to introduce the keyword
GLOBAL RENUMBERING. It must be followed by data records prescribing which unknowns must
be interchanged in sequence with the global unknowns.
The data records have the following structure:

DEGFDi, DEGFDj, ...

This means that the ith physical unknown with the largest sequence number is interchanged with the
first global unknown and the jth physical unknown with the largest sequence number is interchanged
with the second global unknown and so on. Hence of all the physical unknowns with sequence
number i, the one with the highest number (after renumbering) is the one that is interchanged with
the first global unknown.
For an example of the use of GLOBAL RENUMBERING see the manual Standard Problems Section
7.4 and 7.4.1.

UM PROBLEM January 2013 3.2.2.30

3.2.2.10 The subkeyword FICTITIOUS UNKNOWNS

The subkeyword FICTITIOUS UNKNOWNS is meant for the use of the fictitious domain method.
This is a special free surface method.
In this case it is necessary to define extra unknowns on a special curve of surface. This curve or
surface is supposed to be part of a structure, which moves inside a fluid.
On the curve or surface, points are defined with corresponding extra unknowns. These unknowns
act as so-called Lagrangian multipliers and are meant to connect the velocities of structure and
fluid. These Lagrangian multipliers can not be regarded as usual unknowns, since for each multi-
plier a constraint is given. The constraint is of course that the velocity of structure and fluid are
equal. Such a constraint can not be implemented by standard finite elements, but requires a special
approach. For that reason it is necessary to define fictitious unknowns and corresponding elements.
For each fictitious unknown (or in case it is a vector of unknowns: for each vector of fictitious
unknowns) a new so-called fictitious group must be introduced. The record FICTITIOUS_UNKNOWNS

must be followed by extra records defining the type numbers corresponding to the fictitious un-
knowns according to:

fictgrp i = type = t

if types number t positive and < 100 possibly followed by:

numdegfd = n

fictgrp i type = t, defines the sequence number i of the fictitious group and the corresponding type
number t of the elements corresponding to this group. Only one type number is permitted.

numdegfd = n defines the number of unknowns n coupled to this fictitious group. This statement
may only be used if the type number t is between 1 and 99. If omitted and the type number
is in that range n = 1 is assumed.

If FICTITIOUS UNKNOWNS are defined it is necessary to introduce also the keyword
FICTITIOUS ELEMENTS to specify where the fictitious unknowns are defined.
For an example of the use of fictitious unknowns the user is referred to the manual Standard
Problems, Sections 7.4 and 7.4.1.

UM PROBLEM January 2013 3.2.2.31

3.2.2.11 The subkeyword FICTITIOUS ELEMENTS

The subkeyword FICTITIOUS ELEMENTS must be used to specify the region to which the fic-
titious unknown is coupled. The corresponding elements are used to compute the extra rows and
columns in the matrix and right-hand side. The following extra records are required

felm2 = curves (c1 to c2), description

felm3 = surfaces (s1 to s2), description

felmi = curves (c1 to c2) Means that the unknown(s) corresponding to fictitious element group
i are defined on the curves c1 to c2. description defines how the Lagrange multipliers must
be positioned and to what structural and fluid groups they are related.

felmi = surfaces (s1 to s2) Means that the unknown(s) corresponding to fictitious element group
i are defined on the surfaces s1 to s2.
description has exactly the same meaning as for curves.

The following options for the description part are available:

multiplier_shape = i, structure_group = j, fluid_groups = i1 to i2

These keywords have the following meaning:

multiplier shape = i defines the shape of the position of the multipliers in the curves or surfaces.
At this moment it is assumed that the multipliers points are always Gaussian integration
points. i defines the number of multiplier points per structural element per direction. Hence
if i=2 this means for curves that there are 2 points per element and for surfaces that there
are 4 points per element. Elements on a curve or surface is implicitly defined by the elements
on the structural part. If the structural part consists of surfaces, then we use curves, if they
consist of volume element, we use surfaces.
Default value: 1

structure group = j defines the corresponding structural elements.
This part must always be given

fluid group = i1 to i2 defines the fluid elements in which the structural elements are positioned.
The precise location may vary in each time step.
This part must always be given

UM PROBLEM January 2013 3.2.2.32

3.2.2.12 The subkeyword SKIP ELEMENTS

The subkeyword SKIP ELEMENTS indicates that certain elements as indicated by the data records
must be skipped while creating the large matrix and vector. In order to avoid singular matrices
automatically all unknowns that are only positioned in elements to be skipped will be considered
as prescribed. Hence these unknowns are added to the list of essential boundary conditions.
The following data records are available to describe which elements must be skipped:

inner_obstacle i

on_obstacle i and curves (cj to ck)

These records have the following meaning:

inner obstacle i All elements of the fixed mesh that are completely within the obstacle with
sequence number i are skipped.

on obstacle i and curves (cj to ck) All elements of the fixed mesh that consists of nodes that
are either partly within the obstacle (or on the boundary of the obstacle) or are on the curves
with sequence numbers between i and j are skipped. Moreover, at least one of the nodes must
be in the obstacle and one of the nodes must be on the curves.
So actually it concerns the elements that are partly within the obstacle but with all points
outside the obstacle on one of the curves cj to ck.
These elements bridge the space between obstacle and boundary.

UM PROBLEM January 2013 3.2.2.33

3.2.2.13 The subkeyword REORDER

The subkeyword REORDER has the shape
REORDER [LEVELS] i1, i2, (i3, i4, i5), i6 (optional)
or
REORDER plast.
With this command the user can influence the internal numbering of the unknowns. In the standard
case all unknowns are ordered internally in the sequence of the (possibly reordered) nodal points.
Hence, first all unknowns of nodal point 1, then all unknowns of nodal point 2. etcetera.

Using the command REORDER the user may change this sequence.

If the numbering i1, i2, (i3, i4, i5), i6 is used this means that first all unknowns i1 are numbered for
all nodes, then all unknowns i2 for all nodes, then the unknowns i3, i4 and i5 in that sequence for
all nodes, followed by all unknowns i6 and finally all other unknowns.

So we get the sequence:

i1 (node 1), i1 (node 2), ... , i1 (node npoint),
i2 (node 1), i2 (node 2), ... , i2 (node npoint),
i3 (node 1), i4 (node 1), i5 (node 1), i3 (node 2),
i4 (node 2), i5 (node 2), ... , i5 (node npoint),
i6 (node 1), i6 (node 2), ... , i6 (node npoint),
i7 (node 1), i8 (node 1), etc.

So the sequence of the unknowns given after REORDER is used, where unknowns given between
brackets are treated as one cluster. All unknowns not given are also treated as a cluster. With
unknowns we mean physical unknowns if defined and otherwise degrees of freedom.

Remark: This numbering is only used for the internal unknowns in the solution array and the large
matrix. The numbering of other vectors, the element subroutines or the output is not influenced
by this statement.

The option LEVELS performs the above numbering per level, where level is a SEPRAN defined
cluster of nodal points. So first all unknowns for the first level are numbered, then for the second
level and so on.
The definition of LEVEL in SEPRAN is as follows:

Find the neighbor of nodal point 1 with the highest nodal point number. If the nodal points are
renumbered internally, the renumbered sequence is used. All nodes with sequence number at
least equal to this neighbor belong to level 1.

Find all neighbors of the present level that do not belong to a level itself. All nodes with sequence
number at least equal to the neighbor with maximal number belong to the next level. This
process is repeated until no nodes are left.

In case the mesh consists of linear elements levels 1 and 2 are clustered to one new level 1.

The option reorder levels is meant for so called mixed problems that must be solved in the in-
tegrated form, this is without applying special algorithms to delete the mixed character like for
example penalty methods, pressure correction or Uzawa schemes. In case a direct solver is applied
REORDER LEVELS is more or less necessary, see the manual STANDARD PROBLEMS. For an
iterative solution method, both LEVELS and REORDERED LEVELS may be applied. Experi-
ments indicate that in this case to REORDERED LEVELS may give the best performance.

REORDER plast is a special option, that is meant for fluid problems, with coupled velocity and
pressure degrees of freedom. If this option is used, the unknowns are ordered in the sequence, first
all velocity degrees of freedom and then all pressure degrees of freedom.
In case of simple-type methods, this option is mandatory.

UM PROBLEM January 2013 3.2.2.34

3.2.2.14 The subkeywords NUM LEVELSET and LEVELSET

With respect to using the level set method there are a number of keywords available in the PROB-
LEM input block. It concerns the main keywords treated in this subsection as well as the subkey-
words in the parts referring to boundary conditions.
Description of the main keywords:

NUM LEVELSET = k (optional)
Defines the number of level set functions that are used to define boundary conditions and
so on. The level set functions itself are defined as solution vectors, the corresponding sets
get sequence numbers 1 to num_levelset. The combination of level set sequence number
and level set function is defined in the command make_levelset_mesh in the structure block
(3.2.3.18).
At this moment only the values 0 and 1 for k have been implemented.
Default value: k = 0

LEVELSET i = data (optional)
defines which part of the mesh corresponding to level set sequence number i is taken into
account.
data may consist of one of the following keywords:

ALL

POSITIVE_PART

NEGATIVE_PART

Meaning of these keywords

ALL means that all nodes are used in the mesh. In fact this keyword is superfluous.

POSITIVE PART means that only points where the corresponding level set function φi has
non-negative values are taken as computational domain. All points with negative value
of φi are not used in the solution of equations. Therefore the values in the corresponding
nodes are unchanged.

NEGATIVE PART has the same meaning as POSITIVE PART but now for the opposite
sign.
Default value: ALL

UM PROBLEM January 2013 3.2.2.35

3.2.2.15 The subkeyword PERIODICAL BOUNDARY CONDITIONS

The subkeyword PERIODICAL BOUNDARY CONDITIONS indicates that periodical boundary
conditions will be prescribed. Must be followed by data records of the type:

[location part] [definition part]

in arbitrary order. The location part has the following shape

POINTS (Pk, Pl)

CURVES [l] (Cj Cm])

SURFACES (Sj Sm]), [EXCLUDE (Ci, Cj, Ck, ...)] or

[EXCLUDE all]

These options have the following meaning

POINTS (Pk, Pl) indicates that periodical boundary conditions are defined in user points Pk
and Pl.

CURVES l (Cj Cm)] indicates that periodical boundary conditions are defined on the curves
Cj and Cm. Both curves must have the same number of nodes. In case a curve must
be considered in reversed order a minus sign must be used. Periodical bc’s are defines on
opposite nodes. The parameter l has the same meaning as in Section (2.2) under the heading
MESHCONNECT. Usually this parameter may be neglected.

SURFACES (Sj Sm)] connects nodes on the surfaces Sj and Sm. It is necessary that both
surfaces have the same number of nodes and elements and exactly the same topology.
The option EXCLUDE = (..), excludes the boundaries indicated between the brackets from
the connection. If ALL is chosen the complete outer boundary is excluded. If curves are given
explicitly then only those curves are excluded. Only the curves at the ”left” surface Sj must
be given, those at surface Sm are excluded in exactly the same way, since the surfaces have
the same topology.

The definition part has the following shape:

DEGFD k [,DEGFD l [, DEGFD m]], [CONSTANT = c], [FACTOR = f]

This part may be repeated several times on the next lines with different degrees of freedom, factors
or constants. In that case it refers to the last location part used.
For example

degfd = 1, constant = 0, factor = 1

degfd = 2, constant = 0, factor = 2

DEGFDj indicates that the jth degree of freedom will be coupled. Hence DEGFD1, DEGFD3
indicates that the first and third degree of freedom in the corresponding nodal points are
coupled, hence we have periodical boundary conditions for these unknowns.

constant = c defines the constant c in the case of boundary conditions of the type ψr = fψl + c.
Default value c = 0.

factor = f defines the constant f .
Default value f = 1.

If constant and factor are omitted we are dealing with pure periodical boundary conditions.

Remarks: f 6= 1 is only permitted for real solution vectors. The complex case has not yet been
implemented!
Examples of the use of these boundary conditions can be found in the manual Standard Problems,
Sections 3.1.9, 3.1.10 and 3.5.2.

UM STRUCTURE April 2014 3.2.3.1

3.2.3 The main keyword STRUCTURE

The block defined by the main keyword STRUCTURE defines which actions should be performed
by program SEPCOMP. In fact this block defines the complete structure of the main program.

STRUCTURE should only be used if the standard options for the solution of a linear problem or
non-linear problem do not suffice. In the block STRUCTURE it is precisely described which vectors
and scalars are created, how they are created and in which sequence. STRUCTURE contains a
number of commands which internally refer to separate subroutines. Each of these subroutines
requires input. The input for these specific subroutines is defined in separate input blocks. Each
of these blocks may be provided with a local sequence number as described in Section 3.2. The
commands in STRUCTURE may refer to these sequence numbers. The block defined by the main
keyword STRUCTURE starts with the command STRUCTURE at a separate record and ends with
the keyword END on another separate record. In between commands may be given in any sequence
and on separate records. However, the commands itself are carried out in exactly the sequence
as given in this block. This means that the user himself is responsible for the correctness of the
sequence of the commands. The only check that is performed is that vectors and scalars that are
used as input have already been filled before.

STRUCTURE makes it possible with a number (100) of vectors (solutions and so on) as well as a
number (1000) of scalars.
Each of them has a sequence number.
In the sequel the vector with sequence number i will be denoted by Vi and the scalar with sequence
number j by Sj.

The block STRUCTURE consists of a series of commands that may be repeated. Besides the
commands STRUCTURE recognizes the a number of structures which are treated at the end of
this section. The number of command types in the block STRUCTURE is relatively large. For that
reason we have split these commands in this manual in a number of groups, however, commands
of the various groups may be interchanged without any problem. The block itself has the following
structure
(options are indicated between the square brackets ”[” and ”]”):

STRUCTURE

a list of commands, each starting on a new line and carried out in the

sequence given

END

Commands may be repeated and given in any order. However, they are executed in exactly the
sequence given in the block which means that this sequence defines the complete program and
hence must be logical. So it is for example necessary to prescribe the boundary conditions first and
then to solve the system of linear equations, since otherwise the effect of the essential boundary
conditions to the solution is not present and the solution may be undefined.

The following types of commands are available:

• commands to prescribe boundary conditions or to create a vector. (3.2.3.1)

• commands to solve systems of equations (linear, non-linear or time-dependent). (3.2.3.3)

• commands to compute quantities that can be derived from previously computed vectors, for
example compute derivatives or integrals. (3.2.3.6)

• commands for special computations, like the computation of eigenvalues or the computation
of a contact problem or the solution of an inverse problem. (3.2.3.7)

• commands to control the output to the output files used by a postprocessor (3.2.3.8)

UM STRUCTURE April 2014 3.2.3.2

• commands to manipulate vectors or scalars, including copying and mapping, and changing
the problem. (3.2.3.9)

• print commands. (3.2.3.12)

• plot commands. (3.2.3.13)

• commands to read vectors from or write to a file.
This may be a user file or the standard sepran backing storage files. (3.2.3.14)

• commands for mesh manipulation, like refine the mesh, or writing of a mesh. (3.2.3.15)

• commands for interpolation. (3.2.3.16)

• commands to manipulate obstacles. (3.2.3.17)

• commands to use the level set method. (3.2.3.18)

• A special command to give the user the opportunity to carry his own fortran statements.
This may be for example for special output, but also to perform a complete computation.
(3.2.3.19)

• auxiliary commands, like changing the structure of the matrix or changing the coefficients
and so on. (3.2.3.20)

• Special commands related to certain types of equations. Examples are special commands for
the time-dependent Navier-Stokes equations. (3.2.3.21)

Besides these specific commands, also a number of loop commands as for example for, time_loop
and while can be used. (3.2.3.23) In Subsection (3.2.3.22) the defaults are described, which are
used if no structure block can be found.

A typical input for structure may have the following shape:

structure

prescribe_boundary_conditions, potential

solve_nonlinear_system, potential

output

end

It always starts with the keyword structure and ends with the keyword end.
This input corresponds to a standard non-linear potential problem and is strictly speaking super-
fluous. It assumes that in the constants input block (See Section 1.4 the name potential has been
added to the list of vector_names. Instead of %potential also a sequence number (for example 1)
may be used, but this option is not recommended because it is less readable. Vector names defined
in the computational program are also available in the postprocessing.
The sequence numbers in this example refer to the sequence numbers of the input blocks, where the
input for this specific part can be found. This is meant for the case that there are more statements
with the same type of action, however, with different input blocks. If omitted the default sequence
number is used, usually 1.

This example carries out the following actions:

1. The essential boundary conditions as described in the input block essential boundary conditions

are applied to the vector with name potential. The rest of the vector is set equal to 0.

2. The system of non-linear equations as described in the input block ,nonlinear_equations

is solved. The vector with name potential is used as start vector, and the final solution is
stored in that same vector.

UM STRUCTURE April 2014 3.2.3.3

3. The resulting vector is written to the file sepcomp.out in order to be used by the program
SEPPOST. If there is extra information to be written, this is described in the input block
output.

Next we shall describe each of these groups in detail

UM STRUCTURE April 2014 3.2.3.4

3.2.3.1 commands to prescribe boundary conditions or to create a vector

The following commands are available:

PRESCRIBE_BOUNDARY_CONDITIONS vector_name [options]

CREATE_VECTOR vector_name [options]

CREATE_FORCE_VECTOR vector_name [options]

VECTOR vector_name = [options]

Mark that the input file is case insensitive except for texts between quotes. Hence the use of capitals
in the previous part is only to emphasize the commands. Meaning of the various commands:

PRESCRIBE BOUNDARY CONDITIONS vector_name [options]
With this command the vector with name vector_name is provided with essential boundary
conditions.
The result of this operation is that vector vector_name has been filled or changed.

For a description of the options, see 3.2.3.2

CREATE VECTOR vector_name [options]
is used to create the vector vector_name explicitly. This vector may be used as initial esti-
mate for a non-linear problem, just to prescribe the essential boundary conditions, but also
to be used in the definition of coefficients for a differential equation.
Exactly the same options as for PRESCRIBE BOUNDARY CONDITIONS are available. The
only differences are that FUNC = k refers to function FUNC as described in the INTRO-
DUCTION Section 5.5.4. and that sequence number s refers to the input block ”CREATE”
(3.2.10) with sequence number s.

VECTOR vector_name [options]
is similar to CREATE VECTOR. However, it must have the form:

vector vector_name = xxx, options

where xxx is either a constant or an expression, which can be a scalar or a vector expres-
sion. The vector expression may only contain vectors that have been defined before including
x_coor, y_coor, z_coor and coor.
The following options are available:

PROBLEM = p

TYPE = t

CURVES = (Ci, Cj, Ck)

SKIP_ELEMENT_GROUPS = (s1, s2, ...)

DEGFD j

Meaning of the various options:

PROBLEM = p defines the problem number.
Default value: 1

TYPE = t indicates that the vector is a vector of special structure, with sequence number
t.
Default value: solution vector

CURVES = (Ci, Cj, Ck) defines the curves for which the vector is defined.
Default value: the whole region

SKIP ELEMENT GROUPS = (s1, s2, ...) defines element groups to be skipped.
Default value: none

UM STRUCTURE April 2014 3.2.3.5

DEGFD j means that only the j-th degree of freedom is filled.
Default value: the complete vector

CREATE FORCE VECTOR vector_name [options]
The command create force vector creates a right-hand side vector without the effect of the
essential boundary conditions.
One can use this command for example if one wants to translate a distributed load to a nodal
point load. Since the result is a vector with the same structure as the solution and right-hand
side, this vector may be added to or subtracted from other vectors.
The following options are available

SEQ_COEF = s

PROBLEM = p

LINEAR_SUBELEMENTS

Information about the coefficients for the differential equation and natural boundary con-
ditions is read in the input block ”COEFFICIENTS” (3.2.6) with sequence number c as
indicated by seq coef = c.
After that the right-hand-side vector is built, using the coefficients as described in the first
step. The effect of essential boundary conditions is not taken into account.
The result of the operation is that vector vector_name has been filled with the right-hand
side vector.

The various options have the following meaning:

seq coef = c defines the input block for the coefficients.
Default value: 1.

problem = p defines the problem sequence number to be used for creation of right-hand
side.
Default value: 1.

linear subelements ensures that quadratic elements are treated as a cluster of linear ele-
ments. For example a 6-node triangle is locally subdivided into 4 3-node triangles. The
right-hand side is built with these linear elements.
Default value: no subdivision.

3.2.3.2 Options corresponding to the keyword prescribe boundary conditions

The following options are available

VALUE = v

FUNC = k

POINTS = (Pi, Pj, Pk)

CURVES = (Ci, Cj, Ck)

SURFACES = (Si, Sj, Sk)

PROBLEM = s (Default 1)

SEQUENCE_NUMBER = s (Default the next one)

QUADRATIC, MAX = a, MEAN_VALUE = v, BOUNDARY_LAYER_WIDTH = b,

DIFFERENCE = delta_T

HALF_QUADRATIC, MAX = a

POINTS = (Pi, Pj, Pk)

CURVES = (Ci, Cj, Ck)

SURFACES = (Si, Sj, Sk)

ZERO_LEVELSET i

OLD_VECTOR = m

SEQ_VECTORS = V1, V2, ...

UM STRUCTURE April 2014 3.2.3.6

Meaning of the various options:

SEQUENCE NUMBER = s may only be used if none of the other options is used. This is
meant for complicated cases. The boundary conditions are prescribed as described in the
input block ”ESSENTIAL BOUNDARY CONDITIONS” (3.2.5) with sequence number s. If
the vector already exists the values of the vector are changed, otherwise the vector is set equal
to zero before applying the essential boundary conditions.
If sequence number = s is omitted implicitly the next sequence number is assumed. Hence in
the first ”call” of prescribe boundary conditions sequence number 1 and so on.

All other options For all other options the user is referred to Section (3.2.10).

Besides the options mentioned in this section, also the options provided in Section (3.2.10) under
functional description, degrees of freedom, and location part are allowed.

UM STRUCTURE April 2014 3.2.3.7

3.2.3.3 commands to solve systems of equations

The following commands are available:

SOLVE_LINEAR_SYSTEM vector_name [options]

SOLVE_NONLINEAR_SYSTEM vector_name [options]

SOLVE_TIME_DEPENDENT_PROBLEM vector_name [sequence_number = s]

Meaning of the various commands:

SOLVE LINEAR SYSTEM options
The command solve linear system performs actually three independent steps.
Firstly information about the coefficients for the differential equation and natural boundary
conditions is read in the input block ”COEFFICIENTS” (3.2.6).
In the next step the matrix and right-hand-side vector is built, using the coefficients as de-
scribed in the first step. Finally the system of linear equations is solved by the linear solver.
Information about the solution process is read in the input block ”SOLVE” (3.2.8) with se-
quence number s as indicated by seq solve = s.
Before applying the command solve linear system it is necessary that the essential boundary
conditions have already been filled into the solution vector vector_name. This may be done
in several ways:

• By applying the command prescribe boundary conditions to vector_name

• By applying the command create vector to vector_name

• By creating vector_name through another operation like a previous solve.

Of course the vector vector_name at input must correspond to problem p. vector_name must
be of the type solution vector.
The result of the total operation is that vector_name has been filled with the solution of a
linear differential equation.

For a description of the options, see 3.2.3.4

SOLVE NONLINEAR SYSTEM vector_name [options]
The command solve nonlinear system is comparable to the command
solve linear system. However, in this case a non-linear system of equations is solved by an
iteration process. In each step of the iteration process coefficients are filled, systems of equa-
tions are built and a system of linear equations is solved.
Before applying the command solve nonlinear system it is necessary that at least the essential
boundary conditions have already been filled into the solution vector vector_name. Usually
the iteration process expects that a complete initial estimate has been filled in vector_name.
vector_name may be filled in the same way as described for the linear problems.
The result of this operation is that vector_name has been filled with the solution of a non-
linear differential equation.

For a description of the options, see 3.2.3.5

SOLVE TIME DEPENDENT PROBLEM vector_name [sequence number = s]
The command solve time dependent problem is comparable to the command
solve linear system. However, in this case a time dependent problem is solved, which implies
that a time integration is applied. Vector vector_name must contain the initial condition at
t = t0 and the solution is computed at t = tend. This computed solution is again stored in
the vector and hence replaces the initial condition. It is possible to write intermediate results
to the file sepcomp.out for postprocessing purposes.
Information about the time dependent problem to be solved, as well as how this problem must
be solved is given in the input block TIME INTEGRATION (3.2.15) with sequence number

UM STRUCTURE April 2014 3.2.3.8

s. This block may not be omitted.
Vector vector_name must have been filled before with the initial condition and will be filled
afterwards with the solution at the end time given in the input block TIME INTEGRATION.
If n coupled time-dependent equations are solved it is assumed that the corresponding vectors
are the vectors vector_name and the next n− 1 vectors that are defined in the list of vector
names.

UM STRUCTURE April 2014 3.2.3.9

3.2.3.4 Options corresponding to the keyword solve linear system

The following options are available

PROBLEM

SEQ_SOLVE

SEQ_COEF

DEFECT_CORRECTION

LINEAR_SUBELEMENTS

REACTION_FORCE

FEM_VECTOR

FEM_PRECONDITIONING

KEEP_MATRIX

DESTROY_MATRIX

REUSE_MATRIX

KEEP_VECTOR

DESTROY_VECTOR

REUSE_VECTOR

ISEQ_RHS

TRANSFORM_BOUNDARY_CONDITIONS

The various options have the following meaning:

vector name defines the name of the solution vector.

seq coef = c defines the input block for the coefficients.
If omitted implicitly the next sequence number is assumed.

problem = p defines the problem sequence number to be used for creation of right-hand side and
matrix.
If problem = p is omitted implicitly the next sequence number is assumed.

seq solve = s defines the input block for the linear solver.
If omitted implicitly the next sequence number is assumed.

defect correction indicates that a defect correction method as described in Section 3.2.8 is ap-
plied.

linear subelements ensures that quadratic elements are treated as a cluster of linear elements.
For example a 6-node triangle is locally subdivided into 4 3-node triangles. The matrix is
built with these linear elements. Of course this option influences the type of approximation
and hence the accuracy.
Mark that this option can only be applied if the number of degrees of freedom per point is
constant.

reaction force = Vi indicates that reaction forces must be computed. These reaction forces are
stored in a vector with name Vi.
The reaction force is defined in the following way:
suppose that the degrees of freedom are split in a part of prescribed degrees of freedom up
and a part of free degrees of freedom uf . Then the system of equations can be written as:[

SffSfp
SpfSpp

] [
uf
up

]
=

[
rf
rp

]
(3.2.3.1)

where S is the matrix and r the right-hand side.
Since the essential boundary conditions are prescribed only the part Sffuf = rf − Sfpup is
solved. The part Spfuf + Sppup = rp is usually not satisfied. This would only be the case if

UM STRUCTURE April 2014 3.2.3.10

we have a no-flux boundary condition instead of an essential boundary condition.
The difference between left-hand side and right-hand side represents the flux through the
boundary of the region where we have essential boundary conditions. This flux is denoted by
the term reaction force and is defined as the vector[

0
Spfuf + Sppup − rp

]
(3.2.3.2)

Hence the reaction force is only non-zero in points with prescribed boundary conditions. For
those points it defines the flux through the boundary. For example in case of a Reynolds
element for lubrication this is exactly the flow.

If the user is only interested in the part Spfuf + Sppup, i.e. without subtraction of the right-
hand side he must use reaction_force = -Vi, hence the vector name Vi is provided with a
minus sign.

Remark: another possibility to compute the reaction forces is as a derived quantity. See the
input for derivatives (3.2.11).

fem vector = V i This option makes only sense in the case that a spectral element mesh is used as
well as the option fem_preconditioning. In that case the iterative solver starts by solving the
finite element problem on the corresponding finite element mesh consisting of linear elements
and using the same nodes as in the spectral mesh. This solution is used as initial approximation
for the conjugate gradient solver. If the option fem_vector = Vi is given, the result of finite
element solver is stored in the vector with name V i, otherwise this result is destroyed.

fem preconditioning This option makes only sense in the case that a spectral element mesh is
used. It indicates that the spectral problem is solved iteratively by a conjugate gradient
method using a so-called finite element preconditioner. This preconditioner is based on the
matrix corresponding to the finite element mesh consisting of linear elements and using the
same nodes as in the spectral mesh. Of course the number of elements in the finite element
mesh is much larger than in the spectral mesh.
The use of the fem preconditioner is only possible if the matrix structure is based on the
finite element grid and not on the spectral element grid. in order to get this structure, it is
necessary to define mesh=fem_mesh in the input block MATRIX, see 3.2.4.
Mark that the iterative solution of the spectral problem is much more efficient both with
respect to time as memory than the direct solution, especially for three-dimensional problems.
For such problems the fem preconditioning is more or less necessary.

iseq rhs = j If this option is used the right-hand side vector is stored in the vector with name j.
Hence this vector may be used throughout the program.

keep matrix Indicates that the matrix must be kept instead of destroyed after solving the system
of equations.
Default value: destroy matrix.

destroy matrix Indicates that the matrix must be destroyed after solving the system of equations.
Default value: destroy matrix.

reuse matrix Indicates that the prior matrix must be reused. In case of a direct solver, the LU-
decomposition of this matrix is reused.
Of course this option makes only sense if the matrix is kept at a prior call.
Default value: do not reuse.

keep vector Indicates that the vector must be kept instead of destroyed after solving the system
of equations.
Default value: destroy vector.

destroy vector Indicates that the vector must be destroyed after solving the system of equations.
Default value: destroy vector.

UM STRUCTURE April 2014 3.2.3.11

reuse vector Indicates that the prior vector must be reused. In case of a direct solver, the LU-
decomposition of this vector is reused.
Of course this option makes only sense if the vector is kept at a prior call.
Default value: do not reuse.

iseq rhs = Vi Indicates that the right-hand side vector already exists. The vector with name Vi

is used as rhs vector.

transform boundary conditions or transform bc makes only sense in the case of local transfor-
mations.
Suppose that the boundary conditions are filled in the original (for example Cartesian) form.
In the linear solver we expect them to be given in the transformed form. With this statement
the boundary conditions are transformed to the local coordinate system.
This statement may be of use inside a time loop, since after a solve step the solution is always
transformed back into the global coordinate system.
Default: no transformation.

UM STRUCTURE April 2014 3.2.3.12

3.2.3.5 Options corresponding to the keyword solve nonlinear system

The following options are available

sequence_number

problem

reaction_force

maxiter

print_level

at_error

miniter

iteration_method

accuracy

seq_coef

criterion

The various options have the following meaning:

sequence number = s is used, in complicated situations, which means that the standard options
are not suitable. It refers to information about the coefficients for the differential equation
and natural boundary conditions. This information is given in the input block ”NONLINEAR
EQUATIONS” (3.2.9) with sequence number s. This block also contains information about
the linear solver to be applied. If sequence number = s is omitted implicitly the next one is
assumed.
sequence number may only be used in combination with reaction force and problem. All other
keywords exclude the use of sequence number.

problem = p defines the problem sequence number for which the non-linear system of equations
must be created and solved. If omitted, the next one is assumed.

reaction force = V i has exactly the same meaning as in the command solve_linear_system.
This reaction force is computed in each step of the iteration process. However, if a correction
is computed per step, like for example if newton is applied, then the reaction force does not
make sense and should not be computed.
The minus sign before V i is defined in the same way as in the case of solve_linear_system.
If this option is omitted, no reaction force is computed.

maxiter = m defines the maximum number of iterations that may be performed. If the number
of iterations reaches this maximum value and the accuracy has not been reached, an error
message is given and the program is terminated.

print level = p gives the user the opportunity to indicate the amount of output information he
wants from the iteration process. p may take the values 0, 1 or 2. The amount of output
increases for increasing value of p.

at error = e defines which action should be taken if the iteration process terminates because no
convergence could be found. Possible values are:

stop

resume

If stop is used the iteration process is stopped if no convergence is found, otherwise (resume)
means that control is given back to the main program and the result of the last iteration is
used as solution.

miniter = m defines the minimum number of iterations that have to be carried out.

iteration method = m defines the type of non-linear iteration method that is applied. Possible
values for m are:

UM STRUCTURE April 2014 3.2.3.13

standard

newton

standard means that a standard iteration method is applied: The process starts with a given
start vector u0 containing the boundary conditions. In each iteration Skuk+1 = fk is
solved, where the solution vector uk+1 also contains the given boundary conditions. The
matrix Sk and the right-hand-side vector fk may vary in each iteration step.

newton corresponds to the standard Newton (Raphson) method. This process is as follows:

start: given start vector u0

While not converged

Solve correction Sk δu = fk

Correct uk+1 = uk + δu

The correction in each step must satisfy homogeneous essential boundary conditions,
since otherwise the essential boundary conditions are changed in the correction step.

accuracy = ε defines the accuracy at which the iteration terminates, provided the minimum num-
ber of iterations has been performed. Accuracy has been reached if the difference between
two succeeding iterations is less than ε.

seq coef = s refers to the input block s for the coefficients. This defines the coefficients for the
non-linear differential equation.
Default: s = 1.

criterion = c defines the various types of criteria that can be used to terminate the iteration
process. For a description of the possible values of c, see Section 3.2.9
Default: c = abs.

UM STRUCTURE April 2014 3.2.3.14

3.2.3.6 commands to compute quantities that can be derived from previously com-
puted vectors

The following commands are available:

DERIVATIVES vector_name [seq_coef = c] [seq_deriv = s] [problem=p]

[scalar_name] [icheld = i] [input_vector = v] [ix = j]

[type_output = j] [points (pi, pk, ...)] [curves (ci, cj, ...)]

[surfaces (sk, sl, ...)] [zero_level_set i]

INTEGRAL scalar_name [seq_coef = c] [seq_integral = i] [vector_name]

[scal_min = m] [scal_max = n] [icheli = i] [active_level_set i]

[non_active_level_set i] [degfd i]

BOUNDARY_INTEGRAL, [seq_boun_integral = i] [vector_name] [scalar1= j]

[scalar2 = m] [scalar3 = n] [curves = (ci, cj, ck)]

[surfaces = (si, sj, sk)] [ichint = i]

Meaning of the various commands:

DERIVATIVES vector name [seq coef = c] [seq deriv = s] [problem=p] [scalar name]
For simple cases see (3.2.3.10).
The command derivatives may be used to create the vector vector_name as derived quan-
tity of previously constructed vectors. For many derived quantities it is necessary to define
coefficients which are used in the computation process. Consult the manual STANDARD
PROBLEMS to check if and which coefficients are required for a specific derived quantity.
These coefficients are defined by the input block ”COEFFICIENTS” (3.2.6) with sequence
number c. If seq coef = c is omitted it is assumed that no coefficients are needed.
Problem = p defines the problem sequence number that is used to compute the derived quan-
tities. If omitted the next one is assumed.
scalar_name must be used to indicate that the boundary integral to be computed, provided
one has to be computed, must be stored in the variable with name scalar_name

If this option is used, no vector name must be given.
Input concerning the derived quantities to be computed is defined in the input block ”DERIVA-
TIVES” (3.2.11) with sequence number s. If s is omitted the next one is assumed.
The result of this operation is that a vector vector_name has been created.
For an example, see Section 6.2.5.
All other options are described in Section (3.2.11).

INTEGRAL scalar name [seq coef = c] [seq integral = i] [vector name] [scal min = m] [scal max
= n] [icheli = i] [active level set i] [non active level set i] [degfd i]
For simple cases see (3.2.3.11).
The command integral may be used to compute scalar scalar_name as integral over vec-
tor vector_name. The sequence of integral and scalar name may be interchanged, hence
scalar_name = integral (options).
For some integrals it is necessary to define coefficients which are used in the integration pro-
cess. Consult the manual STANDARD PROBLEMS to check if and which coefficients are
required for a specific integral. These coefficients are defined by the input block ”COEFFI-
CIENTS” (3.2.6) with sequence number c. If seq coef = c is omitted it is assumed that no
coefficients are needed.
Input concerning the integral to be computed is defined in the input block ”INTEGRALS”
(3.2.12) with sequence number s. If s is omitted the next one is assumed.
scal min = m defines that if the minimum value over the element integrals must be computed,
then this minimum value should be stored in the scalar with name m. Whether the minimum
is computed is defined in the input block INTEGRALS.
scal max = n defines that if the maximum value over the element integrals must be computed,
then this maximum value should be stored in the scalar with name n. Whether the maximum

UM STRUCTURE April 2014 3.2.3.15

is computed is defined in the input block ”INTEGRALS”.
The result of this operation is that scalar_name has got a value and possibly the scalars m
and n too.
For icheli = i we refer to (3.2.12).
The options active_level_set i and non_active_level_set i indicate that the integra-
tion is carried out over the region where either the level set function is positive or negative.
For an example, see Section 6.2.5.

BOUNDARY INTEGRAL ,[seq boun integral = i] [vector name] [scalar1= j] [scalar2 = m]
[scalar3 = n]
For simple cases see (3.2.3.11).
The command boundary integral may be used to compute SCALAR j as an integral of
vector_name over (a part of) the boundary.
Input concerning the boundary integral to be computed is defined in the input block
”BOUNDARY INTEGRAL” (3.2.14) with sequence number s. If s is omitted the next one is
assumed.
If the integral to be computed is a vector then the second component is stored in SCALAR
m. In the same way the third component is stored in SCALAR n.
The result of this operation is that the SCALAR j has got a value and possibly the scalars
m and n too.
For all other parameters the user is referred to Section (3.2.14). For an example, see Section
6.2.5.

UM STRUCTURE April 2014 3.2.3.16

3.2.3.7 commands for special computations

The following commands are available:

COMPUTE_EIGENVALUES [options]

COMPUTE_CAPACITY vector_name [, sequence_number = k]

SOLVE_INVERSE_PROBLEM vector_name [, sequence_number = k]

COMPUTE_CONTACT_SURFACE [, sequence_number = k]

COMPUTE_PRINCIPAL_STRESSES [options]

COMPUTE_BUBBLE [options]

Meaning of the various commands:

COMPUTE EIGENVALUES , options
This command activates the computation of eigenvalues and eigenvectors.
The following options are available:

vector_name, scalar_name, sequence_number = k, problem = s, num_eigval = s

These options must be given on the same line.
The options have the following meaning:

sequence number = k The sequence number k refers to the input block EIGENVALUES
(3.2.18) in which it is defined how the eigenvalues and possibly eigenvectors must be
computed.

problem = s defines the problem number that must be used for the computation of the
eigenvalues.
Default value: 1

vector name defines the vector in which the first eigenvector must be stored. All other
eigenvectors are stored sequentially in the next vectors from the list defined in the part
vector_names.
Default value: 1

scalar name defines the scalar in which the first eigenvalue must be stored. All other
eigenvalues are stored sequentially in the next scalars from the list defined in the part
variables..
Default value: 1

num eigval = s defines the number of eigenvalues that must be computed.
Default value: 1

COMPUTE CAPACITY , options
This command activates the computation of the capacities of electrodes placed around an
object.
The following options are available:

vector_name, sequence_number = k

These options must be given on the same line.
The options have the following meaning:

sequence number = k The sequence number k refers to the input block CAPACITY (3.2.19)
in which it is defined how the capacities of the electrodes must be computed.
Default value: 1

vector name defines the vector in which the capacities must be stored.

UM STRUCTURE April 2014 3.2.3.17

SOLVE INVERSE PROBLEM , options
This command activates the computation of an inverse problem, which is a problem in which
a coefficient are unknown and must be computed using measured values.
The following options are available:

vector_name, sequence_number = k

These options must be given on the same line.
The options have the following meaning:

sequence number = k The sequence number k refers to the input block INVERSE PROBLEM
(3.2.20) in which it is defined how the inverse problem must be solved.
Default value: 1

vector name defines the vector in which the unknown coefficient must be stored.

COMPUTE CONTACT SURFACE , options
This command activates the contact algorithm.
The following options are available:

sequence_number = k

The sequence number k refers to the input block CONTACT (3.2.16) in which the contact
algorithm is defined.

COMPUTE PRINCIPAL STRESSES , options
This command activates the computation of the principal stresses from an already computed
stress tensor.
The following options are available:

STRESS_VECTOR_name

EIGENVALUES_name

EIGENVECTORS_name

SCALING

These options must be given on the same line.
The options have the following meaning:

STRESS VECTOR name defines the stress vector that is used to compute the principal
stresses. This stress tensor must have been filled before.

EIGENVALUES = j1 If the user wants to store the eigenvalues of the stress tensor per
node, vertex or element, depending on the storage in the stress tensor, he must add this
statement. The vector of eigenvalues is stored in the solution vector as a vector of special
structure with 2 or 3 degrees of freedom per node, vertex or element. EIGENVALUES_name
defines the vector name.
Default value: 0

EIGENVECTORS name If the user wants to store the eigenvectors of the stress tensor
per node, vertex or element, depending on the storage in the stress tensor, he must
add this statement. The vector of eigenvalues is stored in the solution vector as a
vector of special structure with 4 or 9 degrees of freedom per node, vertex or element.
EIGENVECTORS_name defines the vector name.
Default value: no eigenvectors are stored

SCALING If scaling is given in combination with EIGENVECTORS name, the eigenvectors
are multiplied by the corresponding eigenvalues. In fact this gives the usual set of
principal stresses.
Default value: no

UM STRUCTURE April 2014 3.2.3.18

Mark that at least one of the integers j1 and j2 must be unequal to zero.

COMPUTE BUBBLE , options
With this command you can compute the regions where the solution extends a given threshold.
The number of these bubbles is computed as well as the area of all these bubbles. If required
a plot of the bubbles can be made.
Available options (all in one line):

VECTOR_name

THRESHOLD = t

PLOT

COLOR = c

YFACT = y

TEXTX = ’..’

TEXTY = ’..’

DEGFD = d

FILENAME = ’...’

The options have the following meaning:

VECTOR name defines the vector that is considered.
Default value: first vector,

THRESHOLD = t defines the threshold value t. All values above this value belong to a
bubble.
Default value: 0

PLOT if used all bubbles are plotted with one color.
Default value: no plot

COLOR = c defines the sequence number of the color to be used in case a plot is made
(device dependent).
Default value: 10

YFACT = y defines the scaling of the y-coordinates in the plot.
Default value: 1

TEXTX = ’..’ gives the text to be plotted along the x-axis.
Default value: x

TEXTY = ’..’ gives the text to be plotted along the y-axis.
Default value: y

DEGFD = d defines the degree of freedom in the vector that is used to compute the bubble.
Default value: 1

FILENAME = ’...’ defines an output file containing for each output time a line containing
the number of bubbles, the time and the area of all these bubbles. This file is meant as
input file for matlab.
Default value: bubble.dat

UM STRUCTURE April 2014 3.2.3.19

3.2.3.8 commands to control the output to the output files used by a postprocessor

The following commands are available:

OUTPUT vector_name [sequence_number = s] [’file_name’]

NO_OUTPUT

Meaning of the various commands:

OUTPUT Vi [sequence number = s] [file = ’file name’]
The command OUTPUT forces the vector Vi and, depending on the definition in the input
block ”OUTPUT”, the next vectors, to be written to the file sepcomp.out for post-processing
purposes.
Information about what output should be written must be stored in the input block ”OUT-
PUT” (3.2.13) with sequence number s. If s is omitted the next one is assumed.
With the option file = ’file_name’, the user may indicate the name of the files to which
the information is written. For example if file_name = ’userfile’, then the information
is written to two files: userfile.inf and userfile.out.
These files can be used in program SEPPOST.
Default value: sepcomp

NO OUTPUT If the keyword OUTPUT is not present still some default output is written to the
file sepcomp.out. However, in case the keyword NO_OUTPUT is found, this output is suppressed
and no file sepcomp.out is filled.

UM STRUCTURE April 2014 3.2.3.20

3.2.3.9 commands to manipulate vectors or scalars, including copying and mapping

The following commands are available:

Vi [options]

Sj [options]

STRING = ...

COPY Vj Vk, degfd1 = l, degfd1 = m

COPY_COOR Vj, problem = p

CHANGE_PROBLEM Vj, problem = p

Meaning of the various commands:

Vi [options]
The command Vi computes the vector with name Vi by manipulating other vectors.
Which vectors are manipulated and how is defined by the options.

For a description of the options, see 3.2.3.10

Si options]
The command Si = .. computes Si by manipulation of vectors or scalars.
Which vectors are manipulated and how is defined by the options.

For a description of the options, see 3.2.3.11

STRING = makes the string at the left-hand side equal to the one on the right-hand side. The
string on the left-hand side must be a string from the set of strings given the input block
CONSTANTS. (See Section 3.4).
The right-hand side may consist of a number of strings but also reals, scalars or integers
separated by spaces. The values of the reals and so on are substituted at the moment the
string is created.
Example:
stringa = ’the value of alpha is ’ alpha

COPY V j V k, degfd1 = l, degfd2 = m
The command COPY copies the V j into V k.
If degfd1 = l, degfd2 = m is omitted the complete V j is copied into V k and V k gets exactly
the same structure as V j. V j must have been filled, V k may have been filled before, in which
case the contents are overwritten.

If at least one of degfd1 or degfd2 is given, then V j must have been filled before and V k must
have been created before. This means that actually V k has also been filled.
In this case the lth degree of freedom in each point of V j is copied in the mth degree of freedom
in each point of V k. The structure of array V k is kept.
Default values for l and m are 1, provided at least one of the two is given.

COPY COOR V j problem p
creates the vector Vj with exactly ndim degrees of freedom, for each point in the domain
defined by problem p, with ndim the dimension of space. In this vector the coordinates of
the mesh are stored.
If problem p is neglected, problem 1 is used. Usually this problem refers to the whole domain,
but for example if type number 0 is used for some submeshes, these parts of the domain are
skipped.

CHANGE PROBLEM V j problem p
With this command you may change the problem number of V j into number p. Use of this
command must be done with great care, since it may give unwanted effects.

UM STRUCTURE April 2014 3.2.3.21

3.2.3.10 Options corresponding to the keyword Vector name =

The following options are available:

MODULUS Vj [degfd k] MULTIPLY = [constant c]

PHASE Vj [degfd k] MULTIPLY = [constant c]

LENGTH Vj

SUBTRACT [constant c] [Sj]

MULTIPLY m

c1 Vj + c2 Vk

Vj * Vk

sign(Vj)

sign(Vk) * Vj

Vk / Vj

EXTRACT Vj DEGFD k

REAL Vj

IMAGINARY Vj

CONJUGATE Vj

FUNC Vj1 Vj2

INNER_PRODUCT Vj1 Vj2, degfd = i

MAP Vj, PROBLEM = p, TYPE = t

ELEMENT_GROUPS = (s1, s2, ...)

SKIP_ELEMENT_GROUPS = (s1, s2, ...)

Vj

MESH_VELOCITY (VECTOR1, VECTOR2)

INTEGRATED_TO_NODAL Vj

TRANSFORM_TO_NORMALDIR Vj, CURVES = (Ci, Cj, ...), SMOOTH_END_POINTS

STRESS_VECTOR Vj, CURVES = (Ci, Cj, ...)

DERIVATIVES (V1, S1, icheld = i, problem = p, seq_coef = s1,

seq_deriv = s2, type_output = j, points (pi, pk, ...),

curves (ci, cj, ...), surfaces (sk, sl, ...))

POLAR (Vj)

GRADient (Vj)

STREAM_FUNCTION (Vj, start_node = s, start_value = f)

RIGHT_HAND_SIDE, problem = p, seq_coef = i

These options have the following meaning:

MODULUS computes Vi as modulus of the complex vector Vj. If MULTIPLY is given Vi is
multiplied by the constant c. If DEGFD k is given only the DEGFDth degree of freedom per
point is taken into account.

PHASE computes Vi as phase of the complex vector Vj. If MULTIPLY is given Vi is multiplied
by the constant c. DEGFD k is given only the DEGFDth degree of freedom per point is
taken into account.

LENGTH computes the component-wise length of the vector Vi. For two-dimensional problems it
is supposed that the first two components of Vi per point must be used, for three-dimensional
problems the first three ones.
The result of this operation is given by

uout(i) = (| u1(i) |2 + | u2(i) |2 + | u3(i) |2)
1
2

per nodal point i, i.e. the Euclidean vector

SUBTRACT subtracts either the constant c or the scalar Sj from the vector Vi. If DEGFD k is
given only the DEGFDth degree of freedom per point is taken into account.

UM STRUCTURE April 2014 3.2.3.22

c1 Vj + c2 Vk computes Vi = c1 Vj + c2 Vk, where Vj and Vk are vectors and c1 and c2 are
either constants or scalars. One of the constants may be zero or not present and instead of a
plus sign also a minus sign may be used.
Both vectors V j and V k must be real or both must be complex. If DEGFD k is given only
the DEGFDth degree of freedom per point is taken into account.
Typical examples are

Vi = 10 * Vj - 3.5 * Vk

Vi = Vj - Vk

Vi = Vj + Vk

potential = 2 * potential + 3* temperature

Vi = Vj

The last example is identical to copying of a vector.

Vj * Vk creates a new vector with the same length as Vj and Vk defined by Vi(l) = Vj(l)*Vk(l)
for all l.

sign(Vj) creates a new vector with the same length as Vj defined by Vi(l) = sign(Vj(l)), where
sign is 0 if Vj(l) = 0.

sign(Vj) * Vk creates a new vector with the same length as Vj and Vk defined by Vi(l) =
sign(Vj(l))*Vk(l) for all l.

Vk / Vj creates a new vector with the same length as Vj and Vk defined by Vi(l) = Vk(l)/Vj(l)
for all l.

EXTRACT V j DEGFD k puts degree of freedom k of V j into a V i consisting of one unknown
in each point. It is supposed that the original vector has the degree of freedom in each point.

REAL V j computes Vi as real part of the complex V j.

IMAGINARY V j computes Vi as imaginary part of the complex V j.

CONJUGATE V j computes Vi as the complex conjugate of the complex V j.

INNER PRODUCT V j1 V j2 computes the V i as point-wise dot product of the vectors V j1
and V j2. This means that V j1 and V j2 must have the same number of degrees of freedom
per point. The result is a vector with one degree of freedom per point.
If degfd = i is given only the components 1 to i are used to compute the dot product per
point, if in that point there are more than i degrees of freedom.

FUNC V j1 V j2 computes the V i as function of the vectors V j1 and V j2. The function itself
must be defined by the user through the user subroutine FUNALG (real case) or FUNALC
(complex case) described in Section 3.3.1.

MAP V j, PROBLEM = p, TYPE = t maps the V i onto the V j. The V j may have a different
structure than V i. The structure of V j is defined by the problem number p (default value:
1) and the type t (default value: 0).
t = 0 means that V j is of the type of a solution vector,
t = k(> 0) means that V j is a vector of special structure of type k.
If the number of degrees of freedom in a point are different in both vectors, only the common
ones are copied.
t = k(< 0) means that V j is a vector of special structure defined per element. The number
of degrees of freedom per element is equal to −k. These degrees of freedom are computed by
computing the mean value per element, of the −kth degree of freedom in V i.

UM STRUCTURE April 2014 3.2.3.23

ELEMENT GROUPS = (s1, s2, ...) defines which element groups must be used to compute
the vector. Only element groups defined in the mesh generation part are used.
The default value for ELEMENT GROUPS is all element groups.
Of course this option can only be used in combination with other options. The keyword may
not be used in combination with SKIP ELEMENT GROUPS

SKIP ELEMENT GROUPS = (s1, s2, ...) defines which element groups must be skipped
when the vector is computed. The default value for SKIP ELEMENT GROUPS is skip no
element groups.
Of course this option can only be used in combination with other options. The keyword may
not be used in combination with SKIP ELEMENT GROUPS

V j , means that V i is a copy of V j.
For example u_old = u.

MESH VELOCITY (V1, V2) creates the mesh velocity vector defined by xn+1−xn

∆t , with xn

the coordinates at time level n and ∆t the time step.
V1 must be a vector containing the coordinates of the mesh at the new time level n+ 1 and
V2 at the prior time level n. It is sufficient if this vector is defined over the region where the
mesh velocity is required. In other words usually these vectors have to be defined over the
fluid domain only. The mesh velocity V i gets the same structure as the coordinate vectors
V1 and V2.

INTEGRATED TO NODAL Vj replaces the vector Vj which is supposed to be an integrated
quantity along the outer boundary to a vector Vi which is supposed to be defined per node.
A typical example is the reaction force, which is defined as a flux through the boundary and
hence as an integral over the derivative. After applying this command you get the nodal
point values of the flux along the boundary. This is done by multiplying by the inverse of the
boundary mass matrix.
This option may be combined with zero_level_set i if it should be carried out for all nodes
with level set function equal to zero. Otherwise the whole outer boundary is used.

TRANSFORM TO NORMALDIR Vj transforms the vector Vj which is defined in the usual
coordinates (usually Cartesian) into normal and tangential components along the curves de-
fined in the part CURVES. So in R2 the result is a vector of two components, the first one
the normal component the second one the tangential component, defined along these curves.
The value of Vi in other points is the same as the values of Vj.
If the option smooth_end_points is given it is checked if the first and last point of the curve
have values that differ much from the neighboring nodes. If so an extrapolation is used from
two neighboring points to compute the values in the end points. This option makes sense if
the value in the end point is due to an unwanted computation. For example if the the vector
is a reaction force it is possible that the value in an end point depends on two different curves,
both with essential boundary conditions. It is possible that the reaction force in that case
contains an influence of two different fluxes. Then smoothing may be an option.

POLAR Vj transforms the vector Vj from Cartesian coordinates to polar coordinates and stores
the result in Vi.

GRADient Vj computes the gradient of Vj in all nodes and stores the result in the vector Vi.
The first 4 letters of the keyword are significant, hence also GRAD may be used.

STREAM FUNCTION (Vj, options) computes the stream function of the incompressible
vector Vj.
the following options are available:

start_node = s

start_value = f

UM STRUCTURE April 2014 3.2.3.24

start node = s defines the starting node in which the start value is given.
Default value: 1

start value = f defines the corresponding start value.
Default value: 0

STRESS VECTOR Vj transforms the stress tensor Vj with 6 components per node to a vector
Vi with two (or three) components per node. The stress tensor is defined over the whole region.
The stress vector is zero everywhere except in the curves defined by the part CURVES. The
stress vector is defined as the dot product of the stress and the normal along the curves.
In order to get the normal and shear stress it is necessary to apply the transformation
transform_to_normaldir. Mark that in case of Navier-Stokes the stress tensor is defined
without the pressure contribution.

DERIVATIVES options computes Vi as derivative of vector Vj. The following options are
available:

Vj

Sk

icheld = i

problem = p

seq_coef = s1

seq_deriv = s2

ix = j

TYPE_OUTPUT = j

POINTS (P1, P2, ...)

CURVES (C1, C2, ...)

SURFACES (S1, S2, ...)

ZERO_LEVEL_SET i

Meaning of these options:

Vj defines the vector from which the derivative must be computed.

Sk must be used to indicate that the boundary integral to be computed, provided one has to
be computed, must be stored in the variable with name Sk

If this option is used, no vector name must be given.

problem = p defines the problem number for the output vector Vi.

seq coef = s1 For some derivatives it is necessary to define coefficients which are used in
the computation process. Consult the manual STANDARD PROBLEMS to check if and
which coefficients are required for a specific derivative. These coefficients are defined by
the input block ”COEFFICIENTS” (3.2.6) with sequence number c. If seq coef = c is
omitted it is assumed that no coefficients are needed.

seq deriv = s2 is only used in complex situations. It defines the input block for derivatives
as described in Section (3.2.11).
This parameter can not be used if icheld is given.

For all other options see Section (3.2.11).

RIGHT HAND SIDE, options creates a right-hand-side vector defined by the options. This
vector may be used for example in time dependent problems to add to an existing right-hand
side.
the following options are available:

problem = p

seq_coef = i

problem = p defines the problem number.
Default value: 1

UM STRUCTURE April 2014 3.2.3.25

seq coef = i defines the sequence number for the input block coefficients.
Default value: 0

UM STRUCTURE April 2014 3.2.3.26

3.2.3.11 Options corresponding to the keyword Scalar name =

The following options are available:

value

(func=k)

min (f1, f2, f3, ...)

max (f1, f2, f3, ...)

constant(i)

constant(sj)

sk(j)

expression

integral vi, options

boundary_integral vj, options

boundary_sum vj, options

xxx_norm (vk1, vk2) [degfd k]

average vj [degfd k]

dot_product, vector1 = vk1, vector2 = vk2 [degfd k]

min_max vj, [scal_max = i1] [coor_min = i2] [coor_max = i3] &

[abs_value] [degfd k]

extract_value vj, [node = i1], [user_point =i1], degfd k

mean_area

min_area

volume

point_number (zero_levelset i)

mean_value vi

standard_deviation vi

intersection_integral vi, degfdi, origin = (O_x,O_y), angle = a&

end_point=(e_x,e_y), length = l

element_groups = (s1, s2, ...)

skip_element_groups = (s1, s2, ...)

get_time

These options have the following meaning:

value If a value is given explicitly, the scalar gets this value.

FUNC=k gives the scalar the value FUNCSCAL (k, SCALARS), which means that it may be
a function of the other scalars.
See Section 3.3.2 for a description of FUNCSCAL.

min or max (F1,F2,F3,...) means that the scalar gets the minimum respectively maximum value
of F1, F2, F3 and so on. F1, F2, F3, .. may be either numbers or of the shape Sj, referring
to scalar j. Of course scalar j must have been given a value before.

constant(i) gives the scalar the value of the ith entry of the real or integer array constant which
has been declared in the block constants. i must be an integer value in the appropriate range.
Instead of i also Si may be used, where Si is a variable (scalar). The value of the Si is
evaluated at the moment the statement is carried out.
This construction is for example meant for a combination with a for loop.
See Section 6.2.12 for an example.

S(i) has exactly the same meaning as constant(i), however, instead of a real or integer array, a
scalar (variable) array is used.

UM STRUCTURE April 2014 3.2.3.27

expression means that the Scalar gets the value of the expression. This expression must satisfy
the rules of Section 1.4.
In this case not only constants but also scalars may be used in the expression. These scalars
are evaluated at the moment the statement is reached.

Examples are:

si = 3* b

sj1 = cos(Si + v)

INTEGRAL Vi, options computes Si as integral over the vector with name Vi.
The following options are available

seq_coef

seq_integral

scal_min

scal_max

icheli

active_level_set i

non_active_level_set i

degfd i

Meaning of these options

seq coef For some integrals it is necessary to define coefficients which are used in the inte-
gration process. Consult the manual STANDARD PROBLEMS to check if and which
coefficients are required for a specific integral. These coefficients are defined by the input
block ”COEFFICIENTS” (3.2.6) with sequence number c. If seq coef = c is omitted it
is assumed that no coefficients are needed.

seq integral In complicated cases the input concerning the integral to be computed must be
defined in the input block ”INTEGRALS” (3.2.12) with sequence number s.
Keywords of that input block may only be used if seq integral is omitted.

scal min = m defines that if the minimum value over the element integrals must be com-
puted, then this minimum value should be stored in the scalar with name m.

scal max = n defines that if the maximum value over the element integrals must be com-
puted, then this maximum value should be stored in the scalar with name n.

icheli defines the type of integral to be computed. This parameter is passed to the element
subroutines which decide which integral corresponds to the value s of ICHELI. With
respect to the standard elements provided by SEPRAN, it is necessary to consult the
manual Standard problems for the meaning of ICHELI in specific cases. If user elements
are defined (type numbers between 1 and 99), the parameter ICHELI is passed undis-
turbed to the element subroutine.
The default value for ICHELI is 1.

active level set i reduces the computation of the integral to the part where levelset i is
active as defined in the problem input part. This makes only sense in case a levelset
method is used.

non active level set i reduces the computation of the integral to the part where levelset i
is not active.

degfd i implies that the integral is computed for degree of freedom i only.
Default value: 0 (i.e. all degrees of freedom).

boundary integral Vj, options computes Si as boundary integral over the vector with name Vi.
The following options are available

UM STRUCTURE April 2014 3.2.3.28

seq_boun_integral = i

scalar1 = s

scalar2 = s

curves = (Ci, Cj, Ck)

surfaces = (Si, Sj, SCk)

degfd j

ichint = k

Meaning of these options

seq boun integral = s In complicated cases the input concerning the boundary integral to
be computed is defined in the input block
”BOUNDARY INTEGRAL” (3.2.14) with sequence number s.
Keywords of that input block may only be used if seq boun integral is omitted.

scalar2 = m If the integral to be computed is a vector then the second component is stored
in SCALAR m.

scalar3 = n In the same way the third component is stored in SCALAR n.

curves = (Ci, Cj, Ck) defines over which curves the integral must be computed. This
subkeyword may only be used in R2.

surfaces = (Si, Sj, Sk) defines over which surfaces the integral must be computed.

degfd j defines the degree of freedom per point that must be used to compute the integral
over the vector.
Default value: 0

ichint = k defines the type of integral to be computed. For a description see: (3.2.14).

boundary sum Vj, options computes Si as sum over the values of the vector with name Vi
over the boundary indicated. The same options as for bounday_integral may be applied,
except for ichint which has always the value 8.
This option is useful in the case of a reaction force. The sum of the reaction forces along a
boundary is equal to the flux through that boundary.

xxx NORM computes Si as norm of the difference V k1 − V k2. If only one vector V k1 is given,
the norm of this vector is computed. The value of xxx defines the type of norm to be used.
Possible values:

ONE NORM ‖ u ‖1=
N∑
i=1

| ui |, where u is either the vector V k1 or V k1− V k2.

This is equivalent to NORM1.

TWO NORM ‖ u ‖2=

(
N∑
i=1

u2
i

) 1
2

This is equivalent to NORM2.

INF NORM ‖ u ‖∞= max
1≤i≤N

| ui |
This is equivalent to NORM3.

MEAN ONE NORM ‖ u ‖= ‖u‖1
N

This is equivalent to NORM4.

MEAN TWO NORM ‖ u ‖= ‖u‖2
N

This is equivalent to NORM5.

If DEGFD k is given only the DEGFDth degree of freedom per point is taken into account.

AVERAGE computes Si as the average value of the V j. If DEGFD k is given only the DEGFDth

degree of freedom per point is taken into account.

DOT PRODUCT computes Si as the dot product of the vectors V k1 and V k2.

UM STRUCTURE April 2014 3.2.3.29

MIN MAX computes the minimum and maximum value of the V j. The minimum is stored in
the scalar i.
If SCAL_MAX = i1 is given the maximum is stored in the scalar Si1. If ABS_VALUE is given
the minimum and maximum of the absolute value of the entries of the vector is computed.
If COOR_MIN = i2 is given, not only the minimum is computed but also the co-ordinates for
which this minimum is reached. These co-ordinates are stored in the scalars with sequence
number i2, i2 + 1, ...i2 +NDIM − 1, with NDIM the dimension of the space.
If COOR_MAX = i3 is given, not only the maximum is computed but also the co-ordinates for
which this maximum is reached. These co-ordinates are stored in the scalars Si3 and the next
NDIM-1 scalars in the list of scalars, with NDIM the dimension of the space.

EXTRACT VALUE extracts the value of kth degree of freedom of the V j in the node i1 or the
user point i1 and stores this in the scalar Si.
Either node or user point must be used.

MEAN AREA computes the mean area of all elements.

MIN AREA returns the smallest area of all elements.

VOLUME returns the area of all elements.

POINT NUMBER (zero levelset i) returns with the node number of the node with zero
level set. This option makes only sense if the levelset method is used in R1.

MEAN VALUE Vi returns with the mean value of vector Vi. This may be combined with degree
of freedom given and zero levelset.

STANDARD DEVIATION Vi returns with the standard deviation of vector Vi. The same
possibilities as for mean value are present.

INTERSECTION INTEGRAL Vi options, computes the integral off the vector Vi over the
intersection of a 2d mesh with an intersection line defined by the options.
The following options are available:

degfdi

origin = (O_x,O_y)

end_point = (E_x,E_y)

angle = a

length = l

Meaning of these options:

degfd i defines the degree of freedom of vector Vi that must be used.
Default value: 1

origin = (Ox, Oy) defines the origin of the intersection line.
Default values: if O_x and O_y are known as constants or variables their values are used,
otherwise (0,0).

angle = a defines the angle of the line with respect to the positive x-axis.
Default value: if angle is known as constant or variable its value is used, otherwise 0.

end point = (Ex, Ey) defines the end point of the intersection line. If omitted the end point
is the final intersection of the line with the 2d mesh.
Default values: if E_x and E_y are known as constants or variables their values are used,
otherwise no end points are used.

length = l is an alternative for end_point. If available it defines the length of the intersec-
tion line.
This is an alternative for prescribing the end point.
Both keywords are mutually exclusive.

UM STRUCTURE April 2014 3.2.3.30

ELEMENT GROUPS = (s1, s2, ...) defines which element groups must be used to compute
the scalar. Only element groups defined in the mesh generation part are used.
The default value for ELEMENT GROUPS is all element groups.
Of course this option can only be used in combination with other options. The keyword may
not be used in combination with SKIP ELEMENT GROUPS

SKIP ELEMENT GROUPS = (s1, s2, ...) defines which element groups must be skipped
when the scalar is computed. The default value for SKIP ELEMENT GROUPS is skip no
element groups.
Of course this option can only be used in combination with other options. The keyword may
not be used in combination with SKIP ELEMENT GROUPS

GET TIME gives the scalar the value of the present time.

UM STRUCTURE April 2014 3.2.3.31

3.2.3.12 print commands

The following commands are available:

PRINT Sj1, Sj2, ... [text=’some text’], FILE = ’name_of_file’, APPEND

PRINT Vj [options]

PRINT ’text between quotes’, FILE = ’name_of_file’, APPEND

PRINT TIME

PRINT MESH [options]

WRITE_TO_FILE, APPEND

CLOSE_FILE

PRINT zero_levelset i, FILE = ’name_of_file’, APPEND

PRINT TIME_HISTORY Vj, FILE = ’name_of_file’, APPEND

PRINT_INTERSECTION V1, options

APPEND

Meaning of the various commands:

PRINT Sj1, Sj2, ... [text=’some text’]
The command PRINT Sj1, Sj2, ... prints the value of Sj1, Sj2, ... to the output file. If text
is given it should be followed by some text between quotes. This text is used to identify the
scalar to be printed in the following way:

text = Sj1, Sj2, ...

where Sj1 denotes the value of Sj1. If FILE = ’name_of_file’ is given the output is written
to the file with the name indicated by ’name_of_file’.
If append is given the output is appended to this file, otherwise writing starts at the beginning
of the file and prior contents are lost.

PRINT Vj [options]
The command PRINT Vj prints the value of Vj to the output file. The following options are
available:

text = ’t’

region = (xmin,xmax,ymin,ymax,zmin,zmax)

points = p1, p2, p3, ...

curves = c1, c2, cn, ...

surfaces = s1, s3, s5, ...

volumes = v1, v2, v6, ...

zero_levelset i

nodes = (i,j,k,...)

min_value = ..

max_value = ..

degfd = k

normal_component

tangential_component

suppress_coordinates

suppress_header

suppress_zeros

suppress_nodes

sequence = (y)

type_coordinates = c

type_format = i

equidistant_grid, distance = (dx, dy, dz)

file = ’name_file’

UM STRUCTURE April 2014 3.2.3.32

file_format = form

append

These options have the following meaning:

text should be followed by some text between quotes. This text is used to identify the vector
to be printed.
If omitted the name of the vector as defined in the block constants (vector names) is
used.

region If this option is used only the points within the region
xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax are printed.

points followed by Pi, Pj, Pk, ... ensures that the printing of the solution is restricted to
the user points given in the list.

curves followed by Ci, Cj, Ck, ... ensures that the printing of the solution is restricted to
the curves given in the list.

surfaces followed by Si, Sj, Sk, ... ensures that the printing of the solution is restricted to
the surfaces given in the list.

volumes followed by Vi, Vj, Vk, ... ensures that the printing of the solution is restricted to
the volumes given in the list.

zero levelset i means that only nodes in the interface with level set function value 0 are
printed.

nodes = (i, j, k,...) prints values in the given nodal points only.

min value = c prints only the values larger than or equal to c.

max value = c prints only the values which are at most equal to c.

degfd defines which degree of freedom must be printed. If omitted all degrees of freedom in
the points requested are printed.

normal component may only be used if curves or surfaces is given. Furthermore there must
be at least ndim unknowns in each point at the boundary to be printed, where ndim is
the dimension of space. In that case the normal component at the boundary is computed
and printed. The vector from which the normal component is computed consists of the
degrees of freedom 1, 2 and 3 (or 1 and 2 in R2) in each point, except if degfd is given,
in which case the degrees of freedom degfd, degfd+1 and degfd+2 are used.

tangential component has the same meaning as normal component, however, now with
respect to the tangential component.

suppress coordinates suppresses the printing of the co-ordinates in the output.

suppress header suppresses the printing of the header.

suppress zeros prints only in the points where the solution is non-zero.

suppress nodes suppresses the printing of the node numbers.

sequence defines the ordering of the nodal points.
If no sequence is given the co-ordinates are ordered in increasing x-sequence and for
constant x-value in increasing y-sequence. If sequence = (y) is given, then first increasing
y-sequence and then increasing x-sequence is used (2D) or the sequence y, z, x in 3D.
Sequence = (z) creates the sequence z, y, x (3D only).
Sequence = (n) uses the sequence of the nodal point numbers rather than sorting the
output.

type coordinates defines the type of coordinate system to be used, when printing the co-
ordinates.
Possible values for c are

Cartesian a Cartesian coordinate system is used.

UM STRUCTURE April 2014 3.2.3.33

Polar the coordinates are translated to a polar system (r, φ).
This option can only be used in R2.

Default value: Cartesian

type format defines the type of format to be used when printing.
If i = 1 (default value), all reals are printed in 5 decimal digits, if i = 2 8 decimal digits
are used.
i = 3, 4 has the same meaning as i = 1, 2 respectively, however, in this case each node
starts on a new line.

equidistant grid is only available for print commands that are defined on the whole region,
not for the boundary.
When this command is used, the solution is interpolated to an equidistant grid defined
by (xmin,xmax) × (ymin,ymax) × (zmin,zmax) and step size (dx,dy,dz).
The interpolated function is printed.
Hence in this case both the options REGION = (xmin, xmax, ymin, ymax, zmin, zmax)

and DISTANCE = (dx, dy, dz) are obligatory.

file = ’name file’ if this option is found, the output is written to a file named name_file.
This name must be given between quotes.

append has only meaning in case the output is written to a file. In that case the contents
of the file are not destroyed but the new output is appended to the existing output.

file format = form defines the format in which the file is written. There are two options
for form:

standard

matlab

standard the default value, gives the standard type of output.

matlab gives the output in a format that makes it suitable for reading in matlab.

Remarks:
The options points, curves and surfaces are mutually exclusive.
The options normal component and tangential component are also mutually exclusive. They
may only be used in combination with the option curves or surfaces.

PRINT ’text between quotes’
The command PRINT prints the text between the quotes to the output file.
Also in this case the options file = ’file_name’ and append may be used.

PRINT TIME May be used to print the time in a time-dependent problem. In this way it is
clear at what time level the scalars, vectors and so on are printed.

PRINT MESH options
With this command you can print information of mesh related quantities. This requires
knowledge of the data structure as described in the Programmer’s Guide.
Possible options (one at a time):

TOPOLOGY prints the topology of the mesh.

NODE ELEMENTS prints all elements connected to each node.

NODE NODES prints all node connected to each node.

NEW NUMBERING prints the new nodal point numbering.

PART H prints the contents of kmesh part h (see Programmer’s Guide).

POIN CUR SUR prints the node numbers of user points, curves and surfaces.

ELEMENT ELEMENTS prints all elements connected to each element.

LEVELS prints the nodes in each level.

SUB CUR SUR prints all subcurves of curves and all subsurfaces of composite surfaces.

UM STRUCTURE April 2014 3.2.3.34

IINPUT RINPUT prints the arrays iinput and rinput.

PART T prints the contents of kmesh part t (see Programmer’s Guide).

PART U prints the contents of kmesh part u (see Programmer’s Guide).

PART V prints the contents of kmesh part v (see Programmer’s Guide).

PART W prints the contents of kmesh part w (see Programmer’s Guide).

PART X prints the contents of kmesh part x (see Programmer’s Guide).

PART Z prints the contents of kmesh part y (see Programmer’s Guide).

PART Y prints the contents of kmesh part z (see Programmer’s Guide).

COOR prints the coordinates of the nodes.

EDGE NODES prints all nodes of each edge.

ELEMENT EDGES prints all edges of each element.

NODE EDGES prints all edges connected to each node.

VOLUME SURFS prints all surfaces connected to each volume.

EDGE ELEMENTS prints all elements connected to each edge.

ELEMENT FACES prints all faces connected to each element.

FACE EDGES prints all edges of each face.

FACE ELEMENTS prints all elements connected to each face.

FACE NODES prints all nodes of each face.

NODE FACES prints all faces connected to each node.

BLOCKINFO prints the contents of array blockinfo.

OUTER CUR SUR prints all outer curves or surfaces respectively.

SURF NODES prints all nodes of each surface.

NORMALS prints the outer normals.

OUTER BOUN prints the outer boundary.

GROUP NODES prints all nodes of each element group.

GROUP INFO prints element group information.

EDGE FACES prints all faces connected to each edge.

QUANTITIES print special quantities stored for the mesh.

WRITE TO FILE ’name of file’, indicates that all print output is printed to the file name of file
(name between quotes) from the moment this statement is reached.

CLOSE FILE Once this statement is reached the active file is closed and the standard output is
active again.

PRINT time history Vi Prints the time history of the vector with name Vi. If file = name_of_file

is given the output is written to the file name of file (name between quotes).
The positions in which the time history are printed are must be given in the statement
TIME HISTORY (3.2.3.23).

PRINT zero levelset i Prints the nodal points followed by the coordinates of the nodes at the
interface defined by level set function zero. If FILE is given, the output is printed to the file
with name name_of_file extended with a sequence number.

PRINT INTERSECTION Vi computes the intersection of a 2d mesh with a straight line and
interpolates the vector Vi to the intersection points.
The following options are available:

UM STRUCTURE April 2014 3.2.3.35

degfd i

origin = (O_x, O_y)

end_point = (E_x,E_y)

angle = a

length = l

file = ’file_name’

append

The options file = ’file_name’ and append have the standard meaning. The other options
mean:

degfd i defines the degree of freedom of vector Vi that must be used.
Default value: 0, i.e. all degrees of freedom are printed.

origin = (Ox, Oy) defines the origin of the intersection line.
Default values: if O_x and O_y are known as constants or variables their values are used,
otherwise (0,0).

angle = a defines the angle of the line with respect to the positive x-axis.
Default value: if angle is known as constant or variable its value is used, otherwise 0.

end point = (Ex, Ey) defines the end point of the intersection line. If omitted the end point
is the final intersection of the line with the 2d mesh.
Default values: if E_x and E_y are known as constants or variables their values are used,
otherwise no end points are used.

length = l is an alternative for end_point. If available it defines the length of the intersec-
tion line.
This is an alternative for prescribing the end point.

APPEND has only meaning if printing to a file is used, either by using file = ... or write_to_file.
if present the contents of the file are kept and the new output is written at the end of the
existing file.

UM STRUCTURE April 2014 3.2.3.36

3.2.3.13 plot commands

The following commands are available:

PLOT_VECTOR [options]

PLOT_TENSOR [options]

PLOT_CONTOUR [options]

PLOT_COLOURED_LEVELS [options]

PLOT_FUNCTION [options]

PLOT_BOUNDARY [options]

PLOT_MESH [options]

PLOT_INTERSECTION [options]

PLOT_TIME_HISTORY [options]

PLOT_3D [options]

OPEN_PLOT

CLOSE_PLOT

PLOT zero_levelset i

EXTEND_AXI_SYMMETRIC_MESH [options]

Meaning of the various commands:

PLOT VECTOR , options (all in one line) Indicates that a vector plot of the solution must be
made. This is only possible in 2D and if the solution vector contains at least 2 degrees of
freedom per point. The following options are available:

Vi

REGION = (xmin, xmax, ymin, ymax)

YFACT = y

FACTOR = f

DEGFD1 = i1, DEGFD2 = i2

ZERO_LEVEL_SET

Meaning of these options:

Vi defines the name of the solution vector to be plotted.
Default value: the first vector in the list of vector names.

region = (xmin, xmax, ymin, ymax) If this option is given, it restricts the area to be plotted
to the region defined by (xmin, xmax)× (ymin, ymax).
Default value: the whole region is plotted.

yfact = y defines the multiplication factor to be used in y-direction of the plots. This pa-
rameter should only be used in case the length-width ratio is far from 1.
Default value: yfact = 1.

factor = f defines the multiplication factor to be used to multiply the length of the arrows.
If omitted, the program computes this length itself, however, in some applications this
is not the the one you would like to have. If factor=0, the factor is computed by the
program.
Default value: factor = 0.

degfd1 = i1, degfd2 = i2 define the sequence numbers of the degrees of freedom to be used
for the vector plot.
Default value: degfd1 = 1, degfd2 = degfd1+1.

ZERO LEVEL SET indicates that the zero level set curve is plotted. This makes only
sense if the level set method is applied.

UM STRUCTURE April 2014 3.2.3.37

PLOT TENSOR , options (all in one line) Indicates that a tensor plot of the solution must be
made. This is only possible in 2D and if the tensor contains at least 4 degrees of freedom per
point.
The tensor is plotted by making a vector plot of the first two components and a vector plot of
the third and fourth component in the same picture. This option makes sense in combination
with COMPUTE_PRINCIPAL_STRESSES, since then the principal stresses are plotted.
The following options are available:

Vi

REGION = (xmin, xmax, ymin, ymax)

YFACT = y

FACTOR = f

DEGFD1 = i1, DEGFD2 = i2, DEGFD3 = i3, DEGFD4 = i4

Meaning of these options:

DEGFD3 = i3, DEGFD4 = i4 define the components of the second vector to be plotted.
All other parameters have exactly the same meaning as in PLOT_VECTOR.

PLOT CONTOUR , options (all in one line) Indicates that a contour plot of one of the compo-
nents of the solution must be made. The following options are available:

Vi

REGION = (xmin, xmax, ymin, ymax, zmin, zmax)

YFACT = y

DEGFD=i

MINLEVEL = m1

MAXLEVEL = m2

NLEVELS = n

TEXT = ’...’

ZERO_LEVEL_SET

levels = (l1, l2, ...)

color = j

Meaning of these options:

Vi defines the name of the solution vector to be plotted.
Default value: the first vector in the list of vector names.

region = (xmin, xmax, ymin, ymax, zmin, zmax) If this option is given, it restricts the area
to be plotted to the region defined by (xmin, xmax)× (ymin, ymax)× (zmin, zmax).
Default value: the whole region is plotted.

yfact = y defines the multiplication factor to be used in y-direction of the plots. This pa-
rameter should only be used in case the length-width ratio is far from 1.
Default value: yfact = 1.

degfd = i defines the sequence number of the degree of freedom from which a contour plot
must be made.
Default value: degfd = 1.

MINLEVEL = m1 defines the minimum level of the contour lines.
Default value: computed automatically.

MAXLEVEL = m2 defines the maximum level of the contour lines.
Default value: computed automatically.

NLEVELS = n defines the number of contour lines.
Default value: 10.

ZERO LEVEL SET indicates that the zero level set curve is plotted. This makes only
sense if the level set method is applied.

UM STRUCTURE April 2014 3.2.3.38

LEVELS = (l1, l2, ... ln) defines the contour levels.

color = j defines the sequence number of the color to be used for the contour lines.

TEXT = ’text’ defines the text to be plotted below the picture. The text must be put
between quotes.
Default value: name of vector.

PLOT COLOURED LEVELS , options (all in one line) Indicates that a colored levels plot of
one of the components of the solution must be made.
The options are exactly the same as for PLOT_CONTOUR

PLOT FUNCTION , options
A 1d function along a curve or set of curves is plotted. The following options are available:

Vi

curves (cj1, cj2, ...)

degfd i

textx

texty

Meaning of these options:

Vi defines the name of the solution vector to be plotted.
Default value: the first vector in the list of vector names.

curves (cj1, cj2, ...) defines the set of curves along which the solution vector must be
plotted. The curves are used as x-axis, the solution as y-axis.
Default value: c1.

degfd i defines the point-wise, degree of freedom, of the solution vector.
Default value: 1.

textx Defines the text to be plotted below the x-axis.
Default value: actual curve numbers.

texty Defines the text to be plotted along the y-axis.
Default value: name of the vector.

PLOT BOUNDARY , options
Indicates that the boundary of the region must be plotted. The following options are available:

REGION = (xmin, xmax, ymin, ymax)

YFACT = y

Meaning of these options:

region = (xmin, xmax, ymin, ymax) If this option is given, it restricts the area to be plotted
to the region defined by (xmin, xmax)× (ymin, ymax).
Default value: the whole region is plotted.

yfact = y defines the multiplication factor to be used in y-direction of the plots. This pa-
rameter should only be used in case the length-width ratio is far from 1.
Default value: yfact = 1.

PLOT MESH , options
Indicates that the mesh must be plotted. The following options are available:

REGION = (xmin, xmax, ymin, ymax)

YFACT = y

EYEPOINT = (e_1, e_2, e_3)

ORIENTATION = i

UM STRUCTURE April 2014 3.2.3.39

MARK_NODES

NODE_NUMBERS

ELEMENT_NUMBERS

INNER_CURVES

OUTER_CURVES

NO_CURVES

Meaning of these options:

region = (xmin, xmax, ymin, ymax) If this option is given, it restricts the area to be plotted
to the region defined by (xmin, xmax)× (ymin, ymax).
Default value: the whole region is plotted.

yfact = y defines the multiplication factor to be used in y-direction of the plots. This pa-
rameter should only be used in case the length-width ratio is far from 1.
Default value: yfact = 1.

EYEPOINT = (e1, e2, e3) Has the same meaning as in the plot command for mesh gener-
ation. See Section (2.2).

ORIENTATION = i Has the same meaning as in the plot command for mesh generation.
See Section (2.2).

MARK NODES If used all nodal points are marked with a cross.

NODE NUMBERS If used all nodal points are provided with the node number.

ELEMENT NUMBERS If used all nodal elements are provided with the element number.

INNER CURVES If used only the inner curves are plotted.

OUTER CURVES If used only the outer curves are plotted.

NO CURVES If used only the no curves are plotted.
Default: all curves are plotted.

PLOT INTERSECTION vector name options makes an intersection of the two-dimension
region with a straight line and interpolates the vector with name vector name onto this inter-
section. A one-dimensional plot of the interpolated function is made. The following options
are available:

degfd=i

textx = ’..’

texty = ’..’

origin = (O_x,O_y)

angle = a

degfd=i defines the degree of freedom that is used for plotting.
Default value: 1.

textx = ’..’, texty = ’..’ defines the text that is plotted along the x-axis and the y-axis
respectively.
Default values: ’x’ and ’y’.

origin = (Ox, Oy), angle = a defines the intersection line. The starting point is defined by
the coordinates Ox, Oy and the angle with respect to the x-axis is defined by a.
Default values: (Ox, Oy) = (0,0) and a=0.

PLOT TIME HISTORY vector name, options makes a one-dimensional plot of the time his-
tory of the vector with name vector name. The positions in which the time history are plotted
are must be given in the statement TIME HISTORY (3.2.3.23). The following options are
available:

colors

legenda

UM STRUCTURE April 2014 3.2.3.40

Meaning of these options

colors = i1, i2, ... defines the set of colors to be used for plotting of the various curves.

legenda = (x1,y1), (x2,y2), ... defines a set of coordinates to be used in the legenda to
couple a color to a position.
Default: no legenda.

PLOT 3D vector name options makes a 3d plot of two-dimensional function defined by the
vector vector name. The following options are available:

degfd=i

text = ’t’

Meaning of these options

degfd=i defines the degree of freedom of the function that is used for plotting.
Default value: 1.

text = ’t’ defines the text that is used as bottom text.
Default value: name of the vector.

PLOT zero levelset i plots the curve defined by level set function zero (R2 only).
The options with respect to curves as in plot mesh are also applicable.

OPEN PLOT All plots between the commands open_plot and close_plot are drawn in one
picture.

CLOSE PLOT See open_plot.

EXTEND AXI SYMMETRIC MESH, options may be used in case of an axi-symmetric
(2d) problem. This command creates an extra mesh with nodes and elements that are the
same as the original mesh plus ones that are mirrored around the symmetry axis.
This command is meant to make it possible to plot a symmetric picture on both sides of the
symmetry axis. The following options are available:

input_mesh = i

output_mesh = j

Meaning of these options

input mesh = i defines the mesh number of the mesh to be extended.
Default value: 1

output mesh = i defines the mesh number of the extended mesh.
Default value: 2

The mesh numbers for input and output mesh must be different, but in standard applications
there is no need to give either of them.

Once the command extend_axi_symmetric_mesh has been used, each plot may be extended
to the complete domain by adding the subkeyword axi_symmetric to these plot commands.
So you may get both pictures in the r-z domain for r >= 0 as well as pictures on the the
whole domain.

UM STRUCTURE April 2014 3.2.3.41

3.2.3.14 commands to read vectors from or write to a file

The following commands are available:

WRITE_VECTOR Vj [options]

READ_VECTOR Vj [options]

INPUT_VECTOR Vj, ’file_name’, type_of_vector

READ_SOLUTIONS

Meaning of the various commands:

WRITE VECTOR Vj, options
may be used to write vector Vj to backing storage (file 2). This command is meant for reusing
the solution in another program (in general not for post-processing). If this command is used
the block defined by the main keyword START must have been used. In this block the option

DATABASE = d

with d new or old must have been given.
The following options are available:

sequence_number = i

save_administration

sequence number = i , defines the sequence number to which the array must be written.
If omitted the vector is written to the next free sequence number and this number is
printed.

save administration forces the administration of the backing storage file to be renewed
at the file. If program sepcomp finishes without an error message the administration
is written automatically to the file. However, if some error occurs it may be possible
that the administration is not saved. As a consequence the arrays written may be not
recognized in a subsequent program. For that reason the option save administration
forms an extra security.

READ VECTOR Vj, options
may be used to read the contents of an array from backing storage (file 2) into vector Vj. If
this command is used the block defined by the main keyword START must have been used.
In this block the option

DATABASE = old

must have been given and the array to be read must have been stored. Furthermore this array
must correspond to the present mesh.
The following options are available:

sequence_number = i

sequence number = i defines the sequence number from which the array must be read. If
omitted the array with the highest sequence number in the backing storage file is read.

INPUT VECTOR V j, file = ’file name’ [type of vector]
Indicates that a vector with name V j must be read from the file with name file name. Mark
that the quotes around the file name are essential in order to indicate that a literal text must
be read.
type of vector indicates the type of the vector that is read.
The following values for type of vector are available:

UM STRUCTURE April 2014 3.2.3.42

scalar The vector contains one unknown per point

vector The vector contains exactly ndim (= dimension of the space) unknowns per point.

tensor The vector is of the type symmetric tensor. In R1 this means 1 unknown per point,
in R2 3 unknowns per point, and in R3 6 unknowns per point.

number=n The vector contains exactly n degrees of freedom in each point.

element wise The vector contains exactly one degree of freedom per element.

The default value is scalar.

The file from which the data must be read must be an ASCII file containing the vector to be
read in the sequence:
degrees of freedom of node 1, degrees of freedom of node 2 and so on.
Hence first all degrees of freedom of the first node (in natural sequence) then of second node
etc. The nodes are read in the sequence of the mesh, hence the input must be given in the
sequence of the mesh nodes.
The numbers are read according to standard FORTRAN free format, i.e. the number of
numbers per line is arbitrary. No texts are allowed in this file, not even comments.

READ SOLUTIONS This keyword may only be used if the keyword INPUT_SEPCOMP_OUT is
present in the input block START. See Section (3.2.1).
It reads a set of solution vectors at a certain time, from the input sepcomp.out file.
If this keyword is found, the next set of solution vectors corresponding to one time level is
read. If the time parameter t corresponding to this set is smaller than the actual time, this
set is skipped and a new set is read. This process is repeated until the actual time is not
larger than the time in the input file. After reading the actual time is set to the time found
in the input file sepcomp.out.

UM STRUCTURE April 2014 3.2.3.43

3.2.3.15 commands for mesh manipulation

The following commands are available:

DEFORM_MESH [options]

CHANGE_COORDINATES [, sequence_number = k]

REFINE_MESH [options]

PRESENT_MESH = i

INTERCHANGE_MESH = (i,j)

WRITE_MESH [options]

READ_MESH i [options]

COPY_MESH i to j

COMPARE_MESH [options]

INTERSECTION LINE [options]

INTERSECT_MESH [options]

MOVE_BOUNDARY [options]

Meaning of the various commands:

DEFORM MESH , options
If this command is given the coordinates of the mesh are changed using the displacement
stored in the solution vector, possibly multiplied by a scaling factor.
The following options are available:

Vk, scale = s

These options must be given on the same line.
The options have the following meaning:

V k defines the name of the vector in which the displacement vector is stored.
Default value: the first vector in the list of vector names.

scale = s defines the multiplication vector to be used.
Hence the new coordinates are given by:

x = x + s u (3.2.3.3)

with x the coordinate vector, u the displacement vector and s the scaling factor.
Default value: 1

CHANGE COORDINATES sequence number = k.
This command may be used to change the coordinates of the mesh. The default sequence
number is 1.
It requires an input block of the form:

change_coordinates, sequence_number = k

...

end

sequencenumber = k is optional. If omitted the next sequence number is used.
At the place of the dots the actual input is expected. This input is completely identical as
the input described in Section 2.2
If no input block is found all coordinates are used and the parameter FUNC CHAN is set
equal to 1.
Besides the extra input block also a subroutine FUNCCOOR as described in Section 2.2.1
must be provided to the main program.

UM STRUCTURE April 2014 3.2.3.44

REFINE MESH , options If this option is used the mesh must be refined globally.
At most 5 different meshes may be present in SEPCOMP.
The following actions are performed when REFINE MESH is found:

• The mesh is refined and stored as a mesh with sequence number MESH OUT

• All solution vectors and vectors of special structure defined per point are interpolated
from the mesh with sequence number MESH IN to the mesh with sequence number
MESH OUT.

• Not only the mesh is refined, also the corresponding problem description and matrix
structures are recomputed.

• If MESH IN and MESH OUT have different numbers, all information of both meshes is
stored. If these numbers are identical the information of the coarse mesh is destroyed.
This means that each vector does not only have a sequence number but also a mesh
sequence number. Two vectors V1 with different mesh sequence numbers are stored as
separate vectors and can both be addressed.

• The new mesh sequence number is set equal to MESH OUT. This means that all next
computations are carried out at the new mesh, until the mesh sequence number is
changed.

The following options are available:

TIMES = n

MESH_IN = m1

MESH_OUT = m2

SEQUENCE_NUMBER = i

These options have the following meaning:

TIMES = n indicates that the mesh must be refined n times. Each refinement implies
doubling of the number of points in each direction.
Default value 1.

MESH IN = m1 m1 defines the sequence number of the mesh to be refined. This number
must be between 1 and 5.
Default value 1.

MESH OUT = m2 m2 defines the sequence number of the refined mesh. This number
must be between 1 and 5.
m1 and m2 may be equal, in which case the information about the coarse mesh is lost.
Default value 1.

SEQUENCE NUMBER = i refers to the sequence number of the input block REFINE
3.2.21.
If this block is used it is also possible to define the other parameters in the REFINE
block, rather than in the STRUCTURE block.
Default value 1.

PRESENT MESH = i sets the mesh sequence number equal to i. i must be in the range 1 to 5.
All next next computations are carried out at the new mesh, until the mesh sequence number
is changed. Of course the mesh corresponding to i must exist.

INTERCHANGE MESH = (i, j) means that the sequence numbers of the meshes with se-
quence number i and j are switched. If for example mesh 1 is the coarse mesh and mesh 2
the fine one, then interchange_mesh = (1,2) gives the coarse mesh sequence number 1 and
the fine mesh sequence number 2. This operation does not take computation time, nor does
it use any storage. It is meant to make programming more easy.
An example of the use of this option can be found in Example 6.2.4.
Default value (1,2).

UM STRUCTURE April 2014 3.2.3.45

WRITE MESH , options
indicates that the present mesh must be written to a file in the standard meshoutput format.
The following options are available:

FILE = ’file_name’

FILE = ’file name’ defines the name of the file to which the information must be written. If
the file already exists the file is overwritten. After writing the mesh, the file is closed.
Default value: meshoutput

READ MESH i, options
indicates that a new mesh must be read from a file in the standard meshoutput format. The
mesh is stored as mesh number i.
The default value for i is 1.
The following options are available:

FILE = ’file_name’

problem = p

Meaning of these options:

FILE = ’file name’ defines the name of the file from which the information must be read
After reading the mesh, the file is closed.
Default value: meshoutput
j defines the sequence number of the mesh in which the mesh is read.

problem = p defines how the problem definition for the new mesh must be defined.
Possibilities:

default

old

none

Meaning of these options:

none indicates that no problem definition is coupled to the mesh read.

default indicates that a default problem definition is used.

old Copies the problem definition from the old mesh to the new mesh read.

The default value is problem = old.

COPY MESH i to j copies mesh with sequence number i into sequence number j.

COMPARE MESH [options] compares two meshes and checks if they are identical.
The following options are available:

mesh1 = i

mesh2 = j

These quantities define the mesh sequence numbers of the meshes to be compared.
Default values: mesh1 = 1, mesh2 = 2.

INTERSECTION LINE [options] computes the intersection of a line with a curve and stores
the result in a scalar.
The following options are available:

curve Ci

origin = (o_x,o_y)

angle = alpha

scalar_name

UM STRUCTURE April 2014 3.2.3.46

The curve is defined by Ci and the line by the origin as well as the angle in radians. The
distance from intersection point to origin along the line is stored in the scalar.
Default values: origin = (0,0); angle = 0.

INTERSECTION MESH [options] computes the intersection of a 3d mesh with a given plane
and stores the result in a 2-dimensional mesh.
The following options are available:

MESH_OUT

PLANE (ax+by+cz=d)

MESH OUT defines the sequence number of the output (2d) mesh and PLANE the plane
that intersects the mesh by the parameters a, b, c and d.
Default values: mesh out = meshnr+1, where meshnr is the present mesh sequence number.

MOVE BOUNDARY [options] defines how the boundary of a mesh may be moved and defines
the displacement vector for the movement of this boundary.
The following options are available:

DISPLACEMENT_VECTOR = ...

VELOCITY_VECTOR = ...

SEQ_BOUN_INPUT = ...

PROB_DISPLACEMENT = ...

STREAM_FUNCTION = ...

meaning of these keywords

DISPLACEMENT VECTOR = ... Defines the name of the displacement vector.
Default value: displacement, if not existing first vector in list of vectors.

VELOCITY VECTOR = ... Defines the name of the velocity vector.
Default value: velocity, if not existing first vector in list of vectors.

SEQ BOUN INPUT defines the input for moving the boundary. The sequence number
refers to the input of the input block ADAPT BOUNDARY (see Section 3.4.4).
Default value: 1.

PROB DISPLACEMENT = ... defines the problem number for the displacement vector.
Default value: 1.

STREAM FUNCTION = ... Defines the name of the stream function.
Default value: psi, if not existing first vector in list of vectors.

UM STRUCTURE April 2014 3.2.3.47

3.2.3.16 commands for interpolation

The following commands are available:

INTERPOLATE [options]

Meaning of the various commands:

INTERPOLATE , options
Interpolates a solution vector or a vector of special structure defined per point from one mesh
to another one. The following options are available:

Vi

MESH_IN = m1

MESH_OUT = m2

These options have the following meaning:

V i Defines the vector to be interpolated.
Default value: the first vector in the list of vector names.

MESH IN = m1 m1 defines the sequence number of the mesh from which V i must be
interpolated. This mesh must exist.
Default value 1.

MESH OUT = m2 m2 defines the sequence number of the mesh to which V i must be
interpolated. This mesh must exist.
Default value 2.

UM STRUCTURE April 2014 3.2.3.48

3.2.3.17 commands to manipulate obstacles

Obstacles are defined in the mesh generation part. They are defined as a closed set of curves (2D)
or a closed set of surfaces (3D). For the computation they are only of interest when they intersect
the actual mesh.
The following commands are available to manipulate the obstacles:

MOVE OBSTACLE i , options
With this command the obstacle with sequence number i is moved over a distance u∆t, where
u is the velocity of the obstacle and ∆t the present time step as defined in a time integration
block.
The following options are available:

velocity = (u_1, u_2, u_3)

rotation_plane = xz

rotation_velocity = u_phi

displacement = (u_1, u_2, u_3)

origin = (o_x, o_y, o_z)

These options must be given on the same line.
The options have the following meaning:

velocity = (u1, u2, u3) defines the velocity vector u.
The number of components must be equal to the dimension of the space.
The displacement of the obstacle is defined by ∆t× u.

rotation plane = xy If the obstacle also rotates we need to know in which plane the rotation
takes place. At this moment only rotations in x-y plane, are implemented.

rotation velocity = uφ defines the rotation velocity. Is only used in combination with ro-
tation plane.

This option is only available for obstacles in R3.
Default value: 0

displacement = (u1, u2, u3) has the same meaning as velocity = (u1, u2, u3), except that
the displacement is given rather than the velocity. Both options are mutually exclusive.

origin = (ox, oy, oz) Defines the origin of the axis of rotation. Together with rotation_plane

the rotation axis is defined in this way.
Default value: (0,0,0)

MAKE OBSTACLE MESH , options
With this command a new mesh is created, such that the old mesh is kept but that elements
that are intersected by the obstacle are subdivided into smaller elements, such that these
elements are either within the obstacle or outside the obstacle. So the class of elements partly
inside the obstacle is empty after this command.
If an edge of the element is intersected close to one of its nodes (less than 10% related to
the edge length), it is assumed that the intersection is exactly in the corresponding node.
Furthermore, if an edge is intersected more than once, only one intersection is used.
This option allows you to use a fixed mesh, but to create a temporary mesh adapted to the
obstacle. It should be used in combination with the keyword REMOVE_OBSTACLE_MESH.
If already some solution vectors have been created all these vectors are interpolated to the
new mesh automatically. If you want to give boundary conditions adapted to the obstacle
these boundary conditions should be applied to the new mesh.
At this moment this option is only available for linear triangles.
The following options are available:

UM STRUCTURE April 2014 3.2.3.49

MESH_ORIG = i

MESH_OBST = j

SEQ_STRUCTURE = s

These options must be given on the same line.
The options have the following meaning:

MESH ORIG = i defines the sequence number of the original mesh (usually 1).
Default value: 1

MESH OBST = j defines the sequence number of the adapted mesh. This number must
be different from the original mesh.
Default value: 2

SEQ STRUCTURE = s defines the structure of the matrices corresponding to the new
mesh. The value s has the same meaning as for the keyword MATRIX 3.2.4.
s = −1 means that the same matrix structure as for the original mesh is used.
Default value: -1

After the creation of the new mesh the present mesh sequence number is made equal to j.

REMOVE OBSTACLE MESH , options
This command may only be used if already MAKE_OBSTACLE_MESH has been called. This
command does the opposite: the obstacle mesh is removed and all solution vectors are mapped
onto the original mesh.
At this moment this option is only available for linear triangles.
The following options are available:

MESH_ORIG = i

MESH_OBST = j

These options must be given on the same line.
The options have the following meaning:

MESH ORIG = i defines the sequence number of the original mesh (usually 1). This mesh
must exist.
Default value: 1

MESH OBST = j defines the sequence number of the adapted mesh. This mesh must exist
and correspond to the original mesh.
Default value: 2

After the creation of the new mesh the present mesh sequence number is made equal to i.

UM STRUCTURE April 2014 3.2.3.50

3.2.3.18 commands to use the level set method

A level set function φ is a marker function to distinguish between certain regions of interest especially
in case of free or moving boundary problems. In general φ = 0 defines the interface between two
parts of the region and in that way the free boundary. For example φ > 0 may be define the fluid
part of some material, whereas φ < 0 defines the solid part.
The following commands are available:

MAKE LEVELSET MESH , options

REMOVE LEVELSET MESH , options

LEVELSET MESH VELOCITY Vector name, options

ADAPT INTERFACE BOUNDARY Vector name, options

MAKE DISTANCE FUNCTION Vector name, options

CREATE LEVELSET VECTOR Vector name, options

Explanation

MAKE LEVELSET MESH , options
With this command a new mesh is created, such that the old mesh is kept but that elements
that are intersected by φ = 0 are subdivided into smaller elements, such that these elements
are either within the region φ > 0 or in the region φ < 0. So the class of elements that have
both φ > 0 and φ < 0 is empty after this command.
If an edge of the element is intersected close to one of its nodes (less than 10% related to
the edge length), it is assumed that the intersection is exactly in the corresponding node.
Furthermore, if an edge is intersected more than once, only one intersection is used.
This option allows you to use a fixed mesh, but to create a temporary mesh adapted to the
φ = 0 level. It should be used in combination with the keyword REMOVE_LEVELSET_MESH.
If already some solution vectors have been created all these vectors are interpolated to the
new mesh automatically. If you want to give boundary conditions adapted to the φ = 0 level
these boundary conditions should be applied to the new mesh.
At this moment this option is only available for linear triangles.
The following options are available:

MESH_ORIG = i

MESH_SUBDIVIDE = j

SEQ_STRUCTURE = s

LEVELSET_VECTOR = l

INTERPOLATE (Vecx, Vecy, ...)

NO_INTERPOLATION

EPS_MOVE = e

EPS_MIN = e

These options must be given on the same line.
The options have the following meaning:

MESH ORIG = i defines the sequence number of the original mesh (usually 1).
Default value: 1

MESH SUBDIVIDE = j defines the sequence number of the adapted mesh. This number
must be different from the original mesh.
Default value: 2

UM STRUCTURE April 2014 3.2.3.51

SEQ STRUCTURE = s defines the structure of the matrices corresponding to the new
mesh. The value s has the same meaning as for the keyword MATRIX 3.2.4.
s = −1 means that the same matrix structure as for the original mesh is used.
Default value: -1

LEVELSET VECTOR = l defines the sequence number of the level set function φ with
respect to the set of solution vectors.
Default value: 2

INTERPOLATE (Vecx, Vecy, ...) Interpolate the vectors defined between brackets from
old to new mesh.
Default value: fill all vectors

NO INTERPOLATION Do not interpolate vectors from old to new mesh.
Default value: fill all vectors

EPS MOVE = e defines under which circumstances a node is moved or an edge is inter-
sected in the new mesh.
Let the length of an edge that is intersected by the level set 0 contour, be l. If the
distance of one of the nodes to the intersection is less than e× l (0 ≤ e < 0.5) then this
node is moved to the intersection. This is not the case if 2 levelset 0 lines are too close
to this node. Otherwise the intersection point is a new node in the new mesh.
Default value: eps move if this is constant or scalar (variable).
If eps move is not available the default value is equal to the general constant eps accuracy,
which itself has a default value of 0.3.

EPS MIN = e identifies an intersection of an edge with the zero levelset function with a
node if the distance to this node is less than l × e, under the condition that the nodes
has not been moved before.
Default value: eps min if this is constant or scalar (variable).
If eps min is not available the default value is equal to the 0.01× eps accuracy.

After the creation of the new mesh the present mesh sequence number is made equal to j.

REMOVE LEVELSET MESH , options
This command may only be used if already MAKE_LEVELSET_MESH has been called. This
command does the opposite: the level set mesh is removed and all solution vectors are mapped
onto the original mesh.
At this moment this option is only available for linear triangles.
The following options are available:

MESH_ORIG = i

MESH_SUBDIVIDE = j

KEEP_PART

These options must be given on the same line.
The options have the following meaning:

MESH ORIG = i defines the sequence number of the original mesh (usually 1). This mesh
must exist.
Default value: 1

MESH SUBDIVIDE = j defines the sequence number of the adapted mesh. This mesh
must exist and correspond to the original mesh.
Default value: 2

KEEP PART indicates that a part of the mesh must be kept in order to compute the mesh
velocity later on. After having computed the mesh velocity this part is also removed.

After the creation of the new mesh the present mesh sequence number is made equal to i.

UM STRUCTURE April 2014 3.2.3.52

LEVELSET MESH VELOCITY , Vector name options
With this command the mesh velocity in case of a levelset method is computed. Also the
concentration at the interface is adapted as well as the concentration in points that are in the
new levelset region but not in the old one.
The following options are available:

VECTOR_NAME

BASIS_MESH = i

MESH_IN = i

MESH_OUT = i

SOLUTION = Vj

LEVELSET = Vk

OLD_LEVELSET = Vm

TIME_STEP = dt

These options must be given on the same line.
The options have the following meaning:

VECTOR NAME defines the name of the vector containing the mesh velocity.
Default value: mesh vel, hence if this vector exists vector name may be skipped

BASIS MESH = i, defines the sequence number of the basis mesh.
Default value: 1

MESH IN = i, defines the sequence number of the previous levelset mesh.
Default value: 2

MESH OUT = i, defines the sequence number of the new levelset mesh.
Note that these values do not have to be changed if the command interchange_mesh (2, 3)

is used in the time loop. See subsection 3.2.3.15.
Default value: 3

SOLUTION = Vj, defines the name of the solution vector. The values at the new interface
are computed by taking the values at the nearest points of the old interface. Points that
correspond to the new levelset region but not to the old one are treated in the same way.
The mesh velocity is computed such that a correct new solution will be computed by
solving the convection-diffusion equation.
Default value: concentration

LEVELSET = Vk, defines the name of the vector that defines the new levelset region. It
must correspond to the mesh with sequence number mesh_out.
Default value: phi

OLD LEVELSET = Vm, defines the name of the vector that defines the old levelset region.
It must correspond to the mesh with sequence number mesh_in.
Default value: phiold

TIME STEP = dt, defines the time step, which is needed to compute the mesh velocity.
Default value: dt

ADAPT INTERFACE BOUNDARY , Vector name options
is used in 2D in case the levelset interface is open and intersects the outer boundary. It is
used to set the values in the end points equal to the values in the adjacent points in order to
prevent unnecessary wiggles.
The following options are available:

VECTOR_NAME

LEVELSET = i

These options must be given on the same line.
The options have the following meaning:

UM STRUCTURE April 2014 3.2.3.53

VECTOR NAME defines the name of the vector containing the solution.
Default value: concentration, hence if this vector exists vector name may be skipped

LEVELSET = i defines the sequence number of the levelset.
Default value: 1

MAKE DISTANCE FUNCTION , Vector name options
is used to make the levelset function φ a signed distance function. This may be done by
solving the following non-linear convection equation:

∂φ

∂t
+ sign(φ)

gradφ

||gradφ||
· gradφ = sign(φ), (3.2.3.4)

which converges to ||gradφ|| = 1 if φ goes to infinity. This problem is solved by a pseudo
time integration and can be considered as a kind of Picard iteration to solve the non-linear
equation.
An alternative option is to use an exact computation of he distance by computing the distance
to the nearest points, edges and faces of the interface φ = 0.
The following options are available:

time_step = dt

upwind / no_upwind

accuracy = eps

maxiter = m

print_level = p

integration_method = m

seq_solve = s

phi_barrier = p

at_error = e

type_norm = e

diffusion = e

number_smoothing_steps = i

distance_method = d

step_size = h

These options must be given on the same line.
The options have the following meaning:

time step = dt defines the (pseudo) time step to be used for the integration of the convec-
tion equation. To get a good convergence this term should be not to small or to large.
If an implicit method is used a good choice might be between 4h and 32h, where h is
some representative measure for the length of the elements.
Default value: dtpseudo, where dtpseudo is scalar with name dtpseudo. This parameter
should have a value.

upwind / no upwind indicates if upwind must be used to integrate the equation.
Default value: upwind

accuracy = eps defines the accuracy used to terminate the iteration.
Default value: eps or 0.01. eps is used if a scalar with the name eps exists.

maxiter = m defines the maximum number of iterations.
Default value: 100

print level = p defines the amount of output created during iteration.
p = 0 gives no information, p = 2 maximal information.
Default value: 0

integration method = m defines the type of time-integration used. At this moment only
implicit euler is available.
Default value: euler_implicit

UM STRUCTURE April 2014 3.2.3.54

seq solve = s defines the sequence number of the linear solver input block.
Default value: 1

phi barrier = p defines a band around the interface in which accuracy is checked. Only in
a small band of 1 or 2 elements the gradient of φ is required, hence only there we need
an accurate φ. Usually p = 2.5h is a good measure.
Default value: epsdist or 1. epsdist is used if a scalar with the name epsdist exists.

at error = e defines what the iteration method should do if no convergence occurs.
e may have one of the value: stop or resume.
Default value: stop

type norm = e Defines the type of norm that is used to compute the accuracy.
The following options for e are available.

distance

max_distance

difference

max_difference

Meaning of these options

distance The iteration stops when the difference between ——∇φ—— and 1 is less then
ε. The L2 norm is used.

max distance See distance, however the maximum norm is used.

difference The iteration stops when the difference between 2 succeeding iterations is
less then ε. The L2 norm is used.

max difference See difference, however the maximum norm is used.

Default value: distance

diffusion = e It is possible to add some diffusion to the differential equation in order to get
a better convergence.
The diffusion is only applied for a number of smoothing steps, after that the diffusion is
made equal to 0.
Default value: e = 0

number smoothing steps = i Defines the number of smoothing steps, where the diffusion
is unequal to 0.
Default value: 0

distance method = d Defines the type of method used to correct the distance function.
Possible values for d:

pseudo time The differential equation is solved with a pseudo time integration method.

distance The exact distance is computed.
At this moment this method is only applied for the nodes that are direct neighbors
of the interface and its direct neighbors. This is sufficient to compute the gradient
of φ (and hence the normal), as well as the curvature.

Default value: distance

step size = h To compute the shortest distance in case of distance_method = distance

the domain is overlapped with a rectangular grid with step size h. This makes the
method much more efficient. An optimal choice for h is the mean step size of the basis
mesh.
Default value: h if this variable if defined

CREATE LEVELSET VECTOR , vector name options
can be used to create the level set vector phi provided an obstacle is defined in the mesh
input.
In first instance the mesh adapted to the obstacle in the same way as in make levelset mesh.
The vector is created on this mesh by setting it to 0 on the intersection of obstacle and mesh.

UM STRUCTURE April 2014 3.2.3.55

The values in the other nodes are defined by the distance to the zero levelset. Finally the
vector is interpolated to the original mesh.
The following options are available.

mesh_orig

mesh_subdivide (default mesh_orig+1)

vector_name (default phi or 2)

obstacle i (default 1)

sign_inobstacle = i (default 1)

problem = i (default 2)

eps_move = e (default accuracy_obstacle)

eps_min = e (default 0.01 * accuracy_obstacle)

These options must be given on the same line.
The options have the following meaning:

mesh orig defines the original mesh in which the function is defined.
Default: present mesh

mesh subdivide defines the temporary mesh that is created and removed at the end.
Default: mesh orig+1

vector name defines the vector in which the levelset function is stored.
Default: phi and if this vector does not exists the second vector in the list of vectors.

obstacle i defines the sequence number of the obstacle to be used.
Default: 1

sign inobstacle = i defines the sign of the levelset function inside the obstacle.
Default: 1

problem = i defines the problem number corresponding to the vector.
Default: 2

eps move = e see make levelset mesh.

eps min = e see make levelset mesh.

UM STRUCTURE April 2014 3.2.3.56

3.2.3.19 A special command to give the user the opportunity to execute his own
fortran statements

The following commands are available:

USER_OUTPUT [options]

Meaning of the various commands:

USER OUTPUT options,
may be used to perform some user defined output but also to manipulate the solution type
arrays or scalars.
If USER OUTPUT is given a user written subroutine USEROUT is called in which the user
may manipulate the solution vectors in his own way. The use of this option requires some
knowledge of the main SEPRAN subroutines and is therefore only possible if the SEPRAN
Programmers Guide is studied.
A description of how the subroutine USEROUT must be programmed can be found in the
Programmers Guide Section 19.5.1.
The following options are available:

sequence_number = i

extra_integers = (i_1, i_2, ...)

extra_scalars = (s_1, s_2, ...)

sequence number = i , defines a sequence number to be used in the call of USEROUT.
This sequence number may be used to distinguish between various calls.
If omitted the array with the highest sequence number in the backing storage file is read.

extra integers = (i1, i2, ...) , defines a number of extra integers that may be used in
subroutine USEROUT.

extra scalars = (s1, s2, ...) , defines a number of extra scalars (reals) that may be used
in subroutine USEROUTS.
Mark that these scalars must be defined in the block constants under the part VARI-
ABLES or SCALARS. (Section 1.4) The users must refer to these scalars either by their
sequence number (not recommended) or by a reference to their names preceded by a %

hence something like %name_of_scalar. This last option is recommended. The conse-
quence is that si must always be an integer or a reference to a scalar.
If extra scalars is present instead of USEROUT subroutine USEROUTS is called. See
the Programmers Guide Section 19.5.2.
The values of the scalars may be changed during the computations. In the call of
USEROUTS always the actual value is given.

UM STRUCTURE April 2014 3.2.3.57

3.2.3.20 auxiliary commands

The following commands are available:

MATRIX_STRUCTURE [options]

CHANGE_STRUCTURE_OF_MATRIX, seq_structure = s, seq_storage = i

CHANGE_COEFFICIENTS [options]

NEW_PROBLEM_DESCRIPTION, SEQUENCE_NUMBER = s

SET_TIME t

Meaning of the various commands:

MATRIX STRUCTURE , options, defines the structure of the matrix.
The following options behind MATRIX STRUCTURE may be used

STORAGE_SCHEME

SYMMETRIC

COMPLEX

REAL

UNSYMMETRIC

INCOMPRESSIBILITY_SYM

INCOMPRESSIBILITY_UNSYM

ASSEMBLE_PRECON

REACTION_FORCE

SHIFTED_LAPLACE

SEQUENCE_NUMBER

PRINT_LEVEL

MUMPS

POSITIVE_DEFINITE

The meaning of these keywords can be found in Section (3.2.4), in the input block matrix.

CHANGE STRUCTURE OF MATRIX , seq structure = s, seq storage = i
The command CHANGE STRUCTURE OF MATRIX may be used to define a new structure
of the matrix. For example if the matrix is stored as profile matrix a new matrix may be
created stored as a compact matrix. This does not mean that old matrices are transformed
into a new form, but only that all newly created matrices get this new structure. Which
structure these matrices get is described in the input block ”MATRIX” (3.2.4) with sequence
number s.
Normally the structure of the standard matrix is overwritten, but the user may store the new
storage at a new place with sequence number i by giving the keyword seq_storage = i. The
standard storage has sequence number 1, so sequence number 2 is quite obvious. However, if
nprob problems are used, the standard sequence numbers are 1 to nprob, and then the new
structure should start at nprob+1.

CHANGE COEFFICIENTS seq coef = k, seq change = j at iteration = i, problem = p.
This command may be used to change the coefficients that are active. The coefficients are
defined according to the sequence number k and then changed according to the sequence
number j of the input block ”CHANGE COEFFICIENTS” (3.2.7).
The rule to be applied is as follows:
each option seq coef = k, wherever found defines a specific series of coefficients. The last one
defined is active. A command change coefficients, whether it is in the structure block or for
example in the input block NONLINEAR EQUATIONS replaces these actual series by new
coefficients. These coefficients remain active until a new command seq coef is found with a
sequence number that differs from the actual one. In that case the old definition of seq coef
is used and the changes are not longer applied. So if for example the sequence:

UM STRUCTURE April 2014 3.2.3.58

solve_linear_system, seq_coef = 1

change_coefficients, seq_coef = 1, seq_change = 2

solve_linear_system, seq_coef = 1

solve_linear_system, seq_coef = 2

solve_linear_system, seq_coef = 1

is used, then the first linear system is solved with the original series of coefficients corre-
sponding to sequence number 1. The second linear system is solved with the same system,
however, with the original series updated according to the input of change coefficients with
sequence number 2. The third linear system is solved with the coefficients according to the
input block with sequence number 2 and finally the last linear system is solved using the
original coefficients with sequence number 1, i.e. without the effect of the change coefficients.

NEW PROBLEM DESCRIPTION , SEQUENCE NUMBER = s.
With this command the user may change to a new problem description as read by the input
block PROBLEM with sequence number s. To switch back to the original problem description
reuse this command with the corresponding sequence number (usually 1).
This option is meant for example to change the type of the boundary conditions, for example
if you switch from essential to natural boundary conditions.
If executed also the structure of the large matrix is recomputed automatically.

SET TIME t.
Sets the time equal to the constant t. Instead of a constant also a scalar (variable) may be
used.
This command may be used for example to reset the time to the initial time after performing
a time loop.
A more simple option is:

time = ...

UM STRUCTURE April 2014 3.2.3.59

3.2.3.21 Special commands related to certain types of equations

Besides the more general commands treated in this Section, there are also a number of commands
related to special equations.
A part of the information with respect to these commands can be found in this manual, another
part in the manual Standard Problems corresponding to the specific equation.
At present it only concerns commands related to the (time-dependent) Navier-Stokes equations and
the Reynolds equations for bearings.
The following commands are available:

NAVIER_STOKES [sequence_number = s]

SOLVE_BEARING [sequence_number = s]

Meaning of the various commands:

NAVIER STOKES [sequence number = s] This command is used to solve the time-dependent
Navier Stokes equation by one of the available methods. This command can only be used as
part of a time loop (3.2.3.23). The input for the Navier-Stokes equations must be stored in
an input block Navier-Stokes as described in Section (3.2.22).

SOLVE BEARING [sequence number = s] This command is used to solve the incompressible
Reynolds equations for bearings. At this moment it is only meant to perform one complete
iteration of the mass-conserving method of Kumar. The input for the bearing must be stored
in an input block BEARING as described in Section (3.2.24).
If SOLVE_BEARING is used it is necessary that the parameter IBCMAT in input block is equal to
1, so method = 20x, with x the storage method used.
Furthermore the problem block must be extended with the essential boundary condition
cavitation = 1

UM STRUCTURE April 2014 3.2.3.60

3.2.3.22 Defaults

If the block STRUCTURE is omitted SEPCOMP checks for the presence of the block NONLINEAR
EQUATIONS. If this block is available SEPCOMP reacts as if the block STRUCTURE is available
with the following contents:

structure

prescribe_boundary_conditions V1

solve_nonlinear_system V1

output V1

end

V1 is the name of the first vector in the set of vector names.
Otherwise it is supposed that a linear system must be solved and the structure is:

structure

prescribe_boundary_conditions V1

solve_linear_system V1

output V1

end

UM STRUCTURE April 2014 3.2.3.61

3.2.3.23 Loop commands

Structure recognizes a number of loop commands. At this moment the following loop commands
are available:

WHILE loop

FOR loop

START_LOOP

START_TIME_LOOP

IF statement

BREAK

Besides that you can also stop the program half way the structure block for example for testing
purposes using the command:

STOP

If this command is reached the program stops computation and does not produce output anymore.

These loops have the following shape:

WHILE (boolean) DO

command_1

command_2

command_3

END_WHILE

IF (boolean) THEN

command_1

command_2

command_3

END_IF

START_LOOP, sequence_number = k

....

END_LOOP

FOR variable = a to b step c

....

END_FOR

TIME_HISTORY [options]

START_TIME_LOOP

....

TIME_INTEGRATION, sequence_number = s, vector = i

....

END_TIME_LOOP

The IF, WHILE, FOR and the LOOP structures may be nested, as long as the level of nestings
remains less than 10. The TIME LOOP may not me nested. It may contain, however other kinds
of loops.
Hence we may have:

WHILE (boolean1) DO

command_1

UM STRUCTURE April 2014 3.2.3.62

command_2

WHILE (boolean2) DO

command_1

WHILE (boolean3) DO

command_4

END_WHILE

END_WHILE

command_3

END_WHILE

or

START_LOOP, sequence_number = 1

command_1

command_2

START_LOOP, sequence_number = 2

command_1

WHILE (boolean3) DO

command_4

END_WHILE

END_LOOP

command_3

END_LOOP

WHILE executes all commands following it till the end while statement. This is repeated as long
as boolean returns with the value true.

boolean may be a standard boolean, like a > b or c == d, but may also be of the shape
boolean expr(k). It defines whether the while command must be executed or not.

boolean expr(k) refers to a user written subroutine USERBOOL with one parameter (k), which
may be used to identify the call.
USERBOOL must be written by the user as described in Section 3.3.8.

END WHILE indicates the end of the while loop.

IF executes all commands following it till the end if statement provided boolean returns with the
value true. Also in this case the boolean may be of type boolean expr(k).

FOR executes all commands following it till the end for statement. The loop variable must be
declared as a variable in the block constants (See Section 1.4). This loop variable starts with
the value a. After the end_for is reached the value of the loop variable is increased by c until
it is larger than b. If step c is omitted, step 1 is assumed.
a, b and c must be integers.
The loop variable may be used for computations, but it may not be changed within the loop.
For an example of the use of the for loop see 6.2.9.

END FOR indicates the end of the for loop.

START LOOP , sequence number = k.
All commands that are given from this command until end_loop is found will be considered
as part of the loop. The sequence number k refers to the input block ”LOOP INPUT”. This
blocks describes under what conditions the process has been converged. See Section 3.2.17.

END LOOP Ends the loop.

START TIME LOOP All commands that are given from this command until end_time_loop
is found will be considered as part of the computation of a time-dependent problem.

UM STRUCTURE April 2014 3.2.3.63

TIME INTEGRATION , sequence number = s, vector = i, defines what time integration must
be carried out in the computation of the time loop. This statement may be preceded by
some statements to make preparations for the time integration, and succeeded by statements
manipulating the computed solution. Only one time-step is carried out.
The sequence number s refers to the input block TIME INTEGRATION, which defines the
parameters of the time integration process. See Section 3.2.15 for a description. At this
moment only one fixed time step may be used. So only one end time and one time step may
be given. Furthermore the only available time integration at this moment is Euler implicit.
If you need extra time integrations please contact SEPRA.
The options with respect to TOUT, like TOUTINIT, have at the present moment no effect
at all.
Of course the options referring to the stationary accuracy make also no sense in this case.
The sequence number i defines the vector to be integrated in time.

The Loop may be preceded by the command

TIME HISTORY Vi This command defines in which points a vector Vi is stored during each
time step. Later on this time history can be printed by PRINT time history Vi (Section
3.2.3.12) or plotted by PLOT TIME HISTORY Vi (Section 3.2.3.13).
The following options are available:

coordinates ((x1,y1,z1),(x2,y2,z2),...(xn,yn,zn))

points (p1, p2, ...)

zero_level_set

Meaning of these options:

coordinates ((x1,y1,z1),(x2,y2,z2),...(xn,yn,zn)) defines for which coordinates the func-
tion must be stored. At this moment the nodal point that is the closest to each coordinate
is used. This nodal point is kept fixed even if the coordinates change during computation.
Each set or coordinates must be enclosed by brackets.

points (p1, p2, ...) defines for which user points the function must be stored.

zero level set stores the time history for all nodes in the zero levelset.

END TIME LOOP Ends the loop for the time integration.
For an example of the use of TIME LOOP see Section 6.4.5.

BREAK inside one of these loops causes the program to jump out of the actual loop. So usually
break is used in combination of an if statement.

UM MATRIX November 2010 3.2.4.1

3.2.4 The main keyword MATRIX

The block defined by the main keyword MATRIX defines the structure of the large matrix and
hence implicitly the linear solver to be used. SEPRAN distinguishes between symmetric and non-
symmetric, real and complex matrices. Furthermore storage schemes for direct methods differ from
the storage scheme for iterative solvers.
Whether the large matrix is symmetrical or not depends on the type of problem to be solved. In the
manual STANDARD PROBLEMS for each problem it is given whether the matrix is symmetrical
or not. This is also the case for real and complex matrices. Each symmetrical matrix may of course
be stored as a non-symmetrical matrix, however, the storage needed doubles in general and also the
computation time may increase. A real matrix may in general not be stored as a complex matrix.
The choice between a direct linear solver and an iterative linear solver is not so easy to make. In
general a direct solver is the most robust and most simple to use. However, for large problems
in R2 and smaller problems in R3 iterative solvers use much less memory and often also less
computation time. However, for some problems iterative solvers converge very slowly or even
diverge. Unfortunately no hard criterion can be formulated when one method is preferred above
the other one. An important remark is that in the case of time-dependent problems and sometimes
also stationary non-linear problems in general a good initial estimate of the solution is available.
In combination with a not too strict termination criterion this makes the iterative solvers more
favorable.

The block defined by the main keyword MATRIX has the following structure (options are indicated
between the square brackets ”[” and ”]”):

MATRIX [,SEQUENCE NUMBER = s] (mandatory)
COMMAND record: indicates that information of the structure of the large matrix will be
given.
The sequence number s may be used to distinguish between various input blocks with respect
to the matrix structure.

This record must be followed by DATA records giving information of the structure of the large
matrix.

PROBLEM = 1 [options] (mandatory)

PROBLEM = 2 [options]

.

.

.

The following options are available (all in one line)

STORAGE_SCHEME = s

NOSPLIT, PRINT_LEVEL = p

EXTRA_FILLIN = f

PHYS = (iphys1 TO iphys2),

MESH = m

DECOUPLED_DEGFD = (i, j, ...)

SKIP_BOUNDARY_CONDITIONS

SYMMETRIC

COMPLEX

REAL

UNSYMMETRIC

INCOMPRESSIBLITY_SYM

INCOMPRESSIBLITY_UNSYM

ASSEMBLE_PRECON

REACTION_FORCE

UM MATRIX November 2010 3.2.4.2

SHIFTED_LAPLACE

MUMPS

POSITIVE_DEFINITE

For each problem as given in the input block ”PROBLEM” such a DATA record may be
defined. If the data record is omitted for a PROBLEM, METHOD = 2 is assumed.
The DATA records must be given in the order of the problems. If only one problem is solved
PROBLEM = 1 may be omitted.

STORAGE SCHEME = s defines the storage scheme of the large matrix and hence the
structure. This storage scheme is coupled to the linear solver. In fact the storage scheme
defines which solvers can be applied.
Possible values for s are:

PROFILE

COMPACT

SIMPLE

ROW_COMPACT

VECTOR_COMPUTER

MUMPS

PETSC

Meaning of these keywords:

PROFILE means that the matrix is stored as profile matrix, which is the most optimal
storage for LU decomposition. Hence if this keyword is used, a direct linear solver
will be used.
For middle sized 2d and small 3d problems this is the most efficient type of solver.

COMPACT the matrix is stored as compact matrix. Only the non-zero elements are
stored. This means that an iterative solver like for example CG or overrelaxation
will be used.
The symmetry of the data structure is utilized.
Iterative solvers are necessary for large 2d and middle sized 3d problems, but also
for problems where the solution is not unique, for example because the solution is
determined except for an additive constant.
In the case of time dependent problems or non-linear problems, iterative methods
may be efficient, since a good initial estimate is available from the prior iteration or
time step.

ROW COMPACT is the same as compact, except that the symmetry of the data
structure is not used. Hence the storage of the matrix structure requires approxi-
mately twice the space as for COMPACT.
This storage must only be used for special iterative solvers.

VECTOR COMPUTER Combined row/column compressed storage scheme, designed
for iterative solvers on vector processors. Moreover, an internal permutation of rows
and columns is used. It stores the whole off-diagonal part of the matrix. It has no
effect on scalar processors.
At this moment there is no reason to use this kind of storage.

SIMPLE is a very special storage scheme corresponding to a set of particular solvers for
the Navier-Stokes equations. Only when these solvers are used, the keyword SIMPLE

should be used.

MUMPS stores the matrix in row compact form as described in row compact. In com-
bination with symmetric only the lower part of the column numbers are stored.
If the matrix is positive definite this may also be combined with the keyword
positive_definite.
If this storage is used the linear solver calls an interface to the mumps package,
which makes only sense if you have the mumps package installed.

UM MATRIX November 2010 3.2.4.3

PETSC stores the matrix in row compact form as described in row compact.
If this storage is used the linear solver calls an interface to the petsc package, which
makes only sense if you have the petsc package installed.

If the keyword STORAGE_SCHEME is skipped, the default PROFILE is used.

REAL indicates that the matrix is real (Default value).

COMPLEX indicates that the matrix is complex.

SYMMETRIC indicates that the matrix is symmetric and hence only the lower part will
be stored. In case of a simple method, this refers to the velocity part of the matrix only.

UNSYMMETRIC indicates that the matrix is un-symmetric and hence the whole matrix
must be stored (Default value).

INCOMPRESSIBILITY SYM can only be used in combination with the storage scheme
SIMPLE. If used the gradient pressure matrix is supposed to be the transpose of the
divergence velocity matrix. Since this is usually the case this is the default value.

INCOMPRESSIBILITY UNSYM has the same meaning as the previous keyword, but
in this case the gradient and divergence matrix are different.

ASSEMBLE PRECON in this case not only the standard matrix must be assembled, but
also a matrix that is assembled from element matrices that are created by computing the
LU decomposition of the element matrix. This last matrix may be used as preconditioner
for for example Conjugate Gradient solvers.

REACTION FORCE if this keyword is used an extra part of the matrix corresponding
to essential boundary conditions is stored. This part is only needed in case one needs
to compute the reaction forces. The sign of IBCMAT must be equal to the sign of
JMETHOD.

NOSPLIT indicates that the large matrix may not be split into parts if this matrix does
not fit into memory. So instead of splitting an error message is given.
An advantage of this option may be that instead of the expensive splitting of the matrix,
a larger BUFFER array is defined which may avoid the splitting.
This option is only activated for direct methods.

SHIFTED LAPLACE makes only sense in combination with storage_scheme = compact.
It is used in case the shifted Laplace preconditioner is used, which is meant for Helmholtz
type equations. Using this option means that extra space is reserved to store the diagonal
of the discretization of the zeroth order part of the equations.

PRINT LEVEL=p defines if the type of output that is produced. The following values of
p are available:

0 No extra output is printed.

1 The contents of the matrix structure array corresponding to the internal unknowns
is printed.

2 The complete contents of array matrix structure array is printed including the rela-
tion with the boundary conditions.

10-12 The structure of the large matrix is printed formally. This possibility is only available
in combination with JMETHOD = 1, 2, 3 or 4.

Default value: p = 0.

EXTRA FILLIN=f defines if extra fill-in must be created or not. Extra fill-in makes only
sense if an iterative solution method is used (hence a compact storage: JMETHOD =
5,6,7 or 8) in combination with an ILU preconditioner. The extra fill-in may produce a
more suitable preconditioner, however, also requires extra memory. The following values
of f are available:

0 No extra fill-in is produced.

1 Special case for discontinuous Navier-Stokes elements. The connections of the cen-
troids of the elements with the centroids of neighboring elements are also filled in
the structure for all physical variables iphys1 to iphys2

UM MATRIX November 2010 3.2.4.4

2 All unknowns in the neighbor points of the unknowns in a row of the matrix are also
supposed to be part of the non-zero structure. This enlarges the space used by the
matrix and the preconditioner, but does not change the matrix at all.
By adding extra fill-in, the ILU preconditioner may be a better approximation for
the real LU. As a consequence the number of iterations may decrease at the cost of
extra operations (time) per iteration and also extra memory.

3 Combination of 2 and 3.

4 Special case: only rows corresponding to nodes with more than ndim+1 unknowns
are used for the extra fill-in as defined in 2. So this reduces the fill-in compared to
2. This option makes only sense in the case that the number of degrees of freedom
in some points is more than ndim+1.

5 See 4, of the extra nodes only those with more. than ndim+1 unknowns are used.

6 Special case: only rows corresponding to unknowns with physical number > ndim+1
are used for the extra fill-in as defined in 2.

7 See 6, of the extra unknowns only those with physical degree of freedom > ndim+1
are used.

Mark that in the range 3 to 7, the extra fill-in is decreasing.
Default value: f = 0.

PHYS = (iphys1 TO iphys2) is used in combination with EXTRA FILLIN.
Default values: iphys1 = ndim+ 1, iphys2 = ndim+ 1 for linear elements and
iphys2 = 2ndim+ 1 otherwise.

DECOUPLED DEGFD = (i1, i2, i3, ...) indicates that the degrees of freedom i1, i2, i3, ...
in each nodal point are not coupled. This means that the corresponding elements in the
element matrix are equal to 0. For example, suppose we have two velocity degrees of
freedom in each node, u1 and u2, the system of equations will have the structure:[

S11 S12

S21 S22

] [
u1

u2

]
=

[
f1
f2

]
(3.2.4.1)

Suppose we know that the matrices S12 and S21 are equal to zero. Then the components
u1 and u2 are not coupled and we can use decoupled_degfd = (1,2). The advantage
is that less memory is necessary.
In the sequel we shall speak about a reduced storage scheme.
This option is only effective in case of a compact storage. In case of a profile method the
option is neglected.

SKIP BOUNDARY CONDITIONS is used in the case that we do not need the effect
of the essential boundary conditions in the matrix. This option is meant in case the
structure of the matrix is only meant for a preconditioner and for solving the system of
equations. In that case we need at least two input blocks ”MATRIX”.

MESH = m is used to define which mesh must be used for the definition of the matrix
structure. This option makes only sense if spectral elements are used, otherwise it is
neglected.
Possible values for m are

FEM_MESH

SEM_MESH

Meaning of these subkeywords:

FEM MESH The matrix structure is based on the finite element mesh consisting of
linear elements that is constructed from the spectral element mesh. This mesh has
the same number of nodes as the spectral mesh but a lot more elements.
This option is necessary if the spectral problem solved by an iterative conjugate
gradient method, using the finite element matrix corresponding to linear elements
as preconditioner.

UM MATRIX November 2010 3.2.4.5

SEM MESH The matrix structure is based on the spectral element mesh. This means
that no finite element preconditioning is applied, but only the standard linear solver.

The default value is: SEM_MESH

END (mandatory)

COMMAND record: end of the input of the block MATRIX.

Remarks:

• if the block corresponding to MATRIX is skipped METHOD = 2 is assumed for all problems.

• In previous versions of SEPRAN the keywords STORAGE_SCHEME, SYMMETRIC, COMPLEX, REAL, UNSYMMETRIC,
INCOMPRESSIBLITY_SYM, INCOMPRESSIBLITY_UNSYM, ASSEMBLE_PRECON, and REACTION_FORCE,
where replace by one keyword METHOD = i i consists of three parts JMETHOD, IBCMAT
and INVMAT according to
| ik | = | JMETHOD + 100 × (INVMAT + 2 × IBCMAT) | with

JMETHOD Parameter to indicate which solution method is chosen.
Possibilities:

1 Symmetric real profile matrix

2 Non-symmetric real profile matrix

3 Symmetric complex profile matrix

4 Non-symmetric complex profile matrix

5 Symmetric real compact matrix

6 Non-symmetric real compact matrix

7 Symmetric complex compact matrix

8 Non-symmetric complex compact matrix

9 Non-symmetric real compact matrix using the row compact storage

10 Non-symmetric complex compact matrix using the row compact storage

11 Non-symmetric real compact matrix using the vector compact storage

12 Non-symmetric complex compact matrix using the vector compact storage

13 STORAGE SCHEME = Simple, SYMMETRIC, INCOMPRESSIBILITY SYM

14 STORAGE SCHEME = Simple, UNSYMMETRIC, INCOMPRESSIBILITY SYM

15 STORAGE SCHEME = Simple, SYMMETRIC, INCOMPRESSIBILITY UNSYM

16 STORAGE SCHEME = Simple, UNSYMMETRIC, INCOMPRESSIBILITY UNSYM

19 The matrix is complex (hermitian), profile method.

24-27 See 5 to 8, however, the shifted Laplace storage is used.

INVMAT is 1 if ASSEMBLE_PRECON is used, 0 otherwise.

IBCMAT is 1 if REACTION_FORCE is used, 0 otherwise.

UM ESSENTIAL BOUNDARY CONDITIONS October 1995 3.2.5.1

3.2.5 The main keywords ESSENTIAL BOUNDARY CONDITIONS

The block defined by the main keywords ESSENTIAL BOUNDARY CONDITIONS defines whether
the solution vector is real or complex and also defines the values of the essential boundary condi-
tions. At which boundaries essential boundary conditions are given has already been described in
the part PROBLEM. In fact all essential boundary conditions that are not explicitly given in this
part are set equal to zero.

The block defined by the main keywords ESSENTIAL BOUNDARY CONDITIONS has the follow-
ing structure (options are indicated between the square brackets ”[” and ”]”):

ESSENTIAL [COMPLEX] BOUNDARY CONDITIONS [SEQUENCE NUMBER = s]
[PROBLEM = p] [VECTOR=i] (mandatory)
COMMAND record: opens the input.

The various options have the following meaning:

COMPLEX indicates that the solution vector is a complex vector.

SEQUENCE NUMBER = s may be used to distinguish between various input blocks
with respect to the essential boundary conditions.

VECTOR = i is used to define the ith vector in a row of vectors. If omitted the first vector
in this block has sequence number 1, and all other vectors have the sequence number of
the preceding one plus 1.

If the block STRUCTURE is used and in this block the command
PRESCRIBE BOUNDARY CONDITIONS, sequence number = s, vector = v
is given, then the actual vector sequence number is v − 1 + i.

PROBLEM = p is used to define the problem sequence number corresponding to the solu-
tion vector to be filled. If omitted p = i is assumed, with i the sequence number of the
vector.

Must be followed by data records defining the essential boundary conditions. Only the non-
zero essential boundary conditions must be specified in this part. If all essential boundary
conditions are zero, no DATA records are necessary.

The data records are exactly the same as the data records for the input block ”CREATE”
(Section 3.2.10) defined by the part

[functional description] [degrees of freedom] [location part]

END (mandatory)
COMMAND record: end of the block ESSENTIAL BOUNDARY CONDITIONS.

UM ESSENTIAL BOUNDARY CONDITIONS October 1995 3.2.5.2

It is allowed to define boundary conditions for more than one vector in one block ESSENTIAL
BOUNDARY CONDITIONS. In that case the following type of input may be used:

ESSENTIAL BOUNDARY CONDITIONS PROBLEM 1, VECTOR = 2, SEQUENCE_NUMBER 1

.

.

.

.

ESSENTIAL BOUNDARY CONDITIONS PROBLEM 2, VECTOR = 5

.

.

.

.

ESSENTIAL BOUNDARY CONDITIONS PROBLEM 3

.

.

.

.

END

In this case only one END record must be used for this sequence number.

Remarks:

In fact the input block ”ESSENTIAL BOUNDARY CONDITIONS” is completely identical to the
input block ”CREATE”. However, there is one essential difference. If in the part ”functional
description” FUNC is, is used then the function subroutine FUNCBC (INTRODUCTION 5.5.1) is
used to define the function in the real case and CFUNCB (INTRODUCTION 5.5.2) in the complex
case. This is in contrast to the block CREATE where the function subroutines FUNC respectively
CFUNC (INTRODUCTION 5.5.4) are used.

If the block corresponding to ESSENTIAL BOUNDARY CONDITIONS is skipped it is assumed
that all essential boundary conditions have the value 0 and moreover, that the solution vector is
real. So in case of a complex problem always the part ESSENTIAL BOUNDARY CONDITIONS
must be given.

UM COEFFICIENTS December 2009 3.2.6.1

3.2.6 The main keyword COEFFICIENTS

The block defined by the main keyword COEFFICIENTS defines the values of the coefficients for
the differential equations to be solved as well as the coefficients to be used in the natural boundary
conditions. Furthermore in this block extra information may be given which defines how the matrix
and right-hand side must be built. This information may for example be the type of numerical
integration rule to be applied in the computation of the element matrices and element vectors, the
type of co-ordinate system to be applied (Cartesian, axi-symmetric etc.) or information about the
type of linearization to be used in a non-linear problem.
Coefficients may be of real type or of integer type. Real coefficients are in general the coefficients
in the differential equation itself. Integer coefficients correspond to types of methods to be used
(integration, co-ordinate system, linearization and so on).
Each coefficient corresponding to a differential equation, both real and integer gets a unique sequence
number.
Which coefficients must be given by the user for a specific partial differential equation and which
corresponding sequence number must be used is given in the manual STANDARD PROBLEMS.
There is no general rule in this case. So it is always necessary to consult the manual STANDARD
PROBLEMS.

The block defined by the main keyword COEFFICIENTS has the following structure (options are
indicated between the square brackets ”[” and ”]”):

COMPLEX COEFFICIENTS [,SEQUENCE NUMBER = s] [, PROBLEM = p]
(mandatory if type numbers larger than 99 are used)
COMMAND record: opens the input block.

The option COMPLEX indicates that the coefficients for a complex problem are defined.
The sequence number s may be used to distinguish between various input blocks with respect
to the coefficients.
The problem sequence number p may be used to define the problem number corresponding
to the matrix and vector to be filled. If omitted the next problem number is assumed.

Must be followed by data records defining the coefficients of the problems to be solved. For
each standard element corresponding to an element group the user must specify some coeffi-
cients. For a definition of the specific coefficients corresponding to a particular problem, the
reader is referred to the manual STANDARD PROBLEMS.

Coefficients must be defined in the following way

ELGRP 1

COEF i_1 = (VALUE = 3.5)

COEF i_2 = (FUNC = 2)

ICOEF i_3 = 11

COEF i_4 = (POINTS, IREF = r_1)

COEF i_5 = (ELEMENTS, IREF = r_2)

COEF i_6 = COEF i_5

COEF i_7 = 3.5

COEF J_8 = (SOL_FUNC= k)

COEF J_9 = %name_scalar

ELGRP 2

COEF j_1 = (FUNC = 6)

COEF j_2 = (VALUE = 2.956D0)

COEF j_3 = (OLD SOLUTION j [, DEGREE OF FREEDOM d])

COEF j_4 = (OLD SOLUTION j [, DEGREE OF FREEDOM d] [,COEF (VALUE=1.2)])

COEF j_4 = (OLD SOLUTION j [, DEGREE OF FREEDOM d] [,COEF = 1.2])

COEF j_5 = (OLD SOLUTION j [, DEGREE OF FREEDOM d] [,COEF (FUNC=1)])

UM COEFFICIENTS December 2009 3.2.6.2

The element groups (ELGRP 1, ELGRP 2, . . .) must be given in a natural sequence. Only
those element groups corresponding to type numbers larger than 99 must be used. Instead of
ELGRP i one may also use ELGRP i to j, if all element groups in the range i to j have the
same input for the coefficients.

COEF i = (VALUE = 3.5) means that coefficient i is a real coefficient with value 3.5.

COEF i = %name scalar means that coefficient i is a real coefficient with value of the
scalar with name name_scalar.
This option can only be used when scalars are used and the name of the scalars have
been defined in the input block CONSTANTS as treated in Section 1.4.
See also the input block STRUCTURE in Section 3.2.3.

COEF i = 3 means that coefficient i is a real coefficient with value 3.

COEF j = (FUNC = k) implicates that the jth coefficient is a function of the co-ordinates.
In that case the user must submit a function subroutine FUNCCF as described in the
SEPRAN INTRODUCTION 5.5.3. The value k following the equals sign corresponds to
the parameter IFUNC in FUNCCF, hence in this example IFUNC in the call of FUNCCF
is equal to k.
IFUNC must be in the range [1, 1000]. Values of k > 1000 have a special meaning.
If 1000 < k < 2000, the function subroutine FUNCC1 is called instead of FUNCCF with
parameter IFUNC-1000. For a description of FUNCC1 see Section 3.3.6. In this case
the coefficient is a function of the co-ordinates and the previous solution.
if k > 10000,, the function subroutine FUNCC3 is called instead of FUNCCF with pa-
rameter IFUNC-10000. In this case the coefficient is a function of the co-ordinates and
all the vectors that are defined and present in SEPCOMP.
Effectively this is the same as using SOL FUNC JFUNC, with JFUNC = IFUNC-10000.
For some problems the user must define an integer choice parameter instead of an actual
coefficient. In that case ICOEF k = 11, defines the value of the kth coefficient to be
equal to 11.

COEF i4 = (POINTS, IREF = r1) , means that coefficient i4 is given in all nodal points.
If r1 > 0, then the coefficients are read from a file with reference number IREF=r1. If
r1 < 0, the user must provide a subroutine FUNCFL as described in 3.3.3.

COEF i5 = (ELEMENTS, IREF = r2) , means that coefficient i5 is given per element.
If r2 > 0, the coefficients are read from a file with reference number IREF=r2.

COEF i6 = COEF i5 means that coefficient 6 is equal to coefficient 5. Of course coefficient
5 must have been defined before.

COEF i7 = SOL FUNC = k means that coefficient i7 is given as function of the co-
ordinates and the previous computed solutions or otherwise defined vectors. In that
case the user must provide a user function FUNCC3 as described in Section 3.3.6. The
value of k corresponds to the parameter IFUNC in FUNCC3.

COEF j3 = (OLD SOLUTION j, DEGREE OF FREEDOM d) , means that coef-
ficient j3 is equal to the dth degree of freedom of the vector Vj. Of course instead of j
one may use the name of the vector.
If DEGREE OF FREEDOM d is omitted the first degree of freedom in each nodal point
is used.

COEF j4 = (OLD SOLUTION j, DEGREE OF FREEDOM d, COEF (VALUE=v))
, or COEF j4 = (OLD SOLUTION j [, DEGREE OF FREEDOM d] [, COEF = v]),
means that coefficient j4 is equal to the dth degree of freedom of the vector Vj multiplied
by v.
If DEGREE OF FREEDOM d is omitted the first degree of freedom in each nodal point
is used.

COEF j5 = (OLD SOLUTION j, DEGREE OF FREEDOM d, COEF (FUNC=f))
, means that coefficient j5 is equal to the dth degree of freedom of the vector Vj mul-
tiplied by the function described by f . This means that the user function FUNCCF is

UM COEFFICIENTS December 2009 3.2.6.3

called with parameter ICHOIS equal to f in order to compute the multiplication factor.
If DEGREE OF FREEDOM d is omitted the first degree of freedom in each nodal point
is used.

When the coefficients for all element groups have been defined, then the coefficients for all
boundary element groups must be defined in a natural sequence. These boundary element
groups define the so-called natural boundary conditions. See also the manual STANDARD
PROBLEMS for an exact definition of what the natural boundary conditions are in a specific
case. The input very much resembles the input for the standard problems:

BNGRP 1

COEF i_1 = 2

COEF i_2 = (FUNC = 1)

BNGRP 2

COEF j_1 = (FUNC = 3)

After the definition of the coefficients for all element groups and boundary element groups,
the coefficients for all global element groups must be defined in a natural sequence. These
global element groups define the so-called global unknowns. See 3.2.3. See also the manual
STANDARD PROBLEMS for an exact definition of what the global unknowns are in a specific
case. The input very much resembles the input for the standard problems:

GLGRP 1

COEF i_1 = 2

COEF i_2 = (FUNC = 1)

GLGRP 2

COEF j_1 = (FUNC = 3)

END (mandatory)
COMMAND record: end of input for the block COEFFICIENTS.

UM CHANGE COEFFICIENTS November 1998 3.2.7.1

3.2.7 The main keywords CHANGE COEFFICIENTS

The block defined by the main keywords CHANGE COEFFICIENTS defines which coefficients
(integer or reals must be changed). So the use of this block assumes that already coefficients have
been defined. Only those coefficients that must be changed with respect to the previous definition
have to be given. CHANGE COEFFICIENTS is only used in combination with NON-LINEAR
PROBLEM. Since more than one section CHANGE COEFFICIENTS is allowed, CHANGE CO-
EFFICIENTS must be provided with a sequence number.

The block defined by the main keyword CHANGE COEFFICIENTS has the following structure
(options are indicated between the square brackets ”[” and ”]”):

CHANGE [COMPLEX] COEFFICIENTS [,SEQUENCE_NUMBER = k]

COMMAND record: opens the input for change coefficients.
must be followed by data records defining the coefficients to be changed of the problems to be solved.
For each standard element corresponding to an element group the user may specify some coefficients.
The keyword COMPLEX indicates that the coefficients may be complex. All real coefficients are
treated as if they are complex. The sequence number k may be used in NONLINEAR EQUATIONS
to identify this input.

Coefficients may be defined in exactly the same as for COEFFICIENTS, except that the number of
parameters does not have to be given, since this number is copied from COEFFICIENTS. Example:

ELGRP 1

COEF i1 = (VALUE = 3.5) or COEF i1 = 3.5

COEF i2 = (FUNC = 2)

ICOEF i3 = 11

COEF i6 = COEF i5

.

.

ELGRP 2

COEF j1 = (FUNC = 6)

COEF j2 = (VALUE = 2.956D0)

.

.

When the coefficients for all element groups have been defined, the coefficients for all boundary
element groups must be defined in a natural sequence. For example:

BNGRP 1

COEF i1 = 2

COEF i2 = (FUNC = 1)

BNGRP 2

COEF j1 = (FUNC = 3)

.

.

END (mandatory)

COMMAND record: end of input for change coefficients.

UM SOLVE November 2010 3.2.8.1

3.2.8 The main keyword SOLVE

The block defined by the main keyword SOLVE gives information with respect to the linear solver
to be used. Even in a non-linear problem a series of linear problems is solved, and hence this block
makes also sense in that case.
The type of linear solver to be used (direct or iterative) has already been defined in the block
MATRIX. In this part some extra information for the solver may be defined.

In the remainder of this section we denote the system of equations to be solved by:

Su = f .

The block defined by the main keyword SOLVE has the following structure (An option is indicated
like this [option]):

SOLVE [,SEQUENCE_NUMBER = s]

POSITIVE_DEFINITE

ITERATION_METHOD = iter_method [,options]

DIRECT_SOLVER = method

RESIDUAL = res

SYMMETRIC

DEFECT_CORRECTION [,options]

SPECTRAL [,options]

PROJECTION_METHOD = p [,options]

ISEQ_EXACT = i

ISEQ_RES_EXACT = i

ISEQ_START_RES = i

ISEQ_END_RES = i

LIMIT_SOLUTION

OVER_PRESSURES [,options]

SUB_EQUATION i

END

SOLVE opens the input for the linear solver.
The sequence number s may be used to distinguish between various input blocks with re-
spect to the linear solver. The sequence of the subkeywords is arbitrary and none of these
subkeywords is mandatory.

POSITIVE DEFINITE indicates that the matrix to be solved is not only symmetrical, but also
positive definite. This is only used in case of a direct profile solver. This option may not only
improve the computation time, it also offers an extra check on the correctness of the input.

ITERATION METHOD defines the type of iteration method to be used as well as the options
to be applied. If the structure of the matrix as defined in the block MATRIX ... END by
storage_method = profile the input about the iteration method is neglected, since then
always a direct solver will be used.
iter method may take one of the following values

CG

CGS

BICGSTAB

IDR

SYMMLQ

GMRES

GMRESR

OVERRELAXATION

GCR

UM SOLVE November 2010 3.2.8.2

SIMPLE_GCR

SIMPLER_GCR

HSIMPLER_GCR

MSIMPLER_GCR

AL_GCR

LSC_GCR

QLSC_GCR

SCHUR

BLOCK_TRIANGULAR

If storage_method = compact, symetric (symmetrical real or complex matrix) is used in
combination with iteration method always the conjugate gradient method (CG) (See Golub
and van Loan [6]) is used. If the matrix is non-symmetrical real or complex, the method is
defined by iter method.
For vector computers, storage_method = row_compact or vector_computer may be used
for the CG-type solvers. However, at the moment no preconditioning is available for this type
of storage.

CG means, use the conjugate gradient method (cg) in case of a symmetric matrix or the
bi-cgstab(l) method of Sonneveld and van der Vorst [2] in case of a unsymmetric matrix.

CGS activates the conjugate gradients squared method of Sonneveld [5].

BICGSTAB is identical to CG.

IDR uses the IDR(s) method of Sonneveld and van Gijzen [].

GMRES uses the so-called GMRES method with restart (See Saad [3]).

GMRESR (v.d.Vorst and Vuik [4]) is a type of GMRES method with as inner loop the
GMRES method and as outer loop the GCR method using a variable polynomial precon-
ditioner. If the number of iterations for GMRES is large and a super linear convergence
is visible, GMRESR may improve the convergence speed compared to GMRES.

GCR The GCR method is used.
Actually this is the same as GMRESR with NINNER = 1.

OVERRELAXATION activates the overrelaxation process. However, for this type of it-
eration the storage scheme may not be compact,, but must be row_compact.

SIMPLE GCR implies that the simple method is used to solve coupled equations. At this
moment this option is only available for velocity and pressure coupling.
The system of equations as described in Section 3.2.4, The system of equations is con-
sidered as a system consisting of pressure and velocity blocks. This complete system
is solved iteratively using a block preconditioner. In each step of the process, first the
momentum equations are solved, then the pressure correction, and finally the velocity is
adapted. To perform this overall iteration, the GCR method is used. In fact the simple
step is used as preconditioner for GCR.
The system of equations in each substep are solved by the methods following the key-
words, SUB_EQUATION 1, and SUB_EQUATION 2, respectively.
SUB_EQUATION 1, refers to the velocity (momentum equations), and SUB_EQUATION 2,
to the pressure equations.

So if SIMPLE_GCR is used, one has to satisfy the following requirements:

• The problem to be solved, needs both velocity and pressure unknowns.

• The storage scheme in the input block MATRIX, must have the value SIMPLE.

• The keywords, SUB_EQUATION 1, and SUB_EQUATION 2, must be present in this
SOLVE block.

UM SOLVE November 2010 3.2.8.3

The present version of simple is far from optimal, in fact it is rather slow, but in the
future, faster methods will be implemented.
For an example of the use of simple see the manual EXAMPLES, Sections 7.1.20 and
7.1.21.

SIMPLER GCR implies that the simpler method is used as preconditioner instead of the
simple method. In some cases this method performs better, especially in case of convec-
tion (Navier-Stokes).

HSIMPLER GCR is a hybrid form of simple and simpler. In the first iteration simple is
used, in all other iterations simpler. This method behaves better than simpler in case of
the Stokes equations.

MSIMPLER GCR is the same as simpler_gcr. The only difference is that the scaling
matrix Q′ is replaced by the diagonal of the velocity mass matrix instead of the diagonal
of the velocity matrix.

AL GCR implies that the AL method (Augmented-Lagrangian method) of Benzi et al is
used. In this method the system of equations to be solved is updated by the product of
divergence and gradient matrix multiplied by a parameter. In some cases this can be done
on element level, (Crouzeix-Raviart elements), in other cases (Taylor-Hood elements), an
adaptation of the method is required. For an example of the use of AL see the manual
EXAMPLES, Sections 7.1.22 and 7.1.23.
This method requires the storage scheme SIMPLE in the input block MATRIX.

LSC GCR uses the LSC method of Elman et al. to solve the system of equations arising
from the Navier-Stokes equations. The diagonal of the mass velocity matrix is used as
scaling matrix.
This method requires the storage scheme SIMPLE in the input block MATRIX.

QLSC GCR is the same as lsc_gcr, but the diagonal of the velocity mass matrix is replaced
by the diagonal of the velocity matrix.

SCHUR A schur complement iteration is used to solve the discretized Navier-Stokes equa-
tions. The intermediate steps are solved with an iterative method.

BLOCK TRIANGULAR A block triangular preconditioner in combination with GCR is
used to solve the discretized Navier-Stokes equations. The intermediate steps are solved
with an iterative method.

The options following iter method may be given in any sequence. They must be given in
the same record. If it is not possible to give all options within 80 columns it is necessary to
proceed on the next line. In that case the first line must be closed with the continuation mark
// i.e slash immediately followed by another slash. This process may be used recursively. The
following options are available:

PRECONDITIONING = prec

MAX_ITER = m

ACCURACY = epsilon

ABS_ACCURACY = eps1, REL_ACCURACY = eps2

PRINT_LEVEL = p

KRYLOV_SPACE = k

NTRUNC = n1

NINNER = n2

TERMINATION_CRIT = crit

KEEP_PRECONDITIONING

START = st

ADAPT_DIAGONAL = s

FACTOR = f

AT_ERROR = t

ISEQ_DIAG = i

UM SOLVE November 2010 3.2.8.4

ISEQ_PRECDIAG = i

PREC_LUMPING

TYPE_SCALING = type

SDIMENSION = s

LDIMENSION = s

STRUCTURE_PREMAT = i

OMEGA = om

LAPLACE_SHIFT = b

PRECONDITIONING defines the type of preconditioner to be used. The following values
for prec are available:

none

diagonal

ilu

eisenstat

Gauss_Seidel

mod_eisenstat

old

block_ssor

block_ilu

none no preconditioner is used.

diagonal diagonal scaling of the matrix is used as preconditioner.

ilu the preconditioner is a so-called incomplete LU decomposition.

eisenstat incomplete LU decomposition where only the diagonal is changed. Efficient
implementation of Eisenstat.

Gauss Seidel preconditioning with a Gauss Seidel iteration.

mod eisenstat modified incomplete LU decomposition according to Axelsson. Efficient
implementation of Eisenstat. The factor for the modification may be defined by
factor = f .

old a previously computed pre-conditioner is used.

block ssor preconditioning with a Gauss Seidel iteration. The main difference with
Gauss_Seidel is that all unknowns in one point are considered as a coupled block in
the matrix. This means that the Gauss Seidel process is carried out with respect to
these blocks instead of for all unknowns. This may improve the convergence when
there are more unknowns per point.
Of course if there is only one unknown per point this is exactly the same as Gauss_Seidel.

block ilu is the same as the ilu preconditioning. However, in this case a block incom-
plete LU decomposition is carried out. This may improve the convergence when
there are more unknowns per point.
Of course if there is only one unknown per point this is exactly the same as ilu.

The default value is eisenstat.

PREC LUMPING is only active if a preconditioning is applied.
The effect of this keyword is that if the off-diagonal elements of the matrix have the
same sign as the diagonal of the matrix, these elements are added to the diagonal of the
preconditioning matrix and made zero themselves (lumping), before the preconditioning
is applied. This makes only sense if all diagonal elements have the same sign. For many
physical problems this is indeed the case.
For some problems lumping may improve the convergence.
The default is not lumping, except when the preconditioning matrix does not exist. In
that case automatically lumping is applied in order to make the solver more robust.

TYPE SCALING = type defines the type of scaling that must be applied to the system
of equations before solving.

UM SOLVE November 2010 3.2.8.5

This option is only available in case of a non-symmetric matrix in combination with a
conjugate type solver.
At this moment the option is not implemented in combination with the Eisenstat pre-
conditioner.
The main goal of the scaling is to get a more balanced system of equations. This makes
the termination criterion more reliable and the convergence more smooth. It is espe-
cially useful in case some diagonal elements are large, for example because a boundary
condition is implemented by imposing a large number on the main diagonal.
The scalings matrix is always a diagonal matrix D with elements equal to the sum of the
absolute values of the row.
The following options for type are available:

none

row

symmetric

column

none means that no scaling takes place.

row means that the matrix and right-hand side are premultiplied by the matrix D:
D−1Su = D−1F.
This option is the recommended to improve the termination criterion.

symmetric in this case the matrix is pre- and post multiplied by the square root of D.
This introduces a symmetric type of scaling but it does not necessarily means that
the termination criterion is improved in an optimal way: D−

1
2 SD−

1
2 u = D−

1
2 F

column This option post multiplies the matrix by the diagonal matrix D. In fact it scales
the solution vector, but it does not influence the residual and hence the termination
criterion based on the residual: SD−1y = F, with y = Du.

Default value: none.
Remark: if the termination criterion is based on the residual, it is recommended to use
the row scaling.
For an example see the manual Standard Elements Section 7.1.17.

MAX ITER defines the maximum number of iterations is restricted to m. If the number of
iterations exceeds this maximum an error message is given and the program is halted.
The default value for m is the number of unknowns, but usually the process should be
finished much earlier.

ACCURACY defines when the iteration process is terminated. If the error is less than ε
the iteration is stopped.
The default value is ε = 10−3

ABS ACCURACY may be used instead of accuracy or together with REL ACCURACY.
If only ABS ACCURACY is used it has the same meaning as ACCURACY, but the
default termination criterion is set to absolute.

REL ACCURACY may be used instead of accuracy or together with ABS ACCURACY.
Used stand-alone there is no difference with ACCURACY, however, in combination with
ABS ACCURACY, both accuracy tests will be applied. If one of the tests is satisfied
the process is assumed to be converged.
Remark: the combination abs_accuracy and rel_accuracy given is only active in case
the keyword termination_crit is not given explicitly.

print level = p defines the amount of output that is produced during the iteration process.
The lower the value of p the less output is produced. Possible values for p are:

-1 No print output

0 Only error messages are printed

1 A little amount of information of the iteration method is printed

2 A maximal amount of information of the iteration method is printed

UM SOLVE November 2010 3.2.8.6

3 See 2, however, in this case not only information about the iteration process is printed,
but also the matrix and right-hand side are printed. Since in general the matrix may
become very large, use of this option is not recommended. It should only be applied
for research activities, and only in the case of a very small grid.

The default value is 0.

KRYLOV SPACE = k defines the dimension of Krylov space for GMRES, i.e. number of
iterations at which a restart is done. In case of GMRESR it concerns the outer loop.
The default value is 20 for GMRES and 100 for GMRESR.

NTRUNC = n1 may be used in combination with GMRESR or CG for a symmetric matrix.
In combination with GMRESR it defines the maximum number of search directions. n1
should be much smaller than k.
In combination with CG for a symmetric matrix it defines the maximum number of
iterations to estimate the smallest eigenvalue. This eigenvalue is used to correct the
termination criterion for the condition of the matrix. Once the number of iterations
equals NTRUNC the then computed eigenvalue is used for the rest of the process. If the
matrix is very ill-conditioned it may be necessary to choose NTRUNC larger than the
default value.
The default value is 20.

NINNER = n2 defines the maximum number of iterations in the inner loop of the GMRESR
process. The default value is 5.

termination crit = crit defines the type of termination criterion. The iteration method is
stopped if the accuracy of the solution is at least ε with respect to this criterion. Possible
values for crit are:

absolute The process is stopped if ‖Resk‖ < ε.

rel residual The process is stopped if ‖Resk‖ < ε‖Res0‖.
rel right hand side The process is stopped if ‖Resk‖ < ε‖f‖.
rel solution The process is stopped if ‖Resk‖ < ε‖u‖.
The default value is rel residual.

Here Resk denotes the residual Suk − f during the kth iteration, uk the solution at the
kth iteration and f the right-hand side of the system of equations to be solved.

KEEP PRECONDITIONING enforces the preconditioning matrix that has been com-
puted to be kept for the next system of linear equations to be solved. This preconditioner
is reused if preconditioning = old is set in the next system.

START = st defines how the initial vector must be chosen. Possible values for st are:

zero

old_solution

random

zero The start vector is the zero vector.

old solution enforces the iteration process to use the old solution available. item[random]
The start vector is a random vector.

Default value: zero

AT ERROR = t defines what the process must do if an error has been found, for example
if the maximum number of iterations has been reached. Possible values for t are

stop

resume

stop means that the process is stopped as soon as an error has been detected.

UM SOLVE November 2010 3.2.8.7

resume means that the iteration process is left with a warning. The program is resumed
with the last computed iteration.

Default value: stop

ADAPT DIAGONAL = s may be used to change the diagonal of the preconditioning
matrix. If this option is used, the diagonal of the preconditioning matrix is made equal
to the minimum of the computed value and s.
Default value: s=0.

factor = f Defines the factor to be used in the modified Eisenstat preconditioning. This
value must be between 0 and 1.
Default value: f=0.95.

ISEQ DIAG = i If this option is given, the diagonal of the matrix is stored in the ith

solution vector. vector

ISEQ PRECDIAG = i If this option is given, the diagonal of the preconditioning matrix
is stored in the ith solution vector. vector

SDIMENSION = s defines the parameter s in the IDR(s) method.
The default value of s is 1, which makes the method identical to bicg-stab.

LDIMENSION = l defines the parameter l in the Bi CGSTAB(l) method.
The default value of l is 1.

STRUCTURE PREMAT = is defines the matrix structure of the preconditioning ma-
trix. Usually this structure is exactly the same as for the matrix to be solved. However,
if the user wants, he may use a different structure. This structure must me given in a
separate input block MATRIX. The value of is refers to the sequence number of the ma-
trix structure. This sequence number is defined by the change_structure_of_matrix

command in the STRUCTURE block, by the keyword seq_storage = is.
Hence change_structure_of_matrix must be called before the solution of the system
of equations.
A reason to use structure_premat is for example if one needs extra fill in to get the sys-
tem of equations converging or a reduced fill in, for example by decoupling of unknowns.
in that case the option skip_boundary_conditions in the matrix block is recommended.

OMEGA = ω defines a relaxation parameter ω in the SIMPLE iteration. In some cases it
might help to accelerate the convergence.

LAPLACE SHIFT = β makes only sense in combination with preconditioner = ilu. It
is only activated if the option SHIFTED_LAPLACE is used in the input block MATRIX, see
(3.2.4).
The shifted Laplace preconditioner is meant for Helmholtz-type equations. Such an
equation has the shape

−div α∇c− k2c = f (3.2.8.1)

An ILU preconditioner is based on the complete discretization matrix. In case of a shifted
Laplace preconditioner the ILU matrix is constructed from the matrix corresponding to

−div α∇c+ βk2c (3.2.8.2)

So the preconditioning matrix is made positive definite instead of indefinite. The value
of β defines the shift. At this moment only the diagonal of the matrix corresponding
to the part k2c is used, so the extra storage is equal to the number of unknowns. In
case of a complex matrix beta is supposed to be complex and beta should be given by
(beta1, beta2) or if β is real by beta.
For some experiments with the shifted Laplace preconditioner, we refer to the manual
Examples, Section .

SUB EQUATION i describes, how the ith sub-equation in the simple method must be
solved. This keyword must be followed by data records describing, which iteration

UM SOLVE November 2010 3.2.8.8

method must be used for the sub-equation. The option in these data records are ex-
actly the same as for the standard iterative method.
So we might have for example

solve

iteration_method = simple_gcr, preconditioning = ilu, print_level = 2 &

start = old_solution, accuracy = 1d-9

sub_equation 1

iteration_method = cg, preconditioning = ilu, print_level = 0, eps = 0.1

sub_equation 2

iteration_method = cg, preconditioning = ilu, print_level = 0, eps = 0.1

end

If overrelaxation is used to solve the system of linear equations then it is necessary that
storage_scheme = row_compact is set in the input block MATRIX. both for symmetric and
non-symmetric matrices. In fact a possible symmetry is not utilized.

An extra option available for overrelaxation is that of constrained optimization. It is not only
possible to solve a system of linear equations, but also the solution u(i) may be computed
such that it satisfies a ≤ u(i) ≤ b.

With respect to overrelaxation the following options are available:

MAX_ITER = m

ACCURACY= epsilon

START = OLD_SOLUTION

ALPHA = alpha

BETA = beta

OMEGA = omega

NITER1 = n1

LAMBDA = lambda

minimum = m1 or (value=m1) or (func=i1)

maximum = m2 or (value=m2) or (func=i2)

degfd = i

The options max iter, accuracy and start = old solution have exactly the same meaning as
for the conjugate gradient type solvers.

The options minimum, maximum and degfd are used for constrained optimization only. They
define the restrictions on the solution.
If minimum = m1 or minimum = (value=m1) is given the solution is computed under the
restriction u(i) ≥ m1. The option func = i1 has not yet been implemented.
If maximum = m2 or maximum = (value=m2) is given the solution is computed under the
restriction u(i) ≥ m2. The option func = i2 has not yet been implemented.

The options alpha, beta, omega, niter1, niter2 and lambda may be used to influence the
convergence of the overrelaxation process. See the part ”How to influence the overrelaxation
process” at the end of this section.

DIRECT SOLVER = method , options
defines the type of direct solver to be used. At this moment there are two values for method
available:

PROFILE [,options]

COMPACT [,options]

MUMPS [,options]

UM SOLVE November 2010 3.2.8.9

profile activates the standard direct profile solver. There is no need to give the command
direct solver = profile unless one of the options will be used. This direct solver may only
be used if the storage scheme of the matrix corresponds to storage_scheme = profile.
The profile solver does not use any form of pivoting. As a consequence in some cases
the solution found is less accurate than possible for the system of equations to be solved.
Although this situation is rare for systems of equations originating of the discretization
of partial differential equations, SEPRAN offers the possibility to improve the solution
by iterative improvement. As a check it is also possible to print the norm of the residual
by the option RESIDUAL = res. In case of iterative improvement this option prints the
residual during each step of the iteration process.
Iterative improvement is activated with the extra option

NUM ITER REF = n,

which defines the maximum number of extra iterative improvements. Iterative improve-
ment stops if the residual is smaller than the accuracy ε defined by

ACCURACY = ε

mumps makes only sense if you have the mumps package installed.
It may only be used in combination with the keyword MUMPS either in the input block
MATRIX or in the command matrix structure in the input block STRUCTURE.
The options give you the opportunity to give extra information to the MUMPS package.
At this moment teh follwing options are available:

renum_mumps = i

renum mumps = i defines the type of renumbering scheme as stored in ICNTL(7) in
the mumps manual.

compact activates a very special direct solver based on a compact storage. To use this solver
it is necessary to define storage_scheme = compact. This direct solver is in fact the
method Y12M of Zlatev [1]. This method can only be used if the Y12M solver is available
in your institute. Y12M is a direct solver, which uses pivoting. However, it is based on
a compact storage. Extra space needed for the Gaussian elimination process is created
during the process itself. For large systems of equations the storage required may be less
than for the profile solver. At this moment the use of Y12M is not recommended unless
the system of equations can only be solved if pivoting is applied.
With respect to Y12M the following options are available:

droptolerance = d

num_pivot_rows= m

num_iter_ref = n

accuracy = epsilon

print_level = p

lu_storage = n

droptolerance = d indicates that all elements that are created during the Gaussian
elimination process with a value smaller than d are set equal to zero and hence not
stored.
The default value is 10−12.

num pivot rows= m defines the number of rows to be used in the pivoting process.
The larger the value the more stable and expensive the method.
The default value is 3.

num iter ref = n defines the maximum number of iterative improvements to be per-
formed after the Y12M method is applied. This option makes only sense if a large
drop tolerance or no pivot rows are applied.
The default value is 0.

accuracy = ε defines the accuracy for the iterative improvement.
The default value is 10−3.

UM SOLVE November 2010 3.2.8.10

print level = p defines the amount of output produced by this method. Values between
0 and 2 are allowed, where 0 means that only error messages are printed and 2 gives
the maximal amount of output.
The default value is 0.

lu storage = n defines the amount of storage that must be defined for the LU-decomposition.
n defines the multiplication factor, i.e. the space used for the LU-decomposition is
n × the storage needed for the original matrix. If n is too large, possibly no space is
available. If n is too small the process may become very slow or even may terminate
without finding the solution.
The default value is 15.

RESIDUAL indicates if the norm of the residual ‖Su− f‖ must be printed, where S defines the
matrix, u the solution and f the right-hand-side vector. This option is only available for direct
methods.
res defines the way the residual is computed. Possible values:

none The residual is not printed.

absolute The 2-norm of the residual is computed and printed.

relative The 2-norm of the residual divided by the 2-norm of the right-hand side is computed
and printed.

The default value is none.

SYMMETRIC makes only sense in the case that a storage type corresponding to storage_scheme = row_compact

or storage_scheme = vector_computer is used. It indicates that the matrix is symmetric
although a non-symmetric storage is used.

DEFECT CORRECTION implies that a defect correction method must be applied. This key-
word makes only sense if in the building of the matrix already provisions for a defect correction
process have been taken.

The defect correction process may be described as follows:

Suppose we want to solve Ax = b, but the matrix A is not suited for iterative solution and
direct solution is too expensive. A possible alternative is to solve an approximate equation
Ãx1 = b and to iterate to x by the iteration process:

Ãxk = b−Axk−1 (3.2.8.3)

So in this case we need two matrices A and Ã. A typical example is the solution of a convection
equation by central differences, where the matrix may such that the iterative solution is hardly
possible. An upwind matrix may be very suitable for the iterative solution but can lead to
inaccurate solutions. In that case the upwind matrix may be used as approximate matrix in
order to solve the central difference scheme. For some applications only one iteration of the
defect correction scheme is sufficient to achieve an accurate solution in a very limited number
of inner iterations.
Whether the defect correction method may be applied depends on the type of equation to
be solved. Consult the manual standard problems if a type of equation allows for defect
correction. This means that the matrix builder constructs two matrices at the same time.

The following options are available:

accuracy = eps

max_iter = m

print_level = p

solve_accuracy = eps

with

UM SOLVE November 2010 3.2.8.11

accuracy = ε defines the accuracy of the defect correction method. The iteration is stopped
as soon as the difference between two succeeding solutions is less than the required
accuracy.

max iter = m defines the maximum number of iterations to be performed in the defect
correction process.

print level = p defines the amount of output to be produced by the defect correction method.

solve accuracy = ε defines the accuracy of the linear solver in each step of the defect cor-
rection method.

SPECTRAL is used in case of spectral elements. It is assumed that the system of equations is
solved by a CG type method with FEM preconditioner. The standard keywords in the block
SOLVE refer to the FEM preconditioner.
The keyword SPECTRAL itself refers to the CG type method for the spectral solver.

The following options are available:

accuracy = eps

max_iter = m

print_level = p

with

accuracy = ε defines the accuracy of the spectral method. The iteration is stopped as soon
as the residual is less than the required accuracy.

max iter = m defines the maximum number of iterations to be performed in the defect
correction process.

print level = p defines the amount of output to be produced by the spectral CG solver.
Values of p may vary from 0 (no output) to 2 (output in each iteration).

PROJECTION METHOD = p implies that a projection method will be used to accelerate
the convergence of the Krylov subspace method. There are the following reasons to apply a
projection method:

• it can be used in combination with a traditional preconditioner to give a faster conver-
gence,

• problems with large contrasts can only be solved if a projection method is used,

• in parallel computing, a projection method combined with a block preconditioner leads
to a scalable parallel method.

For an example of the use of the projection method see the manual Standard Problems Section
3.1.6.
At this moment the method has only been implemented for symmetrical positive definite
matrices that are solved by CG.
The following values for p are available:

none

deflation

coarse

These parameters have the following meaning:

none The projection method is not applied.

deflation For this choice a deflation method is used to project a number of ”bad” eigenvalues
to zero. The resulting singular problems has a better effective condition number.

UM SOLVE November 2010 3.2.8.12

coarse This choice leads to a coarse grid correction of the preconditioners. The ”bad” eigen-
values are now shifted. In general deflation leads to a faster convergence than the coarse
grid correction.

The default value is none

The following options may be used to define the projection vectors:

projection_vectors = v

The following values for v are available:

approximate_eigenvectors

algebraic_restricted

algebraic

These parameters have the following meaning:

approximate eigenvectors Approximate eigenvectors corresponding to the smallest eigen-
values are used to define the projection method. These approximate eigenvectors are
computed as defined by the options. Use of this choice is only possible if integer prop-
erties are defined in the input for the mesh generator under the parts MESHSURF or
MESHVOLUME (See Section 2.2). The first integer property is used, and it may have
either the value 1 or 0.
Integer property 1 means that the coefficient in that region is assumed to be relatively
large, whereas integer property 0 means that a small coefficient is valid in this region.
This property is used to define the approximate eigenvectors.

algebraic restricted This choice is also only possible if integer properties are defined (see
above). The number of projection vectors is equal to the number of small eigenvalues.
The projection vectors are chosen such that they have the value 1 in a large coefficient
domain including the boundary and the value 0 in all other domains.

algebraic This is the most general choice. The number of projection vectors is equal to
the number of domains. The projection vectors have the value 1 in one domain and
the value 0 in all other domains. This is the only choice, which can be combined with
parallel computing.

The default value is algebraic

The following sub-options may be used to define the approximate eigenvectors:

projection_accuracy = e

projection_ignore = t

projection_keep = k

projection_print_level = i

These options have the following meaning:

projection accuracy = ε The projection vectors are computed by solving the equations for
each region with the small coefficient separately with suitable values on the boundaries
of these regions. The accuracy to which these vectors are computed are defined by ε.
The default value is: 10−2.

projection ignore = t defines a threshold value with respect to the projection vector. All
elements in the projection vectors in absolute value smaller than t are set equal to zero,
thus saving memory and computation time.
The default value is: 0

UM SOLVE November 2010 3.2.8.13

projection keep = k defines if the projection vectors must be kept, that previously com-
puted projection vectors must be used or that they are computed and destroyed after-
wards.
The following values for k are available:

destroy

keep

old

destroy means that the eigenvectors are computed and destroyed afterwards.

keep means that the eigenvectors are computed and stored so that they can be used in
a new call to the linear solver.

old means that previously computed eigenvectors are reused.

The default value is: destroy.

projection print level = i defines the amount of extra output that is produced while com-
puting the projection eigenvectors.
i must have a value between -1 and 2. The larger the value of i the more extra output
is produced.
-1 means no extra output at all.
The default value is: 0

OVER PRESSURES means that a very special boundary condition is applied that is especially
meant for computing over-pressures.
This boundary condition may only be combined with a CG type of iterative solver.
Suppose we have a sandstone layer with a shale layer on top of it and above it again a
sandstone layer. If the over-pressure in the lowest sand-stone layer exceeds a threshold value,
fluid leaks through the shale layer into the sandstone layer above, yielding a larger pressure in
that layer. To simulate that process the pressure in the lower sandstone layer is fixed to the
threshold value and the rest of the fluid is added to the right-hand side of the upper sandstone
layer as a source term.
This process is carried out in two steps:

1. The system of linear equations is solved without the special boundary condition

2. If the pressure exceeds the threshold value the matrix and right-hand side are adapted
and the system of equations is solved again.
In case of more layers this process may be repeated.

The following options are available for this boundary condition (all in one record):

user_points = (i1, i2, j1, j2 , ...)

nodes = (i1, i2, j1, j2 , ...)

thresholds = (t1, t2, ...)

USER POINTS defines pairs of user points for each layer where we have a break through.
The first user point number defines the user point in the lowest sandstone layer the
second one in the sandstone layer above this layer. Hence the number of points must
always be even.

NODES has exactly the same meaning as user_points, however, now the node numbers
must be given instead of the user point numbers.
The options user_points and nodes are mutually exclusive.

THRESHOLDS defines the threshold values in the lowest of the two points of a pair. The
number of values must be exactly equal to the number of pair defined by user_points

or nodes.

ISEQ EXACT = i If this item is given the exact solution must be stored by the user in the ith

solution vector. This vector may be used to compute the error or to compute the residual of
the exact solution with respect to the system of equations.

UM SOLVE November 2010 3.2.8.14

ISEQ RES EXACT = i can only be used in combination with ISEQ EXACT = i. If used the
residual of the exact solution with respect to the system of equations is stored in the ith

solution vector.
This option is meant for debugging purposes to find in which points the error of the discretiza-
tion is large.

ISEQ START RES = i If used the residual of the starting solution with respect to the system
of equations is stored in the ith solution vector.

ISEQ END RES = i If used the residual of the final solution with respect to the system of
equations is stored in the ith solution vector.
This residual must be small, otherwise the system of equations has a very bad condition, or
an error in the solution process has occurred.

LIMIT SOLUTION This keyword is a special one that should be used only in exceptional cases.
It limits the solution between the minimum and maximum values at the start of the solver.
Usually this means that the solution will be restricted to the minimum and maximum values
of the boundary conditions. If these conditions are always positive and the vector in the inner
region has not been set, then 0 will be the minimum since the vector is initialized to 0, before
boundary conditions are set.
The limiting is very crude: all values above the maximum value are reset to the maximum
value and all all values below the minimum value are reset to the minimum value.

UM SOLVE November 2010 3.2.8.15

How to influence the overrelaxation process

The overrelaxation process to solve Su = f is defined as:

ui
k+ 1

2 =

fi −
i−1∑
j=1

sijuj
k+1 −

N∑
j=i+1

sijuj
k

sii
(3.2.8.4)

ui
k+1 = xi

k = ω(ui
k+ 1

2 − uik) 0 < ω < 2 (3.2.8.5)

a Estimate ω0 (Default ω0 = 1).
The starting value of ω0 is equal to the parameter OMEGA. The default value is 1, however,
once this parameter is changed in SEPCOMP the new value is kept.

b n1 iterations with ω = ω0 are carried out.
When n1 = 0, ω1 = ω0, go to e.
When n1=-1, n1 is made equal to nndim, with n the size of the matrix (i.e. number of
unknowns), and ndim the dimension of the space.
n1 is equal to the parameter NITER1 at the start. The default value is -1, however, once this
parameter is changed in SEPCOMP the new value is kept.

c λmax is computed using the power method and ωopt estimated:

ωopt = 2
1+
√

1−µ , µ = 1
λmax

λmax−1+ω
ω

2
(∗).

The parameter LAMBDA gets the value λmax.

d A new value of ω is computed by

ω1 = 1 + α(ωopt − 1) 0 ≤ α ≤ 1

The starting value of α is equal to the parameter ALPHA. The default value is 2
3 , however,

once this parameter is changed in SEPCOMP the new value is kept.

e n2 iterations with ω = ω1 are carried out.
When n1 = 0, ω2 = ω1, go to h.
When n2 = -1, n2 is made equal to n1. n2 is equal to the parameter NITER2 at the start.
The default value is -1, however, once this parameter is changed in SEPCOMP the new value
is kept.

f λmax is computed using the power method, and ωopt estimated with formula (∗).

g A new value of ω is computed by

ω2 = 2 + β(ωopt − 2) 0 ≤ β ≤ 1

The starting value of β is equal to the parameter BETA. The default value is 4
5 , however,

once this parameter is changed in SEPCOMP the new value is kept.
When n1=0 and n2 = 0, λmax is estimated in each step.
When n1=-2, λmax is not estimated. The value of LAMBDA is used.

h Until the process is terminated, iterations are performed using the new value of ω.

Remark

The values of α and β may not be the best choice. A good method to get an acceptable estimation
of α and β is the following:

Compute the problem on a small scale, that is with a few elements, with various values of α and
β (especially β). Compare the values of ω and λ and the number of iterations to make the best
choice. Use these values in the original problem with a lot of elements.

UM NON-LINEAR EQUATIONS January 2013 3.2.9.1

3.2.9 The main keyword NONLINEAR EQUATIONS

The block defined by the main keyword NONLINEAR EQUATIONS indicates that a non-linear
stationary problem has to be solved. In this block information concerning the iteration process
must be defined.

The block defined by the main keyword NONLINEAR EQUATIONS has the following structure
(options are indicated between the square brackets ”[” and ”]”):

NONLINEAR_EQUATIONS [SEQUENCE_NUMBER = s] [PROBLEM = p]

(optional): opens the input for the non-linear solver.

NUMBER_OF_COUPLED_EQUATIONS = n

GLOBAL_OPTIONS, options (optional)

EQUATION i (mandatory)

followed by the subsubkeywords:

LOCAL_OPTIONS, options (optional)

FILL_COEFFICIENTS = f (optional)

CHANGE_COEFFICIENTS (optional)

followed by the subsubsubkeywords:

AT_ITERATION j, SEQUENCE_NUMBER = k

END (mandatory)

The sequence number s may be used to distinguish between various input blocks with respect to
the nonlinear solvers.
The problem sequence number p may be used to define the problem number corresponding to the
matrix and vector to be filled. If omitted the next problem number is assumed.

The sequence of the subkeywords, subsubkeywords and subsubsubkeywords is arbitrary. However,
subsubkeywords corresponding to a subkeyword must all be grouped under the subkeyword and so
on. All sub, subsub and subsubsub keywords given above must start at a new line in the input file.

Meaning of the subkeywords:

NUMBER OF COUPLED EQUATIONS defines the number of equations that must be solved
simultaneously. If omitted n is equal to NPROB, i.e. the number of problems defined.
This option is meant for the case of decoupled problems. Hence if the Boussinesq equations
are solved in a coupled way, which means temperature, velocity and if necessary pressure in
one element type, then the number of coupled equations is one. If, however, alternatively the
velocity (including pressure) and temperature are solved, then the equations are decoupled
and the number of coupled equations must be two.

GLOBAL OPTIONS define some global choices with respect to the linear solver. The options
itself should be put on the same line as the keyword GLOBAL OPTIONS. If this line exceeds
position 80, continuation at the next line is necessary. This is activated by closing the line
with // (before column 81) and putting the rest of the information on the next line. This
process may be indefinitely repeated. The following options are available:

maxiter = m (Default 20)

miniter = m (Default 2)

accuracy = eps (Default 1d-3)

print_level = p (Default 0)

relaxation = omega (Default 0)

criterion = c (Default abs)

lin_solver = i (Default value 1)

UM NON-LINEAR EQUATIONS January 2013 3.2.9.2

at_error = e (Default stop)

output = i (Default 0)

seqtotal_vector = i (Default 1)

iteration_method = m (Default standard)

abs_residual_accuracy = eps (Default: not)

rel_residual_accuracy = eps (Default: not)

limit_solution (Default: not)

linear_subelement (Default: not)

Meaning of the various options:

maxiter = m defines the maximum number of iterations that may be performed. If the
number of iterations reaches this maximum value and the accuracy has not been reached,
an error message is given and the program is terminated.

miniter = m defines the minimum number of iterations that have to be carried out.

accuracy = ε defines the accuracy at which the iteration terminates, provided the minimum
number of iterations has been performed. Accuracy has been reached if the difference
between two succeeding iterations is less than ε.

print level = p gives the user the opportunity to indicate the amount of output information
he wants from the iteration process. p may take the values 0, 1 or 2. The amount of
output increases for increasing value of p.

relaxation = ω defines a relaxation parameter for the non-linear iteration process
(0 ≤ ω ≤ 2). If ω = 0 or 1, the solution of the previous iteration (uk) is taken as new
estimate of the old solution in the iteration process.
If ω 6= 0 or 1, the old solution uold is defined as:

uold = ωuk + (1− ω)uk−1, u−1 = u0.

criterion = c defines the type of termination criterion to be used. Possible values are:

absolute

relative

rhs_absolute

rhs_relative

energy_absolute

energy_relative

res_absolute

res_relative

If absolute is used (default value) the process is stopped if ‖uk+1 − uk‖ ≤ ε.

If relative is used the process is stopped if ‖u
k+1−uk‖
‖uk+1‖ ≤ ε,.

If rhs_absolute is used the process is stopped if ‖fk‖ ≤ ε,
where fk is the right-hand side in the kth iteration.

If rhs_relative is used the process is stopped if ‖fk‖
‖uk+1‖ ≤ ε,

where fk is the right-hand side in the kth iteration.

If res_absolute is used the process is stopped if ‖rk‖ ≤ ε,
where rk is the residual in the kth iteration.

If res_relative is used the process is stopped if ‖rk‖
‖uk+1‖ ≤ ε,

where rk is the residual in the kth iteration.

If energy_absolute is used the process is stopped if ‖(fk, δu)‖ ≤ ε,
where fk is the right-hand side in the kth iteration.

UM NON-LINEAR EQUATIONS January 2013 3.2.9.3

The inner product (f , δu) is known as the energy increment in case of an incremental
Newton iteration.

If energy_relative is used the process is stopped if ‖(f
k,δu)‖

‖uk+1)‖ ≤ ε.

Mark that the criteria rhs_absolute, rhs_relative, energy_absolute and energy_relative

make only sense in combination with a Newton or incremental Newton iteration.

lin solver = i refers to the sequence number of the input block for the linear solver.

at error = e defines which action should be taken if the iteration process terminates because
no convergence could be found. Possible values are:

stop

resume

If stop is used the iteration process is stopped if no convergence is found, otherwise
(resume) means that control is given back to the main program and the result of the
last iteration is used as solution.

output = i indicates if during the iteration process the iteration vectors must be written to
the file sepcomp.out (i > 0) or not (i = 0). If i > 0 the value of i refers to the sequence
number of the input block ”OUTPUT” which describes which results must be written.
This option offers the possibility to follow the iteration process with SEPPOST.

iteration method = m defines the type of non-linear iteration method that is applied. Pos-
sible values for m are:

standard

newton

incremental_newton

standard means that a standard iteration method is applied: The process starts with
a given start vector u0 containing the boundary conditions. In each iteration
Skuk+1 = fk is solved, where the solution vector uk+1 also contains the given bound-
ary conditions. The matrix Sk and the right-hand-side vector fk may vary in each
iteration step.

newton corresponds to the standard Newton (Raphson) method. This process is as
follows:

start: given start vector u0

While not converged

Solve correction Sk δu = fk

Correct uk+1 = uk + δu

The correction in each step must satisfy homogeneous essential boundary conditions,
since otherwise the essential boundary conditions are changed in the correction step.

incremental newton The incremental Newton method is a variant to the standard
Newton process especially meant for non-linear solid mechanics. It is supposed that
the initial vector contains the solution of a previous situation. In the new situation
the essential boundary conditions may be changed.In this process we start with
an initially given so-called total vector and a so-called incremental vector. In the
first step of the iteration process the incremental vector must contain the change in
essential boundary conditions compared to the initial total vector. In the subsequent
steps the essential boundary conditions for the incremental vector are set equal to
zero. Hence the process becomes:

start: given start vector u0 and an incremental vector δu containing the change
in essential boundary conditions

While not converged

Solve correction Sk δu = fk

UM NON-LINEAR EQUATIONS January 2013 3.2.9.4

Correct uk+1 = uk + δu
Make essential boundary conditions of correction vector 0

seqtotal vector = i is only used in the case of an incremental Newton method. In that
case the vector to be solved is incremental vector which has to be provided with the
essential boundary conditions. Besides the solution vector we need the total solution
vector containing the actual solution vector u. This vector is updated in each iteration
step. i refers to the sequence number of this total vector. It is necessary that the total
solution vector and the incremental vector are different vectors.

abs residual accuracy = εres If this option is found, the residual vector Skuk − fk is
computed. Hence the iteration matrix multiplied by the old solution minus the right-
hand side. This vector may be considered as some measure for the accuracy. Depending
on the print level the norm of the residual is printed. Moreover, in order to reach
convergence, not only the difference between two succeeding solutions must be small be
also: ||Residual|| < εres. If you are only interested in the norm of the residual and do
not want to use the extra demand on convergence; make εres large.

rel residual accuracy = εres has the same meaning as abs residual accuracy, however, in
this case the norm is divided by the norm of the computed solution.
Mark that abs residual accuracy and rel residual accuracy are mutually exclusive.

limit solution This keyword is a special one that should be used only in exceptional cases.
It limits the final solution between the minimum and maximum values at the start of
the iterations.
The limiting is very crude: all values above the maximum value are reset to the maximum
value and all all values below the minimum value are reset to the minimum value.
The iterations itself are not limited, only the end result. If limiting of the intermediate
values is required, limit_solution should be used in the linear solver.

linear subelement ensures that quadratic elements are treated as a cluster of linear ele-
ments. For example a 6-node triangle is locally subdivided into 4 3-node triangles. The
matrix is built with these linear elements. Of course this option influences the type of
approximation and hence the accuracy.
Mark that this option can only be applied if the number of degrees of freedom per point
is constant.

EQUATION i If the user wants to define coefficients (which is necessary in the case of the stan-
dard elements described in the manual STANDARD PROBLEMS), he has to use the keyword
EQUATION followed by the sequence number i, for each separate equation, where 1 ≤ i ≤ n.

LOCAL OPTIONS defines the options that are used for equation i only. The following options
are available:

accuracy = eps

relaxation = omega

criterion = c

lin_solver = i

abs_residual_accuracy = eps

rel_residual_accuracy = eps

seqtotal_vector = i

iteration_method = m

limit_solution

linear_subelement

These options have exactly the same meaning as in the case of the global options. The only
difference is that they are only applied to this specific equation. As default values, the values
defined in global options are used.

UM NON-LINEAR EQUATIONS January 2013 3.2.9.5

FILL COEFFICIENTS followed by the sequence number f indicates that the coefficients must
be filled and that the input is given by the main block defined by the main keyword COEF-
FICIENTS with sequence number f .

CHANGE COEFFICIENTS indicates that at certain iteration numbers some of the coeffi-
cients must be changed. This may for example be the case if a switch to a new lineariza-
tion, for example from Picard to Newton must be performed. In the records following
CHANGE COEFFICIENTS it is indicated at which iteration sequence number the coeffi-
cients must be changed. j defines the iteration number, the sequence number k refers to the
main block CHANGE COEFFICIENTS provided with sequence number k.

UM CREATE April 2008 3.2.10.1

3.2.10 The main keyword CREATE

The block defined by the main keyword CREATE is used to create a SEPRAN vector, which
may be a solution vector or a vector of special structure. If this block is available it is always
read and interpreted. However, the actual creation of the vector takes only place if the option
CREATE VECTOR is used in the input block ”STRUCTURE”.

The block defined by the main keyword CREATE has the following structure (options are indicated
between the square brackets ”[” and ”]”):

CREATE [COMPLEX] VECTOR = [i] [,PROBLEM = p] [,SEQUENCE_NUMBER = s]

Record defining the type of output vector

Records defining the output vector

END

The various options in the CREATE record have the following meaning:

CREATE mandatory, means that a vector must be created.

COMPLEX indicates that the solution vector is a complex vector.

SEQUENCE NUMBER = s may be used to distinguish between various input blocks with
respect to the vector.

VECTOR = i is used to define the ith vector in a row of vectors. If omitted the first vector in
this block has sequence number 1, and all other vectors have the sequence number of the
preceding one plus 1. If the block STRUCTURE is used and in this block the command
CREATE VECTOR, sequence number = s, vector = v
is given, then the actual vector sequence number is v − 1 + i.

PROBLEM = p is used to define the problem sequence number corresponding to the solution
vector to be filled. If omitted p = i is assumed, with i the sequence number of the vector.

The record defining the type of output vector may take one of the following shapes:

TYPE = SOLUTION VECTOR

TYPE = VECTOR OF SPECIAL STRUCTURE [Vj]

TYPE = VECTOR defined per element [N_alpha]

TYPE = SPECIAL_VECTOR_PER_NODE_PER_ELEMENT [N_alpha]

TYPE = CAPACITY_VECTOR, NELECTRODES = n [NPHYS]

SOLUTION VECTOR means that the output vector has exactly the same structure as the
solution vector, which means that renumbering of unknowns may take place.

VECTOR OF SPECIAL STRUCTURE Vj means that the output vector is a vector of spe-
cial structure as defined in the PROBLEM block. For standard problems the available struc-
tures are defined in the manual Standard Problems.
Vj defines the sequence number of the special structure. If omitted Vj=1 is assumed.

VECTOR defined per element Nα means that the output vector is a vector of special struc-
ture where the number of parameters is constant per element. Hence this vector contains
element related quantities as described in the input block PROBLEM.
Nα defines the number of parameters defined per element. If omitted Nα=1 is assumed.

SPECIAL VECTOR PER NODE PER ELEMENT Nα means that the output vector is a
vector of special structure where the number of parameters is constant per node per element.
So for each node and element a number of quantities is defined. These quantities may have
different values for the same node in different elements.

UM CREATE April 2008 3.2.10.2

Nα defines the number of parameters defined per node. If omitted Nα=1 is assumed.
The sequence in which the unknowns are stored is: first all unknowns for the relative first
node of element 1, then for relative second node and so on, followed by element 2, 3 ...

CAPACITY VECTOR, NELECTRODES = n [nphys] means that the output vector is a
vector of capacities corresponding to electrodes as described in Section 3.2.19. n defines the
number of electrodes and nphys the number of degrees of freedom per entry in the capacity
vector. The default value for nphys is 1.
The sequence in which the capacities are stored is: first all unknowns for the combination
(1,1) then for (1,2), (1,3), ...

Only one type may be defined. If no type is defined SEPRAN checks if the vector has been filled
before. If the vector has been filled before corresponding to the same problem j, the preceding type
is used, otherwise the type SOLUTION VECTOR is assumed.

After the type definition, records defining the vector must be given. The vector is created by
applying the definitions sequentially, so for example first a vector may be set to a constant, then
the curves may be changed into other values and finally the user points may be changed. The
sequence of the commands defines the sequence in which the vector is filled. This sequence may
be essential for the final value in a specific node. The records defining the computation have the
following shape:

[functional description] [degrees of freedom] [location part] in arbitrary order.

The functional description may be of one of the following shapes:

VALUE = alpha

VALUE = (alpha , beta)

FUNC[TION] = k

SPECIAL_FUNC[TION] = l

OLD_FUNC[TION] = m

OLD_VECTOR = m

SEQ_VECTORS = V1, V2, ...

QUADRATIC, MAX = a

HALF_QUADRATIC, MAX = a

VECTOR = V1

with

VALUE = α sets the required degrees of freedom equal to the constant value α. If the vector is
complex, also a complex value may be given like (α, β). In that case (α, 0) and α are identical.

FUNCTION = k defines the degrees of freedom as a function of the co-ordinates. In the case of
a real vector the function is defined by the function subroutine FUNC:

function FUNC (k, X, Y, Z)

see INTRODUCTION 5.5.4.
In the case of a complex vector the function is defined by the function subroutine CFUNC:

function CFUNC (k, X, Y, Z)

see INTRODUCTION 5.5.4.

SPECIAL FUNCTION = l also defines the degrees of freedom as a function of the co-ordinates,
however, in this case more complicate subroutines FUNC1B (real case) and CFUN1B (complex
case) must be used:

UM CREATE April 2008 3.2.10.3

subroutine FUNC1B(l,INDEX1,INDEX2,USOL,COOR)

or

subroutine CFUN1B(l,INDEX1,INDEX2,USOL,COOR)

See Section 3.3.4.

OLD FUNCTION = m defines the degrees of freedom as a function of the co-ordinates and the
previous solution which must be stored in the array to be created. In fact this option is meant
to update an existing vector as function of this vector.
It is assumed that old vector and the new vector to be created take the same positions. Hence
the vector to be created must have been filled before and is changed as function of the old
values.
Such a possibility is especially meant for non-linear boundary conditions. In the case of a real
vector the function is defined by the function subroutine FUNCOL:

function FUNCOL (m, X, Y, Z, UOLD)

see Section 3.3.5.
In the case of a complex vector the function is defined by the function subroutine CFUNOL:

function CFUNOL (m, X, Y, Z, UOLD)

see Section 3.3.5.

VECTOR = V1 copies the degrees of freedom from the corresponding degrees of freedom in
vector V1.

OLD VECTOR = m defines the degrees of freedom as a function of the co-ordinates and a
number of predefined vectors. The user is supposed to provide the subroutine FUNCVECT
as described in Section 3.3.11.

subroutine funcvect(m, ndim, coor, numnodes, uold,

+ nuold, result, nphys)

SEQ VECTORS = V1, V2, ... makes only sense in combination with OLD VECTOR = m. It
defines the sequence numbers of the vectors to be used in subroutine FUNCVECT, as well as
the number of vectors.
If omitted vector V1 is used.

QUADRATIC, MAX = α defines the degrees of freedom as a quadratic function along a (series
of) curve(s), such that the quadratic function is equal to 0 in the end points and has the value
α in the mid point. If MAX = α is omitted, α = 1 is assumed.
This boundary condition, which is meant to prescribe a quadratic velocity profile, for example
in a fully developed flow, may only be used for one specific degree of freedom. Furthermore
the boundary condition is only allowed along curves.

HALF QUADRATIC, MAX = α defines the degrees of freedom as a quadratic function along
a (series of) curve(s), such that the quadratic function is equal to 0 in the begin point and
has the value α in the end point. If MAX = α is omitted, α = 1 is assumed.
This boundary condition, which is meant to prescribe a quadratic velocity profile in case of a
symmetry axis, for example in a fully developed axi-symmetric flow, may only be used for one
specific degree of freedom. Furthermore the boundary condition is only allowed along curves.

If the functional description is omitted, the default: VALUE=0 is assumed.

The degrees of freedom part may have one of the following structures:

UM CREATE April 2008 3.2.10.4

DEGFD2

DEGFD3, DEGFD1, DEGFD6

which indicates that in the nodes to be created only physical unknown 2 or the physical unknowns
1, 2 and 6 are filled.
If this part is omitted all degrees of freedom in the nodes to be created are filled.

The location part may have one of the following structures:

POINTS (Pk, Pl, . . . , Pm)

USER POINTS (Pk to Pl [,step = s])

CURVES [l] (Cj [to Cm])

SURFACES [i1, i2, i3, ...] (Sj [to Sm])

VOLUMES [i1, i2, i3, ...] (Vj [to Vm])

OUTER_CURVES

OUTER_SURFACES

NODES (Nj [to Nm [, step = s]])

ELEMENTS i [to j] [(RN1, RN2, RN3, ...)]

GROUP ielgrp [(RN1, RN2, RN3, ...)]

GLOBAL_GROUP iglgrp

CONTACT i

NO_CONTACT i

OBSTACLE i

IN_ALL_OBSTACLE i

IN_INNER_OBSTACLE i

IN_BOUN_OBSTACLE i

ON_BOUN_OBSTACLE i

ZERO_LEVELSET i

FILE_NODAL_VALUES = ’file_name’

FILE_ELEMENT_VALUES = ’file_name’

FILE_CAPACITY_VALUES = ’file_name’

These records have the following meaning:

POINTS (Pi1, Pi2, ...) defines all user points between the brackets.

CURVES [l] (Cj [to Cm]) defines only the part of the vector in the curves Cj to Cm (or Cj if Cm
is omitted).

l has the following meaning: l = i+ 100× IEXCLUDE.
If omitted l = 0 is assumed.

i has the following meaning:

i=0 means that all nodal points on the curves are prescribed as indicated by DEGFDj.

i>0 means that only the nodal points 1, 1+(i+1), 1+2×(i+1), . . . on these curves are
prescribed as indicated by DEGFDj.

i<0 means that all nodal points except the points 1, 1-(i-1), 1-2×(i-1), . . . on these curves
are prescribed as indicated by DEGFDj.

Hence i=0

××××××××××××

UM CREATE April 2008 3.2.10.5

degrees of freedom DEGFDj are prescribed in all nodal points.

i=2
⊗××⊗××⊗××⊗××⊗
6 6 6 6 6

degrees of freedom DEGFDj are prescribed in the nodal points indicated by x.

i=-2
×⊗⊗×⊗⊗×⊗⊗×⊗⊗×

66 66 66 66

degrees of freedom DEGFDj are prescribed in the nodal points indicated by x.
Remark: i must be so that the last nodal point of the curves C1 to C5 is equal to 1 + k
i with k integer (> 0 or < 0).

EXCLUDE may have one of the following values:

0 All points of the curves C1 to C5 are used as indicated by i.

1 All points except the begin point of C1 are used as indicated by i.

2 All points except the end point of C5 (or C1 if C5 is omitted) are used as indicated
by i.

3 All points except the begin point of C1 and the end point of C5 (or C1 if C5 is
omitted) are used as indicated by i.

Remark: EXCLUDE > 0 may only be used in combination with i ≥ 0.
If omitted l = 0 is assumed.

The curves Cj to Cm must be subsequent curves!

USER POINTS (Pl1 [to Pl2 [,step j]]) defines the part of the vector in the user points Pl1 to
Pl2 (or Pl1 if Pl2 is omitted).
The parameter j after step has the following meaning (default: 0):

j = 0 all user points between Pl1 and Pl2 are used

j > 0 the user points Pl1 , Pl1+j , Pl1+2j , ... are used

j < 0 all user points between Pl1 and Pl2 are used except the points Pl1 , Pl1−(j−1), Pl1−2(j−1),

SURFACES [i1, i2, i3, ...] (Sj [to Sm]) has the same meaning as CURVES (Cj [to Cm]) but now
with respect to the surfaces Sj to Sm or Sj if Sm is omitted.
The parameters i1, i2, ...ip have the following meaning: when omitted, all nodal points in the
surface are used. Otherwise, the degrees of freedom are only prescribed in the ith1 , i

th
2 , i

th
3 , ...

nodal point of each element of the surfaces.
A typical example is SURFACES (1,3,5) for a quadratic triangle, indicating that only the
vertices in the triangle are used. See Figure 3.2.10.1. The rest of the record has the same
meaning as in the points record.
All surfaces in this statement must have the same number of nodes per element.

VOLUMES [i1, i2, i3, ...] (Vj [to Vm]) has the same meaning as SURFACES[i1, i2, i3, ...] (Sj [to
Sm]) but now with respect to the volumes Vj to Vm or Vj if V m is omitted.
The parameters i1, i2, ...ip have the following meaning: when omitted, all nodal points in the

UM CREATE April 2008 3.2.10.6

• • •

•

•

•

1
2

3

4

5

6

..
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

Figure 3.2.10.1: Quadratic triangle, with corresponding nodal point numbering.

• • •

•

•

•

• •

•

•

1
2 3

4

5

6

7 8

9

10

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
...........

..
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
...

. .

Figure 3.2.10.2: Quadratic tetrahedron, with corresponding nodal point numbering.

volume are used. Otherwise, the degrees of freedom are only prescribed in the ith1 , i
th
2 , i

th
3 , ...

nodal point of each element of the volumes.
A typical example is VOLUMES (1,3,5,10) for a quadratic tetrahedron, indicating that only
the vertices in the tetrahedron are used. See Figure 3.2.10.2. The rest of the record has the
same meaning as in the points record.
All volumes in this statement must have the same number of nodes per element.

OUTER CURVES All the nodes of the mesh that are on the outer boundary of a 2D mesh are
used to define the quantities.

OUTER SURFACES All the nodes of the mesh that are on the outer boundary of a 3D mesh
are used to define the quantities.

NODES (N1 [to N2 [,step=j]]) defines the components in the nodal points N1 to N2 or N1 if
N2 is omitted. The absolute nodal point numbers are used, not the user points.
If j > 1 only the points N1, N1 + j,N1 + 2j, ..., N2 are used.
All volumes in this statement must have the same number of nodes per element.

ELEMENTS i [to j] [(RN1, RN2, ..., RNl)] defines the components in the relative nodal points
(RN1, RN2, ...RNl) of the elements i to j (or i if j is omitted). The absolute numbers are
used.
All elements in this statement must have the same number of nodes per element.

GROUPielgrp [(RN1, RN2, ..., RNl)] defines the components in the relative nodal pointsRN1, RN2...RNl
of all elements with element group number ielgrp. When the relative nodal points are omit-
ted, all nodal points in the element are used.
All element groups in this statement must have the same number of nodes per element.

GLOBAL GROUPiglgrp defines the components in the unknowns corresponding to the global
group iglgrp.

UM CREATE April 2008 3.2.10.7

OBSTACLE i makes only sense in combination with free or moving boundary problems. In
that case the user may define obstacles in the region. The free or moving boundary may
not cross these obstacles. Once a boundary crosses an obstacle, the corresponding nodes are
projected on the obstacle and are made active. Later on they may be deactivated during the
computation. Only active nodes along the boundary are used for the location part. Hence
this set of nodes may be empty.

IN ALL OBSTACLE i Values are prescribed in all nodes of the mesh that are situated within
the obstacle with obstacle sequence number i.

IN INNER OBSTACLE i Values are prescribed in the nodes of those elements of the mesh that
are completely within the obstacle with obstacle sequence number i.
Compared to IN ALL OBSTACLE, this means that nodes near the boundary of the obstacle
are excluded.

IN BOUN OBSTACLE i Values are prescribed in the nodes of those elements of the mesh that
are partly outside the obstacle with obstacle sequence number i.
So all the points that are excluded in in_boun_obstacle but are part of in_all_obstacle
belong to in_boun_obstacle.

ON BOUN OBSTACLE i Values are prescribed in the nodes of those elements of the mesh that
are on the boundary of the obstacle with obstacle sequence number i.

CONTACT i makes only sense if the user has defined a contact surface and activated a contact
algorithm. Only nodes that make contact and are at the contact surface with sequence number
i are used for the location part. Hence this set of nodes may be empty.

NO CONTACT i makes only sense if the user has defined a contact surface and activated
a contact algorithm. Only nodes that make no contact and are at the contact surface with
sequence number i are used for the location part. Hence this set of nodes may be empty.

ZERO LEVELSET i Values are prescribed in all the nodes of the mesh where the level set func-
tion φi has the value 0. This is exactly the boundary made by the command make_levelset_mesh

in the structure block. See (3.2.3.18).

FILE NODAL VALUES ’file name’ may be used to read nodal point numbers and corre-
sponding values of the vector to be created (or the boundary conditions) from the file with
the name given between the two quotes. If this option is used, the user must provide a file of
this name as described in Section 3.5.2.
At the moment the file is used, it is opened with reference number 75, the contents are read
and the file is closed again. This means that the user may not have opened a file with reference
number 75 at the same time, and moreover that if the file is reused again reading starts from
the first record.
This option is only available for solution vectors or vectors of special structure (not defined
per element).

FILE ELEMENT VALUES ’file name’ may be used to read element numbers and corre-
sponding values of the vector to be created (or the boundary conditions) from the file with
the name given between the two quotes. If this option is used, the user must provide a file of
this name as described in Section 3.5.3.
At the moment the file is used, it is opened with reference number 75, the contents are read
and the file is closed again. This means that the user may not have opened a file with reference
number 75 at the same time, and moreover that if the file is reused again reading starts from
the first record.
This option is only available for vectors of special structure defined per element.
The number of values to be read per element (NDEGFD) is equal to the number of quantities
stored per element in this type of vector.

UM CREATE April 2008 3.2.10.8

FILE CAPACITY VALUES ’file name’ may be used to read electrode pairs and correspond-
ing values of the capacity vector to be created from the file with the name given between the
two quotes. If this option is used, the user must provide a file of this name as described in
Section 3.5.4.
At the moment the file is used, it is opened with reference number 75, the contents are read
and the file is closed again. This means that the user may not have opened a file with reference
number 75 at the same time, and moreover that if the file is reused again reading starts from
the first record.
This option is only available for vectors of the type capacity vector.

If this part is omitted, all nodes are used.

Typical examples are:

VALUE=3

FUNC=6

VALUE=(2,0.5)

SPECIAL FUNCTION=k

DEGFD1, VALUE=5

FUNC=6, DEGFD1, DEGFD3

POINTS (P1, P2, P6), DEGFD2, FUNC=5

POINTS (P1), FUNC=3, DEGFD1

USER POINTS (P3 to P6)

DEGFD3, USER POINTS (P3 to P7, step=2), VALUE=0.5

FUNC=2, DEGFD2, DEGFD6, CURVES 3 (C1 to C3)

SURFACES 1,3,5 (S1 to S5), VALUE=7d6

VOLUMES (V2 to V3), VALUE=(0,27.345)

NODES (1 to 16, step=2), VALUE=(2,5), DEGFD1

ELEMENTS (3 to 253, step=7), DEGFD2, DEGFD3, FUNC=7

GROUP 7 (2,4,6)

Remarks:

• Each vector in the input block CREATE may be defined by at most one command CREATE
VECTOR so the parameter i in this COMMAND must be unique per sequence number s.

• If no data records (except perhaps the type record) are given after the CREATE command,
the complete vector is set equal to zero.
However, as soon as at least one data record defining the vector or a part of it is given, the
vector is not initialized. That means that degrees of freedom that are not defined in the data
records are not changed or initialized. The user is responsible for the correct filling of the
vector.

• The vector is filled in the order given in the input file. Hence, the statements

VALUE=0
DEGFD2 = (FUNC=3)

set first the vector equal to zero and then replace the second component by the function
defined by FUNC=3.
On the other hand the statements

DEGFD2=(FUNC=3)

UM CREATE April 2008 3.2.10.9

VALUE=0

have as final effect that the vector is set equal to zero. In this case the first command is
useless and only consumes computing time.

A typical input block ”CREATE” might be:

CREATE VECTOR 3, problem 1, sequence_number = 2

type = vector of special structure 2

value = 0

degfd1 = func = 3

CREATE VECTOR 1, problem 2

surface (s1 to s3), degfd2 = func = 4

CREATE COMPLEX VECTOR 2

type = solution vector

value = (0,0)

degfd2 = func = 6

curves (c1 to c5), degfd1 = value = (3,.5)

curves (c2 to c3), degfd3 = func = 7

END

UM DERIVATIVES October 2012 3.2.11.1

3.2.11 The main keyword DERIVATIVES

The block defined by the main keyword DERIVATIVES gives information with respect to the
derived quantities (usually derivatives) to be computed. If this block is available it is always read
and interpreted. However, the actual computation of derivatives takes only place if the option
DERIVATIVES is used in the input block ”STRUCTURE”.

The block defined by the main keyword DERIVATIVES has the following structure (options are
indicated between the square brackets ”[” and ”]”):

DERIVATIVES [,SEQUENCE_NUMBER = s] [,PROBLEM = p]

data records

END

The first record opens the input for the computation of derived quantities.
The sequence number s may be used to distinguish between various input blocks with respect to the
derivatives. The problem sequence number p is used to define the problem number corresponding
to the vector to be filled. If omitted p = 1 is assumed.
The last record closes the input Data records defining the type of output vector have the following
shape

TYPE_OUTPUT = t, options (at the same line)

ICHELD = s

ELEMENT_GROUPS = (s1, s2, ...)

SKIP_ELEMENT_GROUPS = (s1, s2, ...)

IX = s

DEGREE_OF_FREEDOM = d

SEQ_INPUT_VECTOR [k] = i

NUMVEC = n

CLEAR

NO_CLEAR

BOUNDARY_INTEGRAL (C1, C4, ...)

CURVES (C1, C4, ...)

POINTS (P3, P1, ...)

SURFACES (S2, S8, ...)

ZERO_LEVEL_SET i

These data records have the following meaning:

TYPE OUTPUT = t ,options
defines the type of output vector. This option must be used if user elements with type numbers
between 1 and 99 are used. The SEPRAN standard elements detect itself the type of output
vector. In case of a mixture of user elements and SEPRAN elements, the output is defined
by the standard elements.
The following values of t are allowed:

SOLUTION

SPECIAL

ELEMENTWISE

INTERPOLATE

ELEMENT_NODES

ELEMENT_INTEGRATION_POINTS

REACTION_FORCE

and with respect to options we have the following choices

UM DERIVATIVES October 2012 3.2.11.2

COMPLEX

REAL

IVEC = s

Meaning of all these values:

SOLUTION means that the vector to be created is of the type of a solution vector.

SPECIAL the vector is a vector of special structure with sequence number iv defined per
node. See the input block ”PROBLEM” how to define these vectors. The default value
for iv is 1.

ELEMENTWISE the vector is a vector of special structure defined per element with iv
degrees of freedom per element.

INTERPOLATE the vector to be created is a vector of special structure with sequence
number iv. However, in contrast to the option SPECIAL the vector is not created by
an averaging process, but merely by adding quantities in common nodes. In other words
the vector of special structure is built as if it is a right-hand-side vector.

ELEMENT NODES The output vector is a vector of special structure defined per element.
Each quantity is stored for each node per element No averaging takes place.

ELEMENT INTEGRATION POINTS The output vector is a vector of special struc-
ture defined per element. Each quantity is stored for each integration point per element

REACTION FORCE is a very special option. It creates a reaction force along a set of
given curves. (surfaces have not yet been implemented). In fact it defines the flux through
these curves, provided there are no other elements on the other side of the curves. This
is for example the case if the curve is a curve on the outer boundary. But also if we
exclude element groups the result may be that there are no elements left on the other
side of the curves. Mark that this option is an extension of the possibilities provided by
the linear and non-linear solver.
In order that the correct flux is computed, it is necessary that the coefficients in the
input are exactly the coefficients used to solve the problem. So in a non-linear problem
these must be the coefficients last used (might be defined by change_coefficients).
The options on this input line are not used.
For an example see Section 6.2.5

COMPLEX defines the output vector as a complex vector and

REAL defines the output vector as a real vector.

Default value: SOLUTION

ICHELD = s defines the type of derived quantity to be computed. This parameter is passed to
the element subroutines which decide which derivative corresponds to the value s of ICHELD.
With respect to the standard elements provided by SEPRAN, it is necessary to consult the
manual Standard problems for the meaning of ICHELD in specific cases. If user elements are
defined (type numbers between 1 and 99), the parameter ICHELD is passed undisturbed to
the element subroutine.
The default value for ICHELD is 1.

ELEMENT GROUPS = (s1, s2, ...) defines which element groups must be used to compute
the derivatives. Only element groups defined in the mesh generation part are used.
The default value for ELEMENT GROUPS is all element groups.

SKIP ELEMENT GROUPS = (s1, s2, ...) defines which element groups must be skipped
when derivatives are computed. The keyword ELEMENT GROUPS excludes the use of the
keyword SKIP ELEMENT GROUPS.
The default value for SKIP ELEMENT GROUPS is skip no element groups.

UM DERIVATIVES October 2012 3.2.11.3

IX = ix defines the parameter IX which is used by the element subroutines. Usually IX is meant
to indicate which derivative must be computed. For example if ix=1, the x-derivative is
computed and if ix=2, the y-derivative is computed. Whether this parameter is used by the
standard elements can be found in the manual Standard Problems.
If user elements are defined (type numbers between 1 and 99), the parameter IX is passed
undisturbed to the element subroutine.
The default value for IX is 1.

DEGREE OF FREEDOM = d defines the parameter JDEGFD which is used by the element
subroutines. Usually JDEGFD is meant to indicate which degree of freedom per node must
be used to compute the derivative. So in general the derivative ∂uJDEGFD

∂IX is computed.
Whether this parameter is used by the standard elements can be found in the manual Standard
Problems.
If user elements are defined (type numbers between 1 and 99), the parameter JDEGFD is
passed undisturbed to the element subroutine.
The default value for JDEGFD is 1.

SEQ INPUT VECTOR [k = i] defines the parameter from which input vectors the derivatives
must be computed. If only one input vector is required explicitly k may be skipped. If the
element subroutine requires two separate input vectors, the parameter k must be used to
distinguish between the first and second one. The default value for k is 1.
The parameter i refers to the parameter i in vector Vi.
Hence if the pressure in the Navier-Stokes equations must be computed, with the velocity
vector stored as V3 as input, then SEQ INPUT VECTOR = 3 must be used.
The default value for i is 1.

NUMVEC = n defines the number of subsequent vectors to be used as input vector. For example
if the input vector is defined as input vector V3 and n=5, it is supposed that the vectors V3
to V7 may be used as input vectors for the computation of derivatives.
The default value is n = 1.

CLEAR indicates that the vector to be created is set equal to zero before building the vector.
This is also the default value.

NO CLEAR indicates that the vector to be created is not set equal to zero before building the
vector. This means that this vector must have been created before and that the result of the
computation is added to this vector. The default value is CLEAR.

BOUNDARY INTEGRAL (C1, C4, ...) indicates that a boundary integral must be com-
puted along the curves C1, C4, ... This boundary integral must be of the type

∫
u · n dΓ,

with u a vector quantity.
It is of course necessary that u has been defined by the other options. So u must be a derived
quantity defined in the same input block.

CURVES (C1, C4, ...) Is only used in case reaction forces must be computed. It defines along
which curves these reaction forces must be computed.

POINTS (P3, P1, ...) Same as curves but now with respect to user points.

SURFACES (S2, S8, ...) Same as curves but now with respect to surfaces.

ZERO LEVEL SET i Same as curves but now with respect to the zero levelset with sequence
number i.

UM INTEGRALS December 1993 3.2.12.1

3.2.12 The main keyword INTEGRALS

The block defined by the main keyword INTEGRALS gives information with respect to the integrals
to be computed. If this block is available it is always read and interpreted. However, the actual
computation of integrals takes only place if the option INTEGRALS is used in the input block
”STRUCTURE”.

The block defined by the main keyword INTEGRALS has the following structure (options are
indicated between the square brackets ”[” and ”]”):

INTEGRALS [,SEQUENCE NUMBER = s] (optional)

COMMAND record: opens the input for the computation of integrals.
The sequence number s may be used to distinguish between various input blocks with respect
to the integrals.
This COMMAND record must be followed by data records defining the type of output vector:

ICHELI = s

ELEMENT GROUPS = (s1, s2, ...)

SKIP ELEMENT GROUPS = (s1, s2, ...)

DEGREE OF FREEDOM = d

MAXMIN ELEMENTS = choice

END (mandatory)
The sequence of the subkeywords is arbitrary.

The subkeyword ICHELI defines the type of integral to be computed. This parameter is passed
to the element subroutines which decide which integral corresponds to the value s of ICHELI.
With respect to the standard elements provided by SEPRAN, it is necessary to consult the manual
Standard problems for the meaning of ICHELI in specific cases. If user elements are defined (type
numbers between 1 and 99), the parameter ICHELI is passed undisturbed to the element subrou-
tine.
The default value for ICHELI is 1.

The subkeyword ELEMENT GROUPS = (s1, s2, ...) defines which element groups must be used
to compute the integrals. Only element groups defined in the mesh generation part are used.
The default value for ELEMENT GROUPS is all element groups.

The subkeyword SKIP ELEMENT GROUPS = (s1, s2, ...) defines which element groups must be
skipped when integrals are computed. The keyword ELEMENT GROUPS excludes the use of the
keyword SKIP ELEMENT GROUPS.
The default value for SKIP ELEMENT GROUPS is skip no element groups.

The subkeyword DEGREE OF FREEDOM = d defines the parameter JDEGFD which is used by
the element subroutines. Usually JDEGFD is meant to indicate which degree of freedom per node
must be used to compute the integral. So in general the integral over uJDEGFD is computed.
Whether this parameter is used by the standard elements can be found in the manual Standard
Problems.
If user elements are defined (type numbers between 1 and 99), the parameter JDEGFD is passed
undisturbed to the element subroutine.
The default value for JDEGFD is 1.

The subkeyword MAXMIN ELEMENTS = choice defines whether only the integral must be com-

UM INTEGRALS December 1993 3.2.12.2

puted or also the minimum and the maximum value over the elements. The following values for
choice are allowed:

NO

YES

ABS

The option NO means that only the integral is computed and YES means that both the integral
and the minima and maxima over the elements are computed. If ABS is used the minima and
maxima of the absolute values of the element integrals are computed.

UM OUTPUT April 2007 3.2.13.1

3.2.13 The main keyword OUTPUT

The block defined by the main keyword OUTPUT gives information with respect to the vectors to
be written to the file sepcomp.out. These vectors may be visualized by program SEPPOST. An
extra possibility offered by this part of the program is that derived quantities may be computed
and written to the file sepcomp.out. In contrast to the part of the program corresponding to the
input block ”DERIVATIVES”, these derived quantities are not stored in the program itself.

The block defined by the main keyword OUTPUT has the following structure

OUTPUT, sequence_number = i

NOT_SEPPOST

TO_AVS

TO_OPEN_DX

TO_TECPLOT

TO_PARAVIEW

WRITE j SOLUTIONS

AVS_FILE_NAME = ’file_name’

OPENDX_FILE_NAME = ’file_name’

TECPLOT_FILE_NAME = ’file name’

PARAVIEW_FILE_NAME = ’file name’

FILE_PER_TIME_STEP

ALL_TIME_STEPS_IN_ONE_FILE

SEPARATE_ELGRPS

APPEND

Vi = ICHELD=k1, options

Vj = ICHELD=k2, options

.

.

END

Meaning of these keywords:

OUTPUT ,SEQUENCE NUMBER = s COMMAND record: opens the input for the defini-
tion of the quantities to be written to the file sepcomp.out.
The sequence number s may be used to distinguish between various input blocks with respect
to the output. If omitted the next number is used, compared to the last one read in the input
file.

NOT SEPPOST indicates that the output vector is not written to the file sepcomp.out. This
option is only useful if the output vector is written to another file for post-processing purposes.
At this moment only one alternative for SEPPOST is available: AVS.
If this keyword is omitted the output is always written to sepcomp.out.

TO AVS indicates that the output vector must be written to a file with AVS format. This file
may be read by AVS for post-processing purposes. Use of this option does not suppress the
writing of the output to sepcomp.out.
If this keyword is omitted no output is written to AVS files.

AVS FILE NAME defines the name of the AVS file. This name is followed by the suffix xxx.yyy,
where xxx and yyy are sequence numbers related to time and iteration number respectively.
If omitted the default name sepavs is used.

TO OPEN DX indicates that the output vector must be written to a file with OPEN DX format.
This file may be read by OPEN DX for post-processing purposes. Use of this option does not
suppress the writing of the output to sepcomp.out.
If this keyword is omitted no output is written to OPEN DX files.

UM OUTPUT April 2007 3.2.13.2

OPENDX FILE NAME defines the name of the OPEN DX file. This name is followed by the
suffix xxx.yyy, where xxx and yyy are sequence numbers related to time and iteration number
respectively.
If omitted the default name sepdx is used.

TO TECPLOT indicates that the output vector must be written to a file with TECPLOT format.
This file may be read by TECPLOT for post-processing purposes. Use of this option does
not suppress the writing of the output to sepcomp.out.
If this keyword is omitted no output is written to TECPLOT files.

TECPLOT FILE NAME defines the name of the TECPLOT file. This name is followed by
the suffix xxx.yyy, where xxx and yyy are sequence numbers related to time and iteration
number respectively.
If omitted the default name septec is used.

TO PARAVIEW indicates that the output vector must be written to a file with AVS(PARAVIEW)
format. This file may be read by PARAVIEW for post-processing purposes. Use of this option
does not suppress the writing of the output to sepcomp.out.
If this keyword is omitted no output is written to PARAVIEW files.
This option is only available for 3d problems.

PARAVIEW FILE NAME defines the name of the PARAVIEW file. This name is followed by
the suffix _yyy.inp, where yyy is a sequence number related to time or iteration number.
If omitted the default name sepparaview_xxx.inp is used.

FILE PER TIME STEP means that for each time step a separate file is made. This is the
default value for all output possibilities except for the file sepcomp.out, where this option
does not have any effect at all.

ALL TIME STEPS IN ONE FILE means that output for all time steps is stored in one large
file. This is standard for the file sepcomp.out. In the case of a TECPLOT file this is an
option, in all other cases it has not been implemented yet.

WRITE j SOLUTIONS indicates that not only the output vector V1 (or Vi if i is given explicitly
in the command OUTPUT in the input block ”STRUCTURE”), but also the vectors V2, V3,
... , V1+j-1 (respectively Vi, Vi+1, ... , Vi+j-1) must be written to the output file. Of course
these vectors must have been filled before.
The vectors to be written get the new sequence numbers V0, V1, ... , Vj-1, which must be
used by program SEPPOST. These numbers are only meant for SEPPOST not for the use in
SEPCOMP.

SEPARATE ELGRPS is only used in combination with TO PARAVIEW. In this case the out-
put for each element group is written to separate files name_of_file_xxx.inp, where xxx

is the element group sequence number. For each element group a separate mesh is made
consisting of this element group only and the solutions are written for this specific mesh.

APPEND is only used in combination with TO TECPLOT or TO AVS. If this keyword is present
it is checked if there are already tecplot or avs files with the name given. If so the old files
are not destroyed but numbering continues from the last sequence number used.

Vi = ICHELD=k1 (options) may be used repeatedly for various values of i. i must be larger
than 0 and if the option write j solutions is used, i must be larger than j − 1. This option
defines a new vector Vi for program SEPPOST that is constructed as derived quantity in the
same way as may be done by the input block ”DERIVATIVES”.
ICHELD = k1 defines the type of derived quantity to be computed. See the input block
”DERIVATIVES” for an explanation.

This option is not available for OPEN DX.

The following options are recognized:

UM OUTPUT April 2007 3.2.13.3

IX = k2

JDEGFD = k3

INPVC0 = k4

INPVC1 = k5

IVEC = k6

SEQ_COEFFICIENTS = s

These options have the following meaning:

IX = k2 defines the parameter IX, see the input block ”DERIVATIVES”.

JDEGFD = k3 defines the parameter JDEGFD, see the input block ”DERIVATIVES”.

INPVC0 = k4 defines the first input vector to be used, and the option INPVC1 = k5 the
second one, see the input block ”DERIVATIVES”.

IVEC = k6 may be used to identify an array of special structure with sequence number k6.
This option is only used if element type numbers in the user range 1 to 99 are used.
Otherwise SEPRAN decides itself what type of output vector must be created.// The
default value is k6=0, which means that the output vector has the structure of a solution
vector.

SEQ COEFFICIENTS = s indicates which input block for the coefficients must be used
to compute the derivatives.
If omitted, the last coefficients read are used. In practical applications it is always save
to give this number explicitly.
In the case of time-dependent problems it is always necessary to give this parameter,
since SEPRAN does not keep the last coefficient in the time-dependent subroutines.

END (mandatory), closes the output.

The sequence of the subkeywords is arbitrary.

UM BOUNDARY INTEGRAL July 1999 3.2.14.1

3.2.14 The main keyword BOUNDARY INTEGRAL

The block defined by the main keyword BOUNDARY INTEGRAL gives information with respect
to the boundary integrals to be computed. If this block is available it is always read and in-
terpreted. However, the actual computation of integrals takes only place if the option BOUND-
ARY INTEGRAL is used in the input block ”STRUCTURE”.

The block defined by the main keyword BOUNDARY INTEGRAL has the following structure
(options are indicated between the square brackets ”[” and ”]”):

BOUNDARY INTEGRAL [,SEQUENCE NUMBER = s] (optional) COMMAND record: opens
the input for the computation of boundary integrals.
The sequence number s may be used to distinguish between various input blocks with respect
to the boundary integrals.
This COMMAND record must be followed by data records defining the type of output vector:

ICHINT = i

ICHFUN = j

IRULE = k

CURVES (C1, C2, C3, ...)

SURFACES (S1, S2, S3, ...)

DEGREE OF FREEDOM = d

END (mandatory)
The sequence of the subkeywords is arbitrary.

The subkeyword ICHINT defines the type of boundary integral to be computed. The following
values for ICHINT are available:

1.
∫
∂Ω

fuds, where u denotes the solution defined by the input vector (VECTOR i in the input

block STRUCTURE) and f a function defined by ICHFUN.

2.
∫
∂Ω

fu ·nds, where u denotes the solution defined by the input vector (VECTOR i in the input

block STRUCTURE) and n the normal defined at the boundary. If is supposed that the
solution can be considered as a vector, which means that there are at least NDIM (dimension
of space) degrees of freedom per point to be integrated.

3.
∫
∂Ω

fu · tds, where t defines the tangential vector.

4.
∫
∂Ω

fn ·σ ·nds, where n denotes the normal and σ defines a tensor given by the input vector.

5.
∫
∂Ω

fn · σ · tds, where n denotes the normal, t the tangential vector and σ defines a tensor.

6.
∫
∂Ω

fn · σds, where n denotes the normal and σ defines a tensor. The result of this operation

is a vector instead of a scalar.

7.
∫
∂Ω

funds, where n denotes the normal and u defines a scalar. The result of this operation is

a vector instead of a scalar.

8. sum over the points at the curves of the function. The result is a scalar. This option is meant
in the combination with reaction forces, which are already integrals. The sum of the reaction
forces along a boundary defines exactly the boundary integral.

UM BOUNDARY INTEGRAL July 1999 3.2.14.2

9.
∫
∂Ω

fds, where f is a function defined by ICHFUN. So the difference with ICHINT=1 is, that

no solution vector is integrated. For example if f = 1, the computed value is equal to the
area of the boundary.

The default value for ICHINT is 1.
At this moment the options 3 to 7 are only implemented for two-dimensional regions, the options
1 and 2 are available both for R2 and R3.

In the two-dimensional case the normal is defined as the outward normal if the curve is defined such
that it is a part of a counterclockwise boundary of the region, otherwise it is the inward normal.
The tangential vector is defined in the direction of the curve.

The subkeyword ICHFUN defines how the function f must be computed. The following values for
ICHFUN are permitted:

0 The function f is identical to 1.

>0 The function f must be computed by a function subroutine FUNC or CFUNC as described in
the SEPRAN introduction Section 5.5.4. If the solution vector is complex CFUNC is used
otherwise FUNC should be used. The value of ICHFUN is used as parameter ICHOIS in the
input of the function subroutines.
At this moment ICHFUN>0 is only permitted in combination with ICHINT=1.

The default value for ICHFUN = 1.

The subkeyword IRULE defines the type of numerical integration rule to be applied. The following
values of IRULE are available:

1. Trapezoid rule (Integration based upon two points)

2. Trapezoid rule with axi-symmetric co-ordinates, i.e. ds = 2πrds′.

3. Simpson rule (Integration based upon three points)

4. Simpson rule with axi-symmetric co-ordinates, i.e. ds = 2πrds′.

The default value for IRULE = 1.

If the approximation of the integrand is linear (i.e. two points in each element at the boundary),
the trapezoid rule should be applied. For higher order approximations (at least three points in each
element at the boundary) Simpson’s rule is recommended.

In the case of three-dimensional boundary integrals over surfaces only IRULE=1 is available. The
integration to be applied is based upon the type of approximation used to construct the solution.
Hence in the case of linear elements a linear type integration rule is applied, whereas for quadratic
elements a quadratic integration rule is utilized.

The subkeyword DEGREE OF FREEDOM = d defines which unknown in each point from the
solution vector (VECTOR i) is used.
When u is a vector (ICHINT>1), the degrees of freedom u1, u2 and u3 in each nodal point are
supposed to be the degrees of freedom d, d+ 1 and d+ 2 respectively.
When σ is a tensor in R2 σ11 corresponds to d, σ12 to d+ 1 and σ22 to d+ 2.
The default value for d is 1.

The subkeyword CURVES (C1, C2, C3, ...), defines over which curves the integral must be
computed. This subkeyword may only be used in R2. If a curve must be integrated in reversed
direction, the curve number must be provided with a minus sign. Of course this possibility makes
only sense for ICHINT > 1.

UM BOUNDARY INTEGRAL July 1999 3.2.14.3

The subkeyword SURFACES (S1, S2, s3, ...), defines over which surfaces the integral must be
computed. This subkeyword may only be used in R3.
Mark that the subkeywords curves and surfaces are mutually exclusive.

UM TIME INTEGRATION October 2007 3.2.15.1

3.2.15 The main keyword TIME INTEGRATION

The block defined by the main keyword TIME INTEGRATION indicates that an instationary
problem has to be solved. Unless stated otherwise the time integration corresponds to a problem
that contains first order time derivatives only, like for example the heat equation or the instationary
Navier-Stokes equation.
In this block information concerning the time integration process must be defined.

The block defined by the main keyword TIME INTEGRATION has the following structure (options
are indicated between the square brackets ”[” and ”]”):

TIME_INTEGRATION, SEQUENCE_NUMBER = s

METHOD = type1

TINIT = t0

TEND = (t1, t2, t3, ... ,tN)

THETA = (theta1, theta2, ... , thetaM)

TSTEP = (dt1, dt2, dt3, ... ,dtN)

TOUTINIT = t

TOUTEND = t

TOUTSTEP = t

ACCURACY = eps

ABS_STATIONARY_ACCURACY = eps

REL_STATIONARY_ACCURACY = eps

BETA = beta

GAMMA = gamma

ALPHA_F = alpha_f

ALPHA_M = alpha_m

MASS_MATRIX = typem

STIFFNESS_MATRIX = types

RIGHT_HAND_SIDE = typer

SEQ_OUTPUT = iseq

SEQ_SOLUTION_METHOD = iseq

SEQ_COEFFICIENTS = iseq_1, iseq_2, ...

SEQ_BOUNDARY_CONDITIONS = iseq

NUMBER_OF_COUPLED_EQUATIONS = n

BOUNDARY_CONDITIONS = typeb

LINEAR_SUBELEMENT

DIAGONAL_MASS_MATRIX

CONSISTENT_MASS_MATRIX

PRINT_LEVEL = p

THRESHOLD_TIME = t

AT_ERROR = type_err

USE_CTIMEN

KEEP_T

REUSE_TIME_PARAMETERS

PRINT_TIME_HISTORY = ((x1,y1,z1),(x2,y2,z2),...(xn,yn,zn))

NON_LINEAR_ITERATION

UPDATED_LAGRANGE

SKIP_MESH_DEFORMATION

ABS_ITERATION_ACCURACY = a

REL_ITERATION_ACCURACY = a

MAX_ITER = m

NO_COMPUTATION

SEQ_ADD_RHSD = iseq

EQUATION i

LOCAL_OPTIONS followed by:

UM TIME INTEGRATION October 2007 3.2.15.2

MASS_MATRIX = typem

STIFFNESS_MATRIX = types

RIGHT_HAND_SIDE = typer

SEQ_SOLUTION_METHOD = iseq

SEQ_COEFFICIENTS = iseq

SEQ_LOCAL_TIME_STEP = iseq

SEQ_VELOCITY = iseq

SEQ_ACCELERATION = iseq

SEQ_MATRIX = i

LINEAR_SUBELEMENT

DIAGONAL_MASS_MATRIX

CONSISTENT_MASS_MATRIX

VECTOR = i

LIMIT = type_limit

REACTION_FORCE = j

SEQ_ADD_RHSD = iseq

DERIVATIVES, options (all in one line)

where options may have the following contents

SEQ_COEF = s

SEQ_DERIV = s

PROBLEM = s

VECTOR = s

END

The block starts with the mandatory keyword TIME INTEGRATION and ends with the mandatory
keyword END. The main keyword must start at a new line, the END keyword may not followed by
other keywords in the same line. The data keywords in between may be placed each at a newline,
however, there is no necessity in doing so, since in this block a newline character is treated as any
other separation character.

The keywords have the following meaning:

TIME INTEGRATION opens the input for the time integration.
The sequence number s may be used to distinguish between various input blocks with respect
to time integration. The sequence of the subkeywords is arbitrary and none of the subkeywords
is mandatory.
Default value: s = 1.

METHOD defines the type of time integration that is applied.
The following values of type1 are allowed:

STATIONARY

EULER_TRAPEZOID

ROZENBROCK_WANNER

RUNGE_KUTTA_12

RUNGE_KUTTA_34

EULER_IMPLICIT

CRANK_NICOLSON

EULER_EXPLICIT

RUNGE_KUTTA_4

THETA

FRACTIONAL_STEP

CENTRAL_DIFFERENCES

GENERALIZED_THETA

SECOND_ORDER_GEAR

NEWMARK

GENERALIZED_ALPHA

UM TIME INTEGRATION October 2007 3.2.15.3

STATIONARY means that in each time step a stationary problem is solved. In this case
the time stepping is only used to change the data, like boundary conditions, position of
the boundary, coefficients.

EULER TRAPEZOID means that a Crank-Nicolson type integration with self-selecting
step-size is used. In order to make an estimation of the error in each step the solution
is predicted with an implicit Euler step and corrected with an implicit Crank-Nicolson
step. This is a second order accurate implicit method.

ROZENBROCK WANNER is not yet available.

RUNGE KUTTA 12 means that a Runge-Kutta-Fehlberg type integration is applied with
self-selecting step-size. This is a second order accurate explicit method.

RUNGE KUTTA 34 is not yet available.

EULER IMPLICIT means that an implicit first order Euler integration is applied. The
step-size is selected by the user.

CRANK NICOLSON means that an implicit second order Crank-Nicolson integration is
applied. The step-size is selected by the user.

EULER EXPLICIT means that an implicit first order Euler integration is applied. The
step-size is selected by the user.

RUNGE KUTTA 4 is not yet available.

THETA means that an implicit θ method is applied. The step-size is selected by the user.
Suppose one wants to solve the ordinary differential equation:

dc

dt
= f(x, t), (3.2.15.1)

then the θ method can be written as:

cn+1 − cn

∆t
= θf(x, tn+1) + (1− θ)f(x, tn) (3.2.15.2)

where n denotes the time level and ∆t the time-step. θ must be chosen in the range
0 ≤ θ ≤ 1.
For θ = 0 the method reduces to the classical explicit Euler method, for θ = 1 to the
implicit Euler method. θ = 1

2 corresponds to the Crank Nicolson scheme.
In our code θ must be in the interval (0.5, 1), for which the method is unconditionally
stable.
The Crank Nicolson scheme is second order accurate and is preferred if a time-accurate
method is required. However, a clear disadvantage of Crank Nicolson is that high fre-
quency perturbations are not damped. For that reason a transient may be always visible
if Crank Nicolson is applied. In order to damp the effect of the transient frequently
values of θ greater than 0.5 are used. For example θ = 0.55 is very popular.
The Euler implicit scheme may be less accurate but disturbances are damped very
rapidly. Hence, if one is only interested in a stationary solution, this method is the
one to use.

FRACTIONAL STEP A disadvantage of the θ-method is the fixed θ. It could be advan-
tageous to combine a number of different θ’s per time step in such a way that second
order accuracy is accomplished, and some damping is ensured as well. Two methods
that offer this opportunity are the fractional θ-method and the generalized θ-method.
The latter is a generalization of the fractional θ-method, so we will restrict ourselves to
the description of the generalized θ-method. We rewrite equation (3.2.15.2) as follows,

letting Σk =
∑k
i=1 θi:

cn+Σ2 = cn + ∆t
(
θ1f(x, tn) + θ2f(x, tn+Σ2)

)
cn+Σ4 = cn+Σ2 + ∆t

(
θ3f(x, tn+Σ2) + θ4f(x, tn+Σ4)

)
(3.2.15.3)

UM TIME INTEGRATION October 2007 3.2.15.4

...
...

cn+Σ2k = cn+Σ2k−2 + ∆t
(
θ2k−1f(x, tn+Σ2k−2) + θ2kf(x, tn+Σ2k)

)
There are two necessary conditions:

1. Σ2k = 1 for a k-stage method. This gives a first order method, and is only a scaling
requirement.

2.
∑k
i=1 θ

2
2i−1 =

∑k
i=1 θ

2
2i to guarantee second order accuracy.

A third condition is optional, but guarantees some damping:

1. θ2i−1 = 0 for at least one i ∈ 1, . . . , k.

This condition includes at least one Implicit Euler step per time step.

GENERALIZED THETA The generalized θ-method is a 3-stage method, and is therefore
3 times as expensive as the Crank-Nicolson method. However, one may choose ∆tgenθ =
3 · ∆tCN to accomplish similar results for both methods. A common choice for the
generalized θ-method is the following ‘optimum’ for k = 3:

θ1 = θ5 =
α

2
, θ3 = 0,

θ2 = θ6 = α

√
3

6
, θ4 = α

√
3

3 (3.2.15.4)

α =

(
1 +

2√
3

)−1

.

A common choice for the fractional θ-method is the following:

θ1 = θ5 = βθ, θ3 = α(1− 2θ),

θ2 = θ6 = αθ, θ4 = β(1− 2θ), (3.2.15.5)

α =
1− 2θ

1− θ
, β = θ

1−θ ,

θ = 1− 1

2

√
2.

SECOND ORDER GEAR The first order equation is solved by the implicit second order
gear method.

CENTRAL DIFFERENCES The system of time-dependent equations to be solved is
supposed to contain only second derivatives of time and no first order time-derivatives.
Hence:

M
∂2u

∂t2
+ Su = F (3.2.15.6)

The time-derivatives are discretized by a central difference scheme. The other terms are
treated explicitly hence:

M
un+1 − 2un + un−1

∆t2
+ Sun = Fn (3.2.15.7)

The step size must be given by the user.
This problem requires both an initial condition and the initial derivative. These solutions
must be stored in two consecutive solution vectors. After the time integration the first
vector contains the solution at t = TEND, and the second vector the solution at the
prior time step.

NEWMARK is used for the same type of problems as central_differences. It is an
implicit scheme for the solution of 3.2.15.6, which can be written as:

un+1 = un + ∆tvn +
∆t2

2
((1− 2β)an + 2βan+1) (3.2.15.8)

UM TIME INTEGRATION October 2007 3.2.15.5

vn+1 = vn + ∆t((1− γ)an + γan+1) (3.2.15.9)

Man+1 + Sun+1 = Fn+1 (3.2.15.10)

The step size must be given by the user.
This problem requires both an initial condition and the initial derivative.
The user must define three vectors for the displacement u, the velocity v and the accel-
eration a.
The sequence number of the displacement vector in the list of solution vectors is defined
in the structure input block by:
time_integration, sequence_number = i, vector = %u,
with u the name of the displacement vector. If omitted the first vector is used.
The sequence numbers of the velocity and acceleration vectors can be defined by the key-
words seq_velocity and seq_acceleration, which must be defined under EQUATION 1.
If omitted they get the sequence number of the velocity plus one and two respectively.
The parameters β and γ must be defined by the keywords beta and gamma. If omitted,
the default values β = 0.25 and γ = 0.5 are used, which ensure second order accuracy in
time.

GENERALIZED ALPHA is an extension of Newmark, which allows damping of higher
order frequencies.
The formulas (3.2.15.8) and (3.2.15.9) are reused, but (3.2.15.10) is replaced by:

Man+1−αm + Sun+1−αf = Fn+1−αf , (3.2.15.11)

with
an+1−αm = (1− αm)an+1 + αm)an, (3.2.15.12)

and
un+1−αf = (1− αf)un+1 + αf)un. (3.2.15.13)

The parameters αm and αf may be defined by the keywords ALPHA_F and ALPHA_M.
The default values for generalized alpha are:
β = 1, γ = 1.5, αm = −1 and αf = 0. This combination is second order accurate in time
and damps higher order frequencies.

The default value for METHOD is EULER IMPLICIT.

TINIT defines the initial time t0.
Default value: 0

TEND defines a series of end times t1, t2, t3, ..., tN . The process is restarted at each of these end
times. In each of the steps a new time step may be chosen.
At most 10 end times are permitted. Of course it is necessary that ti+1 > ti.
Default value: 1, except when STATIONARY ACCURACY is given in which case it is 1000.

THETA defines a series of θ values either for the θ method or for the fractional or generalized θ
methods.
In case of a θ method only one θ value may be given. If omitted the default value 1 is used.
In case of a fractional θ method the default values of θ are given by the series:

θ1 = θ5 = βθ, θ3 = α(1− 2θ),

θ2 = θ6 = αθ, θ4 = β(1− 2θ), (3.2.15.14)

α =
1− 2θ

1− θ
, β = θ

1−θ ,

θ = 1− 1

2

√
2.

UM TIME INTEGRATION October 2007 3.2.15.6

In case of a generalized θ method the default values of θ are given by the series:

θ1 = θ5 =
α

2
, θ3 = 0,

θ2 = θ6 = α

√
3

6
, θ4 = α

√
3

3 (3.2.15.15)

α =

(
1 +

2√
3

)−1

.

TSTEP defines a series of time steps (∆t). The number of time-steps given must be equal to the
number of end times given.
It is only necessary to give a time step if no self-selecting time-step mechanism is present.
Default value: 0.1 (tN − t0)

TOUTINIT defines the first time at which the solution is written to the file sepcomp.out for
output purposes. If the time t is almost equal to TOUTINIT output is performed at that
time, otherwise the first time that is larger than TOUTINIT is used.
Default value: no output is written at all.

TOUTEND defines the last time for which output is written.
Default value: if toutinit given then tN

TOUTSTEP defines the frequency for which output is written.
Default value: if toutinit given then TOUTEND - TOUTINIT

ACCURACY is only necessary for self-selecting step-sizes. It defines the accuracy with which
the time-stepping process is computed.
Default value: 10−2.

ABS STATIONARY ACCURACY is only necessary if a stationary solution of the time-dependent
equations is required.
The process stops if the difference between end solution and present solution is less than ε.
The difference is measured in the norm of the vector, and the linear convergence properties
of the process are accounted for. If the end time is reached, without finding a converged
solution, a warning is issued.
If the process clearly diverges an error message is given.
Default value: 0.

REL STATIONARY ACCURACY has exactly the same meaning as ABS STATIONARY ACCURACY,
however, in this case the accuracy is measured with respect to the norm of the final solution.
REL STATIONARY ACCURACY may be combined with ABS STATIONARY ACCURACY,
in which case the process is stopped if one of the criteria is fulfilled.
If both ABS STATIONARY ACCURACY and REL STATIONARY ACCURACY are omit-
ted the process is assumed to be instationary.
Default value: 0.

MASS MATRIX gives information about the mass matrix. The following values of typem are
allowed:

CONSTANT means that the mass matrix does not depend on time. This is the case if the
coefficient for the time-derivative is time-independent and no upwinding is applied.

VARIABLE means that the mass matrix may vary in time.

Default value: VARIABLE

STIFFNESS MATRIX gives information about the stiffness matrix. The following values of
types are allowed:

UM TIME INTEGRATION October 2007 3.2.15.7

CONSTANT means that the stiffness matrix does not depend on time. This is the case if
the coefficients in the equation are time-independent and no upwinding is applied. The
coefficient for the time derivative nor the right-hand side play a role in this respect.

VARIABLE means that the stiffness matrix may vary in time.

Default value: VARIABLE

RIGHT HAND SIDE gives information about the right-hand side vector. The following values
of typer are allowed:

CONSTANT means that the right-hand side vector does not depend on time.

VARIABLE means that the right-hand side vector may vary in time.

ZERO means that the right-hand side vector is equal to zero. This is the case if no source
term is present. The effect of boundary conditions does not play a role in this respect.

Default value: VARIABLE

SEQ OUTPUT defines the sequence number of the information of the output. This sequence
number is only used if TOUTINIT is given.
The sequence number refers to the sequence number of the block corresponding to the main
keyword OUTPUT.
If no block OUTPUT is available the default values for the output block are used.
Default value: 1

SEQ SOLUTION METHOD defines the sequence number of the information of the linear
solver.
The sequence number refers to the sequence number of the block corresponding to the main
keyword SOLVE.
If no block SOLVE is available the default values for the linear solver are used.
It is in general advised to use a compact storage instead of a profile storage since time-
dependent problems have usually a very good condition and a good starting value for the
iteration process.
If a compact storage is used, always the solution at the preceding time level is used as start for
the iteration process. Besides that, if the mass matrix, the stiffness matrix and the time-step
are constant, the preconditioning matrix is kept after the first time-step and reused in the
next time steps.
Default value: 1

SEQ COEFFICIENTS defines the sequence numbers of the information of the coefficients.
These sequence number refer to the sequence number of the block corresponding to the main
keyword COEFFICIENTS. For each coupled equation a separate sequence number is neces-
sary.
Default values: 1, 2, ... , n, with n the number of coupled equations.

SEQ BOUNDARY CONDITIONS defines the sequence numbers of the information of the
essential boundary conditions.
This sequence number refers to the sequence number of the block corresponding to the main
keywords ESSENTIAL BOUNDARY CONDITIONS.
If no block ESSENTIAL BOUNDARY CONDITIONS is available the essential boundary
conditions are set equal to zero.
In combination with the option boundary_conditions = old_vector this keyword has a
different meaning. See below.
Default value: 1.

NUMBER OF COUPLED EQUATIONS defines the number of coupled equations n. The
equations to be solved correspond to the sequence numbers 1, 2, ... , n, except when in the
block STRUCTURE the command:

UM TIME INTEGRATION October 2007 3.2.15.8

SOLVE_TIME_DEPENDENT_PROBLEM, vector = i

is given. In that case the sequence numbers are i, i+1, ..., i+ n− 1.
Default value: 1.

BOUNDARY CONDITIONS gives extra information about the boundary conditions.
The following values for typeb are available:

constant

variable

initial_field

old_vector

Meaning of these parameters:

CONSTANT means that the essential boundary conditions are constant in time and hence
have to be computed only once.

VARIABLE means that the essential boundary conditions are time-dependent and must be
evaluated in each time-step.

INITIAL FIELD means that the essential boundary conditions are constant in time and
equal to the boundary conditions of the initial condition. hence the values are copied
from the initial condition.

OLD VECTOR means that the essential boundary conditions are time-dependent and must
be stored in a solution vector. The sequence number i of this solution vector in the set
of solution vectors must be given by seq_boundary_conditions = i. If the number of
coupled vectors is equal to 1, this implies that the boundary conditions are stored in the
solution vector with sequence number i, if there are more than one coupled equations,
they must be stored in i, i+ 1, i+ 2,
Mark that the boundary conditions must be filled at the new time level, i.e. t + ∆t.
So this option can only be used in those methods that have a fixed time step and no
intermediate time steps. If the boundary condition is time dependent, this also implies
that the user can not use the standard solution vector for this option, because that
solution vector must contain the boundary condition at the old time level.
For an example of the use of this option see Section 6.4.3

Default value: VARIABLE

LINEAR SUBELEMENT indicates that quadratic elements are treated as a cluster of linear
elements. For example a 6-node triangle is locally subdivided into 4 3-node triangles. The
matrix is built with these linear elements. Of course this option influences the type of ap-
proximation and hence the accuracy.
Mark that this option can only be applied if the number of degrees of freedom per point is
constant.
Default value: no subdivision

DIAGONAL MASS MATRIX indicates that the mass matrix must be built as diagonal ma-
trix, i.e. lumping must be applied. Whether or not this option makes sense depends on the
application. Consult the manual Standard Problems for this matter.
Default value: full (consistent) matrix.

CONSISTENT MASS MATRIX indicates that the mass matrix must be built as a full (con-
sistent) matrix with the same structure as the stiffness matrix.
The options DIAGONAL MASS MATRIX and CONSISTENT MASS MATRIX are mutu-
ally exclusive.
Default value: full (consistent) matrix.

PRINT LEVEL = p defines the amount of output produced by the time integration subroutine
in case a stationary solution is required. The following values for p are allowed:

UM TIME INTEGRATION October 2007 3.2.15.9

-1 All output information is suppressed, even the message of no-convergence.

0 No information about the iteration process is printed except in the case of an error.

1 The number of iterations performed is printed.

2 Some extra information about the iteration process is printed for each iteration.

3 See 2, in this case also the ratio of two succeeding iterations is printed.

100 Contains the maximum of preceding values and also prints the solution in each iteration.

Mark that in this case with iteration a time-step is meant, since time-stepping is used as
iteration process.
Default value: 0

THRESHOLD TIME = tthresh is only used in case a stationary solution is wanted. The con-
vergence of the time-stepping process considered as an iteration method is checked in each
step, but the divergence of the iteration process is only checked as soon as t > tthresh.
This value may be necessary since due to the transient it may seem as if the process diverges,
whereas it converges after some time.
Default value: t0 + 10∆t.

AT ERROR = type err is only used in case a stationary solution is wanted. The following values
for type err are allowed:

STOP The program halts if divergence of the iteration process has been found and an error
message is given.

RETURN If divergence of the iteration process is found control is given back to the main
program and the last computed value is kept as solution.

Default value: STOP

PRINT TIME HISTORY = ((x1,y1,z1),(x2,y2,z2),...(xn,yn,zn)) defines in which points the
time-history must be printed. The co-ordinates of the points must be given in pairs sur-
rounded by brackets. The number of co-ordinates per point is defined by the dimension of
space.
The nodal points closest to the co-ordinates given are detected and a time history is printed
for all unknowns and all equations in these nodal points, including the corresponding time.
The advantage above writing all vectors to the SEPRAN output file sepcomp.out is that
the number of time steps is not restricted and that the amount of output is relatively small.
Program SEPPOST is at this moment to a maximum of 100 time steps and might therefore
give less information for printing time histories.

USE CTIMEN Indicates if the time step, initial time and end time are given in the input file or
by the user in common block CTIMEN as described in the Programmers Guide Section 11.3.

KEEP T Corresponds to use_ctimen. If this parameter is present the time is not changed during
the time step and the parameters in common CTIMEN are used.

REUSE TIME PARAMETERS Is very similar to keep_t but it corresponds to no_computation.
It is supposed that in the call corresponding to NO COMPUTATION all input with respect
to initial time, end time, time step and output times have been read. Furthermore the time
has been raised before in that part.
In this part no time input is read. During the computation first the time is reset to the pre-
vious time level and afterwards the time is raised to the original value. This option is meant
for the use in combination with time_loop in the STRUCTURE block.
For an example of the use of this option see Section 6.4.3

NON LINEAR ITERATION indicates that a non-linear time-dependent problem is solved. In
each time step an iteration method is applied until convergence is achieved.

UM TIME INTEGRATION October 2007 3.2.15.10

UPDATED LAGRANGE is a variant of non_linear_iteration. Instead of a standard, Picard
type, iteration, the updated Lagrange method is used. This method is meant for non-linear
elasticity problems with large deformations, as described in the manual Standard Problems,
Section 5.3.2.
This method requires two solution vectors u and un, which, at this moment, must be stored
as first and second solution vector. un contains the total displacement, u the displacement
during the time step.
At the end of the time-step the mesh is deformed.
This option is only available in combination with Newmark or Generalized alpha, in other
works only for second order time derivatives.

SKIP MESH DEFORMATION is only effective in combination with updated_lagrange. If
used the deformation of the mesh is skipped.

ABS ITERATION ACCURACY = ε , defines the absolute accuracy corresponding to the
non-linear iteration process activated by the keyword non_linear_iteration. The process
is halted if the difference between two succeeding iterations is less than ε.
Default value: ε = 10−2.

REL ITERATION ACCURACY = ε defines the relative accuracy corresponding to the non-
linear iteration process activated by the keyword non_linear_iteration. The process is
halted if the difference between two succeeding iterations subdivided by the norm of the
solution is less than ε.
Default value: not used.

MAX ITER = m defines the maximum number of iterations allowed in the non-linear iteration
process activated by the keyword non_linear_iteration.
Default value: 1.

NO COMPUTATION indicates that no computation is carried out. All that is done is setting
the time step, initial time, end time and the output times.
Furthermore in each call the time is raised with the time step. This option is meant for a
time loop where from a special moment the time must be increased to a new level. Only after
that a computation takes place.
For an example of the use of this option see Section 6.4.3

SEQ ADD RHSD = vecname indicates that the vector with name vecname, must be added to
the right-hand side of the equations.
This vector may be created by:

vecname = right_hand_side, problem = p, seq_coef = i

See Section 3.2.3.10.
Default: no adding of vector

EQUATION i indicates that separate information about the ith coupled equation is given. All
information read in this part until a new subkeyword EQUATION or the keyword END is found,
corresponds to this specific equation. Local options are only valid for the local equation. They
overrule the global options given before.
Mark that first the global options must be given and then the specific information about
equations. The keyword EQUATION may be followed by the subkeywords:

LOCAL_OPTIONS followed by subkeywords

DERIVATIVES, options (all in one line)

LOCAL OPTIONS indicate that local options are defined for this equation that overrule
the global options given before. The following local options are available

UM TIME INTEGRATION October 2007 3.2.15.11

MASS_MATRIX = typem

STIFFNESS_MATRIX = types

RIGHT_HAND_SIDE = typer

SEQ_SOLUTION_METHOD = iseq

SEQ_COEFFICIENTS = iseq

SEQ_LOCAL_TIME_STEP = iseq

LINEAR_SUBELEMENT

DIAGONAL_MASS_MATRIX

CONSISTENT_MASS_MATRIX

VECTOR = i

LIMIT = type_limit

REACTION_FORCE = j

SEQ_VELOCITY = k

SEQ_ACCELERATION = l

Most of these options have exactly the same meaning as the global options, however,
they are restricted to the specific equation.
The default values are always the global options.
The following options are local:

SEQ_LOCAL_TIME_STEP = iseq

REACTION_FORCE = j

Meaning of these subkeywords:

LIMIT = type limit indicates that the solution must be limited between two values.
Possible values for type_limit are:

none

minmax

none (default value) means no limiting

minmax means that the solution is limited between the minimum and maximum
value at the previous time level, where the boundary conditions are taken at the
new time level. This option may be used to prevent a solution to be less than
the smallest value in the previous time level (for example zero) or more than the
highest value (overshoot).
This limiter must only be used if all other possibilities like upwind fail.

SEQ LOCAL TIME STEP = j indicates that the time step is space dependent. For
each node a time step must be provided by the user. This time step must be stored
in the set of solution vectors, with sequence number j.

SEQ VELOCITY = j defines the sequence number of the velocity vector (time deriva-
tive of the unknown) in the set of solution vectors. This option is only used in the
Newmark and generalized alpha method.
If omitted the sequence number is set equal to the sequence number of the unknown
vector (usually the displacement) plus 1.

SEQ ACCELERATION = j defines the sequence number of the acceleration vector
(second order time derivative of the unknown) in the set of solution vectors. This
option is only used in the Newmark and generalized alpha method.
If omitted the sequence number is set equal to the sequence number of the unknown
vector (usually the displacement) plus 2.

SEQ MATRIX = j defines the sequence number of the stiffness and mass matrices as
well as the right-hand side, to be used in the Newmark or generalized alpha method
in the set of matrices.
This option makes only sense if you overwrite the matrix by another time integration
method or solve step. Since the default value is 2, you only have to prescribe the
sequence number if you solve another time integration method with more than one
coupled equation. In that case you have to raise the sequence number.

UM TIME INTEGRATION October 2007 3.2.15.12

The reason that we are not allowed to overwrite the matrices and right-hand side,
is that they are reused in the next time step.
Default value: 2

REACTION FORCE = j implies that the reaction force is computed and stored in
the set of solution vectors, with sequence number j.

DERIVATIVES must be followed by its options. These options must be given in the same
line, where the general rule for continuation as described in Section 1.4 must be applied
if the line does not fit in 80 columns.
If DERIVATIVES is given, derived quantities can be computed that depend on the just
computed quantities. These derived quantities can be used for further computations.
The possible options for the keyword are:

SEQ_COEF = s

SEQ_DERIV = s

PROBLEM = s

VECTOR = i

For many derived quantities it is necessary to define coefficients which are used in the
computation process. Consult the manual STANDARD PROBLEMS to check if and
which coefficients are required for a specific derived quantity.
These coefficients are defined by the input block ”COEFFICIENTS” with sequence num-
ber c. If seq coef = c is omitted it is assumed that no coefficients are needed.
Problem = p defines the problem sequence number that is used to compute the derived
quantities.
If vector = i is omitted i gets the value nprob+1, which is equal to the number of different
problems defined plus one.
Input concerning the derived quantities to be computed is defined in the input block
”DERIVATIVES” with sequence number s. If s is omitted the next one is assumed.
The result of this operation is that a vector Vi has been created.

END (mandatory)
Closes the input block TIME INTEGRATION.

UM TIME INTEGRATION October 2007 3.2.15.13

Boundary conditions and coefficients in time-dependent problems may depend on time. If so it
is necessary to have the time t available at the moment these functions must be evaluated. For
example if the essential boundary conditions depend on time it is necessary to have the time t at
ones disposal in the boundary condition function subroutine FUNCBC.
For that reason SEPRAN provides a common block named CTIMEN which contains a number
of parameters with respect to the time integration. CTIMEN is updated in the time-integration
subroutines and may be used in each local subroutine.
Common CTIMEN has the following shape:

double precision t, tout, tstep, tend, t0, theta, rtime

integer iflag, icons, ktime

common /ctimen/ t, tout, tstep, tend, t0, theta, rtime(4), iflag,

+ icons, ktime(8)

The parameters in CTIMEN have the following meaning

t Actual time. This is the most important parameter for the user.

tout The integration is carried out from initial time to tout.

tstep Time step for the numerical integration.

tend End time for the numerical integration.

t0 Initial time for the integration.

theta Parameter θ for the θ method.

rtime Dummy array that is not yet defined.

iflag Return code from the time integration subroutines.
Possible values:

3 Successfully return

4 The process has stopped because of errors or inaccuracy

icons Indication if the matrices and time-step are constant (1) or not (0)

ktime Dummy array that is not yet defined.

For an example of the use of CTIMEN the reader is referred to Section 6.4.1.

UM CONTACT August 2003 3.2.16.1

3.2.16 The main keyword CONTACT

The block defined by the main keyword CONTACT indicates that a contact algorithm must be
applied to identify points at a surface as contact points or no-contact points. After application of
the contact algorithm all points at the given surface are identified and this identification may be
used to define boundary conditions, to create vectors or to compute special boundary integrals.
At this moment the contact algorithm is restricted to three dimensional problems. Contact may
only be defined along a surface.

A contact algorithm is needed if some solid is pressed to a surface and is not able to move through
that surface. So at the position where the contact is made (the so-called contact surface) it is
necessary to prescribe an essential boundary condition, i.e. that the displacement is equal to 0.
The computation of the contact surface is essentially non-linear. Once contact is established, the
boundary conditions are changed and this means that if we solve the mechanical problem with the
new boundary conditions, also the solution is changed. The effect of the new solution is that the
contact surface may be changed. Possibly the contact region may be extended, in which case the
region where the essential boundary conditions are prescribed is extended, but it is also possible that
the displacement moves away from the contact surface. This situation can not be deducted from
the displacement itself, since the prescribed displacement prevents a displacement at all. However,
if there are essential boundary conditions we have also a non zero reaction force. If the normal
component of the reaction force in a point, points away from the contact surface we release this
point by not prescribing the displacement anymore. Effectively this is performed by removing the
point from the contact surface. This process is repeated until convergence is established.
Convergence may be checked by computing the contact distance i.e. the distance between solid and
contact surface and comparing the corresponding contact distance vector in successive iterations.
Another option is to check if the contact surface in two successive iterations is the same. This
can be done for example by a while loop in a structure block (3.2.3) in combination with the user
function subroutine userbool (3.3.8). The information if the contact surface is changed is stored in
the common block ccontact, which can be included in your program by
include ’SPcommon/ccontact’. This common block looks like:

integer ninpcp

parameter (ninpcp=...)

logical contact_changed(ninpcp)

integer contact_ncontct(ninpcp)

common /ccontact/ contact_changed, contact_ncontct

If contact changed(i) = true then the ith contact surface has been changed, if false it has not been
changed.
For an example of the use of a contact algorithm see the manual SEPRAN EXAMPLES, Chapter
5.5.

In this block information concerning the contact algorithm must be defined.

The block defined by the main keyword CONTACT has the following structure (options are indi-
cated between the square brackets ”[” and ”]”):

CONTACT, SEQUENCE_NUMBER = k

CONTACT_SURFACE = S3

CONTACT_DISTANCE = V5

CONTACT_FORCE = V1

CONTACT_METHOD = type_1

CONTACT_DISABLE_METHOD = type_2

END

The block starts with the mandatory keyword CONTACT and ends with the mandatory keyword
END. The main keyword must start at a new line, the END keyword may not followed by other

UM CONTACT August 2003 3.2.16.2

keywords in the same line. The data keywords in between may be placed each at a newline,
however, there is no necessity in doing so, since in this block a newline character is treated as any
other separation character.

The keywords have the following meaning:

CONTACT opens the input for the definition of the contact algorithm.
The sequence number k may be used to distinguish between various input blocks with respect
to contact algorithms. The sequence of the subkeywords is arbitrary and none of the subkey-
words is mandatory.
Default value: k = 1.

CONTACT METHOD defines the type of contact algorithm that is applied.
The following values of type1 are allowed:

NEG_DISTANCE

NEG DISTANCE means that all points in the surface that have a negative distance as
defined by the CONTACT DISTANCE vector are marked as contact points.

The default value for type1 is NEG DISTANCE.

CONTACT DISABLE METHOD defines which contact points are unmarked as contact points.
The algorithm applied is as follows:
First it is checked if already points have been marked as contact points. If that is the case it
is checked if some of these points must be unmarked as contact points.
Next for all other points it is checked if points must be defined as contact points. Hence points
that are unmarked in this step can not be marked in the same step. In order to mark them
again as contact points the contact algorithm must be called again.
The following values of type2 are allowed:

CONTACT_FORCE

CONTACT FORCE means that all points with a negative value of the CONTACT FORCE
vector in that point are unmarked as contact points, provided they have been marked
before as contact points.

The default value for type2 is CONTACT FORCE.

CONTACT SURFACE = Sj defines the surface along which contact may be made. For each
surface only one contact is allowed and for each contact only one surface is allowed.
The default value is S1.

CONTACT DISTANCE = Vj defines the vector that is used to define the contact distance in
the algorithm. The vector Vj must contain exactly one unknown in each point of the contact
surface.
The default value is V1.

CONTACT FORCE = Vj defines the vector that is used to define the contact force in the
algorithm. The vector Vj must contain exactly one unknown in each point of the contact
surface.
The default value is V2.

END (mandatory)
Closes the input block CONTACT.

UM LOOP INPUT April 1998 3.2.17.1

3.2.17 The main keyword LOOP INPUT

The block defined by the main keyword LOOP INPUT defines when convergence is reached and
the iteration must be stopped.

The block defined by the main keyword LOOP INPUT has the following structure (options are
indicated between the square brackets ”[” and ”]”):

LOOP_INPUT [,SEQUENCE_NUMBER = s]

(mandatory): opens the input for the loop.

maxiter = m

miniter = m

accuracy = eps

print_level = p

criterion = c

at_error = e

seq_vector = i

END

(mandatory): end of input

The sequence number s may be used to distinguish between various input blocks with respect to
loops.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords LOOP INPUT and END however, must be placed at a new record.
Meaning of the subkeywords:

maxiter = m, defines the maximum number of iterations that may be performed.
The default value is 20.

miniter = m, defines the minimum number of iterations that must be performed.
The default value is 2.

accuracy = ε, defines the accuracy. If the difference between succeeding solutions is less than ε
the process is considered converged and the iteration is halted.
The default value is ε = 10−3

print level = p gives the user the opportunity to indicate the amount of output information he
wants from the iteration process. p may take the values -1, 0, 1 or 2. The amount of output
increases for increasing value of p. If p = −1 no output at all is produced.
The default value is p = 0

criterion = c defines the type of termination criterion to be used. Possible values are:

absolute

relative

If absolute is used (default value) the process in stopped if ‖uk+1 − uk‖ ≤ ε.

If relative is used the process in stopped if ‖u
k+1−uk‖
‖uk+1‖ ≤ ε,.

Here uk means the solution at the kth iteration.
The default value is absolute

UM LOOP INPUT April 1998 3.2.17.2

at error = e defines which action should be taken if the iteration process terminates because no
convergence could be found. Possible values are:

stop

return

If stop is used the iteration process is stopped if no convergence is found, otherwise (return)
means that control is given back to the main program and the result of the last iteration is
used as solution.
The default value is stop.

seq vector = s , defines the sequence number of the vector that is used to check the convergence.
The default value is s = 1.

UM EIGENVALUES May 2008 3.2.18.1

3.2.18 The main keyword EIGENVALUES

The block defined by the main keyword EIGENVALUES defines how eigenvectors and eigenvalues
must be computed and to what problem definition these eigenvalues belong.
At this moment only eigenvalues for a symmetric problem can be computed. The method used is
an iterative method based on the Lanczos algorithm.

The block defined by the main keyword EIGENVALUES has the following structure (options are
indicated between the square brackets ”[” and ”]”):

EIGENVALUES [,SEQUENCE_NUMBER = s]

eigenvectors

number_of_eigenvalues = n

accuracy = eps

print_level = p

maxiter = m

maxinterval = m

maxpoints = m

seq_coef = m

mass_matrix = d

start_vector = s

randvalue = i

END

The keywords EIGENVALUES and END are mandatory all others are optional.

EIGENVALUES opens the input for the computation of the eigenvectors The sequence number
s may be used to distinguish between various input blocks with respect to eigenvalues.

END closes the input.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords EIGENVALUES and END however, must be placed at a new record.
Meaning of the subkeywords:

eigenvectors If this keyword is given, not only the eigenvalues, but also the eigenvectors must be
computed.
Default value: no eigenvectors

number of eigenvalues = n defines the number of eigenvalues and, in case of the presence of
the keyword eigenvectors, also the number of eigenvectors.
Default value: 1

accuracy = ε defines the accuracy of the process, i.e. when the iteration is halted.
Default value: 0, i.e. machine accuracy.

print level = p defines the output with respect to the iteration process.
Possible values:

• 0 No intermediate output is produced

• 1 A moderate amount of extra output is created showing the convergence behavior.

• 2 A maximal amount of extra output is created.

Default value: 0

UM EIGENVALUES May 2008 3.2.18.2

maxiter = m defines the maximum number of iterations that may be performed.
Default value: 0, which means that the subroutine defines it himself based on the number of
unknowns.

maxinterval = m defines the maximum number of intervals used. This parameter makes only
sense for specialists.
Default value: 0, which means that the subroutine defines it himself based on the number of
unknowns.

maxpoints = m defines the maximum number of intervals used. This parameter makes only sense
for specialists.
Default value: 0, which means that the subroutine defines it himself based

seq coef = m the sequence number m refers to the coefficients that must be used to compute
the stiffness matrix. In fact this parameter defines the coefficients of equation for which the
eigenvalues must be computed.
Default value: 1

mass matrix = d defines how the mass matrix must be constructed. Possible values for d are:

diagonal

consistent

meaning of these subsubkeywords

diagonal the mass matrix is lumped to a diagonal matrix. This method is only accurate if
linear (or bi/tri linear) elements are used.

consistent the mass matrix is computed in an accurate way and is therefore a full matrix.
As a consequence the process is more time-consuming and requires an extra amount of
memory.

Default value: diagonal

start vector = s defines how the start vector must be created. Possible values for s are:

structured

random

meaning of these subsubkeywords

structured the starting vector is a smooth vector.

random the starting vector is randomly defined.

Default value: structured

randvalue = i defines a parameter to create the random vector.
Default value: 1

for an example of the computation of eigenvalues and eigenvectors the reader is referred to Section
6.8.1

UM CAPACITIES November 1999 3.2.19.1

3.2.19 The main keyword CAPACITIES

The block defined by the main keyword CAPACITIES defines how capacities between electrodes
must be computed.
Consider a region containing some material with a given permittivity ε. On the boundary of this
region a number of electrodes (sensors) are placed. See for example Figure 3.2.19.1.
All electrodes are kept at zero potential except one for which the potential is set equal to 1. Because

11 12

13

14

15 16

17

18

Figure 3.2.19.1: Definition of region and electrodes for square 2d sensor

this process is usually used to compute the permittivity of the material (which is a so-called inverse
problem), a loop is made in order that all the electrodes will become the electrode with potential 1.
The potential in the inner region satisfies the potential equation: div ε∇V = 0.
The capacity cij is defined as: cij =

∫
Ej

εV dΓ, where i refers to the electrode where the potential V

is equal to 1, and j refers to the jth electrode Ej over which the integral must be computed. Due
to symmetry, it is sufficient to compute cij only for j < i.
In order to compute the integrals accurately a special property of the finite element method is used.
These integrals are exactly the sum of the reaction forces over the electrodes. As a consequence the
user must fill the reaction forces. Actually this means that the user must set the value of IBCMAT in
the input block MATRIX equal to 1. See 3.2.4. The reaction forces itself are computed automatically
in this case.
The block CAPACITIES is used to perform the loops over all the electrodes and to compute all
the capacities and store them in an array. The capacities are stored in the sequence (1,2), (1,3),
... (1,n), (2,3), (2,4), ... , where n is the number of electrodes. Hence the length of this vector is
n×(n−1)

2 .

The block defined by the main keyword CAPACITIES has the following structure (options are
indicated between the square brackets ”[” and ”]”):

CAPACITIES [,SEQUENCE_NUMBER = s]

lin_solver = i

curve_begin = j

curve_end = j

solution_vector = s

capacity_vector = s

UM CAPACITIES November 1999 3.2.19.2

reaction_vector = s

seq_coef = m

END

The keywords CAPACITIES and END are mandatory all others are optional.

CAPACITIES opens the input for the computation of the capacities The sequence number s may
be used to distinguish between various input blocks with respect to capacities.

END closes the input.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords CAPACITIES and END however, must be placed at a new record.
Meaning of the subkeywords:

lin solver = i defines the sequence number of the input for the linear solver that is used to solve
the potential problem.
Default value: 1

seq coef = m defines the sequence number of the input for the coefficients that are used to solve
the potential problem.
Default value: 1

curve begin = i It is required that all electrodes coincide with one curve each. Furthermore these
numbers must be numbered in increasing sequence without gaps. i defines the curve number
of the first electrode.
Default value: 1

curve end = j defines the curve number of the last electrode. Hence the number of electrodes is
equal to j − i+ 1.
Default value: 2

solution vector = s defines the sequence number of the solution vector. Mark that all essential
boundary conditions must have been filled in this vector. Only the varying potential 1 on the
various sensors is filled by the program itself.
Default value: 1

capacity vector = s defines the sequence number of the capacity vector. This vector contains
the result of the computations. It is a vector with a special adapted structure with length
N(N−1)

2 , with N the number of electrodes.
Default value: 3

reaction vector = s defines the sequence number of the reaction force vector. See the introduc-
tion of this section.
Default value: 2

For an example of the computation of CAPACITIES the reader is referred to Section 6.2.10

UM INVERSE PROBLEM November 1999 3.2.20.1

3.2.20 The main keyword INVERSE PROBLEM

The block defined by the main keyword INVERSE PROBLEM defines how inverse problems may
be solved.
An inverse problem is a problem where the coefficients of the differential equation are unknown.
However, instead of the coefficients one has a number of measurements under different conditions.
Using these measurements, one tries to estimate the coefficients. In general an inverse problem is
non-linear, difficult to solve and the solution may be non-unique.
In this section we try to solve the inverse problem. At this moment this is only possible for one
specific case. Moreover there is only one solution method available. It is our purpose to extend the
number of solution methods in the future.
The inverse problem we are able to solve at this moment is that of a medium with unknown
permittivities. The medium is present in some closed domain.
On the boundary of this region a number of electrodes (sensors) are placed. See for example Figure
3.2.19.1.
All electrodes are kept at zero potential, except one, for which the potential is set equal to 1. Now
it is possible to measure the capacity of all electrodes. By varying the sensor for which the potential

is set equal to 1, we can measure N(N−1)
2 independent capacities.

Assuming a given set of permittivities one can compute the corresponding capacities for the various
given potentials at the sensors. By changing the permittivities one can try to find that permittivity
in the domain that fits the measurements as close as possible.
The block INVERSE PROBLEM is used to prescribe how the inverse problem must be solved.

The block defined by the main keyword INVERSE PROBLEM has the following structure (options
are indicated between the square brackets ”[” and ”]”):

INVERSE_PROBLEM [,SEQUENCE_NUMBER = s]

lin_solver = i

curve_begin = j

curve_end = j

solution_vector = s

capacity_vector = s

reaction_vector = s

epsilon_vector = s

seq_coef = m

element_group = i

method = m

regular_parm = r

delta_eps = e

eps_ref = e

END

The keywords INVERSE PROBLEM and END are mandatory all others are optional.

INVERSE PROBLEM opens the input for the computation of the INVERSE PROBLEM The
sequence number s may be used to distinguish between various input blocks with respect to
INVERSE PROBLEM.

END closes the input.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords INVERSE PROBLEM and END however, must be placed at a new record.
Meaning of the subkeywords:

UM INVERSE PROBLEM November 1999 3.2.20.2

lin solver = i defines the sequence number of the input for the linear solver that is used to solve
the potential problem.
Default value: 1

seq coef = m defines the sequence number of the input for the coefficients that are used to solve
the potential problem with the computed permittivity (epsilon) values.
Since the permittivity changes during the computation it is necessary that the permittivity is
stored in a vector. At this moment this vector must be a vector of special structure defined per
element. In the coefficients block the corresponding coefficient must refer to this permittivity
vector. See for an example Section 3.2.20
Default value: 1

curve begin = i It is required that all electrodes coincide with one curve each. Furthermore these
numbers must be numbered in increasing sequence without gaps. i defines the curve number
of the first electrode.
Default value: 1

curve end = j defines the curve number of the last electrode. Hence the number of electrodes is
equal to j − i+ 1.
Default value: 2

solution vector = s defines the sequence number of the solution vector. In this case the solution
vector is the potential vector. Mark that all essential boundary conditions must have been
filled in this vector. Only the varying potential 1 on the various sensors is filled by the program
itself.
Default value: 1

capacity vector = s defines the sequence number of the capacity vector. This vector must con-

tain the measurements. It is a vector with a special adapted structure with length N(N−1)
2 ,

with N the number of electrodes.
This vector must be filled in the following sequence: (1,2), (1,3), ... (1,N), (2,3), (2,4), ...
Here (i, j) refers to the situation that electrode i has potential 1, and the capacity is measured
at electrode j.
Default value: 3

reaction vector = s defines the sequence number of the reaction force vector. In Section 3.2.20
it is explained why a reaction force vector is required.
Default value: 2

epsilon vector = s defines the sequence number of the permittivity vector. During the compu-
tation this vector is used for the coefficients of the problem. At the end of the computation
it contains the computed permittivities.
Default value: 4

element group = i defines the element group for which one wants to compute the permittivities.
Sometimes the region is surrounded by another region for which the permittivity is already
known.
Default value: 1

method = m defines the type of solution method used to solve the inverse problem. The following
values for m are available

capacity_simple

Meaning of these subkeywords

capacity simple If this keyword is found the measured values are supposed to be a vector
of capacities and one wants to compute the permittivities.

UM INVERSE PROBLEM November 1999 3.2.20.3

The method that is used is the following one:
Define the sensitivity matrix S of size L×NELEM by

Sij =
Amax
Aj

Cielemi − C0
i

C1
i − C0

i

. (3.2.20.1)

L is the number of measurements: L = N(N−1)
2 ,

NELEM is the number of elements,
Aj is the area of element j,
Amax is the area of element with maximal area,
i refers to the component of the capacity vector,
C0 is the reference capacity vector computed by setting the permittivity vector com-
pletely equal to εref
C1 is the capacity vector computed by setting the permittivity vector completely equal
to εref + δε, and
Cielem is the capacity vector computed by setting the permittivity vector completely
equal to εref , except in element ielem (=j) where it gets the value εref + δε.
Hence the sensitivity matrix consists of a set of finite differences.

Now the new value of the permittivities is computed by solving:

(STS + µI)ε = ST
Cm −C0

C1 −C0
. (3.2.20.2)

The last division must be considered component-wise.
I is the unity matrix,
Cm is the vector of measured capacities and
µ is a regularization parameter.
The matrix STS has dimension NELEM ×NELEM but has rank L. So without the
regularization matrix this system of equations is singular. The matrix STS + µI is not
constructed explicitly but instead the so-called Sherman-Morrison-Woodbury formula:
(See Gene H. Golub and Charles F. van Loan; Matrix Computations, page 3) is used,
which requires only a full matrix of size L× L to be inverted.

Default value: capacity simple

regular parm = µ defines the regularization parameter µ defined in the method.
Default value: 0.01

delta eps = e defines the parameter δε defined in the method.
Default value: 0.1

eps ref = e defines the parameter εref defined in the method.
Default value: 1

For an example of the computation of INVERSE PROBLEM the reader is referred to Section 6.2.11

UM REFINE March 2005 3.2.21.1

3.2.21 The main keyword REFINE

The block defined by the main keyword REFINE defines the various options in case of refinement
of the mesh.
Some of the options may also be given in the structure block. However, if an option is given in the
structure block, as well as in the REFINE input block, these options must be the same.

The block defined by the main keyword REFINE has the following structure (options are indicated
between the square brackets ”[” and ”]”):

REFINE [,SEQUENCE_NUMBER = s]

TIMES = n

MESH_IN = m1

MESH_OUT = m2

LOCAL_REFINEMENT

TYPE_CRITERION = t

ISEQ_REFARRAY = i

END

The keywords REFINE and END are mandatory all others are optional.

REFINE opens the input for the refine input block. The sequence number s may be used to
distinguish between various input blocks with respect to REFINE.

END closes the input.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords REFINE and END however, must be placed at a new record.
Meaning of the subkeywords:

TIMES = n indicates that the mesh must be refined n times. Each refinement implies doubling
of the number of points in each direction.
Default value 1.

MESH IN = m1 m1 defines the sequence number of the mesh to be refined. This number must
be between 1 and 5.
Default value 1.

MESH OUT = m2 m2 defines the sequence number of the refined mesh. This number must be
between 1 and 5.
m1 and m2 may be equal, in which case the information about the coarse mesh is lost.
Default value 1.

LOCAL REFINEMENT If local_refinement is found, the mesh is not refined globally, but
only locally. This is only possible if some type of criterion for mesh refinement is available.
This type of refinement is defined by the keyword type_criterion

Default value: global refinement

TYPE CRITERION = t defines the criterion under which the elements are refined. This option
is only used in case of local refinement.
The following options for the parameter t are available:

MARKED_ELEMENTS

Meaning of these parameters

UM REFINE March 2005 3.2.21.2

MARKED ELEMENTS The user has to supply a vector defined per element with one
degree of freedom per element.
Although the entries in this vector must be real-valued (double precision) the actual
value should be 0 or 1. If zero the element is not refined, if > 0, it must be refined.
The array that is used to store these values is referred to in iseq_refarray. The user
is himself responsible for the creation of this array.
In case of the enthalpy method for phase change problems, this vector can be created by
a call to the derivatives subroutine, using icheld equal to 45.

Default value MARKED ELEMENTS.

ISEQ REFARRAY = i defines the sequence number of the vector in which the criterion for
element refinement is stored, as described in MARKED ELEMENTS.
So a typical call would be iseq_refarray = %Refine, where Refine is a vector name defined
before. Of course this vector must have been filled before.
Default value 1.

UM Navier-Stokes January 2006 3.2.22.1

3.2.22 The main keyword Navier Stokes

The block defined by the main keyword Navier Stokes defines the various options to solve the time
dependent Navier-Stokes equations.
For a description of these methods, the reader is referred to the manual standard problems Section
7.1.10.

The block defined by the main keyword has the following structure NAVIER STOKES (options are
indicated between the square brackets ”[” and ”]”):

NAVIER_STOKES [SEQUENCE_NUMBER = s]

METHOD = m

SEQ_TIME_INTEGRATION

SEQ_VELOCITY

SEQ_PRESSURE_CORRECTION

NUMBER_OF_SUBSTEPS

END

The keywords NAVIER STOKES and END are mandatory all others are optional.

NAVIER STOKES opens the input for the Navier-Stokes input block. The sequence number s
may be used to distinguish between various input blocks with respect to NAVIER STOKES.

END closes the input.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords NAVIER STOKES and END however, must be placed at a new record.
Meaning of the subkeywords:

METHOD = m Defines how the time-dependent Navier-Stokes equations must be solved.
Possible values for m are

standard

pressure_correction

convection_substepping

These subkeywords have the following meaning

standard The time-dependent Navier-Stokes equations are solved by a standard implicit
time-stepping technique. Elements that are used to solve the stationary Navier-Stokes
equations are combined with standard time-dependent discretization techniques.

pressure correction The Navier-Stokes equations are solved by the pressure− correction
technique.
For a description of the pressure correction method, the reader is referred to the manual
standard problems Section 7.1.10.
Using this method also means that you have to add an input block PRESSURE CORRECTION
(3.2.23).
All other keywords, except of course SEQ PRESSURE CORRECTION, in the input
block NAVIER STOKES are skipped in case of pressure correction.

convection substepping The time-dependent Navier-Stokes equations are solved by a op-
erator splitting technique as described in Section 7.1.10 of the manual standard problems.
The equations are solved by an implicit (Euler) technique, but the convective terms are
treated in a special way. For the convection we use explicit substeps, where more sub-
steps per time step are possible to satisfy stability requirements.
So the method consists of a number of explicit substeps for the convection only, followed

UM Navier-Stokes January 2006 3.2.22.2

by an overall implicit Stokes step.

Consequence of this approach is that we need two input blocks for the coefficients: one
for the incompressible Stokes equations and one for the explicit convection part. See
manual Standard Problems Section 7.1.10.
The sequence number for the input block of the coefficients for the Stokes part must
be given in the input block time_integration (3.2.15). The sequence number for the
coefficients for the convective part must be one larger than that of the Stokes block. So
we always need two consecutive sequence numbers for the coefficients input blocks.
The sequence number for the linear solver must also be given in time_integration

block.

Default value: standard.

SEQ TIME INTEGRATION = s defines the sequence number of the time integration input
block that should be used to define parameters with respect to time integration.
This parameter is not used in case of pressure correction.
Default value 1.

SEQ VELOCITY = s Defines the sequence number s of the velocity vector in the set of solution
vectors.
This parameter is not used in case of pressure correction.
Default value 1.

SEQ PRESSURE CORRECTION = s defines the sequence number of the input for the pres-
sure correction block.
This parameter is only used in case of pressure correction.
Default value 1.

NUMBER OF SUBSTEPS = n defines the number of substeps performed in the operator
splitting method.
It concerns the number of substeps for the explicit integration of the convection.
This parameter is only used in case of substepping.
Default value 1.

UM PRESSURE CORRECTION January 2006 3.2.23.1

3.2.23 The main keyword PRESSURE CORRECTION

The block defined by the main keyword PRESSURE CORRECTION defines the various options in
case of pressure correction to solve the Navier-Stokes equations.
For a description of the pressure correction method, the reader is referred to the manual standard
problems Section 7.1.10.

The block defined by the main keyword has the following structure PRESSURE CORRECTION
(options are indicated between the square brackets ”[” and ”]”):

PRESSURE_CORRECTION [, SEQUENCE_NUMBER = s]

SEQ_VELOCITY = s

SEQ_PRESSURE = s

SEQ_VEL_COEFFICIENTS = s

SEQ_PRESS_COEFFICIENTS = s

SEQ_TIME_INTEGRATION = s

SEQ_VEL_SOLVER = s

SEQ_PRESS_SOLVER = s

SEQ_CONV_COEFFICIENTS = s

SEQ_PRESS_BOUNCOND = s

NUMBER_OF_SUBSTEPS = n

CONVECTION_TREATMENT = m

END

The keywords PRESSURE CORRECTION and END are mandatory all others are optional.

PRESSURE CORRECTION opens the input for the pressure correction input block. The
sequence number s may be used to distinguish between various input blocks with respect to
PRESSURE CORRECTION.

END closes the input.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords PRESSURE CORRECTION and END however, must be placed at a new
record.
Meaning of the subkeywords:

SEQ VELOCITY = s Defines the sequence number of the velocity vector in the set of solution
vectors.
So a natural choice would be seq_velocity = %velocity

Default value: If the vector with name velocity exists: %velocity otherwise 1.

SEQ PRESSURE Defines the sequence number of the pressure vector in the set of solution
vectors.
So a natural choice would be seq_pressure = %pressure

Default value: If the vector with name pressure exists: %pressure otherwise 2.

SEQ VEL COEFFICIENTS = s Defines from which input block coefficients the coefficients
for the velocity equation must be read.
Default value 1.

SEQ PRESS COEFFICIENTS = s Defines from which input block coefficients the coefficients
for the pressure equation must be read.
Default value 3.

UM PRESSURE CORRECTION January 2006 3.2.23.2

SEQ TIME INTEGRATION = s Defines from which input block TIME INTEGRATION the
input for the time integration must be read.
Default value 1.

SEQ VEL SOLVER = s Defines from which input block SOLVE the input for the linear solver
with respect to the velocity equations must be read.
Default value 1.

SEQ PRESS SOLVER = s Defines from which input block SOLVE the input for the linear
solver with respect to the pressure equations must be read.
Default value SEQ PRESS SOLVER.

CONVECTION TREATMENT = m defines how the convection terms are treated.
The parameter m may have one of the following values:

standard

substeps

These subkeywords have the following meaning:

standard the standard method is applied, which means that the convective terms are treated
in the same way as the viscous part.

substeps implies that an operator splitting is applied. The convection is treated in an explicit
way, using smaller substeps (if necessary) and after that the viscosity and incompressibil-
ity are used in an implicit step. This is the same method as treated in Section (3.2.22)
when method = convection substepping.
So here we have the combination of substepping and pressure correction.

Default value standard.

SEQ CONV COEFFICIENTS = s defines the coefficients input sequence number for the con-
vective part.
In the same way as in Section (3.2.22) we need an input block for the coefficients for the
Stokes equations (here with number seq_vel_coefficients) and for the convection part.
Default value 2.

SEQ PRESS BOUNCOND = s defines the sequence number of the input block for the pressure
boundary conditions.
Default value 0.

NUMBER OF SUBSTEPS = n defines the number of substeps performed in the operator
splitting method.
It concerns the number of substeps for the explicit integration of the convection.
This parameter is only used in case of substepping.
Default value 1.

UM bearing September 2006 3.2.24.1

3.2.24 The main keyword BEARING

The block defined by the main keyword bearing defines the various options to solve the incom-
pressible Reynolds equations for bearings.
For a description of these methods, the reader is referred to the manual standard problems Section
4.1.
At this moment the block is only meant for Kumars mass conservation iteration scheme. In case
this block is used, it is necessary that the parameter IBCMAT in input block is equal to 1, so method
= 20x, with x the storage method used.
Furthermore the problem block must be extended with the essential boundary condition cavitation = 1.
In this way all nodes with pressures below the cavity pressure are treated as prescribed with value
equal to the cavitation pressure.

The block defined by the main keyword has the following structure BEARING (options are indicated
between the square brackets ”[” and ”]”):

BEARING [SEQUENCE_NUMBER = s]

METHOD = m

SEQ_COEFFICIENTS = i

SEQ_PRESSURE = i

SEQ_REACTION_FORCE = i

SEQ_SOLVE = i

MAX_ITER = i

PROBLEM_NUMBER = i

PRINT_LEVEL = i

P_CAVITY = p

END

The keywords and END are mandatory all others are optional.

BEARING opens the input for the bearing input block. The sequence number s may be used to
distinguish between various input blocks with respect to BEARING.

END closes the input.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords BEARING and END however, must be placed at a new record.
Meaning of the subkeywords:

METHOD = m Defines how the Reynolds equations must be solved.
Possible values for m are

kumar

These subkeywords have the following meaning

kumar the mass conservation scheme of Kumar is applied for one stationary step. See the
manual standard problems Section 4.1.

Default value: kumar.

SEQ COEFFICIENTS = i Defines the sequence number of the coefficients input block.
This block defines the coefficients for the Reynolds equation as described in Section 4.1 of the
manual ”standard problems”.
Default value: 1.

UM bearing September 2006 3.2.24.2

SEQ PRESSURE = i defines the sequence number of the pressure in the set of solution vectors.
Default value: if the vector with name pressure is defined: %pressure, otherwise 1.

SEQ REACTION FORCE = i defines the sequence number of the reaction force in the set of
solution vectors.
Default value: if the vector with name reac_force is defined: %reac_force, otherwise 2.

SEQ SOLVE = i Defines the sequence number of the input block for the linear solver.
Default value: 1.

MAX ITER = i gives the maximum number of iterations allowed.
The process stops if the maximum number of iterations is reached, or if no nodes are swapped
from one stage to the other one, as described in Kumars work.
If at the end of the iteration process still nodes are swapped, a warning is printed, but the
process continues.
Default value: 10.

PROBLEM NUMBER = i defines the problem number with respect to the Reynolds equation.
Default value: 1.

PRINT LEVEL = i defines the amount of output. The larger the value of i the more output is
printed. If i has some value, also all output corresponding to values less than i are printed
Possible values

0 No extra output is printed

1 For each iteration the number of nodes swapped from stage to the other is printed

2 In each iteration the pressure vector is printed.

3 In each iteration the reaction force vector is printed.

Default value: 0.

P CAVITY = p defines the cavity pressure.
Default value: 0.

UM Function subroutines February 2001 3.3.1

3.3 Description of some function subroutines to be used

As already described in the INTRODUCTION it is possible to define coefficients, boundary con-
ditions and so on as functions of space and possibly time. In this manual also the possibility of
vectors constructed as function of other vectors has been introduced.
For all these possibilities the user must provide SEPRAN with some (function) subroutines. Some
of these subroutines have already been described in the INTRODUCTION. It concerns the subrou-
tines FUNCBC (5.5.1), CFUNCB (5.5.2), FUNCCF (5.5.3), FUNC and CFUNC (5.5.4).
In this chapter some extra subroutines will be defined.

3.3.1 describes the subroutines FUNALG and FUNALC. These subroutines define a new compo-
nent of a vector to be created as function of the components of two old vectors.

3.3.2 treats function subroutine FUNCSCAL. This subroutine defines a scalar as function of al-
ready computed scalars.

3.3.3 deals with subroutine FUNCFL to fill a vector of corresponding to all nodes as function of
the co-ordinates in an array USER.

3.3.4 describes the subroutines FUNC1B and CFUN1B. These subroutines are used to fill a vector
element wise.

3.3.5 treats the subroutines FUNCOL and CFUNOL, which may be used to fill a vector as function
of the co-ordinates and the previous value of the vector.

3.3.6 deals with the function subroutines FUNCC1 and FUNCC3, which are used to compute
coefficients as function of previous computed solutions and otherwise created vectors.

3.3.7 gives a description of the function subroutine FUNCTR that may be used in combination
with local transforms.

3.3.8 has subroutine USERBOOL as subject. This subroutine is used in combination with the
while construction in the input block STRUCTURE.

3.3.9 treats subroutine FUNCCR, which may be used to adapt the boundary in a free surface or
moving surface problem.

3.3.10 describes subroutine FUNCC2, which is a special subroutine to define coefficients that
depend on the gradient of the solution.

3.3.11 describes subroutine FUNCVECT, which is a special subroutine to define a vector as func-
tion of the co-ordinates and a number of predefined vectors.

3.3.12 describes subroutines GETINT, GETCONST and GETVAR to extract values of constants
and variables as defined in the CONSTANTS input block.

3.3.13 describes subroutines PUTINT, PUTREAL and PUTVAR to put values of constants and
variables as defined in the CONSTANTS input block.

3.3.14 describes subroutines GETNAMEINT, GETNAMEREAL, GETNAMEVAR and PRGET-
NAME that may be utilized by the user to get the position of constants or variables in the
common block cuscons by using their names.

3.3.15 describes subroutine FUNCSOLCR, which may be used to adapt the boundary in a free
surface or moving surface problem.

UM Subroutines FUNALG and FUNALC December 1993 3.3.1.1

3.3.1 Subroutines FUNALG and FUNALC

Description

The subroutines FUNALG and FUNALC are user written subroutines that must be provided if
the option COMPUTE VECTOR i, FUNC VECTOR j1 VECTOR j2 is used in the input block
”STRUCTURE”. FUNALG is used if the vectors j1 and j2 are both real, FUNALC if they are
both complex. A function of a real and a complex vector is not yet available in SEPRAN.
The resulting vector is always of the same type as the input vectors.
FUNALG and FUNALC must be written by the user.

Call

CALL FUNALG (VALUE1, VALUE2, VALUE3) (real case)

or

CALL FUNALC (VALUE1, VALUE2, VALUE3) (complex case)

Parameters

DOUBLE PRECISION VALUE1, VALUE2, VALUE3 (in case of FUNALG) or

DOUBLE COMPLEX VALUE1, VALUE2, VALUE3 (in case of FUNALC)

VALUE1 One component of the first vector (Vj1) to be manipulated. VALUE1 has got a value
and may not be changed by the user.

VALUE2 Corresponding component of the second vector (Vj2) to be manipulated. VALUE2 has
got a value and may not be changed by the user.

VALUE3 Corresponding component of the resulting vector (Vi) of the manipulation. VALUE3
must be given a value by the user.

Input

VALUE1 and VALUE2 have been given a value by SEPCOMP.

Output

VALUE3 must have a value

Remark
The subroutines FUNALG or FUNALC are called for each node in the mesh.

Example
Suppose that V3 must be created as function of V1 and V2 in the following way:

V 3i = sin(V 1i)cos(V 2i), (3.3.1.1)

where i denotes the ith component of each vector. The in the input block ”STRUCTURE” the
command

COMPUTE VECTOR 3, FUNC VECTOR 1 VECTOR 2

must be given and a subroutine FUNALG of the following shape must be provided by the user:

SUBROUTINE FUNALG (VALUE1, VALUE2, VALUE3)

IMPLICIT NONE

DOUBLE PRECISION VALUE1, VALUE2, VALUE3

UM Subroutines FUNALG and FUNALC December 1993 3.3.1.2

value3 = sin(value1) * cos(value2)

END

UM Function subroutine FUNCSCAL July 1999 3.3.2.1

3.3.2 Function subroutine FUNCSCAL

Description

The function subroutine FUNCSCAL is a user written subroutine that must be provided
if the option SCALAR j, FUNC = k is used in the input block ”STRUCTURE”. It is
used to construct a scalar as function of previously computed scalars.

Heading

function funcscal (k, arscalars)

Parameters

DOUBLE PRECISION FUNCSCAL, ARSCALARS(∗)
INTEGER K

ARSCALARS In this array all scalars are stored that are defined in the part cre-
ated by the input block ”STRUCTURE”. The scalars are stored in the sequence
defined by the user, which means that S1 is stored in ARSCALARS(1), S2 in AR-
SCALARS(2) etcetera. The user must know himself which scalars are filled and
which not.
The user is free to include the common block CUSCONS as described in Section
1.6. However, some care is needed since array ARSCALARS is identical to array
SCALARS in CUSCONS, and a change in one of them results in an immediate
change in the other one.

A disadvantage of the use of this array is the use of fixed positions. Hence if one
adds a new scalar in the input block before one of the scalars used, the contents
change. To prevent this it is better to use getvar as described in Section 3.3.12.3.

K This parameter may be used to distinguish between various cases. K is identical to
the parameter k given in FUNC = k. K has got a value by program SEPCOMP.

FUNCSCAL Result of the computation. The user must give FUNCSCAL a value as
function of the other scalars.

Input

K has been given a value by SEPCOMP.
Array ARSCALARS has been filled by program SEPCOMP, at least for those values
that have been explicitly computed by the user in the part STRUCTURE before the
call SCALAR j, FUNC = k.

Output

FUNCSCAL must have a value

Example Suppose that S3 must be created as function of S1 and S2 in the following
way:

S3 = sin(S1)cos(S2). (3.3.2.1)

In the input block ”STRUCTURE” the command

SCALAR 3, FUNC = 1 must be given and a function subroutine FUNCSCAL
of the following shape must be provided by the user:

UM Function subroutine FUNCSCAL July 1999 3.3.2.2

FUNCTION FUNCSCAL (K, ARSCALARS)

IMPLICIT NONE

DOUBLE PRECISION FUNCSCAL ARSCALARS(*)

INTEGER K

if (k.eq.1) then

! --- Compute the result for k = 1

funcscal = sin(arscalars(1)) * cos(arscalars(2))

else

! --- Other values of k

.

.

end if

END

A better approach is to use getvar. Suppose that S1 and S2 have the names S1 and
S2. Then an alternative is:

FUNCTION FUNCSCAL (K, ARSCALARS)

IMPLICIT NONE

DOUBLE PRECISION FUNCSCAL ARSCALARS(*)

INTEGER K

DOUBLE PRECISION GETVAR, S1, S2

if (k.eq.1) then

! --- Compute the result for k = 1

S1 = getvar (’s1’)

S2 = getvar (’s2’)

funcscal = sin(S1) * cos(S2)

else

! --- Other values of k

.

.

end if

END

UM Subroutine FUNCFL July 1999 3.3.3.1

3.3.3 Subroutine FUNCFL

Description

The subroutine FUNCFL is a user written subroutine that must be provided if the option
COEF i = (POINTS, ref=r) with r < 0 is used in the input block ”COEFFICIENTS”.
It is used to construct an array of length NPOINT, where NPOINT is the number of
nodal points, with a function that depends on the space co-ordinates only. This array is
stored in an array USER that is transported to the element subroutines and implicitly
defines coefficients for these element subroutines.

Heading

subroutine funcfl (coor, npoint, ichois, user)

Parameters

INTEGER NPOINT, ICHOIS

DOUBLE PRECISION COOR(ndim,NPOINT), USER(NPOINT)

COOR In this two-dimensional array of size ndim × NPOINT, the co-ordinates of the
nodal points are stored. ndim denotes the dimension of the space and should be a
number not a parameter.
The ith co-ordinate in point j is stored in COOR (i, j).
Array COOR has been filled by program SEPCOMP.

NPOINT Number of points in the mesh.

ICHOIS Choice parameter that may be used by the user, for example to distinguish
between several coefficients. ICHOIS is equal to -r in the command COEF i =
(POINTS, ref=r).

USER Array to be filled by the user from position 1. The user must fill exactly
NPOINT values corresponding to the NPOINT nodes.

Input

NPOINT and ICHOIS have been given a value by SEPCOMP.
Array COOR has been filled by program SEPCOMP.

Output

Array USER must have been filled by the user.

Example

Suppose that the coefficient to be filled is defined in the following way:

COEFF (i) = sin(x1)cos(x2), (3.3.3.1)

and suppose furthermore that the dimension of space is 2.

If the command COEF i = (POINTS, ref=-1) has been given by the user, the following
code may be used to fill USER.

UM Subroutine FUNCFL July 1999 3.3.3.2

SUBROUTINE FUNCFL (COOR, NPOINT, ICHOIS, USER)

IMPLICIT NONE

INTEGER ndim

PARAMETER (ndim = 2)

INTEGER NPOINT, ICHOIS

DOUBLE PRECISION COOR(ndim,NPOINT), USER(NPOINT)

if (ichois==1) then

! --- Compute the vector for ichois = 1

user(1:npoint) = sin(coor(1,1:npoint)) * cos(coor(2,1:npoint))

else

! --- Other values of ichois

.

.

end if

END

UM Subroutines FUNC1B and CFUN1B December 1993 3.3.4.1

3.3.4 Subroutines FUNC1B and CFUN1B

Description

The subroutines FUNC1B and CFUN1B are user written subroutines that must be provided if
the option SPECIAL FUNCTION = l is used in the input block ”CREATE” or ”ESSENTIAL
BOUNDARY CONDITIONS”. With these subroutines the user may fill function values for one
surface element in the solution vector.
FUNC1B and CFUN1B must be written by the user. FUNC1B is meant for real vectors and
CFUN1B for complex vectors.

Call

CALL FUNC1B (ICHOIS, INDEX1, INDEX2, USOL, COOR)

or

CALL CFUN1B (ICHOIS, INDEX1, INDEX2, USOL, COOR)

Parameters

INTEGER ICHOIS, INDEX1(∗), INDEX2(∗)

DOUBLE PRECISION COOR(ndim,∗)

DOUBLE PRECISION USOL(∗) (subroutine FUNC1B) or DOUBLE COMPLEX USOL(∗)
(subroutine CFUN1B)]

ICHOIS Choice parameter that may be used by the user, for example to distinguish between
several coefficients. ICHOIS is equal to l in the command SPECIAL FUNCTION = l.

INDEX1 Array of length INPELM (number of nodal points in the element), containing the nodal
point numbers of the surface element. Array INDEX1 may be used to find the co-ordinates
of the nodes in the element.

INDEX2 Array of length ICOUNT (number of degrees of freedom in the element), containing the
positions of the degrees of freedom in the solution vector USOL.

USOL Real or complex solution vector. The user must fill array USOL for the indicated degrees
of freedom in the surface element. Array INDEX2 may be used to find the degrees of freedom
in USOL, corresponding to the element. The ith local degree of freedom in the element can
be found from USOL(INDEX2(i)). A common way to extract the old solution in the nodal
points of the element is to define a help array U of size icount. The following piece of code
copies the old solution from array uold into array U:

u(1:icount) = usol(index2(1:icount))

COOR In this two-dimensional array of size ndim × NPOINT, the co-ordinates of the nodal points
are stored. ndim denotes the dimension of the space and should be a number not a parameter.
NPOINT denotes the number of nodal points. It is not necessary to know this number. The
ith co-ordinate in point j is stored in COOR (i, j).
Array COOR has been filled by program SEPCOMP. To find the co-ordinates of the nodes
of the element, array INDEX1 must be used. The x-co-ordinate of the ith local point in
the element is given by COOR(1,INDEX1(i)), the y-co-ordinate by COOR(2,INDEX1(i)) A
common way to extract the co-ordinates of the element is to define a help array X of size
ndim × npelm, where npelm denotes the maximum number of nodes in the elements. The
following piece of code copies the co-ordinates from array coor into array X:

UM Subroutines FUNC1B and CFUN1B December 1993 3.3.4.2

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

Input

ICHOIS has got a value by program SEPCOMP.
The arrays INDEX1 and INDEX2 have been filled for each element.
Array COOR has been filled.
Array USOL may be partly filled.

Output

The user must fill the required degrees of freedom of the element in array USOL.

Extra interface

Besides the parameters in the parameter list, SEPCOMP has another possibility to communicate
with the subroutines FUNC1B and CFUN1B. This possibility is provided by the common block
CACTL.

integer IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT, NOTVC,

IRELEM, NUSOL, NELEM, NPOINT

COMMON /CACTL/ IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

NOTVC, IRELEM, NUSOL, NELEM, NPOINT \emp

The following parameters may be useful:

IELEM Element number.

ITYPE Problem definition number. This number is defined in the input block ”PROBLEM” by
ELGRPi = (type = ni).

IELGRP Standard element sequence number. Boundary elements get standard sequence numbers:
NELGRP + 1, NELGRP + 2, . . . , NELGRP + NUMNATBND, where NELGRP is the
number of element groups and NUMNATBND the number of boundary element groups.

INPELM Number of nodal points in element.

ICOUNT Number of degrees of freedom in element.

IFIRST This parameter indicates if the element subroutine is called for the first time for the
specific element group (IFIRST=0) or not (IFIRST=1). This parameter may be of help for
experienced FORTRAN programmers in order to initialize parameters and even local arrays
only once. Since FORTRAN 77 does not save local parameters it is necessary to use the
”SAVE” statement if this option is utilized.

NELEM Number of elements with standard element sequence number IELGRP in the mesh.

NPOINT Number of nodal points in the mesh.

NUSOL Number of degrees of freedom in the solution vector.

IRELEM Relative element number with respect to standard element sequence number IELGRP.

Subroutine FUNC1B must be programmed as follows:

SUBROUTINE FUNC1B (ICHOIS, INDEX1, INDEX2, USOL, COOR)

IMPLICIT NONE

integer ndim

parameter (ndim=..)

UM Subroutines FUNC1B and CFUN1B December 1993 3.3.4.3

DOUBLE PRECISION COOR(ndim,*), USOL(*)

INTEGER ICHOIS, INDEX1(*), INDEX2(*)

INTEGER IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

+ NOTVC, IRELEM, NUSOL, NELEM, NPOINT

COMMON /CACTL/ IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

+ NOTVC, IRELEM, NUSOL, NELEM, NPOINT

.

.

. statements to fill USOL for surface element IELEM

.

.

END

Subroutine CFUN1B must be programmed as follows:

SUBROUTINE CFUN1B (ICHOIS, INDEX1, INDEX2, USOL, COOR)

IMPLICIT NONE

integer ndim

parameter (ndim=..)

INTEGER ICHOIS, INDEX1(*), INDEX2(*)

DOUBLE COMPLEX USOL(*)

DOUBLE PRECISION COOR(ndim,*)

INTEGER IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

+ NOTVC, IRELEM, NUSOL, NELEM, NPOINT

COMMON /CACTL/ IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

+ NOTVC, IRELEM, NUSOL, NELEM, NPOINT

.

.

. statements to fill USOL for surface element IELEM

.

.

END

See subroutine ELEM (Section 4.2) for more details with respect to the filling of USOL.

UM Function subroutines FUNCOL and CFUNOL December 1993 3.3.5.1

3.3.5 Function subroutines FUNCOL and CFUNOL

Description

The subroutines FUNCOL and CFUNOL are user written subroutines that must be provided if the
option OLD FUNCTION =m is used in the input block ”CREATE” or ”ESSENTIAL BOUNDARY
CONDITIONS”. With these function subroutines the user may define a function that depends on
the vector to be changed itself. So in fact it is assumed that the vector has been filled before and
that a new value must be created as function of the previous one.
FUNCOL and CFUNOL must be written by the user. FUNCOL is meant for real vectors and
CFUNOL for complex vectors.

Call

VALUE = FUNCOL (ICHOIS, X, Y, Z, UOLD)

or

VALUE = CFUNOL (ICHOIS, X, Y, Z, UOLD)

Parameters

INTEGER ICHOIS

DOUBLE PRECISION FUNCOL, X, Y, Z

DOUBLE COMPLEX CFUNOL

DOUBLE PRECISION UOLD (in case of FUNCOL) or DOUBLE COMPLEX UOLD (in case
of CFUNOL)

ICHOIS Choice parameter. This parameter enables the user to distinguish between several cases.
ICHOIS gets the value m as given by OLD FUNCTION = m. This value is filled by program
SEPCOMP.

X, Y, Z X, Y and Z co-ordinates of the nodal point.
For each nodal point this subroutine is called.

FUNCOL FUNCOL should get the computed real value of the function in the nodal point.

CFUNOL CFUNOL should get the computed complex value of the function in the nodal point.

UOLD UOLD contains the value of the vector in the specified point at input, for the specified
degree of freedom.

Input

Program SEPCOMP has given ICHOIS, UOLD, X, Y and Z a value depending on the dimension
of the space.

Output

FUNCOL or CFUNOL must have been given a value by the user.

UM Function subroutines FUNCOL and CFUNOL December 1993 3.3.5.2

Function subroutine FUNCOL must be programmed as follows:

FUNCTION FUNCOL (ICHOIS, X, Y, Z, UOLD)

IMPLICIT NONE

DOUBLE PRECISION X, Y, Z, UOLD, FUNCOL

INTEGER ICHOIS

.

.

. statements to give alpha a value as function of the

. parameters

.

FUNCOL = alpha

END

Function subroutine CFUNOL must be programmed as follows:

FUNCTION CFUNOL (ICHOIS, X, Y, Z, UOLD)

IMPLICIT NONE

DOUBLE PRECISION X, Y, Z

DOUBLE COMPLEX UOLD, CFUNOL

INTEGER ICHOIS

.

.

. statements to give alpha a value as function of the

. parameters

.

CFUNOL = alpha

END

UM Function subroutines FUNCC1 and FUNCC3 November 1994 3.3.6.1

3.3.6 Function subroutines FUNCC1 and FUNCC3

Description

With these function subroutine a function may be defined, for the creation of real coefficients. These
function subroutines have exactly the same task as function subroutine FUNCCF, however they
have extra parameters in order to allow for function subroutines that are functions of previously
computed solutions and vectors.
Both FUNCC1 and FUNCC3 must be written by the user.

Function subroutine FUNCC1

Function subroutine FUNCC1 contains one extra parameter in comparison to FUNCCF.

Call

VALUE = FUNCC1 (IFUNC, X, Y, Z, UOLD)

Parameters

DOUBLE PRECISION FUNCC1, X, Y, Z, UOLD(∗)

INTEGER IFUNC

IFUNC Choice parameter. This parameter enables the user to distinguish between several cases.
IFUNC is defined by the user in the input part COEFFICIENTS. Its value is equal to i-1000,
where i is the parameter in FUNC=i.

X,Y,Z X, y and z-coordinates of the nodal point. For each nodal point this subroutine is called.

UOLD In this array of length of the number of degrees of freedom in the nodal point, the values
of the solution at the previous time-step or iteration are stored. UOLD(1) contains the value
of the first unknown in that point, UOLD(2) of the second one, and so on.

FUNCC1 FUNCC1 should get the computed value of the function in the nodal point.

Input

IFUNC, UOLD, X, Y, and Z have been filled by SEPCOMP depending on the dimension of the
space.

Output

FUNCC1 must have a value

Example

Suppose that there is one degree of freedom per point (u), and suppose furthermore that for IFUNC
= 1 (k=1001) the function f(x, y, u) = xy ∗u, and for IFUNC = 2 the function f(x, y) = sin(x) ∗u
is required.
Then FUNCC1 can be programmed as follows:

FUNCTION FUNCC1 (IFUNC, X, Y, Z, UOLD)

IMPLICIT NONE

DOUBLE PRECISION FUNCC1, X, Y, Z, UOLD(*)

INTEGER IFUNC

IF (IFUNC==1) THEN

C --- IFUNC = 1 F = X Y * U

UM Function subroutines FUNCC1 and FUNCC3 November 1994 3.3.6.2

FUNCC1 = X * Y * UOLD(1)

ELSE

C --- IFUNC = 2 F = SIN (X) * U

FUNCC1 = SIN(X) * UOLD(1)

ENDIF

END

Function subroutine FUNCC3

Function subroutine FUNCC3 contains some extra parameters compared to FUNCC1.

Call

VALUE = FUNCC3 (IFUNC, X, Y, Z, NUMOLD, MAXUNK, UOLD)

Parameters

INTEGER IFUNC, NUMOLD, MAXUNK

DOUBLE PRECISION FUNCC3, X, Y, Z, UOLD(NUMOLD,MAXUNK)

IFUNC Choice parameter. This parameter enables the user to distinguish between several cases.
IFUNC is defined by the user in the input part COEFFICIENTS. Its value is equal to i-10000,
where i is the parameter in FUNC=i.
If SOL FUNC = k is used in the input part of coefficients, IFUNC = k.

X,Y,Z X, y and z-coordinates of the nodal point. For each nodal point this subroutine is called.

NUMOLD Dimension parameter for array UOLD. It indicates the number of vectors V1, V2, ...
VNUMOLD stored in UOLD. These vectors are defined in the input part of SEPCOMP, either
by defining a coupled problem or by using STRUCTURE and defining some vectors explicitly.

MAXUNK Dimension parameter for array UOLD. It indicates the maximum number of degrees
of freedom stored in the vectors corresponding to UOLD.

UOLD In this two-dimensional array of length NUMOLD × MAXUNK positions, the values of
all the vectors V1, V2, ... VNUMOLD in the nodal point are stored. UOLD(1,1) contains the
first degree of freedom of V1 in the node, UOLD(1,2) the second degree of freedom and so on.
UOLD(2,1) corresponds to the first degree of freedom of V2 in the node.

FUNCC3 FUNCC3 should get the computed value of the function in the nodal point.

Input

IFUNC, NUMOLD, MAXUNK UOLD, X, Y, and Z have been filled by SEPCOMP depending on
the dimension of the space.

Output

FUNCC3 must have a value

Example
Suppose that V1 contains two unknowns per point (u and v), that V2 contains the derivatives
∂u
∂x ,

∂u
∂y ,

∂v
∂x and ∂v

∂y and that V3 contains the unknown p. suppose furthermore that for IFUNC = 1

the function f(x, y) = u2 +v2, and for IFUNC = 2 the function f(x, y) = p+ ∂u
∂x

2
+ ∂v
∂y

2
is required.

Then NUMOLD=3 and MAXUNK=4 and FUNCC3 can be programmed as follows:

UM Function subroutines FUNCC1 and FUNCC3 November 1994 3.3.6.3

FUNCTION FUNCC3 (IFUNC, X, Y, Z, NUMOLD, MAXUNK, UOLD)

IMPLICIT NONE

INTEGER IFUNC, NUMOLD, MAXUNK

DOUBLE PRECISION FUNCC1, X, Y, Z, UOLD(NUMOLD, MAXUNK)

IF (IFUNC==1) THEN

C --- IFUNC = 1 F = U^2 + V^2

FUNCC3 = UOLD(1,1)**2 + UOLD(1,2)**2

ELSE

C --- IFUNC = 2 F = p + (du/dx)^2 + (dv/dy)^2

FUNCC3 = uold(3,1) + uold(2,1)**2 + UOLD(2,4)**2

ENDIF

END

UM Function FUNCTR December 1995 3.3.7.1

3.3.7 Function subroutine FUNCTR

Description

The subroutine FUNCTR is a user written subroutine that must be provided if the option MA-
TRIXR or MATRIXV is given with local transformation in combination with FUNC =.
See the input block ”PROBLEM”, Section 3.2.2.
With this option the user defines the entries of the transformation matrices R and V as function
of the co-ordinates.

Call

VALUE = FUNCTR (ICHOICE_TRANS, X, Y, Z)

INTEGER ICHOICE TRANS

DOUBLE PRECISION FUNCTR, X, Y, Z

FUNCTR The user must give FUNCTR the value of the matrix element in the specific point.

ICHOICE TRANS Choice parameter that is made equal to the parameter i in FUNC = i. This
parameter may be used by the user to distinguish between various possibilities.

X, Y, Z co-ordinates of the point in which the function must be evaluated.

Input

The parameters ICHOICE TRANS, X, Y and Z have been given a value by the calling subroutine.

Output

The user must have been given FUNCTR a value.

Layout

The function subroutine FUNCTR must have the following shape:

function functr (ichois_trans, x, y, z)

integer ichois_trans

double precision functr, x, y, z)

if (ichois_trans==1) then

statements to give FUNCTR a value for choice 1

else if (ichois_trans==2) then

statements to give FUNCTR a value for choice 2

else ...

.

.

.

end

UM Function USERBOOL December 1995 3.3.8.1

3.3.8 Function subroutine USERBOOL

Description

The subroutine USERBOOL is a user written subroutine that must be provided if the option
boolean expr(k) is used in the while loop in the input block STRUCTURE, Section 3.2.3.
With this option the user defines the value of a logical operator as function of the parameter k and
some internal variables, for example the ones stored in common block CUSCONS (Section 1.6).

Call

VALUE = USERBOOL (K)

LOGICAL USERBOOL

INTEGER K

USERBOOL The user must give USERBOOL give the value .true. or .false. as function of k and
possibly some internal variables.

K Choice parameter that is made equal to the parameter k in boolean expr(k). This parameter
may be used by the user to distinguish between various possibilities.

Input

The parameter K has been given a value by the calling subroutine.

Output

The user must have been given USERBOOL a value.

Layout

The function subroutine USERBOOL must have the following shape:

function userbool (k)

logical userbool

integer k

if (k==1) then

statements to give USERBOOL a value for choice 1

else if (k==2) then

statements to give USERBOOL a value for choice 2

else ...

.

.

.

end

For an example of the use of USERBOOL, the reader is referred to Section 6.3.3.

UM Subroutine FUNCCR February 2001 3.3.9.1

3.3.9 Subroutine FUNCCR

Description

Subroutine FUNCCR is used to adapt the boundary in case of a moving boundary or
free surface problem.
It is used in the case that the adaptation method in the input block adapt_boundary

(3.4.4) is equal to funccr (i.e. the parameter IADAPT is equal to 2).
It must be written by the user and is needed to compute the new co-ordinates of the
boundary to be adapted. FUNCCR is called for each node separately.

Heading

subroutine funccr (coorol, coornw, uold, inodp, ilocal, anorm, n)

Parameters

DOUBLE PRECISION COOROL(2,∗), COORNW(2,∗), UOLD(∗), ANORM(2,∗)
INTEGER INODP, ILOCAL, N

COOROL Two-dimensional array of length 2 × N containing the co-ordinates of the
boundary. The co-ordinates are stored sequentially in the direction of the boundary.

COORNW In this two-dimensional array of length 2 × N the user must store the
co-ordinates of the new boundary in the same sequence as for COOROL.

UOLD In this array of length NUNKP the solution is stored for the ILOCALth node
at the boundary.
The solution is defined by the option seq_vectors = (i1, i2, ...) in the in-
put blocks stationary_free_boundary (3.4.5) or instationary_free_boundary
(3.4.6). Only the first vector in the row is used.
In case FUNCCR is activated by a user call to a SEPRAN subroutine as described
in the Programmers Guide, USOL corresponds to the first vector in array ISOL.
NUNKP denotes the number of degrees of freedom in that node.

INODP Global number of the ILOCALth node at the boundary.

ILOCAL Local nodal point number corresponding to node at the boundary. 1 ≤
ILOCAL ≤ N .

ANORM In this two-dimensional array of length 2 × N the components of the outward
normal are stored in the same sequence as in COOROL.

N Number of points at the boundary.

Input

The arrays COOROL, UOLD and ANORM have been filled by program SEPFREE or
the subroutine called by the user (CHANBN, ADAPBN, ...).
INODP, ILOCAL and N have got a value from program SEPFREE.

Output

Array COORNW positions (1,ILOCAL) and (2,ILOCAL) must have been filled by the
user.

UM Subroutine FUNCCR February 2001 3.3.9.2

Layout

The subroutine FUNCCR must have the following shape:

subroutine funccr (coorol, coornw, uold, inodp, ilocal, anorm, n)

implicit none

double precision coorol(2,*), coornw(2,*), uold(*), anorm(2,*)

xold = coorol(1,ilocal)

yold = coorol(2,ilocal)

xnorm = anorm(1,ilocal)

ynorm = anorm(2,ilocal)

u1 = uold(1)

u2 = uold(2)

.

.

. statements to compute xnew and ynew

.

.

.

coornw(1,ilocal) = xnew

coornw(2,ilocal) = ynew

end

UM Subroutine FUNCC2 April 1996 3.3.10.1

3.3.10 Subroutine FUNCC2

Description

Subroutine FUNCC2 is used to define a coefficient and possibly its derivative in case the coefficient
depends on the gradient of the solution in each point.
FUNCC2 is called for each integration point separately.

Call

CALL FUNCC2 (ICHOICE, X, Y, Z, GRADC, G, DGDGRAD)

Parameters

DOUBLE PRECISION X, Y, Z, GRADC(∗), G, DGDGRAD(∗)

INTEGER ICHOICE

ICHOICE Parameter that may be used to distinguish between possibilities. ICHOICE has been
given a value by the calling subroutine.

X, Y, Z Co-ordinates of the point in which the function g must be evaluated.

GRADC In this array of length NDIM, with NDIM the dimension of the space, the gradient of
the old solution in that point is stored by the calling subroutine.

G This parameter must get the value of the function g in the particular point.

DGDGRAD Depending on the application this array of length NDIM, or possibly an array of
length 1 (scalar) must be filled with the gradient of the function g, with respect to ∇c.

Input

Array GRADC has been filled by the calling subroutine.
ICHOICE, X, Y, and Z have been filled by the calling subroutine.

Output

G must have got a value.
Depending on the application DGDGRAD must have been filled by the user.

UM Subroutine FUNCC2 April 1996 3.3.10.2

Layout

The subroutine FUNCC2 must have the following shape:

subroutine funcc2 (ichoice, x, y, z, gradc, g, dgdgrad)

implicit none

integer ichoice

double precision x, y, z, gradc(*), g, dgdgrad(*)

.

.

. statements to compute g and possibly dgdgrad

.

.

.

end

UM Subroutine FUNCVECT December 1997 3.3.11.1

3.3.11 Subroutine FUNCVECT

Description

Subroutine FUNCVECT is used to define a vector as function of the co-ordinates and
a number of predefined vectors.
FUNCVECT is called if in the block CREATE of the block ESSENTIAL BOUNDARY
CONDITIONS, the option

OLD_VECTOR = m

usually in combination with

SEQ_VECTORS = V1, V2, ...

is used.

Heading

subroutine funcvect(ichoice, ndim, coor, numnodes, uold,

+ nuold, result, nphys)

Parameters

INTEGER ICHOICE, NDIM, NUMNODES, NUOLD, NPHYS

DOUBLE PRECISION COOR(NDIM,NUMNODES), UOLD(NUMNODES,NPHYS,NUOLD),
RESULT(NUMNODES,∗)

ICHOICE Parameter that may be used to distinguish between possibilities. ICHOICE
is identical to the parameter m in OLD_VECTOR = m.

NDIM Dimension of the space.

NUMNODES Number of nodal points for which the vector must be filled. This
number is implicitly defined by the user in the location part.

NUOLD Number of predefined vectors that are used to create the new vector. This
number is implicitly defined by the user in SEQ_VECTORS = V1, V2,

NPHYS Maximal number of degrees of freedom that are available in the old vectors
uold per point.

COOR in this array the co-ordinates of the nodes to be used are stored. COOR is a
two-dimensional array of size NDIM × NUMNODES.
COOR(k, i) contains the xk-th co-ordinate of the i-th point in the set.

UOLD contains the values of the previously defined vectors for all available degrees of
freedom in the set of points. The user himself knows how much degrees of freedom
per point are available for each vector.
UOLD(i, j, k) refers to the j-th degree of freedom in the i-th point in the set with
respect to the k-th vector.

RESULT must be filled by the user with the values of the vector. RESULT is a two-
dimensional array of size NUMNODES × NDEG, where NDEG is the number of
degrees of freedom per point to be filled. The user himself knows how many degrees
of freedom he has to fill. RESULT(i, j) refers to the j-th degree of freedom in the
i-th point in the set.

UM Subroutine FUNCVECT December 1997 3.3.11.2

Input

The arrays COOR and UOLD have been filled before the call of FUNCVECT.
The parameters ICHOICE, NDIM, NUMNODES, NUOLD and NPHYS have been filled
by the calling subroutine.

Output

Array RESULT must be filled by the user for all nodes in the set.

Layout

The subroutine FUNCVECT must have the following shape:

subroutine funcvect(ichoice, ndim, coor, numnodes, uold,

+ nuold, result, nphys)

implicit none

integer ichoice, ndim, numnodes, nuold, nphys

double precision coor(ndim,numnodes),

+ uold(numnodes,nphys,nuold), result(numnodes,*)

.

.

. statements to compute and fill array RESULT

.

.

.

end

UM Get variables and constants May 2000 3.3.12.1

3.3.12 Function subroutines to get the values of constants and variables.

In this section we describe three function subroutines that may be utilized by the user to get the
values of constants or variables from the common block cuscons by using their names. It concerns
the following functions subroutines:

GETINT 3.3.12.1 Returns with value of integer.

GETCONST 3.3.12.2 Returns with value of constant. The result is always real.

GETVAR 3.3.12.3 Returns with value of variable.

3.3.12.1 Function subroutine GETINT

Description

With this function subroutine the user may extract the value of an integer such as it
is given in the input file in the block CONSTANTS, sub-block integers. This function
subroutine may be called in each user written subroutine.

Heading

function getint (intname)

Parameters

INTEGER GETINT

CHARACTER (len = ∗) INTNAME

GETINT Contains the value of the integer with name INTNAME at output.
If INTNAME does not exist an error message is given.
For that reason it is not allowed to use subroutine GETINT in a print or write
statement.

INTNAME Name of the integer of which the value must be returned.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

Parameter INTNAME must have a value.

Output

GETINT has got the value of the corresponding integer.

Layout

The use of GETINT in a subroutine is very simple:

subroutine xxxxxx

implicit none

integer getint, intfind...

.

UM Get variables and constants May 2000 3.3.12.2

.

.

intfind = getint (’name_of_integer’)

.

.

.

end

3.3.12.2 Function subroutine GETCONST

Description

With this function subroutine the user may extract the value of a constant such as it is
given in the input file in the block CONSTANTS, sub-block integers or reals. The result
is always real. This function subroutine may be called in each user written subroutine.

Heading

function getconst (realname)

Parameters

DOUBLE PRECISION GETCONST

CHARACTER (len = ∗) REALNAME

GETCONST Contains the value of the constant with name realname at output.
If realname does not exist an error message is given.
For that reason it is not allowed to use subroutine GETCONST in a print or write
statement.

REALNAME Name of the constant of which the value must be returned.
This constant may be both one of the integer block or the real block.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

Parameter REALNAME must have a value.

Output

GETCONST has got the value of the corresponding constant.

Layout

The use of GETCONST in a subroutine is very simple:

subroutine xxxxxx

implicit none

double precision getconst, realfind...

.

.

UM Get variables and constants May 2000 3.3.12.3

.

realfind = getconst (’name_of_constant’)

.

.

.

end

3.3.12.3 Function subroutine GETVAR

Description

With this function subroutine the user may extract the value of a variable such as it
is given in the input file in the block CONSTANTS, sub-block variables. The result is
always real. This function subroutine may be called in each user written subroutine.

Heading

function getvar (VARNAME)

Parameters

DOUBLE PRECISION GETVAR

CHARACTER (len = ∗) VARNAME

GETVAR Contains the value of the variable with name varname at output.
If varname does not exist an error message is given.
For that reason it is not allowed to use subroutine GETVAR in a print or write
statement.

VARNAME Name of the variable of which the value must be returned.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

Parameter VARNAME must have a value.

Output

GETVAR has got the value of the corresponding constant.

Layout

The use of GETVAR in a subroutine is very simple:

subroutine xxxxxx

implicit none

double precision getvar, realfind...

.

.

.

realfind = getvar (’name_of_constant’)

.

.

.

end

UM Put variables and constants May 2000 3.3.13.1

3.3.13 Subroutines to put the values of constants and variables in com-
mon CUSCONS

In this section we describe three subroutines that may be utilized by the user to put the values
of constants or variables into the common block cuscons by using their names. It concerns the
following functions subroutines:

PUTINT 3.3.13.1 Puts the value of an integer in cuscons.

PUTREAL 3.3.13.2 Puts the value of a real in cuscons.

PUTVAR 3.3.13.3 Puts the value of a variable in cuscons.

Mark that the subroutines PUTINT and PUTREAL make only sense in subroutine COMPCONS
(1.6), since that is the only place where constants may be changed.

3.3.13.1 Subroutine PUTINT

Description

With this subroutine the user may put the value of an integer such as it is given in the
input file in the block CONSTANTS, sub-block integers into the common CUSCONS.
The use of this subroutine makes only sense in subroutine COMPCONS (1.6). It is
meant to put a changed value back in the block CONSTANTS.

Heading

subroutine putint (intname, value)

Parameters

INTEGER VALUE

CHARACTER (len = ∗) INTNAME

VALUE Contains the value of the integer with name INTNAME that must be put into
common CUSCONS.
If INTNAME does not exist an error message is given.

INTNAME Name of the integer of which the value must be substituted.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

The parameters INTNAME and VALUE must have a value.

Output

VALUE is substituted in common block CUSCONS, array INCONS.

Layout

The use of PUTINT in subroutine COMPCONS is very simple:

UM Put variables and constants May 2000 3.3.13.2

subroutine COMPCONS

implicit none

integer intval

.

.

.

intval =

call putint (’name_of_integer’, intval)

.

.

.

end

3.3.13.2 Subroutine PUTREAL

Description

With this subroutine the user may put the value of a real such as it is given in the input
file in the block CONSTANTS, sub-block reals into the common CUSCONS. The use of
this subroutine makes only sense in subroutine COMPCONS (1.6). It is meant to put
a changed value back in the block CONSTANTS.

Heading

subroutine putreal (realname, value)

Parameters

INTEGER VALUE

CHARACTER (len = ∗) REALNAME

VALUE Contains the value of the real with name realname that must be put into
common CUSCONS.
If realname does not exist an error message is given.

realname Name of the real of which the value must be substituted.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

The parameters REALNAME and VALUE must have a value.

Output

VALUE is substituted in common block CUSCONS, array RLCONS.

Layout

The use of PUTREAL in subroutine COMPCONS is very simple:

UM Put variables and constants May 2000 3.3.13.3

subroutine COMPCONS

implicit none

double precision value

.

.

.

value =

call putreal (’name_of_real’, value)

.

.

.

end

3.3.13.3 Subroutine PUTVAR

Description

With this subroutine the user may put the value of a variable (scalar) such as it is
given in the input file in the block VARIABLES, into the common CUSCONS. This
subroutine may be called in each user written subroutine.

Heading

putvar (varname, value)

Parameters

DOUBLE PRECISION VALUE

CHARACTER (len = ∗) VARNAME

VARNAME Contains the value of the variable with name varname that must be sub-
stituted.
If varname does not exist an error message is given.

VARNAME Name of the variable of which the value must be substituted.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

The parameter VARNAME and VALUE must have a value.

Output

VALUE is substituted in common block CUSCONS, array SCALARS.

Layout

The use of PUTVAR in a subroutine is very simple:

UM Put variables and constants May 2000 3.3.13.4

subroutine xxxxxx

implicit none

double precision value...

.

.

.

value = ...

call putvar (’name_of_scalar’, value)

.

.

.

end

UM Get positions of variables and arrays May 2000 3.3.14.1

3.3.14 Subroutines to get the positions of variables, constants and vec-
tors in common CUSCONS

In this section we describe three subroutines that may be utilized by the user to get the position of
constants or variables in the common block cuscons by using their names.
Also a subroutine is described to find the sequence number of a solution array by giving its name.
It concerns the following subroutines:

GETNAMEINT 3.3.14.1 returns with the position of an integer in array INCONS in common
CUSCONS.

GETNAMEREAL 3.3.14.2. a real in array RLCONS in common CUSCONS.

GETNAMEVAR 3.3.14.3 returns with the position of a variable in array SCALARS in common
CUSCONS.

PRGETNAME 3.3.14.4 gives the sequence number of a solution array with respect to the general
solution array.

3.3.14.1 Function subroutine GETNAMEINT

Description

With this subroutine the user may get the position of an integer in array INCONS in
common block CUSCONS. This subroutine may be called in each user written subrou-
tine.

Heading

function getnameint (intname)

Parameters

INTEGER GETNAMEINT

CHARACTER (len = ∗) INTNAME

GETNAMEINT Contains the position of the integer with name INTNAME at out-
put.

INTNAME Name of the integer of which the position must be returned.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

Parameter INTNAME must have a value.

Output

GETNAMEINT has got the value of the corresponding integer position.

Layout

The use of GETNAMEINT in a subroutine is very simple:

UM Get positions of variables and arrays May 2000 3.3.14.2

subroutine xxxxxx

implicit none

integer getnameint, intpos, intval...

include ’SPcommon/comcons1’

include ’SPcommon/cuscons’

.

.

.

intpos = getnameint (’name_of_integer’)

intval = incons(intpos)

.

.

.

end

3.3.14.2 Function subroutine GETNAMEREAL

Description

With this subroutine the user may get the position of a real in array RLCONS in common
block CUSCONS. This subroutine may be called in each user written subroutine.

Heading

function getnamereal (realname)

Parameters

INTEGER GETNAMEREAL

CHARACTER (len = ∗) REALNAME

GETNAMEREAL Contains the position of the real with name REALNAME at out-
put.

REALNAME Name of the real of which the position must be returned.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

Parameter REALNAME must have a value.

Output

GETNAMEREAL has got the value of the corresponding real position.

Layout

The use of GETNAMEREAL in a subroutine is very simple:

UM Get positions of variables and arrays May 2000 3.3.14.3

subroutine xxxxxx

implicit none

integer getnamereal, realpos...

double precision realval

include ’SPcommon/comcons1’

include ’SPcommon/cuscons’

.

.

.

realpos = getnamereal (’name_of_real’)

realval = rlcons(realpos)

.

.

.

end

3.3.14.3 Function subroutine GETNAMEVAR

Description

With this subroutine the user may get the position of a real in array SCALARS in com-
mon block CUSCONS. This subroutine may be called in each user written subroutine.

Heading

function getnamevar (varname)

Parameters

INTEGER GETNAMEVAR

CHARACTER (len = ∗) VARNAME

GETNAMEVAR Contains the position of the real with name VARNAME at output.

VARNAME Name of the variable (scalar) of which the position must be returned.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

Parameter VARNAME must have a value.

Output

GETNAMEVAR has got the value of the corresponding scalar position.

Layout

The use of GETNAMEVAR in a subroutine is very simple:

UM Get positions of variables and arrays May 2000 3.3.14.4

subroutine xxxxxx

implicit none

integer getnamevar, varpos...

double precision value

include ’SPcommon/comcons1’

include ’SPcommon/cuscons’

.

.

.

varpos = getnamevar (’name_of_scalar’)

value = rlcons(varpos)

.

.

.

end

3.3.14.4 Subroutine PRGETNAME

Description

With this subroutine the user may get the position of a vector in array of solution arrays.
In fact it returns the sequence number of the solution array with a specific name. This
subroutine may be called in each user written subroutine.

Heading

subroutine prgetname (vectorname, ivecnm)

Parameters

INTEGER IVECNM

CHARACTER (len = ∗) VECTORNAME

IVECNM Contains the position of the vector with name vectorname at output.

vectorname Name of the vector of which the position must be returned.
This name must be a string, which means that it is a text between quotes.
The name itself is case-insensitive, which means that the user is free to use capitals
or lower-case letters, they are all considered the same.

Input

Parameter VECTORNAME must have a value.

Output

PRGETNAME has got the value of the corresponding vector position.

Layout

The use of PRGETNAME in a subroutine is very simple:

UM Get positions of variables and arrays May 2000 3.3.14.5

subroutine xxxxxx (isol, ...)

implicit none

integer isol(5,*), ivecnm, ...

.

.

.

call prgetname (’name_of_vector’, ivecnm)

call yyyy (isol(1,ivecnm),)

.

.

.

end

UM Subroutine FUNCSOLCR February 2001 3.3.15.1

3.3.15 Subroutine FUNCSOLCR

Description

Subroutine FUNCSOLCR is used to adapt the boundary in case of a moving boundary
or free surface problem.
It is used in the case that the adaptation method in the input block adapt_boundary

(3.4.4) is equal to funcsolcr (i.e. the parameter IADAPT is equal to 9).
It must be written by the user and is needed to compute the new co-ordinates of the
boundary to be adapted. FUNCSOLCR is called for the complete boundary.

Heading

subroutine funcsolcr (coorol, coornw, uold, anorm, n, nphys, nuold)

Parameters

INTEGER N, NPHYS, NUOLD

DOUBLE PRECISION COOROL(2,∗), COORNW(2,∗), UOLD(N,NPHYS,NUOLD),
ANORM(2,∗)

COOROL Two-dimensional array of length 2 × N containing the co-ordinates of the
boundary. The co-ordinates are stored sequentially in the direction of the boundary.

COORNW In this two-dimensional array of length 2 × N the user must store the
co-ordinates of the new boundary in the same sequence as for COOROL.

UOLD In this array of size N × NPHYS × NUOLD, NUOLD solution vectors are
stored.
The vector is stored as follows:
UOLD(i,j,k) refers to the ith node along the boundary, and the jth degree of free-
dom of kth vector.
The solution is defined by the option seq_vectors = (i1, i2, ...) in the in-
put blocks stationary_free_boundary (3.4.5) or instationary_free_boundary
(3.4.6).
In case FUNCSOLCR is activated by a user call to a SEPRAN subroutine as de-
scribed in the Programmers Guide, USOL corresponds to the first NUOLD vectors
in array ISOL.
NUNKP denotes the number of degrees of freedom in that node.

NPHYS Maximum number of degrees of freedom per point in the vectors UOLD.

NUOLD Number of vectors stored in UOLD. This number is defined by seq_vectors = (i1, i2, ...)

ANORM In this two-dimensional array of length 2 × N the components of the outward
normal are stored in the same sequence as in COOROL.

N Number of points at the boundary.

Input

The arrays COOROL, UOLD and ANORM have been filled by program SEPFREE or
the subroutine called by the user (CHANBN, ADAPBN, ...).
NPHYS, NUOLD and N have got a value from program SEPFREE.

Output

Array COORNW must have been filled by the user.

UM Subroutine FUNCSOLCR February 2001 3.3.15.2

Layout

The subroutine FUNCSOLCR must have the following shape:

subroutine funcsolcr (coorol, coornw, uold, anorm, numnodes,

+ nphys, nuold)

implicit none

integer numnodes, nuold, nphys

double precision coorol(2,numnodes), uold(numnodes,nphys,nuold),

+ coornw(2,numnodes), anorm(2,numnodes)

integer ilocal

double precision xold, yold, xnorm, ynorm, u1, u2, xnew, ynew

do ilocal = 1, n

xold = coorol(1,ilocal)

yold = coorol(2,ilocal)

xnorm = anorm(1,ilocal)

ynorm = anorm(2,ilocal)

u1 = uold(ilocal,1,1)

u2 = uold(ilocal,2,1)

.

.

. statements to compute xnew and ynew

.

.

.

coornw(1,ilocal) = xnew

coornw(2,ilocal) = ynew

end do

end

UM Input for program SEPFREE June 1996 3.4.1.1

3.4 Description of the input for program SEPFREE

3.4.1 Introduction

Program SEPFREE is meant for free surface and moving boundary problems. It has exactly the
same possibilities as program SEPCOMP, however, there are some differences:

• SEPFREE may use a mesh that has been created before by program SEPMESH. However, it
is also possible to create the mesh in SEPFREE itself. In that case SEPFREE reads all mesh
input itself. No file meshoutput is created unless stated explicitly.

• SEPFREE is able to deal with free surface problems. Such problems are essentially non-linear
and need some kind of iteration loop (in stationary cases) or alternatively some time-stepping
algorithm in case of time-dependent problems. In each of these steps the boundary of the
region and hence the mesh may be adapted to the newly computed solution.
So besides the standard input as described for program SEPCOMP, SEPFREE needs some
extra input blocks describing how the boundary and the mesh must be adapted. Besides that,
extra information with respect to the iteration process or time-stepping algorithm is required.

• At this moment there is no default STRUCTURE for the program SEPFREE. As a conse-
quence the user must always explicitly define the input block STRUCTURE describing which
steps must be carried out.

The input for program SEPFREE is organized in exactly the same way as for program SEPCOMP.
Besides the input blocks described in Section 3.2 for program SEPCOMP the following extra blocks
may be used.

• MESH

• ADAPT MESH

• ADAPT BOUNDARY

• STATIONARY FREE BOUNDARY

• INSTATIONARY FREE BOUNDARY

The blocks MESH, PROBLEM, MATRIX and STRUCTURE must all be given. All other blocks
are optional.
The sequence of the input blocks is always:

START (optional)

.

.

END

MESH (optional)

.

.

END

READ MESH (optional)

PROBLEM (mandatory)

.

.

END

rest of the blocks in arbitrary sequence

UM Input for program SEPFREE June 1996 3.4.1.2

Except the blocks START, MESH, PROBLEM and STRUCTURE all blocks may be used more
than once. The new main blocks have the following meaning:

MESH This block opens the input for the mesh description. This is exactly the same block as
the complete input for program SEPMESH. At this moment free surface problems have been
restricted to two-dimensional problems. Furthermore the options refine and transform may
not be used in combination with free surface problems. See Section 2.2.
If the block MESH is not present before the block PROBLEM it is assumed that the mesh
has been created before and that the information concerning the mesh is stored in the file
meshoutput. All information from this file is read.

READ MESH may be used to indicate that a mesh must be read from the file meshoutput.
Mark that this keyword is superfluous, since skipping the keyword MESH has exactly the
same result.

STRUCTURE This block has already been described in Sections 3.2 and 3.2.3. However, in case
of free surface problems some extra options are available which are described in Section 3.4.2.

ADAPT MESH Describes how the mesh must be adapted during each step of the iteration
process (stationary case) or time stepping process (time-dependent case). See Section 3.4.3.

ADAPT BOUNDARY Describes how the boundary of the mesh must be adapted during each
step of the iteration process (stationary case) or time stepping process (time-dependent case).
This block itself is activated by ADAPT MESH. See Section 3.4.4.

STATIONARY FREE BOUNDARY Gives information concerning the iteration process in
case of a stationary free boundary problem. See Section 3.4.5.

INSTATIONARY FREE BOUNDARY Gives information concerning the time stepping al-
gorithm in case of a time-dependent free boundary problem. See Section 3.4.6.

In the next subsections the input of each of the blocks is described.

UM Extra possibilities for STRUCTURE June 1996 3.4.2.1

3.4.2 Extra possibilities for the main keyword STRUCTURE

The block defined by the main keyword STRUCTURE has already been described in Section 3.2.3.
However, with respect to free boundary problems STRUCTURE has been provided with some extra
options that are described in this section. In fact it concerns extra commands that may be given
in the block as well as an extra option for the command change_coefficients. The following two
extra commands may be used for stationary free boundaries:

START_STATIONARY_FREE_BOUNDARY_LOOP, sequence_number = k

...

END_STATIONARY_FREE_BOUNDARY_LOOP

In case of instationary free boundaries at least three commands are needed:

START_INSTATIONARY_FREE_BOUNDARY_LOOP, sequence_number = k

....

TIME_INTEGRATION, sequence_number = s, vector = i

....

END_INSTATIONARY_FREE_BOUNDARY_LOOP

These commands have the following meaning:

START STATIONARY FREE BOUNDARY LOOP , sequence number = k.
All commands that are given from this command until end_stationary_free_boundary_loop
is found will be considered as part of the computation of a steady state free boundary. The
sequence number k refers to the input block ”STATIONARY FREE BOUNDARY”. This
blocks describes how the boundary and the mesh must be adapted, and under what condi-
tions the process has been converged. See Section 3.4.5.

END STATIONARY FREE BOUNDARY LOOP Ends the loop for the computation of the
free boundary.

START INSTATIONARY FREE BOUNDARY LOOP , sequence number = k.
All commands that are given from this command until end_instationary_free_boundary_loop
is found will be considered as part of the computation of a time-dependent free boundary.
The sequence number k refers to the input block ”INSTATIONARY FREE BOUNDARY”.
This blocks describes how the boundary and the mesh must be adapted. The updating itself
is performed at the position of the end instationary free boundary.
See Section 3.4.6 for a description of the input block ”INSTATIONARY FREE BOUNDARY”.

TIME INTEGRATION , sequence number = s, vector = i, defines what time integration must
be carried out in the computation of the free boundary. This statement may be preceded by
some statements to make preparations for the time integration, and succeeded by statements
manipulating the computed solution. Only one time-step is carried out. The computation
takes place at the mesh generated in the old time step.
The sequence number s refers to the input block TIME INTEGRATION, which defines the
parameters of the time integration process. See Section 3.2.15 for a description. At this
moment only one fixed time step may be used. So only one end time and one time step may
be given. Furthermore the only available time integration at this moment is Euler implicit.
If you need extra time integrations please contact SEPRA.
The options with respect to TOUT, like TOUTINIT, have at the present moment no effect
at all.
Of course the options referring to the stationary accuracy make also no sense in this case.
The sequence number i defines the vector to be integrated in time.

END INSTATIONARY FREE BOUNDARY LOOP Ends the loop for the computation of
the free boundary. In this step the free boundary is adapted and a new mesh is created
according to the description in the input block ”INSTATIONARY FREE BOUNDARY”.

UM Extra possibilities for STRUCTURE June 1996 3.4.2.2

So in the case of a stationary free boundary a typical part of the input block STRUCTURE might
be:

start_stationary_free_boundary_loop, sequence_number = 1

solve_linear_system, seq_coef = 1, seq_solve = 1

other statements corresponding to the loop

end_stationary_free_boundary_loop

In the program this implemented as:

niter := 1

ready := false

while (not ready) do

solve_linear_system, seq_coef = 1, seq_solve = 1

other statements corresponding to the loop

if (niter>1) then

compute difference between old and new solution

ready := difference < required accuracy

end if

if (not ready) then

adapt boundary and mesh

interpolate solution if necessary

niter := niter+1

end if

end while

This loop option, which may not be nested, gives the user the maximum flexibility to carry out
whatever computation he wants within the loop.

Besides these extra commands the following option is available for the command change_coefficients:

iteration = i

iteration = i defines at which iteration in the loop defined by the commands
start_stationary_free_boundary_loop and end_stationary_free_boundary_loop the co-
efficients must be changed as described in Section 3.2.3.

In the case of a time-dependent free boundary problem, a typical part of the input STRUCTURE
looks like:

start_instationary_free_boundary_loop, sequence_number = 1

statements to make some preparations

time_integration, sequence_number = 1, vector = 1

other statements to update the solution

end_instationary_free_boundary_loop

In the program this is implemented as:

ready := false

while (not ready) do

make preparations

if (first call) then

set t, t0, dt and tend

UM Extra possibilities for STRUCTURE June 1996 3.4.2.3

end if

t := t + dt

solve one time step

if (t > tend) then

ready := true

end if

adapt boundary and mesh

interpolate solution if necessary

end while

UM ADAPT MESH July 1996 3.4.3.1

3.4.3 The main keyword ADAPT MESH

The block defined by the main keyword ADAPT MESH defines how a new mesh must be generated
in case of a free surface or moving boundary problem.
In each step of the iteration or in each time-step a solution is computed. This solution implicitly
defines a new boundary for the free boundary problem, and hence the mesh must be adapted to
this new boundary.
Adaptation of boundary and mesh is performed by the subroutines activated by the main keyword
ADAPT MESH. Adapting the boundary means that the mesh is changed but not necessarily the
topology. Sometimes it is sufficient to update the co-ordinates of the mesh. This is much more
cheaper than remeshing of the entire mesh. However, changing the co-ordinates only may result in
very distorted elements, in which case remeshing must be applied. Whether or not the topology is
adapted is the responsibility of the user.

The block defined by the main keyword ADAPT MESH has the following structure (options are
indicated between the square brackets ”[” and ”]”):

ADAPT_MESH [,SEQUENCE_NUMBER = s]

(mandatory): opens the input for the adaptation of the mesh

adapt_boundary = (i1, i2, i3,...)

change_topology = c

plot_mesh

interpolate_solution = (v1, v2, ... , vn)

END

(mandatory): end of input

The sequence number s may be used to distinguish between various input blocks with respect to
the adaptation of meshes.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords ADAPT MESH and END however, must be placed at a new record.
Meaning of the subkeywords:

adapt boundary= (i1, i2, i3, ...) defines how the boundary should be adapted. In fact the bound-
ary is adapted by a series of calls to the subroutines corresponding to the main keyword
adapt boundary. These calls are carried out in the sequence of the sequence numbers i1, i2
and so on as found after the subkeyword adapt boundary.
Default value: 1

change topology= c indicates if the topology must be changed or that the old topology is kept,
in which case only the co-ordinates are changed.
The following options for c are available:

not

always

dependent

These options have the following meaning:

not The topology is not adapted. Only the co-ordinates are changed.

always The topology is always adapted, hence remeshing is always applied.

dependent Adapting the topology depends on the quality of the newly created mesh. This
option has not yet been implemented.

UM ADAPT MESH July 1996 3.4.3.2

Default value: not

plot mesh If this keyword is present the newly created mesh is plotted.

interpolate solution = (v1, v2, ..., vn) indicates that the solution vectors with sequence num-
bers v1, v2 etc. must be interpolated from the old to new mesh. This option is only effected if
the topology of the mesh is changed. So if the mesh is changed without changing the topology,
no interpolation is carried out.

UM ADAPT BOUNDARY February 2001 3.4.4.1

3.4.4 The main keyword ADAPT BOUNDARY

The block defined by the main keyword ADAPT BOUNDARY defines how the boundary of a
free surface or moving surface problem must be adapted during the various iterations. This block
describes the adaptation for a part of the boundary that consists of a set of subsequent curves.
hence at this moment adaptation is restricted to two-dimensional problems only.
Adaptation of the complete mesh may contain several ”calls” to ADAPT BOUNDARY. The most
simple way to do so, is the use of the main keyword ADAPT MESH in combination with one or
more calls to ADAPT BOUNDARY.

The block defined by the main keyword ADAPT BOUNDARY has the following structure (options
are indicated between the square brackets ”[” and ”]”):

ADAPT_BOUNDARY [,SEQUENCE_NUMBER = s]

(mandatory): opens the input for the adaptation of boundaries.

curves = (c1, c5, -c8, ...)

adaptation_method = a

direction = i

number = n

linear/quadratic

coordinate_system = s

exclude_begin = i

exclude_end = i

multiply = m

factor = f

threshold_value = t

angle_1 = alpha1

angle_2 = alpha2

accuracy = eps

omega = w

maxiter = m

redistribute_nodes

change_number_of_elements

plot_boundary

region = (xmin, xmax, ymin, ymax)

yfact = y

distribute_curves = (c3, c8, ...)

alpha_redistribute = alpha

move_begin = ci

move_end = ci

obstacle (i1, i2, ..)

velocity=(u_1,u_2,u_3)

check_direction = c

END

(mandatory): end of input

The sequence number s may be used to distinguish between various input blocks with respect to
the adaptation of boundaries.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords ADAPT BOUNDARY and END however, must be placed at a new record.
Meaning of the subkeywords:

UM ADAPT BOUNDARY February 2001 3.4.4.2

curves = (c1, c5,−c8, ...) defines the series of contiguous curves of which the part of the boundary
consists that must be adapted. The last point of each curve must coincide with the first point
of the next curve. If a negative curve number is used (like in −c8) the curve is used in reversed
order.
If the subkeyword curves is not present, curve c1 is used.

adaptation method = a Defines the type of adaptation method that is used to update the
boundary. Which of the methods is used strongly depends on the the type of problem. The
reader is advised to consult the manual standard problems for specific cases. The following
values for a may be used:

standard

funccr

funcsolcr

film_method

velocity

normal_velocity

normal_gradient

stefan

constant_velocity

These subkeywords have the following meaning:

standard The curves are adapted by:
xnew(i) = xold(i) +α(i)n(i) with xold(i) the old co-ordinates of the ith node and xnew(i)
the new ones.
n(i) is the normal at the boundary of the ith node and α(i) the numberth degree of
freedom in this node.
The normal is computed assuming a counter clockwise direction of the boundary.

funccr The curves are adapted by the user provided subroutine FUNCCR as described in
Section 3.3.9.
In this subroutine the user may adapt the boundary point-wise using point-wise infor-
mation and at most one solution vector.
The solution vector is activated by seq_vectors = i in the input blocks
stationary_free_boundary (3.4.5) or instationary_free_boundary (3.4.6).
Only the first vector is used (Default i = 1).

funcsolcr The curves are adapted by the user provided subroutine FUNCSOLCR as de-
scribed in Section 3.3.15.
The main difference with FUNCCR is that the user must adapt the boundary as a whole.
All information he gets relates to the complete boundary and moreover he may use more
than one old solution vector.
The solution vectors must be activated seq_vectors = (i1, i2, ...) in the input
blocks stationary_free_boundary (3.4.5) or instationary_free_boundary (3.4.6).
At most 10 vectors are allowed.

film method See standard, however, now α is computed according to the so-called ’film
method’ as described in Caswell and Viriyayuthakorn (1983).

α(i) =
factor (ψ(i)− ψ(0))

|u · t(i)|
(3.4.4.1)

ψ(i)− ψ(0) =

x(i)∫
x(0)

u · n dx (3.4.4.2)

The velocity u must be stored in the vector activated by seq_vectors = i in the input
blocks stationary_free_boundary (3.4.5) or instationary_free_boundary (3.4.6).

UM ADAPT BOUNDARY February 2001 3.4.4.3

Only the first vector is used (Default i = 1).
It is supposed that the degrees of freedom number and number+1 per point correspond
to u.
The flow rate in the first point of the curves to be adapted is assumed to be zero. This
is used as start for the integration of the stream function ψ.
With respect to factor: see the subkeyword factor

velocity The curves are adapted by:
xnew(i) = xold(i) + factor u(i) (Cartesian case) or
(r, z)new(i) = (r, z)old(i) + factor

2π (ur, uz)(i) (Axisymmetric case)
With respect to factor: see the subkeyword factor.

normal velocity See standard. Now α is computed according to α = factor u · n.
With respect to factor: see the subkeyword factor.
With respect to the velocity see the subsubkeyword film_method.

normal gradient The curves are adapted by:
xnew(i) = xold(i) + factor u ·n(i) with xold(i) the old co-ordinates of the ith node and
xnew(i) the new ones.
n(i) is the normal at the boundary of the ith node.
u(i) is the velocity in point i.
With respect to factor, see mult (INPADA(11)).
In fact this is the same as normal_velocity, however, there is an essential difference.
In this particular case the velocity is assumed to be stored in the array corresponding to
ISOL as a vector of special structure defined per elements, hence it is discontinuous. The
velocity in the centroid of the elements at the curves are multiplied by the local normal
and factor. In this way the displacement of the boundary in all mid points of the curve
elements is defined. In order to compute the displacement in the vertices of the curve
elements we proceed as follows:
The tangential vector t in vertex i is defined by: t = xi+1 − xi−1. The normal n
is perpendicular to this tangent vector, assuming a counter clockwise direction of the
boundary.
The displacement of the vertex between two mid-side points is defined such that the area
occupied by the region defined by the displacement of both mid-side points is equal to
the area occupied by the region defined by the displacement of the vertex in between
these two mid-side points. See Figures 3.4.4.1 and 3.4.4.2 for an explanation.

i+1

x xi-1 i

x

Figure 3.4.4.1: Area occupied by the re-
gion defined by the displacement of the
vertex

Figure 3.4.4.2: Area occupied by the
region defined by the displacement of
both mid-side points

This definition of the displacement in the vertices can not be applied for the two end
points of the curves. For these two points we use the displacement computed in the
midside points.
The reason for using this quite complicated definition is that it provides a kind of smooth-
ing compared to normal_velocity. This smoothing is such that if the displacement in
the midpoints is equal to zero, also the displacement in the vertices is equal to zero.

UM ADAPT BOUNDARY February 2001 3.4.4.4

At this moment normal_gradient is only implemented for linear elements.
With respect to the velocity see the subsubkeyword film_method.

stefan This type of method is developed such that the Stefan boundary condition in in-
tegral form is satisfied exactly. This condition implies that the amount of diffused
material is equal to the amount of dissolved material. In fact stefan is identical to
normal_gradient. The main difference is that due to the displacement of the vertices
also the mid points are displaced. As a consequence the area defined by the mid-point
displacement is not longer equal to the area defined by the vertex displacement. In or-
der to satisfy this requirement a non-linear algorithm must be applied. This method is
described in Segal et al (1997).
The non-linear algorithm starts with the linear algorithm defined by the option
normal_gradient as first iteration and than adapts the boundary such that vertices and
mid points move such that the Stefan boundary condition is satisfied. This process needs
a relaxation parameter ω. The maximum number of iterations is defined by maxiter and
the accuracy by the option accuracy = eps.

constant velocity The curves are adapted by:
xnew(i) = xold(i) + factor u, where u is a constant velocity.
The value of the velocity is given by the keyword velocity.
With respect to factor: see the subkeyword factor.

Default value: standard

direction = i Indicates the direction of the computation If direction = 1 the computation is
performed from first to last point, if direction = −1 from last to first point. It is sometimes
required to alternate between 1 and -1 during iteration.
This option is only used for in case of the film method.
Default value: 1

number= n the numberth degree of freedom of the solution vector (and higher) are used for the
computation of α. See adaptation method.
Default value: 1

linear/quadratic Indicates if the elements along the boundary must be treated as linear or as
quadratic elements. Both options are mutually exclusive.
Default value: to be computed by the subroutine in the following way: If all internal elements
are quadratic, the boundary elements are assumed quadratic, otherwise linear.

coordinate system = s defines the type of co-ordinate system to be used. This is of importance
in case the adaptation method is of the type: film_method, velocity or normal_velocity.
The following values of s may be used:

Cartesian

Axi_symmetric

Default value: Cartesian

exclude begin = i indicates which of the co-ordinates of the first point of the first curve must be
excluded from adaptation.
The following values of i may be used:

none

first

second

both

These options have the following meaning:

UM ADAPT BOUNDARY February 2001 3.4.4.5

none Both co-ordinates must be adapted

first Only the second co-ordinate must be adapted, the first one remains unchanged

second Only the first co-ordinate must be adapted, the second one remains unchanged

both Both co-ordinates remain unchanged

Default value: none

exclude end = i indicates which of the co-ordinates of the last point of the last curve must be
excluded from adaptation.
The same options as for exclude_begin are available.
Default value: none

multiply = m indicates how the value of factor must be computed. This value is used in case
the adaptation method is of the type: film_method, velocity or normal_velocity.
The following values of m may be used:

none

dt

These options have the following meaning:

none Multiplication factor is equal to the factor f .

dt Multiplication factor is the parameter f × ∆t. Here δt denotes the time step tstep as
stored in common ctimen. This time-step is set by the time-integration methods.

Default value: none

factor = f defines the multiplication factor f with respect to the adaptation method. Mark that
the combination of factor and multiply defines the actual multiplication factor.

threshold value = t defines the threshold value in Caswell’s method.
If |u · t(i)| larger than the threshold value the boundary is adapted, otherwise the old co-
ordinates are used.
If no threshold value is given the machine accuracy (usually 10−15) is used.
Default value: machine accuracy.

angle 1 = α1 defines the angle of the free surface at the first point.
Default value: no angle given.

angle 2 = α2 defines the angle of the free surface at the last point.
Default value: no angle given.

accuracy = ε defines the accuracy of the iteration process in case of the adaptation method of
type stefan.
Default value: ε = 10−2.

omega = ω defines the relaxation parameter ω of the iteration process in case of the adaptation
method of type stefan.
Default value: ω = 0.5.

maxiter = m Defines the maximum number of iterations of the iteration process in case of the
adaptation method of type stefan.
Default value: maxiter = 10.

redistribute nodes If this keyword is given then, once the new boundary is computed, this bound-
ary is approximated by a spline and the nodes along this new boundary are redistributed
according to the coarseness defined in the user points. The number of nodes remains the
same.
Default value: no redistribution of nodes

UM ADAPT BOUNDARY February 2001 3.4.4.6

change number of elements See redistribute_nodes however, in this case the number of ele-
ments may be changed. This option may only be used if the topology of the mesh is changed
when creating a new mesh.
Mark that the keywords redistribute_nodes and change_elements are mutually exclusive.
Default value: do not change the number of elements.

plot boundary If this keyword is found the newly created boundary is plotted.
Default value: no plot

region = (xmin, xmax, ymin, ymax) This keyword makes only sense in combination with plot_boundary.
If given, it restricts the area to be plotted to the region defined by (xmin, xmax)×(ymin, ymax).
Default value: the whole region is plotted.

yfact = y defines the multiplication factor to be used in y-direction of the plots. This parameter
should only be used in case the length-width ratio is far from 1.
Default value: yfact = 1.

yfact = y defines the multiplication factor to be used in y-direction of the plots. This parameter
should only be used in case the length-width ratio is far from 1.
Default value: yfact = 1.

distribute curves = (c3, c8, ...) If this keyword is used, redistribution of nodes is only applied
along the curves indicated by (c3, c8, ...). Of course this keyword is only effective in combina-
tion with redistribute_nodes or change_elements.
Default value: all curves.

alpha redistribute = α Defines the parameter α corresponding to the splines to be generated in
case of redistribute_nodes. See Section 2.3 for the definition of α.
Default value: 0.5

move begin = ci Indicates that the first point of the set of curves must move along curve ci.
Effectively this means that first the displacement of the point is computed and after that, the
new point is projected onto the curve ci.
Default value: no projection onto a curve.

move end = ci Indicates that the last point of the set of curves must move along curve ci. Ef-
fectively this means that first the displacement of the point is computed and after that, the
new point is projected onto the curve ci.
Default value: no projection onto a curve.

obstacle (i1, i2, ..) Indicates that the update of the boundary must take into account the presence
of the obstacles i1, i2, ... The obstacles itself have been defined by the mesh generator.
If the boundary crosses an obstacle, all nodes that cross the free boundary are projected onto
the obstacle. Hence the obstacle is treated as a physical obstacle in the mesh.
All obstacles must consist of one closed curve. The option curves of curves may be used in
the mesh generation, in order to create an obstacle.
It is possible to define boundary conditions and boundary elements along the obstacle, which
are only activated as soon as the corresponding nodes in the mesh are positioned at the
obstacle. See Sections 3.2.2 and 3.2.5 for the details.
At most 10 obstacles are permitted.
Default value: no obstacles

velocity = (u1, u2, u3) defines the constant velocity in case constant_velocity is used as adap-
tation method.
Default value: u = (0, 0, 0).

check direction = c makes only sense in combination with adaptation_method = stefan. If
this keyword is used it is checked if the update of the boundary is in the direction of the
outward or inward pointed normal depending on the value of c.

UM ADAPT BOUNDARY February 2001 3.4.4.7

If the update of the boundary has the wrong sign an error message is given and the process
halted.
Possible values for c are:

none

positive

negative

Meaning of these sub keywords:

none No check is carried out.

positive It is check if the change of the boundary is in the same direction as the outwards
pointed normal.

negative It is check if the change of the boundary is in the same direction as the inwards
pointed normal.

Default value: c = none

UM STATIONARY FREE BOUNDARY February 2001 3.4.5.1

3.4.5 The main keyword STATIONARY FREE BOUNDARY

The block defined by the main keyword STATIONARY FREE BOUNDARY defines how the free
boundary for a stationary case must be adapted as well as how the corresponding mesh must be
adapted. Furthermore this block defines when convergence is reached and the iteration must be
stopped.

The block defined by the main keyword STATIONARY FREE BOUNDARY has the following
structure (options are indicated between the square brackets ”[” and ”]”):

STATIONARY_FREE_BOUNDARY [,SEQUENCE_NUMBER = s]

(mandatory): opens the input for the stationary free boundary problem.

maxiter = m

miniter = m

accuracy = eps

print_level = p

criterion = c

adapt_mesh = i

at_error = e

seq_vectors = (i1, i2, ...)

write_mesh

no_write_mesh

END

(mandatory): end of input

The sequence number s may be used to distinguish between various input blocks with respect to
stationary free boundary problems.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords STATIONARY FREE BOUNDARY and END however, must be placed at a
new record.
Meaning of the subkeywords:

maxiter = m, defines the maximum number of iterations that may be performed.
The default value is 20.

miniter = m, defines the minimum number of iterations that must be performed.
The default value is 2.

accuracy = ε, defines the accuracy. If the difference between succeeding solutions is less than ε
the process is considered converged and the iteration is halted.
The default value is ε = 10−3

print level = p gives the user the opportunity to indicate the amount of output information he
wants from the iteration process. p may take the values -1, 0, 1 or 2. The amount of output
increases for increasing value of p. If p = −1 no output at all is produced.
The default value is p = 0

criterion = c defines the type of termination criterion to be used. Possible values are:

absolute

relative

UM STATIONARY FREE BOUNDARY February 2001 3.4.5.2

If absolute is used (default value) the process in stopped if ‖uk+1 − uk‖ ≤ ε.

If relative is used the process in stopped if ‖u
k+1−uk‖
‖uk+1‖ ≤ ε,.

Here uk means the solution at the kth iteration.
The default value is absolute

adapt mesh = i defines how the mesh must be adapted. i refers to the sequence number of the
input block ”ADAPT MESH” as defined in Section 3.4.3.
The default value is i = 1

at error = e defines which action should be taken if the iteration process terminates because no
convergence could be found. Possible values are:

stop

return

If stop is used the iteration process is stopped if no convergence is found, otherwise (return)
means that control is given back to the main program and the result of the last iteration is
used as solution.
The default value is stop.

seq vectors = i1, i2, , defines the sequence numbers of a set of vectors that may be used to
update the free boundary.
In general only the first one in the row is used, except when the boundary is adapted by
subroutine FUNCSOLCR as described in Section 3.3.15.
See Section 3.4.4 how to activate the use of FUNCSOLCR.
The first vector in the row is used to check the convergence to steady state.
The default value is i1 = 1.

write mesh indicates that the mesh must be written to the file meshoutput as soon as convergence
has been reached. This step is necessary for postprocessing purposes.
The default value is write_mesh

no write mesh indicates that no mesh must be written.

UM INSTATIONARY FREE BOUNDARY February 2001 3.4.6.1

3.4.6 The main keyword INSTATIONARY FREE BOUNDARY

The block defined by the main keyword INSTATIONARY FREE BOUNDARY defines how the free
boundary for a time-dependent case must be adapted as well as how the corresponding mesh must
be adapted. Furthermore in this block it is possible to define the mesh velocity.

The block defined by the main keyword INSTATIONARY FREE BOUNDARY has the following
structure (options are indicated between the square brackets ”[” and ”]”):

INSTATIONARY_FREE_BOUNDARY [,SEQUENCE_NUMBER = s]

(mandatory): opens the input for the instationary free boundary problem.

print_level = p

adapt_mesh = i

seq_vectors = (i1, i2, ...)

mesh_velocity = i

check_boundary = mb

check_mesh = mm

alpha_boun = a

angle_min = a1

angle_max = a2

interpolate_solution = (v1, v2, ... , vn)

write_mesh

no_write_mesh

END

(mandatory): end of input

The sequence number s may be used to distinguish between various input blocks with respect to
instationary free boundary problems.

The sequence of the subkeywords is arbitrary. They may be put at several lines, but it is also
allowed to put a series of subkeywords in one line.
The main keywords INSTATIONARY FREE BOUNDARY and END however, must be placed at
a new record.
Meaning of the subkeywords:

print level = p gives the user the opportunity to indicate the amount of output information he
wants from the iteration process. At this moment only p = 0 is available.
The default value is p = 0

adapt mesh = i defines how the mesh must be adapted. i refers to the sequence number of the
input block ”ADAPT MESH” as defined in Section 3.4.3.
The default value is i = 1

seq vectors = i1, i2, , defines the sequence numbers of a set of vectors that may be used to
update the free boundary.
In general only the first one in the row is used, except when the boundary is adapted by
subroutine FUNCSOLCR as described in Section 3.3.15.
See Section 3.4.4 how to activate the use of FUNCSOLCR.
The default value is i1 = 1.

mesh velocity = i If this statement is found, the mesh velocity is computed, and stored in the
vector with sequence number i. If this statement is not given, the mesh velocity is not com-
puted.

The mesh velocity u is defined by u = xn+1−xn

∆t , with xn the co-ordinates at time level t, xn+1

the co-ordinates at time level t+ ∆t, and ∆t the time step.

UM INSTATIONARY FREE BOUNDARY February 2001 3.4.6.2

Of course the mesh velocity can only be computed if the mesh topology is preserved. This
means that in the block ”ADAPT MESH” only change_topology = not is allowed. Remesh-
ing may only take place after the computation of the mesh velocity.

check boundary = mb indicates if, and how the boundary must be checked after the mesh has
been adapted. Possible values for mb:

0 The boundary is not checked.

1 The boundary is checked in the following way:

• If there are some subsurfaces generated by the submesh generator general it is
checked if the begin and end elements of subsequent boundary curves satisfy the
requirement 0.3 < ∆x1

∆x2
< 3.3. Here ∆x1 and ∆x2 are the lengths of two subsequent

elements. This requirement is essential for the submesh generator general.

• For all curves in the mesh it is checked if the ratio of the begin and end elements of
the original curves generated by SEPMESH and the present elements is not larger
than α.

If one of the criteria is not satisfied, remeshing will be applied. In that case also the
number of nodes along the boundaries may be adapted.

Default value: 0

check mesh = mm indicates if, and how the mesh must be checked after the mesh has been
adapted.
If also check boundary is active and the mesh must be adapted because of the boundary,
check mesh is not applied. Possible values for mm:

0 The mesh is not checked.

1 The mesh is checked in the following way:
All angles β of the triangles and quadrilaterals in the mesh must satisfy βmin < β < βmax.
If this criterion is not satisfied, remeshing will be applied.

In this case the number of nodes along the boundary is not changed.
Default value: 0

Remark: if check mesh = 1 is used and remeshing is applied, it is necessary to interpolate the
solution vectors to the new mesh by interpolate_solution = (...), even if
interpolate_solution is used in the block adapt_mesh. If you do not interpolate it is
possible that the number of unknowns corresponding to the mesh differs from that in the
solution vector.

alpha boun = α gives the value of the parameter α to be used for check boundary.
Default value: 2

angle min = βmin gives the value (in degrees) of the parameter βmin to be used for check mesh.
Default value: 10

angle max = βmax gives the value (in degrees) of the parameter βmax to be used for check mesh.
Default value: 120

interpolate solution = (v1, v2, ..., vn) indicates that the solution vectors with sequence num-
bers v1, v2 etc. must be interpolated from the old to new mesh. This option is only effected if
the topology of the mesh is changed. So if the mesh is changed without changing the topology,
no interpolation is carried out.
If the mesh velocity is computed, this velocity is automatically interpolated to the mesh if
necessary.

write mesh Indicates that the mesh at t = tend is written to the file meshoutput. Hence the old
file meshoutput is destroyed.
Default value: the mesh is not written.

UM INSTATIONARY FREE BOUNDARY February 2001 3.4.6.3

no write mesh Is the opposite of write_mesh. This is also the default value.

UM Special files November 1999 3.5.1

3.5 Description of some special files that may be used

In some cases the user wants to provide data via separate files. This is possible if in the input a
reference to such a file is present. In the previous sections in some cases such a possibility has been
provided. In this Section we describe the formats to be used for these files.

3.5.1 describes the file with nodal point numbers that may be used to define in which nodes
essential boundary conditions are given.

3.5.2 describes the file with nodal point numbers and corresponding values that may be used to
fill values in nodal points.

3.5.3 describes the file with element numbers and corresponding values that may be used to fill
values in elements.

3.5.4 describes the file with pairs of electrode numbers and corresponding values that may be used
to fill values in a capacity vector.

UM File with node numbers June 1998 3.5.1.1

3.5.1 Description of the file with the nodal point numbers

Description

Sometimes the user prefers to give nodal point numbers in a separate file instead of via the standard
input file. This is for example possible if in the standard input file some reference to this special file
has been made. In the previous sections it can be found under which conditions such a reference is
possible.
In this section we describe the file with nodal point numbers that may be for example used in case
the user want to prescribe essential boundary conditions in the points given in this file.

The file itself must be an ASCII file with the name as referred to in the standard input file. reading
is performed using the FORTRAN free format option: read(75,*). This means that each read
starts at a new record and that extra information in a record is skipped. The first record must
contain the number of nodal points (N) stored in the file. In the next N records the nodal point
numbers must be stored. Each nodal point number must start at a new record (line). At least N+1
records are required.
An example of such a file is:

5 # number of nodes

3 # node numbers

6

7

9

1

But also

5 # number of nodes

3 3.5 # node numbers + values which are skipped

6 3.4

7 3.3

9 3.0

1 1.2

UM File with node numbers and values June 1998 3.5.2.1

3.5.2 Description of the file with the nodal point numbers and corre-
sponding values

Description

Sometimes the user prefers to give nodal point numbers and corresponding values in a separate file
instead of via the standard input file. This is for example possible if in the standard input file some
reference to this special file has been made. In the previous sections it can be found under which
conditions such a reference is possible.
In this section we describe the file with nodal point numbers and values that may be for example
used in case the user want to fill essential boundary conditions in the points given in this file.

The file itself must be an ASCII file with the name as referred to in the standard input file. reading
is performed using the FORTRAN free format option: read(75,*). This means that each read
starts at a new record and that extra information in a record is skipped. The first record must
contain the number of nodal points (N) stored in the file. In the next N records the nodal point
numbers must be stored followed by the corresponding value. Node number and value are read by
the same read statement. Each nodal point number must start at a new record (line). At least
N+1 records are required.
An example of such a file is:

5 # number of nodes

3 3.5 # node numbers + values

6 3.4

7 3.3

9 3.0

1 1.2

Mark that this is the same file as the one described in Section 3.5.1.

UM File with node numbers and values June 1998 3.5.3.1

3.5.3 Description of the file with the element numbers and corresponding
values

Description

Sometimes the user prefers to give element numbers and corresponding values in a separate file
instead of via the standard input file. This is for example possible if in the standard input file some
reference to this special file has been made. In the previous sections it can be found under which
conditions such a reference is possible.
In this section we describe the file with element numbers and values that may be for example used
in case the user want to fill a vector of special structure defined per element. Such a vector may
for example be used to define coefficients.

The file itself must be an ASCII file with the name as referred to in the standard input file. reading
is performed using the FORTRAN free format option: read(75,*). This means that each read
starts at a new record and that extra information in a record is skipped. The first record must
contain the number of elements (N) stored in the file. In the next N records the element numbers
must be stored followed by NDEGFD corresponding values. Element number and values are read
by the same read statement.
Each element number must start at a new record (line). At least N+1 records are required.
NDEGFD is defined by the input part that activates the reading of this file, for example the record
FILE ELEMENT VALUES ’file name’ in the create block (3.2.10).
An example of such a file is:

5 # number of elements

3 3.5 3.4 3.3 3.2 # element numbers + values

6 3.4 4.4 4.3 2.2

7 3.3 5.4 3.3 4.2

9 3.0 1.4 1.3 6.2

1 1.2 2.4 2.3 3.2

UM File with capacities November 1999 3.5.4.1

3.5.4 Description of the file with the electrode pairs and corresponding
capacities

Description

Besides filling values in standard vectors it is also possible to fill values in a vector of the structure
of a capacity vector. This is especially meant for the inverse problem as described in Section 3.2.20.
The reason is that one wants to read measured values and use them as right-hand side.

The file itself must be an ASCII file with the name as referred to in the standard input file. reading
is performed using the FORTRAN free format option: read(75,*). This means that each read
starts at a new record and that extra information in a record is skipped. The first record must
contain the number of lines (N) following the first line stored in the file. In the next N records pairs
of electrode numbers must be stored followed by NDEGFD corresponding values. Pairs of capacity
numbers and values are read by the same read statement.
Each new pair must start at a new record (line). The pair of electrode numbers refers to the
electrode that has potential 1 and the electrode on which the capacity is measured. The sequence
of the pair is not important.
Precisely N+1 records are required.
NDEGFD is defined by the input part that activates the reading of this file, for example the record
FILE CAPACITY VALUES ’file name’ in the create block (3.2.10).
An example of such a file is:

5 # number of lines

1 2 3.52 # pair + value

1 3 3.43

2 5 3.35

9 3 3.02

1 6 1.232

For an example see Section 6.2.11.

UM Parallel SEPRAN October 2005 3.6.1

3.6 Parallel computing

If you want to use a parallel environment of SEPRAN, it is necessary that a library with MPI
subroutines is at your disposal.
In order to run a parallel program it is necessary to subdivide the mesh into sub-blocks each corre-
sponding to one processor. Hence the number of sub-blocks defines the number of processors used.
For the subdivision into sub-blocks you may either introduce the keyword parallel into your mesh in-
put file (see 2.2) or you may use the command sepmakeparmesh, which uses an existing mesh to cre-
ate sub-meshes (see 3.6.1). The sub-meshes are all written to files with names meshoutput_par.000,
meshoutput_par.001 to meshoutput_par.xxx, where xxx is the number of processors.
meshoutput_par.000 contains global information of the block structure, the other files contain the
mesh input for each block separately.

Due to the existence of the files meshoutput_par.xxx, the computational program sepcomp knows
that a parallel computation must be performed. However, this is not sufficient. It is also necessary
to use the command sepmpi to run the program. This command requires a main program, which
may be either a user written program or the main program sepcompexe which corresponds to sep-
comp.
In case of a user written program the command is:

sepmpi name_of_user_program input_file

with name_of_user_program the name of the user written program. This may be followed by the
standard fortran extension, but that is not necessary. input_file is the name of the standard
input file that is used for the user program.

In case of program sepcomp, one has to get program sepcompexe locally before running sepmpi,
hence

sepget sepcompexe

sepmpi sepcompexe input_file

Note that it is necessary that main program and input file are all in a directory that can be reached
on all nodes.
In case of extra subroutines, just compile these subroutines, before executing sepmpi.

The main program produces two kinds of files. The first set of files have names sepran_out.xxx

and the second one sepcomp_par.xxx, with xxx the same extension as for the meshoutput par files
(000 excluded).
The files sepran_out.xxx contain the standard output of the runs on each processor, including
error messages if there are any.
The files sepcomp_par.xxx have the same meaning as sepcomp.out, but now for each processor. If
one wants to do any postprocessing on the complete mesh, it is necessary to combine all these files
into one large file sepcomp.out. That can be done by the command sepcombineout, which needs
no parameters.

So a typical parallel run would be something like:

sepmesh mesh_input_file (with keyword parallel)

or

sepmesh mesh_input_file

sepmakeparmesh

followed by

sepget sepcompexe

sepmpi sepcompexe input_file

sepcombineout

UM sepmakeparmesh October 2005 3.6.1.1

3.6.1 The command sepmakeparmesh

If you have an existing SEPRAN mesh, either made by SEPMESH or some third party mesh
generator, it is possible to subdivide this mesh into blocks by the command sepmakeparmesh. This
command requires an input file.
To run the command use:

sepmakeparmesh input_file

with input_file the name of the input file.
The input file has the usual syntax for a sepran input file. At this moment it has only one input
line with the keywords:

method = xxx, num_processors = n

Meaning of these keywords:

method = xxx defines the way the sub-blocks are defined. The same options as in Section (2.2)
are available. However, at this moment only the option

layers

is recommended. The program makes the layers itself by using a Cuthill-McKee renumbering
scheme, regardless whether the original mesh has been renumbered or not. The layers are
constructed such that there are no disjoint parts in a block.

num processors = n defines the number of processors to be used, and therefor also the number
of sub-blocks

UM Programming own element subroutines December 1993 4.1.1

4 How to program your own element subroutines

4.1 Introduction

In this chapter it is described, how the user may add his own element subroutines to SEPRAN. In
order to use your own elements it is necessary to define type numbers between 1 and 99. All other
type numbers refer either to standard SEPRAN elements or to non-existing elements.
As soon as type numbers in the user range 1 to 99 are given, a number of input parts expect that
user written element subroutines are provided.
The following element subroutines are expected by input blocks for program SEPCOMP.
The input block SOLVE and the input block NONLINEAR EQUATIONS expect that an element
subroutine to build element matrix and element right-hand side is provided. Depending on the
input this means that one of the subroutines ELEM, ELEM1 or ELEM2 is expected. Which of
these three subroutines is expected is described in Section 4.2.
The input blocks DERIVATIVES or OUTPUT expect that subroutines ELDERV or ELCERV are
submitted. See Section 4.5 in order to decide which subroutine is expected.
Finally the input block INTEGRALS expects a function subroutine ELINT.

In Section 4.2 subroutine ELEM is described. Section 4.3 describes ELEM1 and Section 4.4 ELEM2.
The derivative element subroutines ELDERV and ELCERV are described in Sections 4.5 and 4.6.
Finally in Section 4.7 the function subroutine ELINT is described.

UM Subroutine ELEM January 2013 4.2.1

4.2 Subroutine ELEM

Description

The subroutines ELEM, ELEM1 and ELEM2 are called by program SEPCOMP in the case that
a large matrix or right-hand side must be constructed and type numbers between 1 and 99 are
used. A large matrix or right-hand side is constructed if the input block ”SOLVE” or the input
block ”NONLINEAR EQUATIONS” is used in the input of SEPCOMP. Another possibility is that
the user has programmed his own main program and calls subroutine BUILD as described in the
Programmer’s Guide.
All three element subroutines ELEM, ELEM1 and ELEM2 are used to build an element matrix and
an element vector. However, there are some differences. In fact ELEM is the simplest of the three.
ELEM is used to construct an element matrix and an element vector, where the matrix and vector
may depend on the old solution but not on other SEPRAN vectors.
ELEM1 is the first extension. In ELEM1 not only the element matrix and element vector may be
built but also the element mass matrix. Furthermore the same restrictions as for ELEM are valid.
ELEM1 is typically meant for time-dependent problems and eigenvalue problems.
Subroutine ELEM2 is the most extensive element subroutine available. It may be used to construct
the element stiffness matrix, the element vector and the element mass matrix. The difference
with ELEM1 is that the element matrices and vectors all may depend on all already constructed
SEPRAN vectors. Such a possibility is essential for coupled programs.

Before describing subroutine ELEM in more detail, it is necessary to know which of these subroutines
is called by program SEPCOMP and under what conditions. The decision if subroutine ELEM,
ELEM1 or subroutine ELEM2 is called is made in a very special way. In fact the only reason why
this is so complicated is that SEPRAN is upwards compatible and programs made in the past must
always be running in future versions.
If only one vector V1 is created by program SEPCOMP, the situation is simple. In that case always
subroutine ELEM is called instead of ELEM2. In case of a time-dependent problem (marked by
time loop or time integration), subroutine ELEM1 is called in case of one vector V1.
However, if there are more vectors to be created then the situation becomes complicated. This
situation can only occur if the input block ”STRUCTURE” is used. If, at the moment that a
matrix and right-hand side is built, only the vector V1 has been filled, then subroutine ELEM is
called. In all other cases ELEM2 is called. Hence, if the input block ”STRUCTURE” has the
following contents:

structure

prescribe_boundary_conditions, vector = 1

solve_linear_system, vector = 1

create vector 2

solve_linear_system, vector = 2

end

then the first call of solve linear system activates the call of ELEM and the second one the call of
ELEM2. If, however, the block is defined by:

structure

prescribe_boundary_conditions, vector = 2

solve_linear_system, vector = 2

end

then the call of solve linear system activates the call of ELEM2.

UM Subroutine ELEM January 2013 4.2.2

Subroutines ELEM1 and ELEM2 are described in the next sections; in this section we restrict our-
selves to subroutine ELEM.

Subroutine ELEM is called by program SEPCOMP for each element with type number > 0 and ≤
99. So in program SEPCOMP a subroutine BUILD is called which creates the large matrix and
right-hand side. This subroutine BUILD contains a loop over the element groups. For each element
group it contains a loop over all elements in this group. If the element group corresponds to an
element with type number 1 to 99, subroutine ELEM is called in the inner loop. Hence, subroutine
ELEM is called for each element separately.
Subroutine ELEM must be written by the user.

Call

CALL ELEM (COOR, ELEMMT, ELEMVC, IUSER, USER, UOLD, MATRIX,

VECTOR, INDEX1, INDEX2)

Parameters

INTEGER IUSER(∗), INDEX1(∗), INDEX2(∗)

DOUBLE PRECISION COOR(ndim,∗), ELEMMT(icount,icount), ELEMVC(∗), UOLD(∗)

LOGICAL MATRIX, VECTOR

COOR Double precision two-dimensional array of size NDIM × number of points, where NDIM
is the dimension of the space. So for a two-dimensional problem COOR must be declared as
COOR(2,*).
To find the co-ordinates of the nodes of the element, array INDEX1 must be used. The
x-co-ordinate of the ith local point in the element is given by COOR(1,INDEX1(i)), the y-co-
ordinate by COOR(2,INDEX1(i))

A common way to extract the co-ordinates of the element is to define a help array X of size
ndim × npelm, where npelm denotes the maximum number of nodes in the elements. The
following piece of code copies the co-ordinates from array coor into array X:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

ELEMMT In this double precision two-dimensional array the user must store the element matrix,
if the large matrix must be computed, in the following way:

ELEMMT(j,i) = sij ; i,j = 1(1)ICOUNT,
where ICOUNT is the number of degrees of freedom in the element (prescribed or not).
The degrees of freedom in an element are stored sequentially, first all degrees of freedom
corresponding to the first point, then to the second, etcetera.
The reason that in fact the transpose of the element matrix must be stored in ELEMMT is
due to the way FORTRAN stores more-dimensional arrays. Internally ELEMMT is stored
as one-dimensional array in the sequence s11, s12, However, a FORTRAN two-dimensional
array is stored as s11, s21,

ELEMVC In this double precision array the user must store the element vector, if the large vector
must be computed, in the following way:

ELEMVC(i) = fi ; i = 1(1)ICOUNT.

IUSER,USER These arrays are used by SEPCOMP to store information of the coefficients for the
differential equation. The storage of IUSER and USER is described in the manual Standard
Problems. For simple problems using SEPCOMP, the storage in IUSER and USER may be
too complicated to be used.

UM Subroutine ELEM January 2013 4.2.3

If the user calls subroutine BUILD in his own SEPRAN program, he may fill IUSER and
USER in his own way, since these arrays are passed undisturbed from main program to
element subroutine.

UOLD In this array the old solution, as indicated by V1, is stored. This solution may contain the
boundary conditions only, if the array has been created by prescribe boundary conditions,
but also a starting vector if V1 has been created by create or even the previous solution in
an iteration process if nonlinear equations are used. Array INDEX2 may be used to find the
degrees of freedom in UOLD, corresponding to the element. The ith local degree of freedom
in the element can be found from UOLD(INDEX2(i)).

A common way to extract the old solution in the nodal points of the element is to define a
help array U of size icount. The following piece of code copies the old solution from array
uold into array U:

u(1:icount) = uold(index2(1:icount))

MATRIX Logical variable. When MATRIX is true the element matrix must be computed, when
MATRIX is false the element matrix is not used.
MATRIX has got a value at the input of ELEM and may not be changed by the user.

VECTOR Logical variable. When VECTOR is true the element vector must be computed, when
VECTOR is false the element vector is not used.
VECTOR has got a value at the input of ELEM and may not be changed by the user.

INDEX1 In this integer array of length INPELM, the point numbers of the nodal points in the
element are stored. The user needs these numbers to compute the co-ordinates of the nodal
points of the element. INPELM is the number of nodal points in the element. See COOR.

INDEX2 In this integer array of length ICOUNT, the positions of the degrees of freedom in the
element with respect to array UOLD, are stored sequentially. The user needs this information
in order to compute the preceding solution in the nodal points.

Examples:

Suppose we have a triangle with 3 nodes and in each node there is exactly one unknown.
Suppose we want to store the three unknowns corresponding to the element in an array U of
length 3. Then the following statements may be used:

U(1:3) = UOLD (INDEX2(1:3))

Suppose for the same triangle we have two unknowns per point and we want to store the first
unknown in an array U and the second in an array V. Then the statements become:

do i = 1 ,3

U(i) = UOLD (INDEX2(2*i-1))

V(i) = UOLD (INDEX2(2*i))

end do ! i = 1, 3

Besides the parameters in the parameter list program SEPCOMP, (actually subroutine BUILD)
communicates also with ELEM by the common block CACTL:

integer IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT, NOTVC,

IRELEM, NUSOL, NELEM, NPOINT

COMMON /CACTL/ IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

NOTVC, IRELEM, NUSOL, NELEM, NPOINT \emp

UM Subroutine ELEM January 2013 4.2.4

In a program it is better to include the common from the sepran commons directory: (free format
.f90 file)

include ’SPCOMMON/cactl’

or in case of a fixed format .f file

include ’SPcommon/cactl’

Note that the capitals as well as the lower case letters in the expression between the quotes are
mandatory, since everything between quotes is case sensitive. The following parameters may be
useful:

IELEM Element number.

ITYPE Problem definition number. This number is defined in the input block ”PROBLEM” by
ELGRPi = (type = ni).

IELGRP Standard element sequence number. Boundary elements get standard sequence numbers:
NELGRP + 1, NELGRP + 2, . . . , NELGRP + NUMNATBND,
where NELGRP is the number of element groups and NUMNATBND the number of boundary
element groups.

INPELM Number of nodal points in element.

ICOUNT Number of degrees of freedom in element.

IFIRST This parameter indicates if the element subroutine is called for the first time for the
specific element group (IFIRST=0) or not (IFIRST=1). This parameter may be of help for
experienced FORTRAN programmers in order to initialize parameters and even local arrays
only once. Since FORTRAN does not save local parameters it is necessary to use the ”SAVE”
statement if this option is utilized.

NOTMAT This parameter indicates if an element matrix is identical to zero (NOTMAT=1) or
not (NOTMAT=0) for all elements with standard element sequence number IELGRP. This
parameter is one of the two parameters in common block CACTL the user is allowed to change
in subroutine ELEM.
If the element matrix is identical zero for the complete element group, the user may indicate
this by setting NOTMAT = 1 in subroutine ELEM.

NOTVEC This parameter indicates if an element vector is identical to zero (NOTVEC=1) or
not (NOTVEC=0) for all elements with standard element sequence number IELGRP. This
parameter is one of the two parameters in common block CACTL the user is allowed to change
in subroutine ELEM.
If the element vector is identical zero for the complete element group, the user may indicate
this by setting NOTVEC = 1 in subroutine ELEM.

NELEM Number of elements with standard element sequence number IELGRP in the mesh.

NPOINT Number of nodal points in the mesh.

NUSOL Number of degrees of freedom in the solution vector.

IRELEM Relative element number with respect to standard element sequence number IELGRP.

The parameters in CACTL are given a value by program SEPCOMP. These values may change
from element to element and must not be changed by the user.

In order to distinguish between different element groups both the parameters IELGRP and ITYPE
may be used.

UM Subroutine ELEM January 2013 4.2.5

Input

Program SEPCOMP fills the arrays COOR, INDEX1, INDEX2 and array UOLD before the call of
ELEM.
BUILD gives MATRIX and VECTOR a value. All parameters in common block CACTL have got
a value by program SEPCOMP.

Output

The arrays ELEMMT and ELEMVC must have been filled by the user, depending on the values of
MATRIX, VECTOR, NOTMAT and NOTVC.

Interface

Subroutine elem.f90 must be programmed as follows:

subroutine elem (coor, elemmt, elemvc, iuser, user, uold, &

matrix, vector, index1, index2)

implicit none

include ’SPCOMMON/cactl’

integer ndim

parameter (ndim = 2)

double precision coor(ndim,*), elemmt(icount,icount), elemvc(icount), &

user(*), uold(*)

integer iuser(*), index1(inpelm), index2(icount)

logical matrix, vector

! declarations of local variables

! for example:

integer npelm, i, k

parameter (npelm = 4)

double precision x(ndim,npelm), u(npelm)

if (itype==1) then

! --- possibly statements to fill x and u for type number 1

! for example:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

u(1:icount) = uold(index2(1:icount))

! --- statements to fill the arrays elemmt and elemvc

do k = 1, icount

do i = 1, icount

elemmt(i,k) = "s(ki)"

end do

elemvc(k) = "f(k)"

end do

else if (itype==2) then

UM Subroutine ELEM January 2013 4.2.6

! --- the same type of statements for itype = 2, etcetera

end if

end

Remarks:

This is the free format .f90 version.

For problems in complex variables (like the Helmholtz equation) one may declare ELEMMT and
ELEMVC as double complex arrays, which means that they are treated as double precision complex
arrays.

If the number of unknowns per point is not 1 in each nodal point, the user must be very careful
with respect to the sequence in which the element matrix and element vector must be filled.
The degrees of freedom are always filled in the sequence of the local nodal point numbering of the
elements. Consider for example the quadratic triangle in Figure 4.2.1. The local numbering of the
nodes starts always in a vertex and follows the boundary until the last point has been numbered.
There is no guarantee that the numbering is counter-clockwise, although it usually is. Suppose that
the first local number coincides with the vertex with global nodal point number 13 and that the

7

13 27 41

3

6

Figure 4.2.1: Element with global nodal point numbers

direction of the numbering is counter clockwise. Suppose that furthermore that in the vertices there
are 3 unknowns (ψ, u, v) and in the mid-side points there is one unknown (ut). Then the unknowns
in the element are numbered in the sequence:

ψ13, u13, v13, ut27, ψ41, u41, v41, ut3, ψ6, u6, v6, ut7

So the rows and columns of the element matrix must be numbered in the same sequence. Array
index2 has been filled in exactly the same sequence.

Shifted Laplace preconditioner

If the shifted Laplace preconditioner is used as described in Sections (3.2.4) and (3.2.8), the element
matrix consists of two parts. Part 1 of length icount × icount refers to the standard element matrix,
whereas the second part of length icount refers to the diagonal of the zeroth order part. Of course
in this case ELEMMT can no longer be defined as a two-dimensional array.
The user must fill the second part of the matrix too.
A simple method to program this case is to use a help subroutine: elemhelp with one extra
parameter DIAG, like:

SUBROUTINE ELEMHELP (COOR, ELEMMT, ELEMVC, IUSER, USER, UOLD, MATRIX,

VECTOR, INDEX1, INDEX2, DIAG)

DIAG is a double precision of double complex array of length ICOUNT, that should be filled with
the diagonal matrix. In this subroutine ELEMMT can be used as two-dimension array.
ELEMHELP can be called from ELEM by

UM Subroutine ELEM January 2013 4.2.7

CALL ELEMHELP (COOR, ELEMMT, ELEMVC, IUSER, USER, UOLD, MATRIX,

VECTOR, INDEX1, INDEX2, ELEMMT(ICOUNT**2+1))

Inside ELEM, ELEMMT is of course one-dimensional.

UM Subroutine ELEM1 November 2008 4.3.1

4.3 Subroutine ELEM1

Description

Subroutine ELEM1 is called by program SEPCOMP in the case that a large matrix or right-hand
side must be constructed and type numbers between 1 and 99 are used. ELEM1 has exactly the
same task as ELEM, but besides that, ELEM1 also constructs an element mass matrix. This mass
matrix may only be a diagonal (i.e. lumped) mass matrix.
At this moment it is not possible to activate ELEM1 directly from SEPCOMP. The only way to
address ELEM1 is by explicitly calling the subroutine BUILD in your own SEPRAN main program.
See the Programmer’s Guide for details.
Subroutine BUILD contains a loop over the element groups. For each element group it contains
a loop over all elements in this group. If the element group corresponds to an element with type
number 1 to 99, subroutine ELEM1 is called in the inner loop. Hence, subroutine ELEM1 is called
for each element separately.
Subroutine ELEM1 must be written by the user.

Call

CALL ELEM1 (COOR, ELEMMT, ELEMVC, ELEMMS, IUSER, USER, UOLD,

MATRIX, VECTOR, INDEX1, INDEX2, NOTMAS)

Parameters

INTEGER IUSER(*), INDEX1(*), INDEX2(*), NOTMAS

DOUBLE PRECISION COOR(ndim,*), ELEMMT(icount,icount), ELEMVC(icount), UOLD(*),
ELEMMS(icount)

LOGICAL MATRIX, VECTOR

COOR, ELEMMT, ELEMVC, IUSER, USER, UOLD, MATRIX, VECTOR, INDEX1, INDEX2
see subroutine ELEM (4.2)

ELEMMS In this array the user must store the element vector corresponding to the vector
MASSMT in the call of subroutine BUILD, when this vector must be computed, in the
following way:

ELEMMS(i) = fi; i = 1 (1) ICOUNT

In the sequel this array will be referred to as the element mass matrix.

NOTMAS This parameter indicates whether an element mass matrix is equal to zero (NOT-
MAS=1) or not (NOTMAS=0) for all elements with standard element sequence number IEL-
GRP. When the user sets NOTMAS equal to 1, this means that the element matrices with
element sequence number IELGRP are not added to the mass matrix.
Mark that NOTMAS has the opposite meaning of NOTMAT.

Parameters from the common block CACTL: see subroutine ELEM (4.2).

Input

Program SEPCOMP fills the arrays COOR, INDEX1, INDEX2 and array UOLD before the call of
ELEM1.
BUILD gives MATRIX, VECTOR and NOTMAS a value. All parameters in common block CACTL
have got a value by program SEPCOMP.

Output

UM Subroutine ELEM1 November 2008 4.3.2

The arrays ELEMMT, ELEMMS and ELEMVC must have been filled by the user, depending on
the values of MATRIX, VECTOR, NOTMAT, NOTMAS and NOTVC. Hence when the user sets
NOTMAT equal to one, he does not have to fill the element matrices for this standard element
group.

Interface

Subroutine elem1.f90 must be programmed as follows:

subroutine elem1 (coor, elemmt, elemvc, elemms, iuser, user, uold, &

matrix, vector, index1, index2, notmas)

implicit none

include ’SPCOMMON/cactl’

integer ndim

parameter (ndim = 2)

double precision coor(ndim,*), elemmt(icount,icount), elemvc(icount), &

user(*), uold(*), elemms(icount)

integer iuser(*), index1(inpelm), index2(icount), notmas

logical matrix, vector

! declarations of local variables

! for example:

integer npelm, i, k

parameter (npelm = 4)

double precision x(ndim,npelm), u(npelm)

if (itype==1) then

! --- possibly statements to fill x and u for type number 1

! for example:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

u(1:icount) = uold(index2(1:icount))

! --- statements to fill the arrays elemmt, elemms and elemvc

do k = 1, icount

do i = 1, icount

elemmt(i,k) = "s(ki)"

end do

elemvc(k) = "f(k)"

elemms(k) = "m(kk)"

end do

else if (itype==2) then

! --- the same type of statements for itype = 2, etcetera

end if

end

UM Subroutine ELEM1 November 2008 4.3.3

In this case we used the free format .f90 version.

UM Subroutine ELEM2 January 2013 4.4.1

4.4 Subroutine ELEM2

Description

Subroutine ELEM2 is called by program SEPCOMP in the case that a large matrix or right-hand
side must be constructed and type numbers between 1 and 99 are used. ELEM2 must be considered
as an extension of ELEM1, because it has the extra possibility of using one or more result arrays of
preceding computations. These arrays may correspond to different problems, i.e. different problem
numbers, and may also be of special type.
In Section 4.2 it has been described in which case ELEM2 will be called instead of ELEM.
Subroutine BUILD contains a loop over the element groups. For each element group it contains
a loop over all elements in this group. If the element group corresponds to an element with type
number 1 to 99, subroutine ELEM2 is called in the inner loop. Hence, subroutine ELEM2 is called
for each element separately.
Subroutine ELEM2 must be written by the user.

Call

CALL ELEM2 (COOR, ELEMMT, ELEMVC, ELEMMS, IUSER, USER, UOLD, MATRIX,

VECTOR, INDEX1, INDEX2, INDEX3, INDEX4, NOTMAS, NUMOLD)

Parameters

INTEGER NOTMAS, NUMOLD, IUSER(∗), INDEX1(inpelm), INDEX2(icount), INDEX4(NUMOLD,inpelm)

INTEGER (kind=8) INDEX3(NUMOLD,∗)

DOUBLE PRECISION COOR(ndim,*), ELEMMT(icount,icount), ELEMVC(icount), UOLD(*),
ELEMMS(icount)

LOGICAL MATRIX, VECTOR

COOR, ELEMMT, ELEMVC, IUSER, USER, UOLD, MATRIX, VECTOR, INDEX1, INDEX2
see subroutine ELEM (4.2)

NOTMAS, ELEMMS see subroutine ELEM1 (4.3)

UOLD In this array all preceding solutions are stored, i.e. all solutions that have been computed
before. These solutions correspond to the vectors V1, V2 etcetera.

These solutions do not have to be stored consecutively, neither do they have to start at
position 1 of UOLD. In order to find the positions of the respective arrays in UOLD the
arrays INDEX3 and if necessary INDEX4 should be used.

INDEX3 Two-dimensional integer array of length NUMOLD x NINDEX containing the positions
of the ”old” solutions in array UOLD with respect to the present element.

For example UOLD(INDEX3(i,j)) contains the jth unknown in the element with respect to
the ith old solution vector. The number i refers to the ith vector corresponding to IVCOLD
in the call of BUILD.
Mark that is is an integer array of integers of length 8 bytes and therefor it is necessary
to define this array as integer (kind=8). The reason is that it contains pointers and all
pointers to positions in the buffer array of SEPRAN are long integers.

INDEX4 Two-dimensional integer array of length NUMOLD x INPELM containing the number
of unknowns per point accumulated in array UOLD with respect to the present element.

For example INDEX4(i,1) contains the number of unknowns in the first point with respect to
the ith vector stored in UOLD. The number of unknowns in the jth point with respect to ith

vector in UOLD is equal to INDEX4(i, j) - INDEX4(i, j − 1) (j > 1)
i is always meant as relative with respect to the present element.

UM Subroutine ELEM2 January 2013 4.4.2

Parameters from the common block CACTL: see subroutine ELEM (4.2).

Input

Program SEPCOMP fills the arrays COOR, INDEX1, INDEX2, INDEX3, INDEX4 and if necessary
array UOLD before the call of ELEM2.
BUILD gives MATRIX, VECTOR and NOTMAS a value. All parameters in common block CACTL
have got a value by program SEPCOMP.

Output

The arrays ELEMMT, ELEMMS and ELEMVC must have been filled by the user, depending on
the values of MATRIX, VECTOR, NOTMAT, NOTMAS and NOTVC. Hence when the user sets
NOTMAT equal to one, he does not have to fill the element matrices for this standard element
group.

Interface

Subroutine elem2.f90 must be programmed as follows:

subroutine elem2 (coor, elemmt, elemvc, elemms, iuser, user, uold, &

matrix, vector, index1, index2, index3, index4, &

notmas, numold)

implicit none

include ’SPCOMMON/cactl’

integer ndim

parameter (ndim = 2)

logical matrix, vector

integer numold, iuser(*), index1(inpelm), index2(icount), &

index4(numold,inpelm), notmas

integer (kind=8) index3(numold,*)

double precision coor(ndim,*), elemmt(icount,icount), elemvc(icount), &

user(*), uold(*), elemms(icount)

! declarations of local variables

! for example:

integer npelm, i, k

parameter (npelm = 4)

double precision x(ndim,npelm), u(npelm), v(npelm)

if (itype==1) then

! --- Possibly statements to fill X and U for type number 1

! for example:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

u(1:icount) = uold(index2(1:icount))

u(1:inpelm) = uold(index3(1,1:inpelm))

v(1:inpelm) = uold(index3(2,1:inpelm))

! --- statements to fill the arrays elemmt, elemms and elemvc

do k = 1, icount

UM Subroutine ELEM2 January 2013 4.4.3

do i = 1, icount

elemmt(i,k) = "s(ki)"

end do

elemvc(k) = "f(k)"

elemms(k) = "m(kk)"

end do

else if (itype==2) then

! --- the same type of statements for itype = 2, etcetera

end if

end

In this case we used the free format .f90 version.

UM Subroutine ELDERV January 2013 4.5.1

4.5 Subroutine ELDERV

Description

The user-written subroutine ELDERV is called by program SEPCOMP in the case that
an element vector of derived quantities must be constructed and type numbers between
1 and 99 are used. This subroutine is called if the input block ”STRUCTURE” is used in
program SEPCOMP and in this block the command derivatives is given. If in the input
block ”DERIVATIVES” the option ELEMENT-WISE is used, instead of ELDERV the
subroutine ELCERV is called. ELDERV is also called if the user runs his own main
program and calls one of the derivative subroutines.

Communication with SEPCOMP is performed with the parameters in the heading of the
subroutine, as well as the parameters in common block CACTL. In program SEPCOMP
a subroutine DERIV is called which creates the vector of derived quantities and a vector
with weights for the averaging procedure described at the end of this section.
This subroutine DERIV contains a loop over the element groups. For each element group
it contains a loop over all elements in this group. If the element group corresponds to
an element with type number 1 to 99, subroutine ELDERV is called in the inner loop.
Hence, subroutine ELDERV is called for each element separately.

Heading

subroutine elderv (icheld, ix, jdegfd, coor, elemvc, elemwg, &

iuser, user, vector1, vector2, index1, index2)

Parameters

INTEGER ICHELD, IX, JDEGFD, IUSER(∗), INDEX1(∗), INDEX2(∗)
DOUBLE PRECISION COOR(ndim,∗), ELEMVC(ICOUNT), ELEMWG(ICOUNT),

USER(∗), VECTOR1(∗), VECTOR2(∗)
ICHELD This parameter has got the value s from the command ICHELD = s in the

input block ”DERIVATIVES”. ICHELD has been given this value by program
SEPCOMP. The user is not allowed to change this value.

IX This parameter has got the value ix from the command IX = ix in the input block
”DERIVATIVES”. IX has been given this value by program SEPCOMP. The user
is not allowed to change this value.

JDEGFD This parameter has got the value d from the command DEGREE OF FREEDOM
= d in the input block ”DERIVATIVES”. JDEGFD has been given this value by
program SEPCOMP. The user is not allowed to change this value.

COOR Double precision two-dimensional array of size NDIM × number of points,
where NDIM is the dimension of the space. So for a two-dimensional problem
COOR must be declared as COOR(2,*).
To find the co-ordinates of the nodes of the element, array INDEX1 must be used.
The x-co-ordinate of the ith local point in the element is given by COOR(1,INDEX1(i)),
the y-co-ordinate by COOR(2,INDEX1(i))

A common way to extract the co-ordinates of the element is to define a help array
X of size ndim × npelm, where npelm denotes the maximum number of nodes in
the elements. The following piece of code copies the co-ordinates from array coor
into array X:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

UM Subroutine ELDERV January 2013 4.5.2

ELEMVC In this array, the user must store the derived quantities multiplied by its
corresponding weights in the same order as the degrees of freedom corresponding
to the output vector to be filled. Hence, first all degrees of freedom in the first
nodal point, then all degrees of freedom in the second nodal point, etc.

ELEMWG In this array the user must store the weight factors for the averaging pro-
cedure (See ”Method”). ELEMWG must be filled in exactly the same sequence as
ELEMVC.

IUSER,USER These arrays are used by SEPCOMP to store information of the coef-
ficients for the computation. The storage of IUSER and USER is described in the
manual Standard Problems. For simple problems using SEPCOMP, the storage in
IUSER and USER may be too complicated to be used.
If the user calls subroutine DERIV in his own SEPRAN program, he may fill
IUSER and USER in his own way, since these arrays are passed undisturbed from
main program to element subroutine.

VECTOR1,VECTOR2 In these arrays the vectors are stored from which the derived
quantities have to be computed. VECTOR1 corresponds to the vector i indicated
by SEQ INPUT VECTOR 1 = i in the input block ”DERIVATIVES” and VEC-
TOR2 to the vector j indicated by SEQ INPUT VECTOR 2 = j. If this last option
is not used array VECTOR2 may not be filled. Array INDEX2 may be used to
find the degrees of freedom in VECTORj, corresponding to the element. The ith

local degree of freedom in the element can be found from VECTORj(INDEX2(i)).

A common way to extract the solution in the nodal points of the element is to
define a help array U of size icount. The following piece of code copies the old
solution from array VECTOR1 into array U:

u(1:icount) = vector1(index2(1:icount))

INDEX1 In this integer array of length INPELM, the point numbers of the nodal
points in the element are stored. The user needs these numbers to compute the
co-ordinates of the nodal points of the element. INPELM is the number of nodal
points in the element. See COOR.

INDEX2 In this integer array of length ICOUNT, the positions of the degrees of
freedom in the element with respect to the arrays VECTOR1 and VECTOR2,
are stored sequentially. The user needs this information in order to extract the
values of these vectors in the nodal points.

Besides the parameters in the parameter list program SEPCOMP, (actually subroutine
DERIV) communicates also with ELDERV by the common block CACTL:

integer ielem, itype, ielgrp, inpelm, icount, ifirst,

+ notmat, notvec, irelem, nusol, nelem, npoint

common /cactl/ ielem, itype, ielgrp, inpelm, icount, ifirst,

+ notmat, notvec, irelem, nusol, nelem, npoint

The following parameters may be useful:

IELEM Element number.

ITYPE Problem definition number. This number is defined in the input block ”PROB-
LEM” by ELGRPi = (type = ni).

IELGRP Standard element sequence number. Boundary elements are skipped in the
call of the element subroutines.

UM Subroutine ELDERV January 2013 4.5.3

INPELM Number of nodal points in element.

ICOUNT Number of degrees of freedom in the vector VECTOR1 (and VECTOR2 if it
exists) for this element. Mark that this does not have to be the number of degrees
of freedom in the element vector. The user does know this number himself and
for that reason there is no specific parameter indicating the length of the element
vector.

IFIRST This parameter indicates if the element subroutine is called for the first time
for the specific element group (IFIRST=0) or not (IFIRST=1). This parameter
may be of help for experienced FORTRAN programmers in order to initialize pa-
rameters and even local arrays only once. Since FORTRAN 77 does not save local
parameters it is necessary to use the ”SAVE” statement if this option is utilized.

NOTMAT This parameter is not used.

NOTVC This parameter indicates if an element vector is identical to zero (NOTVC=1)
or not (NOTVC=0) for all elements with standard element sequence number IEL-
GRP. This parameter is the only parameter in common block CACTL the user is
allowed to change in subroutine ELDERV.
If the element vector is identical zero for the complete element group, the user may
indicate this by setting NOTVC = 1 in subroutine ELDERV.

NELEM Number of elements with standard element sequence number IELGRP in the
mesh.

NPOINT Number of nodal points in the mesh.

NUSOL Number of degrees of freedom in the solution vector.

IRELEM Relative element number with respect to standard element sequence number
IELGRP.

The parameters in CACTL are given a value by program SEPCOMP. These values may
change from element to element and must not be changed by the user.

In order to distinguish between different element groups both the parameters IELGRP
and ITYPE may be used.

Input

Program SEPCOMP gives the parameters ICHELD, IX and JDEGFD a value.
Program SEPCOMP fills the arrays COOR, INDEX1, INDEX2 and array VECTOR1
and VECTOR2 before the call of ELDERV.
All parameters in common block CACTL have got a value by program SEPCOMP.

Output

The arrays ELEMVC and ELEMWG must have been filled by the user, depending on
the value of NOTVC.

Interface

Subroutine elderv.f90 must be programmed as follows:

subroutine elderv (icheld, ix, jdegfd, coor, elemvc, elemwg, iuser, user, &

vector1, vector2, index1, index2)

implicit none

UM Subroutine ELDERV January 2013 4.5.4

include ’SPCOMMON/cactl’

integer ndim

parameter (ndim = 2)

double precision coor(ndim,*), elemvc(*), elemwg(*),

+ user(*), vector1(*), vector2(*)

integer icheld, ix, jdegfd, iuser(*), index1(inpelm), index2(icount)

! declarations of local variables

! for example:

integer npelm, i, k, jcount

parameter (npelm = 4)

double precision x(ndim,npelm), u(npelm)

if (itype==1) then

! --- possibly statements to fill x and u for type number 1

! for example:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

u(1:icount) = vector1(index2(1:icount))

! --- statements to fill the arrays elemvc and elemwg

jcount = ...

do i = 1, jcount

elemwg(i) = "w(i)"

elemvc(i) = "f(i)*w(i)"

end do

else if (itype==2) then

! --- the same type of statements for itype = 2, etcetera

end if

end

Remark

For problems in complex variables (like the Helmholtz equation) one may declare EL-
EMVC and possibly VECTOR1 as double complex arrays, which means that they are
treated as double precision complex arrays.

Method

The averaging procedure in program SEPCOMP is as follows. Suppose that nodal point
j is lying in K different elements. Let the quantity q be given in nodal point j, with a
different value in each element. In order to compute an averaged value of q in j, weights
wi (i = 1, 2, . . . , K) for each element corresponding to nodal point j must be defined.

UM Subroutine ELDERV January 2013 4.5.5

The averaged value of q in nodal point j is computed by the following formula:

q̄(xj) =

K∑
i=1

qi(x
j) wi

K∑
i=1

wi

wi ≥ 0;

K∑
i=1

wi > 0 (4.5.1)

with
q̄(xj) the averaged value of q in nodal point j,
qi(x

j) the value of q in nodal point j with respect to element i,
wi the weight corresponding to nodal point j with respect to element i.

Simple choices are for example:

wi = 1 or
wi = area of element i.

The adding process over the various elements is carried out by program SEPCOMP, it
is sufficient to compute the derived quantities and weights with respect to each nodal
element separately with the aid of subroutine ELDERV.

1

2

3

k

4

5
6

j

α

Figure 4.5.1: nodal point j in different elements

UM Subroutine ELCERV January 2013 4.6.1

4.6 Subroutine ELCERV

Description

The user-written subroutine ELCERV is called by program SEPCOMP in the case that an element
vector of derived quantities must be constructed and type numbers between 1 and 99 are used.
This subroutine is called if the input block ”STRUCTURE” is used in program SEPCOMP and
in this block the command derivatives is given. Besides that in the input block ”DERIVATIVES”
the option ELEMENTWISE must be used to activate ELCERV. Hence ELCERV is used in the
case that the derived quantities are stored in a vector of special structure defined per element. No
averaging over the elements takes place. ELCERV is also called if the user runs his own main
program and calls one of the derivative subroutines.

Communication with SEPCOMP is performed with the parameters in the heading of the subroutine,
as well as the parameters in common block CACTL. In program SEPCOMP a subroutine DERIV
is called which creates the vector of derived quantities and a vector with weights for the averaging
procedure described at the end of this section.
This subroutine DERIV contains a loop over the element groups. For each element group it contains
a loop over all elements in this group. If the element group corresponds to an element with type
number 1 to 99, subroutine ELCERV is called in the inner loop. Hence, subroutine ELCERV is
called for each element separately.

Call

CALL ELCERV (ICHELD, IX, JDEGFD, COOR, ELEMVC, IUSER, USER,

VECTOR1, VECTOR2, INDEX1, INDEX2)

Parameters

INTEGER ICHELD, IX, JDEGFD, IUSER(∗), INDEX1(∗), INDEX2(∗)

DOUBLE PRECISION COOR(ndim,∗), ELEMVC(ICOUNT), USER(∗), VECTOR1(∗), VECTOR2(∗)

ICHELD This parameter has got the value s from the command ICHELD = s in the input block
”DERIVATIVES”. ICHELD has been given this value by program SEPCOMP. The user is
not allowed to change this value.

IX This parameter has got the value ix from the command IX = ix in the input block ”DERIVA-
TIVES”. IX has been given this value by program SEPCOMP. The user is not allowed to
change this value.

JDEGFD This parameter has got the value d from the command DEGREE OF FREEDOM =
d in the input block ”DERIVATIVES”. JDEGFD has been given this value by program
SEPCOMP. The user is not allowed to change this value.

COOR Double precision two-dimensional array of size NDIM × number of points, where NDIM
is the dimension of the space. So for a two-dimensional problem COOR must be declared as
COOR(2,*).
To find the co-ordinates of the nodes of the element, array INDEX1 must be used. The
x-co-ordinate of the ith local point in the element is given by COOR(1,INDEX1(i)), the y-co-
ordinate by COOR(2,INDEX1(i))

A common way to extract the co-ordinates of the element is to define a help array X of size
ndim × npelm, where npelm denotes the maximum number of nodes in the elements. The
following piece of code copies the co-ordinates from array coor into array X:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

UM Subroutine ELCERV January 2013 4.6.2

ELEMVC In this array, the user must store the derived quantities in the same order as the degrees
of freedom corresponding to the output vector to be filled. Hence, first all degrees of freedom
in the first nodal point, then all degrees of freedom in the second nodal point, etc.

IUSER,USER These arrays are used by SEPCOMP to store information of the coefficients for
the computation. The storage of IUSER and USER is described in the manual Standard
Problems. For simple problems using SEPCOMP, the storage in IUSER and USER may be
too complicated to be used.
If the user calls subroutine DERIV in his own SEPRAN program, he may fill IUSER and
USER in his own way, since these arrays are passed undisturbed from main program to
element subroutine.

VECTOR1,VECTOR2 In these arrays the vectors are stored from which the derived quantities
have to be computed. VECTOR1 corresponds to the vector i indicated by SEQ INPUT VECTOR
1 = i in the input block ”DERIVATIVES” and VECTOR2 to the vector j indicated by
SEQ INPUT VECTOR 2 = j. If this last option is not used array VECTOR2 may not
be filled. Array INDEX2 may be used to find the degrees of freedom in VECTORj, corre-
sponding to the element. The ith local degree of freedom in the element can be found from
VECTORj(INDEX2(i)).

A common way to extract the solution in the nodal points of the element is to define a help ar-
ray U of size icount. The following piece of code copies the old solution from array VECTOR1
into array U:

u(1:icount) = vector1(index2(1:icount))

INDEX1 In this integer array of length INPELM, the point numbers of the nodal points in the
element are stored. The user needs these numbers to compute the co-ordinates of the nodal
points of the element. INPELM is the number of nodal points in the element. See COOR.

INDEX2 In this integer array of length ICOUNT, the positions of the degrees of freedom in the
element with respect to the arrays VECTOR1 and VECTOR2, are stored sequentially. The
user needs this information in order to extract the values of these vectors in the nodal points.

Besides the parameters in the parameter list program SEPCOMP, (actually subroutine DERIV)
communicates also with ELCERV by the common block CACTL:

INTEGER IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

+ NOTVC, IRELEM, NUSOL, NELEM, NPOINT

COMMON /CACTL/ IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

+ NOTVC, IRELEM, NUSOL, NELEM, NPOINT

The following parameters may be useful:

IELEM Element number.

ITYPE Problem definition number. This number is defined in the input block ”PROBLEM” by
ELGRPi = (type = ni).

IELGRP Standard element sequence number. Boundary elements are skipped in the call of the
element subroutines.

INPELM Number of nodal points in element.

ICOUNT Number of degrees of freedom in element.

UM Subroutine ELCERV January 2013 4.6.3

IFIRST This parameter indicates if the element subroutine is called for the first time for the
specific element group (IFIRST=0) or not (IFIRST=1). This parameter may be of help for
experienced FORTRAN programmers in order to initialize parameters and even local arrays
only once. Since FORTRAN 77 does not save local parameters it is necessary to use the
”SAVE” statement if this option is utilized.

NOTMAT This parameter is not used.

NOTVC This parameter indicates if an element vector is identical to zero (NOTVC=1) or not
(NOTVC=0) for all elements with standard element sequence number IELGRP. This parame-
ter is the only parameter in common block CACTL the user is allowed to change in subroutine
ELCERV.
If the element vector is identical zero for the complete element group, the user may indicate
this by setting NOTVC = 1 in subroutine ELCERV.

NELEM Number of elements with standard element sequence number IELGRP in the mesh.

NPOINT Number of nodal points in the mesh.

NUSOL Number of degrees of freedom in the solution vector.

IRELEM Relative element number with respect to standard element sequence number IELGRP.

The parameters in CACTL are given a value by program SEPCOMP. These values may change
from element to element and must not be changed by the user.

In order to distinguish between different element groups both the parameters IELGRP and ITYPE
may be used.

Input

Program SEPCOMP gives the parameters ICHELD, IX and JDEGFD a value.
Program SEPCOMP fills the arrays COOR, INDEX1, INDEX2 and array VECTOR1 and VEC-
TOR2 before the call of ELCERV.
All parameters in common block CACTL have got a value by program SEPCOMP.

Output

Array ELEMVC must have been filled by the user, depending on the value of NOTVC.

Interface

UM Subroutine ELCERV January 2013 4.6.4

Subroutine elcerv.f90 must be programmed as follows:

subroutine elcerv (icheld, ix, jdegfd, coor, elemvc, iuser, user, &

vector1, vector2, index1, index2)

implicit none

include ’SPCOMMON/cactl’

integer ndim

parameter (ndim = 2)

double precision coor(ndim,*), elemvc(*), &

user(*), vector1(*), vector2(*)

integer icheld, ix, jdegfd, iuser(*), index1(inpelm), index2(icount)

! declarations of local variables

! for example:

integer npelm, i, k, jcount

parameter (npelm = 4)

double precision x(ndim,npelm), u(npelm)

if (itype==1) then

! --- possibly statements to fill x and u for type number 1

! for example:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

u(1:icount) = vector1(index2(1:icount))

! --- statements to fill array elemvc

jcount = ...

do i = 1, jcount

elemvc(i) = "f(i)"

end do

else if (itype==2) then

! --- the same type of statements for itype = 2, etcetera

end if

end

Remark:

For problems in complex variables (like the Helmholtz equation) one may declare ELEMVC and
possibly VECTOR1 as double complex arrays, which means that they are treated as double precision
complex arrays.

UM Function subroutine ELINT January 2013 4.7.1

4.7 Function subroutine ELINT

Description

The user-written subroutine ELINT is called by program SEPCOMP in the case that a volume
integral must be computed and type numbers between 1 and 99 are used. This subroutine is called
if the input block ”STRUCTURE” is used in program SEPCOMP and in this block the command
integral is given. ELINT is also called if the user runs his own main program and calls one of the
volume integration subroutines.

Communication with SEPCOMP is performed with the parameters in the heading of the subroutine,
as well as the parameters in common block CACTL. In program SEPCOMP a subroutine INTEGR
is called which computes the actual integral as sum over all element integrals.
This subroutine INTEGR contains a loop over the element groups. For each element group it
contains a loop over all elements in this group. If the element group corresponds to an element
with type number 1 to 99, subroutine ELINT is called in the inner loop. Hence, subroutine ELINT
is called for each element separately.

Call

VALUE = ELINT (ICHELI, JDEGFD, COOR, IUSER, USER,

VECTOR, INDEX1, INDEX2)

Parameters

INTEGER ICHELI, JDEGFD, IUSER(∗), INDEX1(∗), INDEX2(∗)

DOUBLE PRECISION COOR(ndim,∗), USER(∗), VECTOR(∗)

ICHELI This parameter has got the value s from the command ICHELI = s in the input block
”INTEGRALS”. ICHELI has been given this value by program SEPCOMP. The user is not
allowed to change this value.

JDEGFD This parameter has got the value d from the command DEGREE OF FREEDOM = d in
the input block ”INTEGRALS”. JDEGFD has been given this value by program SEPCOMP.
The user is not allowed to change this value.

COOR Double precision two-dimensional array of size NDIM × number of points, where NDIM
is the dimension of the space. So for a two-dimensional problem COOR must be declared as
COOR(2,*).
To find the co-ordinates of the nodes of the element, array INDEX1 must be used. The
x-co-ordinate of the ith local point in the element is given by COOR(1,INDEX1(i)), the y-co-
ordinate by COOR(2,INDEX1(i))

A common way to extract the co-ordinates of the element is to define a help array X of size
ndim × npelm, where npelm denotes the maximum number of nodes in the elements. The
following piece of code copies the co-ordinates from array coor into array X:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

ELINT The user must give ELINT the value of the integral computed over the element.

IUSER,USER These arrays are used by SEPCOMP to store information of the coefficients for
the computation. The storage of IUSER and USER is described in the manual Standard
Problems. For simple problems using SEPCOMP, the storage in IUSER and USER may be
too complicated to be used.
If the user calls subroutine INTEGR in his own SEPRAN program, he may fill IUSER and
USER in his own way, since these arrays are passed undisturbed from main program to element
subroutine.

UM Function subroutine ELINT January 2013 4.7.2

VECTOR In this array the vector to be integrated as given in the command INTEGRAL, vector
= j has been stored. Array INDEX2 may be used to find the degrees of freedom in VECTOR,
corresponding to the element. The ith local degree of freedom in the element can be found
from VECTOR(INDEX2(i)).

A common way to extract the solution in the nodal points of the element is to define a help
array U of size icount. The following piece of code copies the old solution from array VECTOR
into array U:

u(1:icount) = vector(index2(1:icount))

INDEX1 In this integer array of length INPELM, the point numbers of the nodal points in the
element are stored. The user needs these numbers to compute the co-ordinates of the nodal
points of the element. INPELM is the number of nodal points in the element. See COOR.

INDEX2 In this integer array of length ICOUNT, the positions of the degrees of freedom in
the element with respect to array VECTOR are stored sequentially. The user needs this
information in order to extract the values of these vectors in the nodal points.

Besides the parameters in the parameter list program SEPCOMP, (actually subroutine INTEGR)
communicates also with ELINT by the common block CACTL:

INTEGER IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

NOTVC, IRELEM, NUSOL, NELEM, NPOINT

COMMON /CACTL/ IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

NOTVC, IRELEM, NUSOL, NELEM, NPOINT

The following parameters may be useful:

IELEM Element number.

ITYPE Problem definition number. This number is defined in the input block ”PROBLEM” by
ELGRPi = (type = ni).

IELGRP Standard element sequence number. Boundary elements are skipped in the call of the
element subroutines.

INPELM Number of nodal points in element.

ICOUNT Number of degrees of freedom in element.

IFIRST This parameter indicates if the element subroutine is called for the first time for the
specific element group (IFIRST=0) or not (IFIRST=1). This parameter may be of help for
experienced FORTRAN programmers in order to initialize parameters and even local arrays
only once. Since FORTRAN 77 does not save local parameters it is necessary to use the
”SAVE” statement if this option is utilized.

NOTMAT This parameter is not used.

NOTVC This parameter indicates if an element integral is identical to zero (NOTVC=1) or not
(NOTVC=0) for all elements with standard element sequence number IELGRP. This parame-
ter is the only parameter in common block CACTL the user is allowed to change in subroutine
ELINT.
If the element integral is identical zero for the complete element group, the user may indicate
this by setting NOTVC = 1 in subroutine ELINT.

UM Function subroutine ELINT January 2013 4.7.3

NELEM Number of elements with standard element sequence number IELGRP in the mesh.

NPOINT Number of nodal points in the mesh.

NUSOL Number of degrees of freedom in the solution vector.

IRELEM Relative element number with respect to standard element sequence number IELGRP.

The parameters in CACTL are given a value by program SEPCOMP. These values may change
from element to element and must not be changed by the user.

In order to distinguish between different element groups both the parameters IELGRP and ITYPE
may be used.

Input

Program SEPCOMP gives the parameters ICHELI and JDEGFD a value.
Program SEPCOMP fills the arrays COOR, INDEX1, INDEX2 and array VECTOR before the call
of ELINT.
All parameters in common block CACTL have got a value by program SEPCOMP.

Output

ELINT must have been given a value by the user, depending on the value of NOTVC.

Interface

Subroutine elint.f90 must be programmed as follows:

function elint (icheli, jdegfd, coor, iuser, user, &

vector, index1, index2)

implicit none

include ’SPCOMMON/cactl’

integer ndim

parameter (ndim = 2)

double precision coor(ndim,*) user(*), vector(*)

integer icheli, jdegfd, iuser(*), index1(inpelm), index2(icount)

! declarations of local variables

! for example:

integer npelm, i, k

parameter (npelm = 4)

double precision x(ndim,npelm), u(npelm)

if (itype==1) then

! --- possibly statements to fill x and u for type number 1

! for example:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

u(1:icount) = vector(index2(1:icount))

UM Function subroutine ELINT January 2013 4.7.4

! --- statements to compute the integral and to store it in elint

elint = integral to be computed

else if (itype==2) then

! --- the same type of statements for itype = 2, etcetera

end if

end

UM Subroutine ELSTRM January 2013 4.8.1

4.8 Subroutine ELSTRM

Description

The user-written subroutine ELSTRM is called by program SEPPOST in the case that the stream
function must be computed and type numbers between 1 and 99 are used.

Communication with SEPPOST is performed with the parameters in the heading of the subroutine,
as well as the parameters in common block CACTL. In program SEPPOST a subroutine STREAM
is called which computes the stream function in the following way.
STREAM starts in a node. An element in which this node is found and subroutine ELSTRM is
called for this element. It is supposed that ELSTRM returns with the values of the stream function
in the other nodes computed from the value in the given node. This can be done by integrating the
velocity. Next this process is repeated from the following nodes until all nodes are considered.
Hence, subroutine ELSTRM is called for each element separately.

Call

CALL ELSTRM (ICHELS, JNODP, STRMJ, ELEMVC, COOR, INDEX1, VECTOR, INDEX2, INDEX3)

Parameters

INTEGER ICHELS, JNODP, INDEX1(∗), INDEX2(∗), INDEX3(∗)

DOUBLE PRECISION STRMJ, ELEMVC(∗), COOR(ndim, ∗), VECTOR(∗),

ICHELS Choice parameter in the call of subroutine STREAM. This parameter is transmitted
undisturbed by subroutine STREAM and can be used at the users choice.

JNODP Nodal point number of the vertex where the stream function or potential is known.

STRMJ Value of the stream function or potential in nodal point JNODP.

ELEMVC In this array the user must store the value of the stream function or potential in the
nodal points. The length of ELEMVC is equal to the number of nodal points in the element
(INPELM).

COOR Double precision two-dimensional array of size NDIM × number of points, where NDIM
is the dimension of the space. So for a two-dimensional problem COOR must be declared as
COOR(2,∗).
To find the co-ordinates of the nodes of the element, array INDEX1 must be used. The
x-co-ordinate of the ith local point in the element is given by COOR(1,INDEX1(i)), the y-co-
ordinate by COOR(2,INDEX1(i))

A common way to extract the co-ordinates of the element is to define a help array X of size
ndim × npelm, where npelm denotes the maximum number of nodes in the elements. The
following piece of code copies the co-ordinates from array coor into array X:

x(1:ndim,1:inpelm) = coor(1:ndim,index1(1:inpelm))

INDEX1 In this integer array of length INPELM, the point numbers of the nodal points in the
element are stored. The user needs these numbers to compute the co-ordinates of the nodal
points of the element. INPELM is the number of nodal points in the element. See COOR.

VECTOR In this array the vector, from which the potential or stream function must be computed,
has been stored. Array INDEX2 may be used to find the degrees of freedom in VECTOR,
corresponding to the element. The ith local degree of freedom in the element can be found
from VECTOR(INDEX2(i)).

UM Subroutine ELSTRM January 2013 4.8.2

A common way to extract the solution in the nodal points of the element is to define a help
array U of size icount. The following piece of code copies the old solution from array VECTOR
into array U:

u(1:icount) = vector(index2(1:icount))

INDEX2 In this integer array of length ICOUNT, the positions of the degrees of freedom in
the element with respect to array VECTOR are stored sequentially. The user needs this
information in order to extract the values of these vectors in the nodal points.

INDEX3 Integer array with, cumulatively, the number of degrees of freedom in the nodal points
of the actual element IELEM. The length of INDEX3 is equal to INPELM+1.
INDEX3 is filled as follows: INDEX3(1) = 0 INDEX3(INPELM+1) = ICOUNT
the number of degrees of freedom in point j of the actual element is equal to
INDEX3(j + 1) - INDEX3(j), j=1, ... , INPELM.

Besides the parameters in the parameter list program SEPPOST, (actually subroutine STREAM)
communicates also with ELSTRM by the common block CACTL:

INTEGER IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

NOTVC, IRELEM, NUSOL, NELEM, NPOINT

COMMON /CACTL/ IELEM, ITYPE, IELGRP, INPELM, ICOUNT, IFIRST, NOTMAT,

NOTVC, IRELEM, NUSOL, NELEM, NPOINT

The following parameters may be useful:

IELEM Element number.

ITYPE Problem definition number. This number is defined in the input block ”PROBLEM” by
ELGRPi = (type = ni).

IELGRP Standard element sequence number. Boundary elements are skipped in the call of the
element subroutines.

INPELM Number of nodal points in element.

ICOUNT Number of degrees of freedom in element.

IFIRST This parameter indicates if the element subroutine is called for the first time for the
specific element group (IFIRST=0) or not (IFIRST=1). This parameter may be of help for
experienced FORTRAN programmers in order to initialize parameters and even local arrays
only once. Since FORTRAN 77 does not save local parameters it is necessary to use the
”SAVE” statement if this option is utilized.

NOTMAT This parameter is not used.

NOTVC This parameter is not used.

NELEM Number of elements with standard element sequence number IELGRP in the mesh.

NPOINT Number of nodal points in the mesh.

NUSOL Number of degrees of freedom in the solution vector.

IRELEM Relative element number with respect to standard element sequence number IELGRP.

UM Subroutine ELSTRM January 2013 4.8.3

The parameters in CACTL are given a value by program SEPPOST. These values may change from
element to element and must not be changed by the user.

In order to distinguish between different element groups both the parameters IELGRP and ITYPE
may be used.

Input

Program SEPPOST gives the parameters ICHELS, JNODP and STRMJ a value.
Program SEPPOST fills the arrays COOR, INDEX1, INDEX2, INDEX3 and array VECTOR before
the call of ELSTRM.
All parameters in common block CACTL have got a value by program SEPPOST.

Output

Array ELEMVC must have been filled by the user in the order of the nodal points as stored in
array INDEX1. Hence ELEMVC(n) = ψ(n), n = 1, . . . , INPELM.

Method

The stream function or potential can be computed by integration of the velocity along the boundaries
of the elements. To that end the relations: ∂ψ

∂x = −v2, ∂ψ∂y = v1 in the case of cartesian co-ordinates
and stream function computation and v = ∇φ in the case of the potential. From these relations

it follows that: ψ2 − ψ1 =
x2∫
x1

v · ndΓ and φ2 − φ1 =
x2∫
x1

v · tdΓ. For a 3-point triangle or a 4-point

quadrilateral v is (bi)linear, and therefore a trapezoid rule is sufficient to integrate the equations
over the element. For a quadratic element Simpson’s rule must be used. In the case of axi-symmetric
co-ordinates a more accurate integration rule is necessary, for example Simpson’s rule in the linear
case and a 3-point Gauss rule in the quadratic case. This is also true for isoparametric elements.

UM Subroutine ELSTRM January 2013 4.8.4

Interface

Subroutine elstrm.f90 must be programmed as follows:

subroutine elstrm (ichels, jnodp, strmj, elemvc, coor, index1, &

vector, index2, index3)

implicit none

include ’SPCOMMON/cactl’

integer ndim

parameter (ndim = 2)

double precision strmj, elemvc(*), coor(ndim,*) vector(*),

integer ichels, jnodp, index1(inpelm), index2(icount), index3(*)

! declarations of local variables

! for example:

integer npelm, i, k

parameter (npelm = 4)

double precision x(ndim,npelm), u(npelm)

if (itype==1) then

! --- possibly statements to fill x and u for type number 1

! for example:

do k = 1, ndim

do i = 1, inpelm

x(k,i) = coor(k,index1(i))

end do

end do

do k = 1, icount, 2

u(k) = vector1(index2(k)*2-1)

v(k) = vector1(index2(k)*2)

end do

! --- statements to compute the stream function and fill it in elemvc

else if (itype==2) then

! --- the same type of statements for itype = 2, etcetera

end if

end

UM Subroutine ELSTRM January 2013 4.8.5

Example

As a simple example consider a subroutine ELSTRM that can handle 3-point triangles and 4-point
quadrilaterals. It is supposed that the vector v = (v1, v2) is composed of the first two degrees of
freedom in the nodal points.

subroutine elstrm (ichels, jnodp, strmj, elemvc, coor, index1, &

vector, index2, index3)

implicit none

include ’SPCOMMON/cactl’

integer ndim

parameter (ndim = 2)

double precision strmj, elemvc(*), coor(ndim,*) vector(*),

integer ichels, jnodp, index1(inpelm), index2(icount), index3(*)

! declarations of local variables

integer npelm, i, k

parameter (npelm = 4)

double precision x(npelm), y(npelm), u(npelm), v(npelm)

integer ind(2*inpelm)

x(1:inpelm) = coor(1,index1(1:inpelm))

y(1:inpelm) = coor(2,index1(1:inpelm))

u(1:inpelm) = vector(1,index2(1:inpelm))

v(1:inpelm) = vector(2,index2(1:inpelm))

! --- find the vertex where the stream function is given

do i = 1, inpelm

if (jnodp == index1(i)) ivert = i

end do

! --- prepare an index array in order to be able to program a do loop

! for the computation of the stream function or potential in

! vertices that are not given

do i = 1, inpelm

ind(i) = i

ind(inpelm+i) = i

end do

! --- compute the stream function or potential for cartesian co-ordinates

! with help of the trapezoid rule starting from ivert

elemvc(ivert) = strmj

do i = ivert, ivert + inpelm - 1

if (ichels==1) then

! --- when ichels=1 the stream function is computed

elemvc(ind(i+1)) = elemvc(ind(i)) - &

(y(ind(i))-y(ind(i+1))) * (u(ind(i))+u(ind(i+1))) - &

(x(ind(i))-x(ind(i+1))) * (v(ind(i))+v(ind(i+1))) / 2d0

UM Subroutine ELSTRM January 2013 4.8.6

else

! --- when ichels=2 the potential is computed

elemvc(ind(i+1)) = elemvc(ind(i)) - &

(x(ind(i))-x(ind(i+1))) * (u(ind(i))+u(ind(i+1))) + &

(y(ind(i))-y(ind(i+1))) * (v(ind(i))+v(ind(i+1))) / 2d0

endif

end do ! i = ivert, ivert + inpelm - 1

end

UM Subroutine ELSTRM January 2013 4.8.7

Remarks

• The vector t is defined as ((xi+1−xi)
li

, (yi+1−yi)
li

) with li the length of the side of the element
between the the nodal points i and i+ 1 (internal numbering!). The unit normal is taken in
the outward direction. Therefore it is necessary to know whether the internal numbering of
the nodal points is counter-clockwise or not. The sign s of the normal can be determined in
the following way: ∆ = (y1 − y2)× (x3 − x2)− (y2 − y3)× (x2 − x1) S = sign ∆

Then n is defined by S((yi+1−yi)
li

, −(xi+1−xi)
li

)

• SEPRAN contains the standard subroutine ELS400 for the computation of the stream func-
tion or potential for 3, 6 or 7-point isoparametric triangles, 4, 8 or 9-point isoparametric
quadrilaterals for standard problems with e.g. type numbers 400, 402 and 404. If the user
has a problem for which the v1, v2 to be integrated are the first two degrees of freedom in a
nodal point, subroutine ELS400 can be used in the following way:

subroutine elstrm (ichels, jnodp, strmj, elemvc, coor, index1, &

vector, index2, index3)

implicit none

include ’SPCOMMON/cactl’

integer ndim

parameter (ndim = 2)

double precision strmj, elemvc(*), coor(ndim,*) vector(*),

integer ichels, jnodp, index1(inpelm), index2(icount), index3(*)

! --- do not disturb the common area /cactl/, but change itype temporarily

!

! itype = 400 cartesian co-ordinates

! itype = 402 polar co-ordinates

! itype = 404 axi-symmetric co-ordinates

!

! ichels = 1: stream function

! ichels = 2: potential

jtype = itype

itype = 400

call els400 (ichels, jnodp, strmj, elemvc, coor, index1, vector, &

index2,index3)

! --- reset itype

itype = jtype

end

UM Postprocessing October 2000 5.1.1

5 The postprocessing part of SEPRAN

5.1 Introduction

In the post processing part of SEPRAN, the output of the solution and derived quantities is produced
in a readable (visible) form. Integrals over quantities, integrals over boundaries etc. may be
computed and printed or plotted. The output generated may be produced in either print or plot
form. Print output is both written to the screen or to a file for later reproducing on a printer.

The post processing is performed by the main program SEPPOST. It requires two types of input.

First it uses some files produced by the mesh generation part (meshoutput) and the computational
part (sepcomp.out).
If the file sepcomp.out is not available it is only possible to plot the mesh with SEPPOST. All other
commands are suppressed.

Secondly it requires input from the standard input file. (An interactive version will be available in
due course).

The input of SEPPOST is described in the next paragraphs.

5.2 describes the general shape of the input, including the so-called compute commands, the define
commands and the reset commands,

5.3 treats the various print commands,

5.4 the plot commands and

5.5 is devoted to some special commands with respect to time-dependence.

UM General input for SEPPOST November 2006 5.2.1

5.2 General input for program SEPPOST

The input for the post processing part must be opened with the COMMAND POSTPROCESSING
and must be closed with the COMMAND END.

COMMAND and DATA records.
Options are indicated between the square brackets [and].

POSTPROCESSING (mandatory)

COMMAND record: opens the input for program SEPPOST.
May be followed by DATA records of the shape:

NAME V0 = potential

NAME V1 = gradient of potential

.

.

These records identify the vectors V0, V1 etc. as defined by the input block ”OUTPUT” in the
input file of SEPCOMP, with the names potential, gradient of potential etc. These names are used
in the output subroutines, for example in the heading of the prints. If no names are given, the
names defined in sepcomp are used. So in general there is no need to define the names.

The actual post processing records have the following shape:

PRINT Vi . . .

PLOT . . .

COMPUTE Vi . . .

Vi = alpha * Vi + beta

DEFINE . . .

RESET . . .

TIME = . . .

TIME HISTORY . . .

READ_MESH . . .

PRESENT_MESH . . .

INTERPOLATE . . .

FILL COEFFICIENTS

PUT_IN_AVS_FILE . . .

ADD_TO_COOR Vi

INTERSECT_MESH . . .

The input must be ended by:

END (mandatory)

End of the input for program SEPPOST.

The actual post processing commands may be given in any order, with the restriction that vectors
Vi to be printed or plotted must have been defined before, for example by a compute statement.

The SET commands, as treated in Section 1.4, may be used anywhere in the input. They become
activated from the moment they have been read.

PRINT commands are treated in 5.3.

PLOT commands in 5.4.

UM General input for SEPPOST November 2006 5.2.2

DEFINE and RESET commands

The DEFINE and RESET commands are used to set or reset of some defaults for printing or
plotting. Their general syntax is:

define plot parameters = . . .

define colour table = . . .

reset plot parameters

reset colour table

With the define plot parameters statement, the user defines new defaults for the plot pa-
rameters. These defaults remain valid until the user resets plot parameters with the reset
command, or a new define plot parameters is read. For a description of the plot parameters
the user is referred to 5.4.
Remark: one of the plot parameters: region = (xmin, xmax, ymin, ymax) is also used for
the print commands. So if this parameter is also given in the define plot parameters, it affects
the print output.

The statement define color table defines the color numbers for colored plots. See 5.4.

COMPUTE commands

The COMPUTE command is used to define a vector Vi as function of an already available
vector Vj. Using the same number i in a new COMPUTE statement redefines vector Vi.
Instead of Vi or Vj, the user may also use name_of_vector provided that name already exists.
With respect to the Vi immediately following compute the name does not have to exist. If
the name does not exist the name is added to the list of vectors.
The general syntax for the compute statements is:

compute [Vi =] stream function Vj [start node = s] //

[stream function value = f]//

[skip element groups (g_1, g_2, ...)]

compute Vi = velocity profile Vj [degfd=k] origin=(O_x, O_y)] [angle = a]

compute Vi = intersection Vj [degfd=k] [origin=(O_x, O_y)] [angle = a]

compute Vi = intersection Vj [degfd=k] [numbunknowns=n] plane(ax+by+cz=d)//

[transformation = tr] [origin = (O_x, O_y, O_z)] //

[tang_x = (tx_1, tx_2, tx_3), tang_y = (ty_1, ty_2, ty_3)] //

[type_tang = t]

compute [Vi =] mach_number, [velocity_vector = vj,] [enthalpy_vector = vj,]//

gamma = g

compute [Vi =] total_enthalpy

compute [Vi =] stagnation_pressure

compute [Vi =] scaled_pressure

compute [Vi =] entropy

compute Vi = function_of Vj, type_func = f, [degfd=k]

The parameter i following compute V may be a number, but it is preferred to use a name
compute entropy entropy1. If the name following compute xxx has not yet been defined it
is added to the list of vector names. If no name is given the default name is used if available.
The following names are available:

stream_function

mach_number

total_enthalpy

stagnation_pressure

scaled_pressure

entropy

normal_stress

UM General input for SEPPOST November 2006 5.2.3

Meaning of these commands:

compute Vi = stream function Vj means that vector Vi must be computed as stream func-
tion from the velocity vector Vj. It is advised to use a name instead of a number or no
name at all.
If Vi is omitted the result vector is stored in a vector with name stream_function. If
this name does not exist, it is added to list of vector names.
Vj is supposed to be a vector with the two x and y velocity components as first and
second component in each nodal point.
If start node = s is given, the value of the stream function is set in nodal point s (default
s=1).
stream function value = f defines the value in the start node s (default f=0).
With the option skip element groups (g_1, g_2, ...) the user may skip the cor-
responding element groups. That means that the values in the corresponding part of the
mesh are not used for the computation of the stream function.

compute Vi = velocity profile Vj defines vector Vi as a function given by one of the velocity
components (degfd=k, default k=1) along the line with origin (Ox, Oy) (default (0,0))
under an angle of a degrees (default a=0). This possibility is only permitted for two-
dimensional vector fields. The intersection of the line with the mesh is computed and
the solution is interpolated onto this line.

Remark: at this moment the method is sensitive to round off, which means that if a line
coincides with the boundary of the mesh, only some parts or no part at all may be found
in the intersection. In that case it is recommended to shift the line over a small distance.

compute Vi = intersection Vj If the mesh corresponding to Vj is a 2D mesh, solution Vj
along the line with origin (Ox, Oy) (default (0,0)) under an angle of a degrees (default
a=0). k is defined by degfd=k (default k=1). This possibility is only available for
functions defined on a two-dimensional mesh. Furthermore this possibility is completely
identical to the preceding one, including the remark given before.

If the mesh corresponding to Vj is a 3D mesh, solution Vj in the plane defined by
ax+by+cz=d. The 3D region is intersected by the plane and a new 2D mesh consisting
of linear triangles is created. The vector Vj is interpolated on this new 2D mesh, and the
interpolation is called Vi. With the function Vi all standard postprocessing commands
may be executed including the intersection with a line. Default values for a, b, c and d
are zero. SEPPOST also recognizes planes equal to 1 or -1, depending on the preceding
sign. All values a, b, c and d equal to zero is not allowed.
Note that x-y=0 is not allowed but must be replaced by x -1 y = 0.
k is defined by degfd=k (default k=1).
numbunknowns = n defines the number of degrees of freedom that are interpolated.
Hence the degrees of freedom k, k+ 1, ... , K+n−1 are interpolated. The default value
is n = 1.
transformation = tr may only be used in combination with numbunknowns ≥ 3. It
defines how an interpolated vector must be transformed. The following values for tr are
available:

Cartesian The Cartesian vector components are kept, i.e. no transformation is applied.

plane oriented The first 3 components of the vector are transformed such that the third
component is perpendicular to the plane and the first two components are orthogonal
components within the plane. All other components are not transformed.

The options tang_x = (tx_1, tx_2, tx_3), tang_y = (ty_1, ty_2, ty_3) and type_tang = t

may be used to define the axis in the intersection plane explicitly. Both possibilities are
mutually exclusive.
By giving tang_x = (tx_1, tx_2, tx_3), tang_y = (ty_1, ty_2, ty_3) the user
explicitly defines the unit vectors in the intersection plane and hence defines the axis.
If tang_x is given also tang_y must be given. Furthermore both unit vectors must be

UM General input for SEPPOST November 2006 5.2.4

perpendicular and be in the plane.
An alternative is to use the option type_tang = t, where for t the following values are
available.

xy The axis are in the x-y plane. The first axis is the x-axis the second one the y-axis.
This is only allowed if the plane is defined as z = constant.

yz The axis are in the y-z plane. The first axis is the y-axis the second one the z-axis.
This is only allowed if the plane is defined as x = constant.

xz The axis are in the x-z plane. The first axis is the x-axis the second one the z-axis.
This is only allowed if the plane is defined as y = constant.

proj xy The axis are formed by projecting the x-axis and y-axis onto the given plane
in that sequence. This is only possible if the coefficient for z in the plane is unequal
to 0.

proj yz The axis are formed by projecting the y-axis and z-axis onto the given plane
in that sequence. This is only possible if the coefficient for x in the plane is unequal
to 0.

proj xz The axis are formed by projecting the x-axis and z-axis onto the given plane
in that sequence. This is only possible if the coefficient for y in the plane is unequal
to 0.

If neither one of these options is given the default is used, which implies that the tan-
gential vectors are computed by the program from the definition of the plane. The
consequence may be that the direction of the axis is different from what one expects.

origin = (O_x, O_y, O_z) defines the origin of the axis. The directions of the unit
vectors are defined by the tangential vectors.
If omitted the default origin is used, which means that the origin is computed by the
program from the definition of the plane.

compute Vi = MACH NUMBER indicates that the Mach number must be computed in each
point of the mesh, using the formula:

M =
u

a
=

√
u2
x + u2

y√
(γ − 1)h

(5.2.2)

where u is the length of the velocity vector in a point, γ a gas constant, h is the enthalpy,
and u = (ux, uy)T is the velocity vector.

gamma = γ defines the gas constant.
The default value is 1.4.

enthalpy vector = Vj defines in which vector Vj the enthalpy has been stored.
The default value is the vector with name enthalpy and if this name does not exist
j=3.

velocity vector = Vj defines in which vector Vj the velocity has been stored.
The default value is the vector with name velocity and if this name does not exist
j=5.

Vi defines the name or number of the result vector.
If Vi is omitted the result vector is stored in a vector with name mach_number. If
this name does not exist, it is added to list of vector names.

compute Vi = TOTAL ENTHALPY indicates that the total enthalpy must be computed in
each point of the mesh, using the formula:

H = h+
1

2
u2, (5.2.3)

where h is the enthalpy and u2 = (u2
x + u2

y) is the square of the length of the velocity
vector.

UM General input for SEPPOST November 2006 5.2.5

The velocity vector is either the vector with name velocity or if this name does not
exist j=5.
The enthalpy vector is either the vector with name enthalpy or if this name does not
exist j=3.
Vi defines the name or number of the result vector.
If Vi is omitted the result vector is stored in a vector with name total_enthalpy. If
this name does not exist, it is added to list of vector names.

compute Vi = STAGNATION PRESSURE indicates that the stagnation pressure (also
called: total pressure) must be computed in each point of the mesh, using the formula:

pt =

(
1 +

γ − 1

2
M2

)γ/γ−1

p, (5.2.4)

where M is the enthalpy, u2 = (u2
x + u2

y) the square of the length of the velocity vector
and p the pressure.
The pressure vector is either the vector with name pressure or if this name does not
exist j=2.
The Mach number vector is either the vector with name mach-number or if this name
does not exist j=10.
Vi defines the name or number of the result vector.
If Vi is omitted the result vector is stored in a vector with name stagnation_pressure.
If this name does not exist, it is added to list of vector names.

compute Vi = SCALED PRESSURE indicates that the pressure coefficient must be com-
puted in each point of the mesh, using the formula:

cp =
p− p∞
1
2ρ∞u

2
∞
, (5.2.5)

where p is the pressure, and the symbol ∞ indicates the free-stream values (usually the
values at the inlet).
The pressure vector is either the vector with name pressure or if this name does not
exist j=2.
Vi defines the name or number of the result vector.
If Vi is omitted the result vector is stored in a vector with name scaled_pressure. If
this name does not exist, it is added to list of vector names.

compute Vi = ENTROPY indicates that the entropy must be computed in each point of the
mesh, using the formula:

S = ln(p/rhoγ), (5.2.6)

where p is the pressure and ρ the density.
The pressure vector is either the vector with name pressure or if this name does not
exist j=2.
The density vector is either the vector with name density or if this name does not exist
j=4.
Vi defines the name or number of the result vector.
If Vi is omitted the result vector is stored in a vector with name entropy. If this name
does not exist, it is added to list of vector names.

compute Vi = function of Vj indicates that the vector Vi is computed as a component-wise
function of the the vector Vj. The vector Vi gets the same structure and size as Vj.
degfd = k defines the degree of freedom per point to be considered, if 0 or omitted all
degrees of freedom are used.
type_func = f defines the type of function that must be used to compute a vector as
function of another vector.
Possible values

log the function is a logarithm with base 10

UM General input for SEPPOST November 2006 5.2.6

Compute statements only define the vector Vi, which means that the actual computation is
performed only if necessary. At most 26 vectors Vi, including V0 are allowed in SEPPOST.

Vi = α Vi + β

This command is meant for scaling of solutions.
The vector indicated by sequence number i is multiplied by α and the constant β is added to
the vector. This command works on all components at a time, so individual multiplication of
a special degree of freedom is impossible. The vectors on left and right-hand side must be the
same. The sequence of the individual items in this command can not be changed, however,
the plus sign may be replaced by a minus sign.
Default value for alpha is 1, and for β is 0.

Example, suppose the temperature vector Temperature is scaled by subtracting a constant
T0 and multiplying the result by a factor ∆T . So the scaled temperature is equal to Tscaled =
∆T (T − T0).
If we want to print or plot the un-scaled temperature, we have to use the command:

Temperature = {1/delta_T} Temperature + T_0

where delta_T and T_0 are constants stored in the constants block.
To scale this vector again we need two steps:

Temperature = Temperature - T_0

Temperature = delta_T * Temperature

The * sign is optional and has no meaning.

Special commands
Except the commands mentioned before there are some other special commands that may be
used.
These commands have the following shape:

READ_MESH i, file = ’name_of_file’

PRESENT_MESH = j

INTERPOLATE Vj, mesh_in = k, mesh_out = l

FILL COEFFICIENTS

PUT_IN_AVS_FILE Vi

ADD_TO_COOR Vi, factor = f

These commands have the following meaning:

READ MESH i indicates that a mesh is read with sequence number i. The standard mesh
always gets sequence number 1, and in case of intersections also new meshes are created,
with new numbers.
The sequence number i may not have been used before.
This keyword must be followed by the command file = ’name_of_file’, where name_of_file
is the name of the new mesh file. If the standard mesh file meshoutput is formatted, the
new one must also be formatted. Alternatively if one of them is unformatted then also
the other one must be unformatted.
Besides that there is an extra restriction for the new mesh file: the number of element
groups must be the same as for the first mesh. The reason is that the problem descrip-
tion corresponding to the first mesh (except for boundary conditions), is reused for the
second mesh.

PRESENT MESH = j sets the actual mesh sequence number to j. All commands follow-
ing this statement are carried out on the second mesh.
mark that this makes only sense if the vectors to be operated are defined on this second
mesh.

UM General input for SEPPOST November 2006 5.2.7

INTERPOLATE Vj interpolates the vector Vj from one mesh to another.
The mesh from which interpolation must take place is defined by mesh_in = k, where k
must correspond to an existing mesh.
The mesh to which the vector is interpolated is defined by mesh_out = l.

FILL COEFFICIENTS is a very special command that is only needed in the rare case
that coefficients are needed for the postprocessing. This may be for example the case to
define a porosity in particle tracking.
If this command is used, it must be followed immediately by a input block for the
coefficients as defined in Section 3.2.6.

PUT IN AVS FILE Vi write the vector Vi to a file in avs input format in the same way
as defined in Section 3.2.13.

ADD TO COOR Vi, factor = f With this command you may change the coordinates of
the mesh in the following way: x = x + fu.
Here u is the displacement vector corresponding to Vi. Of course this vector must have
exactly NDIM degrees of freedom per point, with NDIM the dimension of the space.
So this option is meant to construct a distorted mesh. The factor f can be used as
stretching factor.
In order to get the original coordinates, use the same command with a factor −f .

INTERSECT MESH, plane = (...), file mesh out = ’...’, file solut out = ’...’ This
command is meant to intersect the 3d mesh with a plane, just as in compute Vi = in-
tersection Vj ...
The plane must be defined in exactly the same way, for example (z=0).
The main difference is that in this particular case all solutions are interpolated to the new
mesh. Besides that the new 2d mesh is written to a file defined by the name following
file_mesh_out and the interpolated solutions to a file defined by the name following
file_solut_out. Both file names must be given between quotes. The mesh file has
exactly the same structure as the file meshoutput and the other file as sepcomp.out. Of
course in this case for a 2d mesh. So viewing of the interpolated results is only possible
by a new call to seppost.
After writing the 2d mesh and solutions, the interpolation is removed.

UM Print commands January 2001 5.3.1

5.3 Print commands for program SEPPOST

The general input for the program SEPPOST is described in 5.2. This paragraph is devoted to the
available print commands.

At this moment only two print commands are available. The syntax of the print commands is:

Options are indicated between the square brackets [and].

PRINT Vi, options

PRINT BOUNDARY FUNCTION Vi [,options] [,boundary_description]

The following options are available:

region = (xmin,xmax,ymin,ymax,zmin,zmax)

points = p1, p2, p3, ...

curves = c1, c2, cn, ...

surfaces = s1, s3, s5, ...

degfd = k

normal_component

tangential_component

suppress_coordinates

suppress_header

suppress_nodes

sequence = (y)

polar_system

equidistant_grid, distance = (dx, dy, dz)

These options have the following meaning:

region If this option is used only the points within the region
xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax are printed.

points followed by Pi, Pj, Pk, ... ensures that the printing of the solution is restricted to
the user points given in the list.

curves followed by Ci, Cj, Ck, ... ensures that the printing of the solution is restricted to
the curves given in the list.

surfaces followed by Si, Sj, Sk, ... ensures that the printing of the solution is restricted to
the surfaces given in the list.

degfd defines which degree of freedom must be printed. If omitted all degrees of freedom in
the points requested are printed.

normal component may only be used if curves or surfaces is given. Furthermore there must
be at least ndim unknowns in each point at the boundary to be printed, where ndim is
the dimension of space. In that case the normal component at the boundary is computed
and printed. The vector from which the normal component is computed consists of the
degrees of freedom 1, 2 and 3 (or 1 and 2 in R2) in each point, except if degfd is given,
in which case the degrees of freedom degfd, degfd+1 and degfd+2 are used.

tangential component has the same meaning as normal component, however, now with
respect to the tangential component.

suppress coordinates suppresses the printing of the co-ordinates in the output.

suppress header suppresses the printing of the header.

suppress nodes suppresses the printing of the node numbers.

UM Print commands January 2001 5.3.2

sequence defines the ordering of the nodal points.
If no sequence is given the co-ordinates are ordered in increasing x-sequence and for
constant x-value in increasing y-sequence. If sequence = (y) is given, then first increasing
y-sequence and then increasing x-sequence is used (2D) or the sequence y, z, x in 3D.
Sequence = (z) creates the sequence z, y, x (3D only).

polar system is only available in 2D. The co-ordinates that are printed are translated from
Cartesian to polar coordinates and the r and φ coordinates are printed.

equidistant grid is only available for the command print, not for print boundary function.
When this command is used, the solution is interpolated to an equidistant grid defined
by (xmin,xmax) × (ymin,ymax) × (zmin,zmax) and step size (dx,dy,dz).
The interpolated function is printed.
Hence in this case both the options REGION = (xmin, xmax, ymin, ymax, zmin, zmax)

and DISTANCE = (dx, dy, dz) are obligatory.

distance = (dx, dy, dz) may only be used in combination with the keyword equidistant_grid.
It defines the step sizes for the equidistant grid.

Remarks:
The options points, curves and surfaces are mutually exclusive.
The options normal component and tangential component are also mutually exclusive. They
may only be used in combination with the option curves or surfaces.

When PRINT Vi is given the complete vector is printed, together with the corresponding
nodal point numbers and the co-ordinates. However, by giving the region or the option
points, curves or surfaces the region may be limited.

The region to be printed may also be defined with the statement
DEFINE PLOT PARAMETERS region = (......) which affects both plots and prints.

PRINT BOUNDARY FUNCTION Vi, may be used to print a function defined along curves
(2D and 3D) or surfaces(3d). The boundary description may take one of the forms:

CURVES (C1, C2, C3, C5, ...)

SURFACES (S1, S2, S3, S5, ...)

The option surfaces may only be used if volume elements are present, the option curves if
surface or volume elements exist.
The print along the curves is done in the direction of the curve and in the sequence given
by the user. If negative curve numbers are used, the corresponding curve is used in reversed
direction.
Furthermore the options are the same as for print. In fact since PRINT Vi allows for printing
along curves or surfaces there is no need to use PRINT BOUNDARY FUNCTION anymore.

UM Plot commands August 2004 5.4.1

5.4 PLOT commands for program SEPPOST

The general input for the program SEPPOST is described in 5.2. This paragraph is devoted to the
available plot commands.

The syntax of the plot commands is:
Options are indicated like this: [options].

Contour plots:

PLOT CONTOUR Vi [,degfd = k] [,plot parameters] [,nlevel = n] //

[,levels = (q1,q2,....)] [,minlevel = min] [,maxlevel = max] //

[,smoothing factor = s]

PLOT COLOURED LEVELS Vi [,degfd = k] [,plot parameters] [,nlevel = n] //

[,levels = (q1,q2,....)] [,minlevel = min] [,maxlevel = max]

Vector plots:

PLOT VECTOR Vi [,degfd1 = k_1 ,degfd2 = k_2] [,plot parameters]

Function plots:

PLOT FUNCTION Vi [,plot parameters]

PLOT VELOCITY PROFILE Vi [degfd=k] [,plot parameters]//

[origin = (O_x , O_y)] [, angle = a]

PLOT INTERSECTION Vi [degfd=k] [,plot parameters] [origin = (O_x , O_y)]//

[, angle = a]

PLOT BOUNDARY FUNCTION Vi, curves (C1, C2, C3, C5, .. . ,Cn) //

[,plot parameters] [,degfd=k], [arc_scales = (smin, smax)]

3D plots:

3D PLOT Vi [,plot parameters] [,lindirec=l] [block_mode=m]//

[intersect_angle=a] [,ground_value=g] [,nstep=n] [,transparent]

3D COLOURED PLOT Vi [,plot parameters]

Mesh plots:

PLOT MESH [,skip element groups (g_1, g_2,...)] [,plot parameters] //

[,renumbered nodes]

PLOT COLOURED_MESH [,skip element groups (g_1, g_2,...)] [,plot parameters]

PLOT Vj MESH [,plot parameters]

PLOT CURVES [,plot parameters]

PLOT Vj CURVES [,plot parameters]

PLOT POINTS [,plot parameters]

User plot commands:

PLOT TEXT [,plot parameters]

PLOT POLYGON, coordinates((x_1, y_1), (x_2, y_2), . . . , (x_n , y_n))//

[,plot parameters]

Other plot commands:

UM Plot commands August 2004 5.4.2

PLOT FIELD Vi [, plot parameters] [,PSTART = (x,y)] [,BNDPART = (j,k)]//

[,FLUX = f][, FROM] [, TOWARDS]

PLOT TRACK Vi [, plot parameters] [,TMAX = t]//

PSTART = (x_1,y_1[,z_1], x_2,y_2[,z_2] ... x_n,y_n[,z_n])//

[,NMARK=m] [,NVIEW=v] [,MESH] [,PRINT TRACK]//

[TSTEP_PRINT = t] [,VALUES = (Vi, Vj,)], [EPS_TIME_STEP = eps],//

[TYPE_TIME_INTEGRATION = h]

Special plot commands:

OPEN PLOT

CLOSE PLOT

PLOT IDENTIFICATION, TEXT = ’ text to be plotted ’

Meaning of these commands:

Contour plots:

PLOT CONTOUR means plot contour lines (lines with constant function value) for the given
function.

degfd=k indicates that the kth degree of freedom in each node is used as definition of the
function, otherwise the first degree of freedom is used.

nlevel = n defines the number of contour levels. The default value is 11.

levels = (q1, q2, . . .) defines the contour levels explicitly. In this case there is no need to give
the number of levels since this number is computed from the levels given.

minlevel defines the minimum contour level and

maxlevel defines the maximum contour level. These options should only be used if the
contour levels are not given explicitly. If omitted, they are computed by the program.

smoothing factor defines the kind of smoothing that must be applied to the contour lines.
s = 0 (default), means no smoothing, the contour lines are piece-wise linear. s = 1,
computes a mean value between three succeeding values to filter some of the possible
wiggles (Shuman filtering). For s = 2, 3, 4 and 5 a smooth spline is used to plot the
contour lines. The higher the value of s, the smoother the spline. Although these
pictures are much nicer for publication, the actual plot is in no way better than that of
the non-smooth contours. Values larger than 5 are not permitted for s.

To suppress the legenda and the numbers along the contour lines use the option nonumber

in case nlevel is given and the options nonumber and noplot_legenda if the levels are given
explicitly.

PLOT COLOURED LEVELS Vi makes a colored contour plot of the array Vi, where the
region between two levels is colored.
The colors used for the plotting are the standard colors defined for your system. These colors
may be changed by the statement define color table. See color table.

degfd=k indicates that the kth degree of freedom in each node is used as definition of the
function, otherwise the first degree of freedom is used.

nlevel = n defines the number of contour levels. The default value is 11.

levels = (q1, q2, . . .) defines the contour levels explicitly. In this case there is no need to give
the number of levels since this number is computed from the levels given.

minlevel defines the minimum contour level and

maxlevel defines the maximum contour level. These options should only be used if the
contour levels are not given explicitly. If omitted, they are computed by the program.

UM Plot commands August 2004 5.4.3

Vector plots:

PLOT VECTOR Vi makes a vector plot of two of the degrees of freedom in each point. These
components may be defined by degfd1 = k1, degfd2 = k2 respectively. If omitted degfd1 = 1,
and degfd2 = 2 is assumed.

Function plots:

PLOT FUNCTION Vi , makes a plot of a one dimensional function. At this moment only
vectors defined by COMPUTE Vi = velocity profile or COMPUTE Vi = intersection, (See
5.2) may be plotted by this command. If the solution corresponds to a one-dimensional mesh,
the complete solution is plotted.

PLOT VELOCITY PROFILE Vi combines the commands COMPUTE . . . = velocity profile
Vi . . . as described in 5.2 and the command PLOT FUNCTION Vi.

PLOT INTERSECTION Vi combines the commands COMPUTE ... = intersection Vi as
described in 5.2 and the command PLOT FUNCTION Vi.
In fact there is no difference between PLOT VELOCITY PROFILE and PLOT INTERSEC-
TION

PLOT BOUNDARY FUNCTION Vi, CURVES (C1,. . ., Cn) may be used to plot a function
defined along the curves C1 to Cn, where it is necessary that the end point of the ith curve,
is identical to the initial point of the i + 1th curve. If negative curve numbers are used, the
corresponding curve is used in reversed direction.
If degfd=k is given, the kth degree of freedom is plotted; otherwise the first one is plotted.
The option arc_scales=(smin,smax) defines the lower and upper bound of the arc length.
If this option is not used, the arc length starts with the value 0 and the thus computed arc
length is plotted as ”x”-coordinate.

3D plots:

3D PLOT Vi makes a three-dimensional plot with hidden lines of a function defined on a two-
dimensional mesh.

LINDIREC indicates whether the picture is build of one set of lines (1) or of two orthogonal
sets (2).
The default value is 2.

NSTEP=n indicates how many grid lines are used for the 3D-plot. n is equal to the number
of lines per cell minus one. A cell has width dx defines by

Npoint = (
a

dx
+ 1)(

b

dx
+ 1) (5.4.7)

in which a and b are the smallest rectangle sides parallel to the x and y axis that wholly
contain the region. This is perfect for a rectangle with equidistant steps.

BLOCK MODE = m defines in which mode the picture is made. Possible values for m
are:

1. sheet mode. This mode sees both sides of the function surface. It requires a bit more
work than block mode and is only guaranteed on convex regions. On non-convex
regions it may or may not work, depending on the geometry and viewing angle.

2. block mode. This mode only sees the upper side of the function and displays it as
if it were cast in concrete. That is, at the boundary of the region, lines are drawn
to the ground, that hide the lower side of the function surface. In order to make
this work properly the function is lifted if its lowest value is negative. If all function
values are non-negative, nothing is changed. Block mode works well in all types of
geometries.

UM Plot commands August 2004 5.4.4

intersect angle=a defines the orientation of the primary intersection lines. The default
value is 0◦.

ground value=g is only used in block mode. All function values at the boundary are con-
nected to this value.
If fmin is the smallest function value, take care that ground value ≤ fmin.
If ground value > 0 a value is calculated.
If fmin > 0: ground value = 0.
If fmin ≤ 0: ground value = fmin.

TRANSPARENT indicates that the plot is not a hidden line plot but a type of transparent
plot. In this case not all options are available.

3D COLOURED PLOT Vi makes a three-dimensional plot with colored faces of a function
defined on a two-dimensional mesh. This possibility may be used only on a display. The
three-dimensional surface is plotted from infinity towards the viewer, and because of that,
a hidden line (surface) picture arises automatically. The color of the surfaces indicate their
distance with respect to the viewer. On a black and white screen, this option produces a
classical hidden line plot, however, due to the fact that all faces are plotted and filled with
a color (or black) this option is much faster than the standard hidden line procedure. As a
consequence, 3D COLOURED PLOT can not be used on a plotter. For a plot you need a
hard-copy unit.

The position of the viewer may be given by EYE POINT, the position to which the user looks
is given by PROJECTION POINT. See PLOT PARAMETERS. By changing these parameter
the observer is able to view of the picture from different angles.

Mesh plots:

PLOT MESH is used to plot a mesh. With the option SKIP ELEMENT GROUPS (g1, g2,...)
the element groups g1, g2,... are excluded from plotting. The brackets around (g1, g2,...) are
essential.
With the option renumbered nodes, the renumbered nodal point numbers are plotted in stead
of the standard nodal point numbers.

PLOT COLOURED MESH is used to plot a mesh with colors.
The use of this option is actually meant for 3D.
Plotting of a 3D mesh using colors is a lot cheaper than without colors, since it paints all
elements at the outer surfaces from behind to the front. This means that it is not necessary
to compute hidden lines.
This option is not suited for plotting on paper, but only to a screen, for example by sepview.

PLOT Vj MESH is used to plot a 2D mesh corresponding to the intersection of a 3D mesh with
a plane, defined by COMPUTE Vj = INTERSECTION Vi, PLANE(ax+by+cz=d). In this
case there is only one element group and no renumbering takes place.

PLOT CURVES is used to plot the curves in the mesh. These curves are defined by the user
during the mesh generation.

PLOT Vj CURVES is used to plot the curves in the 2D mesh corresponding to the intersection
of a 3D mesh with a plane, defined by COMPUTE Vj = INTERSECTION Vi,
PLANE(ax+by+cz=d). These curves are created by the intersection program and define
the outer boundary of the intersection.

PLOT POINTS is used to plot the user points in the mesh. These user points are defined by the
user during the mesh generation.

User plot commands:

The user plot commands offer the user the possibility to add extra information to the standard

UM Plot commands August 2004 5.4.5

SEPRAN plots. These commands can only be used in combination with the commands OPEN
PLOT and CLOSE PLOT. A typical application is:

OPEN PLOT

PLOT CONTOUR V0

PLOT TEXT, TEXT = ’.......’, ORIGIN = (o_x , o_y) [,plot parameters]

PLOT BOX_TEXT, TEXT = ’.......’, ORIGIN = (o_x , o_y) [,plot parameters]

CLOSE PLOT

PLOT TEXT gives the user the possibility to plot a text anywhere in the picture, provided this
command has been preceded by an OPEN PLOT command and at least one of the standard
SEPRAN plot commands. The command must be succeeded by (if necessary) extra plot
commands and finally the command CLOSE PLOT. PLOT TEXT may never be given before
a SEPRAN plot command is given. The plot parameters TEXT = ’text to be plotted ’ and
ORIGIN = (ox, oy) are mandatory. The height of the letters is defined by the parameter
text_size (Default: 0.25 cm). The origin must be given in user co-ordinates unless the
option plot_coordinates is used in which case absolute plot coordinates in centimeters are
used. The size of the plot is usually 25 × 20 cm.

PLOT BOX TEXT gives the user the possibility to plot a text in the little box below the picture.
This box is only plotted if the option plot_box is is used. So this command is also only
used in an OPEN PLOT ... CLOSE PLOT environment. The origin is given in centimeters,
with respect to the small block of size 25 × 5 cm.

PLOT POLYGON gives the user the possibility to plot a polygon anywhere in the picture. This
command is subject to the same restrictions as the command PLOT TEXT. Combinations
of OPEN PLOT, CLOSE PLOT, several SEPRAN plot commands and several USER plot
commands (like PLOT TEXT and PLOT POLYGON) are allowed. The polygon to be plotted
is defined by the data coordinates((x1, y1), (x2, y2), . . . , (xn, yn)). This defines a polygon
from x1, y1 to x2, y2 , . . . , until xn, yn, where n is at least 2. If a closed polygon should be
plotted, it is necessary to make the first and last point identical. The co-ordinates must be
given in user co-ordinates. The brackets in the data statement coordinates are essential and
may not be omitted.
If the user wants to use absolute coordinates (in centimeters) instead of user coordinates, he
should use the option: plot_coordinates.

Other plot commands:

PLOT FIELD makes a two-dimensional plot of (electric) field lines. PSTART=(x, y) defines the
co-ordinates of the starting or end point. In that case the option FROM defines that the point
PSTART is the initial point and TOWARDS that it is the end point. If both are omitted, the
field line is computed in both directions. If PSTART is not given, FLUX = f , must be given.
f defines the flux-cut between two points on consecutive field lines. In that case FROM means
that the field lines starting on (a part of) the boundary are calculated. TOWARDS means
that the field lines ending on (a part of) the boundary are calculated and both omitted means
that either one is chosen depending on the direction of the electric field in the first point of
(a part of) the boundary. With BNDPART the part of the boundary between user points Pj
and Pk is defined as the part of the boundary where field lines must start or end.

If PLOT FIELD is used, it is necessary that the dielectric constant ε is stored as first coef-
ficient (see 9.17). For that reason the command PLOT FIELD must be preceded by FILL
COEFFICIENTS in order to fill the first coefficient ε.

PLOT TRACK computes and plots a particle trace in a velocity field.
The following subkeywords may be used:

TMAX indicates the end time for the tracing of particles.

UM Plot commands August 2004 5.4.6

NMARK indicates the number of markers to be placed along a track.
Markers are positioned at time intervals TMAX/NMARK.

PSTART = ... defines the starting points of the particle trajectories.

MESH means that not only the trajectories are plotted, but also the mesh.

PRINT TRACK prints the co-ordinates of the trajectories to the standard output file.

NVIEW defines the type of parallel projection in the three-dimensional case.
Possible values are:

1. projection on (x,z) plane from y = ∞
2. projection on (y,z) plane from z = ∞
3. projection on (x,z) plane from y = −∞
4. projection on (y,z) plane from z = −∞

TSTEP PRINT = ∆t means that the trajectories are printed to the standard output file,
regardless of the presence of the command PRINT TRACK. The trajectories are only printed
for the values of t equal to 0, ∆t, 2∆t, ... TMAX.

VALUES = (Vi, Vj,) means that not only the trajectories are printed, but that also
the values of the vectors Vi, Vj, ... are computed in the corresponding points by inter-
polation. These values are also printed.
The use of this subkeyword makes the command PRINT TRACK superfluous.
If this subkeyword is used in combination with TSTEP_PRINT = t, the corresponding
time steps are used, otherwise the time step is the arbitrary result of the computation
of the particle trajectories.

TYPE TIME INTEGRATION = t defines the type of time integration applied to com-
pute the trajectories.
Possible values:

heun The explicit second order Heun method is applied.

runge kutta The explicit fourth order Runge Kutta method is applied.

trapezoid The implicit second order trapezoid rule is applied.

Default value: heun

EPS TIME STEP = ε defines the accuracy that is used to implicitly defining the time
step.
A smaller value of ε may result in more accurate results.
Default value: ε = 10−2

For an example of the use of PLOT TRACK, see the manual Standard Problems, Section 7.1.1.

Special plot commands:

OPEN PLOT is a necessary command if the user wants to plot more than picture in one plot.
All plot commands after this statement are plotted in the same plot until s CLOSE PLOT
is given. OPEN PLOT may be used to plot several SEPRAN plot commands or to provide
SEPRAN plots with extra information, for example by using PLOT TEXT and/or PLOT
POLYGON. So in this way it is for example possible to get a contour plot and a vector plot
in one picture.

CLOSE PLOT is necessary to close the plot opened by OPEN PLOT.

PLOT IDENTIFICATION may be used to provide all succeeding plots with the same IDEN-
TIFICATION. This command must always be given together with the data command:
TEXT = ’...’. This text is plotted on each succeeding picture until a new PLOT IDENTIFI-
CATION command is read. To suppress the effect of PLOT IDENTIFICATION, use a blank
text: ’ ’. The position of the start of the plot identification must be given by the user by the
function ORIGIN (ox, oy). In this special case the ORIGIN is given in centimeters counted
from the origin of the plot.

UM Plot commands August 2004 5.4.7

Plot parameters

The following plot parameters may be used at the place formally indicated by [,plot parameters]:

angle = alpha

axis

bold

boundaries

colour = c

contract

curve_colour = i

dir_rotate = i

elements

equidistant_grid, distance = (dx, dy, dz)

eye point = (x_e, y_e, z_e)

factor = f

height = h

inner

istep_colour

istep_symbol

length = l

lev_text_size = l

mark

maxcolour = m_2

mincolour = m_1

ncolour = n

negpos_levels

nneglev = n

noaxis

nobold

noboundaries

nocontract

node

noelements

noinner

nomark

nonode

nonumber

noplot_legenda

noplot_scales

norotate

nposlev = n

number

number format = (n_x, m_x, n_y, m_y)

num_rotations = n

num_text_size = t

one_picture

pict i of n

plot_box

plot_coordinates

plot_legenda

plot_rows

plot_scales

reference = refval

region = (xmin, xmax, ymin, ymax)

rotate

UM Plot commands August 2004 5.4.8

rounded_levels

scales = (x_under , x_upper , y_under , y_upper)

start_surface = (si to sj)

steps = (stepx, stepy)

symbol = s

text = ’ ’

text_levels = ’ ’

text_size = t

textx = ’ ’

texty = ’ ’

type_func = f

type_scales = t

volumes = (Vi, Vj, ...)

xscale = x

xy_angle = a

user_coordinates

yfact = y

yscale = y

zscale = z

These options may be separated by commas.

angle = α This parameter gives the angle under which the observer sees the plot.
0 ≤ α ≤ 360

axis This parameter is used to indicate that the plot must be provided with an axis with scale. It
makes only sense for those pictures that do not plot axis themselves, i.e. all pictures except
those indicated by PLOT FUNCTION type commands. If an OPEN PLOT command is
given, the axis are plotted only once.

bold indicates that outer boundaries to be plotted are plotted by double lines. bold may be
suppressed by nobold. Default: nobold.

boundaries is used in combination with 3D COLOURED PLOT. It indicates that the boundaries
of each face must be plotted in the standard color. For example on a black and white terminal,
the combination boundaries and a black color gives a classical hidden line plot. Boundaries
may be suppressed by noboundaries. Default: boundaries.

colour = c Defines the color number to be used for line plotting.

contract is used in combination with PLOT MESH. It indicates that the elements are contracted
by a factor of .8 before plotting. As a result all common boundaries of elements are plotted
twice. contract may be suppressed by nocontract. Default: nocontract.

curve colour = i can only be combined with a contour plot or a colored level plot in R3.
If this option is used the visible curves are plotted in the contour plot with colour sequence
number i (1 ≤ i ≤ 100).

dir rotate = i is only used in combination with the plotting of a three-dimensional mesh and the
subkeyword num_rotations.
It defines in which direction the rotations of the mesh must be carried out.
Possible values:

1. Rotation in x-y plane (z is fixed)

2. Rotation in z-x plane (y is fixed)

3. Rotation in y-z plane (x is fixed)

Default value: 1

UM Plot commands August 2004 5.4.9

element indicates that during the plotting of the mesh also the element numbers are plotted.
element may be suppressed by noelement. Default: noelement.

equidistant grid is only available for print or plot commands that are defined on the whole region,
not for the boundary.
When this command is used, the solution is interpolated to an equidistant grid defined by
(xmin,xmax) × (ymin,ymax) × (zmin,zmax) and step size (dx,dy,dz).
The interpolated function is printed or plotted.
Hence in this case both the options REGION = (xmin, xmax, ymin, ymax, zmin, zmax)

and DISTANCE = (dx, dy, dz) are obligatory.

eye point = (xe, ye, ze) defines the point where the observer is positioned.
This point is only used in combination with the option 3D COLOURED PLOT. The default
value is (0,-10,0).

factor = f defines a multiplication factor. In the case of PLOT VECTOR it defines the multipli-
cation factor of each vector before plotting.
In the case of a function plot, the function is multiplied by f .
Default f=1 in the case of a function plot and automatically scaling in the case of a vector
plot. If factor = 0 (default value), this factor is automatically computed, otherwise the length
of each vector is multiplied by f before plotting. For the length of the vectors, the physical
units are used, where the unit length is made equal to the geometrical unit length as indicated
by the co-ordinates.

height = h gives the height of the texts to be plotted by commands involving TEXT = ’...’ in
centimeters. In the case of 3D PLOT height gives the height of the picture.

inner indicates that for plots where the boundary of the region is plotted, not only the outer
boundaries are plotted, but also the inner boundaries. inner may be suppressed by noinner.
Default noinner.

istep colour = n makes only sense in combination with the option one_picture. If n > 0 each
function to be plotted gets a new colour. The colour sequence number is defined as n × i,
with i the function sequence number.
Default value 0, meaning that all functions get the same colour.

istep symbol = n makes only sense in combination with the option one_picture. If n > 0 each
function to be plotted gets a new symbol. The symbol sequence number is defined as n × i,
with i the function sequence number.
Default value 0, meaning that all functions get the same symbol (or none).

length = l gives the length of the plot in centimeters. Instead of length also plotfm may be used.
The default length is machine dependent but usual values are 20 cm or 15 cm.

lev text size = l defines the size of the Levels text.

mark indicates that during the plotting of the mesh also the node points are marked with a star.
mark may be suppressed by nomark. Default: nomark.

maxcolour = m2 gives the last value to be used in the colour table for a specific plot. The default
value is mincolour + ncolour.

mincolour = m1 gives the first value to be used in the colour table for a specific plot. The default
value is 1.

ncolour = n This parameter defines the number of colors that is used in the colored plots. In fact
this has the same meaning as nlevel = n, and both may be interchanged without having any
influence. If both are given the first one read is used.
The default value is 20 for colored levels, and 10 for plotted lines.

UM Plot commands August 2004 5.4.10

negpos levels makes sense for contour plots only. If used the range for negative values and the
range for positive values are considered separately. The number of levels for the positive and
the negative range are the same except when nneglev and nposlev are given explicitly.

nneglev must be used in combination with negpos levels. It defines the number of levels in the
negative range.
Default value: 10

noaxis suppresses the option axis.

nobold suppresses the option bold.

noboundaries suppresses the option boundaries.

nocontract suppresses the option contract.

noelement suppresses the option element.

node indicates that during the plotting of the mesh also the node numbers are plotted. node may
be suppressed by nonode. Default: nonode.

noinner suppresses the option inner.

nomark suppresses the option mark.

nonode suppresses the option node.

noplot legenda suppresses the option plot legenda.

noplot scales suppresses the option plot scales.

nonumber suppresses the option number.
This means for example that the numbers corresponding to the contour lines are skipped.

norotate means that the picture is not rotated.
Default: depending on the size of the picture.

nposlev must be used in combination with negpos levels. It defines the number of levels in the
positive range.
Default value: 10

number makes only sense in combination with PLOT CURVES or PLOT POINTS. It indicates
that the curves and user points must be provided with numbers. The default is nonumber.
If contour lines are plotted, the option number indicates that the contour lines must be sup-
plied with a number. Hence in that case nonumber is used to suppress the labels corresponding
to the contours. In combination with PLOT CONTOUR the default is number.

number format = (nx,mx, ny,my) defines the number of digits of the numbers to
be printed along the axis, where nx, ny define the number of digits in front of the decimal
point (zero means floating format) and mx,my the number of digits behind the decimal point.
Default: if scales is given (0,2,0,2) otherwise computed by the program.

num rotations = n is only used if a three-dimensional mesh is plotted.
It defines the number of plots that are made of the mesh by rotating over 360◦ / num rotations.
Hence when num rotations = 1, only one plot is made and this keyword has no effect.
The direction of the rotation is defined by the keyword dir_rotate.
Default value: 1

num text size = t defines the size of the numbers in the numbers in the contour legend.

one picture makes only sense if a function plot is made for various time steps. In that case all
functions are plotted in the same picture for all the time levels. If omitted each function is
plotted in a different picture.

UM Plot commands August 2004 5.4.11

pict = i of n May be used in combination with the records PLOT FUNCTION, PLOT VELOC-
ITY PROFILE, or TIME HISTORY PLOT. If this statement is used, more than one one-
dimensional plot is made in one picture with axes. Statements of this type must be placed
consecutively, without other type of statements between. The number i must be given in
increasing order from 1 to n. n gives the number of curves to be plotted in one picture.

For example the syntax in the case of n = 3 should be:

PLOT FUNCTION Vk1, ... , pict 1 of 3
PLOT FUNCTION Vk2, ... , pict 2 of 3
PLOT FUNCTION Vk3, ... , pict 3 of 3

plot box If this option is given, the picture is enclosed by a box. Also a small box as sketched
in Figure 16.2.1 of the Programmers Guide Section 16.2 is plotted below this box. The large
box has dimensions 25 × 20 cm, the small box 25 × 5 cm. The small box may be used to
plot extra information.

plot coordinates is used in combination with special commands like plot text and plot polygon.
If used, the coordinates that are given (like the origin) are not in user coordinates but in ab-
solute plot coordinates (centimeters). The size of the plot is usually 25 × 20 cm.

plot legenda It ensures the plotting of the legenda and also the plot of the standard text below a
picture.
plot legenda is the default value, hence actually only noplot legenda is a useful option.

plot rows This option is only active in combination with plot mesh.
The mesh must be three dimensional.
The result of this option is that first a row of elements is created, either by the explicit option
start_surface = (si to sj) or by finding a set of points as far as possible from the view
point.
Then all elements containing this start set is plotted.
In the next step all neighbor nodes not yet considered are used as starting set. All elements
corresponding to it. that not have been plotted before are now plotted. This process is
repeated until all elements have been plotted. So actually the mesh is plotted layer by layer.
This is typically meant as inspection tool.

plot scales If this option is used in combination with a plot, the value of the x and y-scales and
in case of a vector plot the scaling factor for the vector length are plotted.
plot scales is the default value, hence actually only noplot scales is a useful option

reference = refval is used to define a reference value for the 3D plot of a function. This reference
value defines the reference value for the z-height. If reference is not given, the maximal function
value is used as reference value.

region = (xmin, xmax, ymin, ymax) is used to define a cut of a two-dimensional
region.

rotate means that the picture is rotated over an angle of 90◦.

rounded levels makes only sense in combination with contour plots. If used the contour levels
are rounded to ”nice” values.

scales = (xunder, xupper, yunder, yupper) define the range of the scales along the axis of a
one-dimensional plot, See Figure 5.4.1. (Default: computed by the program).

start surface = (Si to Sj) is used in combination with plot_rows. It is meant to define the
starting row of points.

steps = (stepx, stepy) defines the number of steps to be used along the axis.
(default: (10,10))

UM Plot commands August 2004 5.4.12

x under x upper

y under

y upper

Figure 5.4.1: Definition of xunder etc.

symbol = s defines the number of the symbol to be used for plotting a one-dimensional function
(installation dependent).

text = ’ ’ defines a text to be plotted. For the commands PLOT IDENTIFICATION and
PLOT TEXT, this is the text as described before. For the other SEPRAN plot commands,
except the commands corresponding to the PLOT FUNCTION type, this text is always
plotted at the bottom of the picture. Use of this option is independent of OPEN PLOT and
CLOSE PLOT. If OPEN PLOT is given the text is plotted only once.

text levels = ’ ’ defines the text to be plotted above the legenda in case of a contour plot or
a colored levels plot.
If omitted, the default value LEVELS is used.

text size = t defines the size of a text to be plotted in centimeters. Default value 0.25 cm.

textx = ’ ’, texty = ’ ’ define the texts to be plotted along the axes (default x
and y). The part between the quotes is used as text.

type func = f defines the type of function that must be used to compute a vector as function of
another vector.
Possible values

log the function is a logarithm with base 10

type scales = t defines the type of scaling that must be used along the axis in a function plot.
Possible value for t are:

linlin means that linear scales are used along the x and y-axis.

loglin means that a logarithmic (base 10) scale is used along the x-axis and a linear scale
along the y-axis.

linlog means that a logarithmic (base 10) scale is used along the y-axis and a linear scale
along the x-axis.

loglog means that logarithmic (base 10) scales are used along the x and y-axis.

Default value: linlin

UM Plot commands August 2004 5.4.13

user coordinates is used in combination with special commands like plot text and plot polygon.
If used, the coordinates that are given (like the origin) are not in absolute coordinates but in
user coordinates. Since this is the default, this option is superfluous.

volumes = (Vi, Vj, ...) may be used in combination with the plotting of a 3D mesh. In that
case only the volumes mentioned are plotted.

xscale Scale factor of x-axis. Default value 1
This parameter is only used in the case of a function plot. Scaling along the y-axis must be
done with factor.

xy angle = a angle φ of projected y-axis with respect to x-axis. (10 < φ < 170)
Default value 60◦.
This parameter is only used in the case of 3D PLOT.

yfact = y Scale factor; all y-coordinates are multiplied by y before plotting the mesh. y 6= 1
should be used when the co-ordinates in x and y direction are of different scales, and hence
the picture becomes too small. Default value: 1.
y < 0 defines the absolute height of the picture to be | y | cm.

yscale Scale factor of y-axis. Default value 0.5
This parameter is only used in the case of 3D PLOT.

zscale Scale factor of z-axis.
Default value 1.
This parameter is only used in the case of 3D PLOT.

The plot parameters defined in a plot record are only valid for that specific plot record. They
overwrite defaults locally. Parameters defined by the DEFINE plot parameters command are used
for all records.

Colour table

The numbers in the colour table define the colors to be used for the plotting. Which colors are
connected with these numbers depends on your local installation.
The default colour table is defined by the numbers 1, 2, 3,. . .
By the command DEFINE COLOUR TABLE = (C1, C2, C3, . . .) the user may connect new numbers
to the colors 1, 2, 3 etc.

UM Commands for time-dependence August 2004 5.5.1

5.5 Special commands for time-dependent problems with respect to
program SEPPOST”

The general input for the program SEPPOST is described in 5.2. This paragraph is devoted to the
available time commands.

The syntax of the time commands is:
Options are indicated between the square brackets [and].

TIME = t0
TIME = (t0, t1)
TIME = (t0, t1, istep)
TIME HISTORY [(t0, t1)] print min Vi
TIME HISTORY [(t0, t1)] print max Vi
TIME HISTORY [(t0, t1)] print min abs (Vi)
TIME HISTORY [(t0, t1)] print max abs (Vi)
TIME HISTORY [(t0, t1)] print point(x,y,z) Vi [,degfd=k]
TIME HISTORY [(t0, t1)] print position value = c Vi [,degfd=k]
TIME HISTORY [(t0, t1)] plot min Vi
TIME HISTORY [(t0, t1)] plot max Vi
TIME HISTORY [(t0, t1)] plot min abs (Vi)
TIME HISTORY [(t0, t1)] plot max abs (Vi)
TIME HISTORY [(t0, t1)] plot point(x,y,z) Vi [,degfd=k] TIME HISTORY

[(t0, t1)] plot position value = c Vi [,degfd=k]

TIME = (t0, t1, istep) is meant for time-dependent problems. All commands after this COM-
MAND are carried out for the actual times t0 to t1 with integer steps istep. If t0 and /or t1
do not coincide with times at which the solution is actually computed, the times closest to t0
and t1 are chosen. If t1 is omitted only t = t0 is used. istep gives the number of time steps
minus one between succeeding times (default 1).

TIME HISTORY (t0, t1) makes a time history of the quantity from time t0 to t1. If (t0, t1) is
omitted, the complete time interval is used.

plot / print min/max Vi plots or prints the minimum, maximum value of Vi respectively,
abs(Vi) does the same for the absolute value of Vi.

plot / print point (x,y,z) Vi makes a time history of the value of Vi in point (x,y,z). At this
moment the node closest to (x,y,z) is used instead of the point itself.

plot / print position value = c Vi is a special command. It assumes that vi is the result of an
intersection of a line with a 2D mesh. The position of the coordinate along this line, where
the function reaches the value c is plotted or printed as function of time.

UM Examples November 1995 6.1.1

6 Some examples of complete SEPRAN runs

6.1 Introduction

In this chapter we shall treat some examples of problems that may be solved by SEPRAN. All
these examples require only knowledge of the SEPRAN Users Manual and with respect to the
standard elements sometimes a little bit of the manual Standard Problems. No information of the
Programmers Guide is required.
Most of the examples treated have a strict artificial character, they are meant to explain the
structure of SEPRAN sessions more clearly, rather than solving actual problems. More realistic
problems may be found in the manual Standard Problems.
This chapter is subdivided into the following main sections.

Section 6.2 treats the solution of simple elliptic problems with only one degree of freedom. Both
the use of structure and of user written elements is dealt with.

Section 6.3 deals with the solution of some simple non-linear equations.

Section 6.4 is devoted to the solution of some time-dependent problems and how to use the input
block time integration

UM Examples of elliptic problems July 1999 6.2.1

6.2 Examples of elliptic equations with one degree of freedom per point

In this section we treat some examples of (artificial) elliptic problems to show some of the possibil-
ities to solve these equations.
The following examples will be treated:

6.2.1 An example of a simple potential problem.
This example shows how a simple artificial potential problem may be solved by SEPRAN. No
special input is required, nor is the structure of the program defined by the user.

6.2.2 An example of a simple potential problem with a user defined structure.
This example is exactly the same as the one in 6.2.1, however in this case the user defines the
structure of the program himself.

6.2.3 An example of a simple potential problem with a user defined element subroutine.
This example is exactly the same as the one in 6.2.1, however in this case the user uses his
own element subroutine.

6.2.4 An example of a simple potential problem with a refinement of the mesh.
This example is exactly the same as the one in Section 7.1 of the SEPRAN INTRODUCTION.
Extra compared to the introduction is that the mesh is refined after the solution is computed
and the solution is also computed at the refined mesh. The difference between both solutions
is computed and printed.

6.2.5 An example of how to compute derived quantities and integrals in combination with a simple
potential problem
This example is in fact identical to the one in Section 6.2.1, but as an extra it is shown how the
user may compute derived quantities like the gradient and how integrals may be computed.

6.2.6 An example of how to use periodical boundary conditions in R2

6.2.7 An example of how to use periodical boundary conditions in R3

6.2.8 An example of the manipulation of scalars
This example shows how one can manipulate scalars and use them as coefficients for the
differential equation. Besides that it treats the importance of the compatibility condition, in
case one wants to solve a singular problem.

UM Example of potential problem January 2013 6.2.1.1

6.2.1 An example of a simple potential problem

In this section we will consider the solution of a simple Laplacian equation defined on a unit square
by SEPRAN.
To get this example into your local directory give the command:

sepgetex examu621

To run the example use:

sepmesh examu621.msh

sepcomp examu621.prb

seppost examu621.pst

jsepview sepplot.001

You may combine sepgetex and running by using:

sepexam examu621

This example is meant to demonstrate the most simple case of a SEPRAN program. No special
options are used.
Consider the Laplace equation

∆T = 0 (6.2.1.1)

with ∆ the Laplacian operator. We assume that the region at which this equation is defined is the
unit square (0, 1)× (0, 1) defined in Figure 6.2.1.1

C
C

C

4

C

2Ω

1

3

Figure 6.2.1.1: Definition of region for simple Laplacian equation

We suppose that the boundary conditions are given by

C1, C2, C4 : T = 0 (6.2.1.2)

C3 : T = 1 (6.2.1.3)

The mesh for this problem may created by program SEPMESH.
A sample input file based upon the submesh generator quadrilateral and a 10 × 10 grid is the
following one using quadrilateral elements:

! examu621.msh

! mesh for the unit square (0,1) x (0,1)

!

UM Example of potential problem January 2013 6.2.1.2

! define some standard constants

constants

reals

width = 1 # width of the region

heigth = 1 # heigth of the region

integers

n = 10 # number of elements in horizontal direction

m = 10 # number of elements in vertical direction

shape_cur = 1 # type of elements along curves (linear)

shape_sur = 5 # type of elements in surfaces (bi-linear quadrilaterals)

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1=(0, 0)

p2=(width, 0)

p3=(width, heigth)

p4=(0, heigth)

#

curves

#

curves # See Users Manual Section 2.3

c1=line shape_cur (p1,p2,nelm=n)

c2=line shape_cur (p2,p3,nelm=m)

c3=line shape_cur (p3,p4,nelm=n)

c4=line shape_cur (p4,p1,nelm=m)

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1=quadrilateral shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

See Users Manual Section 2.2

end

This problem can easily be solved by program sepcomp. Since no function subroutines are required
the standard version of sepcomp may be utilized.
Sepcomp requires input from the standard input file. To solve this problem elements of type 800
are used as described in the manual Standard problems Section 3.1.1. The following sample input
file is sufficient to solve the problem.
The system of equations is solved by an iterative solver (Conjugate gradients) and for that reason
the matrix must be stored as a compact matrix.

examu621.prb

#

problem file for the simple Laplacian problem as described

in the SEPRAN Users Manual Section 6.2.1

#

To run this file use:

sepcomp temperature.prb

UM Example of potential problem January 2013 6.2.1.3

#

Define some general constants

#

constants

vector_names

temperature

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1 = (type=800) # Type number for Poisson equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves (c1 to c4) # all boundaries c1 to c4

end

#

Define the structure of the large matrix

See Users Manual Section 3.2.4

#

matrix

storage_method = compact, symmetric # symmetric matrix, stored as compact one

hence an iterative method is used

end

#

Define non-zero essential boundary conditions

See Users Manual Section 3.2.5

#

essential boundary conditions

curves (c3) value = 1 # At C3 T=1, at all other boundaries we

have T=0, which does not require input

end

#

The coefficients for the differential equation

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

#

coefficients

elgrp1

coef6 = 1 # a11 = 1

coef9 = coef 6 # a22 = 1

end

The solution may be visualized by seppost using the following sample input file:

* examu621.pst

* input for seppost

*

postprocessing

plot contour temperature

end

UM Potential problem with structure January 2013 6.2.2.1

6.2.2 An example of a simple potential problem with a user defined
structure

In this section we consider exactly the same problem as in Section 6.2.1, however, in this case we
use explicitly the block structure in the input file for sepcomp. This example shows the minimum
structure block necessary to solve a simple problem. Since the plot is made in the structure block,
seppost is superfluous.

To get this example into your local directory give the command:

sepgetex examu622

To run the example use:

sepmesh examu622.msh

sepcomp examu622.prb

jsepview sepplot.001

The sample input file for sepcomp becomes:

examu622.prb

#

problem file for the example as described

in the SEPRAN Users Manual Section 6-2-2

#

To run this file use:

sepcomp examu622.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

#

Define some general constants

#

constants

reals

mu = 1 # permeability

vector_names

temperature

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1 = (type=800) # Type number for Poisson equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves (c1 to c4) # all boundaries c1 to c4

end

#

UM Potential problem with structure January 2013 6.2.2.2

The coefficients for the differential equation

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

#

coefficients

elgrp1

coef6 = mu # a11 = mu

coef9 = coef 6 # a22 = mu

end

#

Structure block, defines sequence in which statements are carried out

See Users Manual Section 3.2.3

#

structure

Define the structure of the large matrix, Section 3.2.3.20

matrix_structure, storage_scheme = compact, symmetric

symmetric matrix, stored as compact one

hence an iterative method is used

Put essential boundary conditions into the solution vector, Section 3.2.3.1

prescribe_boundary_conditions temperature, curves (c3) value = 1

At C3 T=1, at all other boundaries we

have T=0, which does not require input

Solve problem, Section 3.2.3.3

solve_linear_system temperature

Make a contour plot of the solution, Section 3.2.3.13

plot_contour temperature

end

UM Potential problem with user defined elements January 2013 6.2.3.1

6.2.3 An example of a simple potential problem with a user defined
element subroutine

Consider the pure artificial problem

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 x ∈ (0, 1)× (0, 1)

ϕ = xy at boundaries 1, 2 and 4 (6.2.3.1)

∂ϕ

∂n
= x at boundary 3,

where the region is shown in Figure 6.2.3.1

C
C

C

4

C

2Ω

1

3

Figure 6.2.3.1: Definition of region for artificial problem

The weak formulation corresponding to 6.2.3.1 is:∫
Ω

∇T · ∇vdΩ =

∫
Γ3

TdΓ (6.2.3.2)

for all v satisfying v = 0 at boundaries C1, C2 and C4.
This leads to the Galerkin formulation:∑

j

Tj

∫
Ω

∇ϕj · ∇ϕidΩ =

∫
Γ3

ϕidΓ (6.2.3.3)

For the internal elements this leads to an element matrix with elements:

Se
k

ij =

∫
ek

∇ϕj · ∇ϕidΩ (6.2.3.4)

and a zero element vector.
For a linear triangle the gradient of the basis functions ϕi is a constant given by the following
sequence of formulae:

e11 = y2 − y3 e12 = x3 − x2

e21 = y3 − y1 e22 = x1 − x3

e31 = y1 − y2 e32 = x2 − x1

(6.2.3.5)

∆ = e31e12 − e32e11 (6.2.3.6)

UM Potential problem with user defined elements January 2013 6.2.3.2

∂ϕi
∂x

=
ei1
∆
,

∂ϕi
∂y

=
ei2
∆

(6.2.3.7)

The boundary condition ∂ϕ
∂n = 1 introduces a boundary integral

∫
Γ3

1ϕidΓ with ϕi a test function.

The element matrix for the boundary element is equal to zero, the element vector is given by

h

2

[
x1

x2

]
,

where xi is the x-coordinate of the ith point in the element.

To get this example into your local directory use:

sepgetex examu623

To run the various parts use:

sepmesh examu623.msh

jsepview sepplot.001

seplink examu623.f90

examu623 < examu623.prb

seppost examu623.pst

jsepview sepplot.001

The program sepmesh may be run with the following input file:

*examu623.msh

*

* Mesh for artificial test example (rectangle)

*

constants # See Users Manual Section 1.4

reals

width = 1 # width of the region

heigth = 1 # heigth of the region

integers

n = 10 # number of elements in horizontal direction

m = 10 # number of elements in vertical direction

shape_cur = 1 # type of elements along curves (linear)

shape_sur = 3 # type of elements in surfaces (linear triangles)

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1=(0, 0)

p2=(width, 0)

p3=(width, heigth)

p4=(0, heigth)

#

curves

#

curves # See Users Manual Section 2.3

UM Potential problem with user defined elements January 2013 6.2.3.3

c1=line shape_cur (p1,p2,nelm=n)

c2=line shape_cur (p2,p3,nelm=m)

c3=line shape_cur (p3,p4,nelm=n)

c4=line shape_cur (p4,p1,nelm=m)

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1=quadrilateral shape_sur (c1,c2,c3,c4)

plot # make a plot of the mesh

See Users Manual Section 2.2

end

The SEPRAN main program consists of a call to startsepcomp only, subroutine ELEM contains
the computation of element matrices and element vectors.
The following program may be used in this case:

program exam_um_623

call startsepcomp

end

! --- Subroutine ELEM for the computation of element matrix and element

! vectors

subroutine elem (coor, elemmt, elemvc, iuser, user, &

uold, matrix, vector, index1, index2)

implicit none

double precision coor(2,*), elemmt(*), elemvc(*), user(*), uold(*)

integer iuser(*), index1(*), index2(*)

logical matrix, vector

include ’SPCOMMON/cactl’

double precision x(3,2), e(3,2), gradphi(3,2), delta, h

integer i, j

!

! delta contains the Jacobian delta

!

! ij

! e contains the factors e (=e(i,j))

!

! gradphi contains the gradient of phi

! d phi i /dx = gradphi(i,1)

! d phi i /dy = gradphi(i,2)

!

! h Length of boundary element

!

! i,j General loop variables

!

! x contains the co-ordinates: x(i,1) = x x(i,2) = y

! i i

!

if (itype==1) then

UM Potential problem with user defined elements January 2013 6.2.3.4

! --- itype = 1, internal element (triangle)

! Store the co-ordinates into x

x(1:3,1) = coor(1,index1(1:3))

x(1:3,2) = coor(2,index1(1:3))

! --- compute the differences eij and the Jacobian delta

e(1,1) = x(2,2) - x(3,2)

e(2,1) = x(3,2) - x(1,2)

e(3,1) = x(1,2) - x(2,2)

e(1,2) = x(3,1) - x(2,1)

e(2,2) = x(1,1) - x(3,1)

e(3,2) = x(2,1) - x(1,1)

delta = e(3,1) * e(1,2) - e(3,2) * e(1,1)

! --- Fill the gradient of phi

gradphi = e / delta

! --- Fill element matrix

do j = 1, 3

do i = 1, 3

elemmt((i-1)*3+j) = 0.5d0 * abs(delta) * &

(gradphi(i,1)*gradphi(j,1) + gradphi(i,2)*gradphi(j,2))

end do ! i = 1, 3

end do ! j = 1, 3

! --- Set element vector equal to zero

elemvc(1:3) = 0d0

else

! --- itype = 2, boundary element

! Store the co-ordinates into x

x(1:2,1) = coor(1,index1(1:2))

x(1:2,2) = coor(2,index1(1:2))

h = sqrt ((x(2,1)-x(1,1))**2 + (x(2,2)-x(1,2))**2)

! --- Set element matrix equal to zero

elemmt(1:4) = 0d0

! --- Fill element vector

elemvc(1:2) = h * 0.5d0 * x(1:2,1)

UM Potential problem with user defined elements January 2013 6.2.3.5

end if

end

! Function FUNCBC is used to prescribe the boundary condition u = xy

function funcbc (ichoice, x, y, z)

implicit none

integer ichoice

double precision x, y, z, funcbc

if (ichoice==1) then

funcbc = x * y

end if

end

This program requires input from the standard input file.
The following input is suitable for the solution of the potential problem:

*examu623.prb

*

* Input file for main program: Test artificial example

*

#

Define some general constants

#

constants

vector_names

potential

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1 = (type=1) # User element itype = 1

natbouncond # Defines type for natural boundary conditions

bngrp1 = (type=2)

bounelements # Defines position of natural boundary conditions

belm1 = curves (c3)

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves (c1 to c2)

curves (c4)

end

* The matrix is symmetrical positive definite

* A direct solver will be used

UM Potential problem with user defined elements January 2013 6.2.3.6

matrix

symmetric

end

*

* Define non-zero essential boundary conditions

*

essential boundary conditions

curves (c1,c2), (func=1)

curves (c4), (func=1)

end

Program seppost allows us to print and plot the solution. It requires input from the standard input
file.
If, for example, we want to print the solution, make a contour plot, a 3D plot and a separate plot
of the function at boundary c3 then the following input file may be used:

*examu623.pst

postprocessing

print potential

plot contour potential (yfact=0.5)

plot boundary function potential, curves = (c3)

3d plot potential, angle = 135

end

UM Potential problem with refinement January 2013 6.2.4.1

6.2.4 An example of a simple potential problem with a refinement of
the mesh

In this Section we consider the solution of the potential problem in the L-shaped region as treated
in Section 7.1 of the Introduction. First we consider the case that we refine the mesh one times.
This example is called potrefin and you can get it into your local directory by the command:

sepgetex potrefin

To run this example perform the following steps:

sepmesh potrefin.msh

view mesh for example by: jsepview sepplot.001

sepcomp potrefin.prb

seppost potrefin.pst

view plots for example by: jsepview sepplot.001

After that we consider the case of a mesh that is refined three times. That example is called
potrefin1 and you can get it into your local directory by the command:

sepgetex potrefin1

To run this example perform the following steps:

sepmesh potrefin1.msh

view mesh for example by: jsepview sepplot.001

seplink potrefin1

potrefin1 < potrefin1.prb

seppost potrefin1.pst

view plots for example by: jsepview sepplot.001

First we consider example potrefin.
We start with the same mesh as in the introduction, hence the mesh input file is a copy of that file.

!

! potrefin.msh

!

! Mesh file for example 6.2.4 in users manual

!

To run this file use:

sepmesh potrefin.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

integers

n = 5 # number of elements along short sides

m = 2*n # number of elements along long sides

shape_cur = 1 # linear line elements

shape_sur = 3 # linear triangles

reals

width = 2 # width of the region

heigth = 2 # heigth of the region

UM Potential problem with refinement January 2013 6.2.4.2

half_heigth = 1 # heigth of the lower part

upper_right = 1 # x-coordinate of upper part right-hand side

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1=(0,0)

p2=(width,0)

p3=(width, half_heigth)

p4=(upper_right, half_heigth)

p5=(upper_right, heigth)

p6=(0, heigth)

p7=(0, half_heigth)

#

curves

#

curves # See Users Manual Section 2.3

c1 = line shape_cur (p1,p2,nelm=m)

c2 = line shape_cur (p2,p3,nelm=n)

c3 = line shape_cur (p3,p4,nelm=m)

c4 = line shape_cur (p4,p5,nelm=m)

c5 = line shape_cur (p5,p6,nelm=n)

c6 = line shape_cur (p6,p7,nelm=n)

c7 = line shape_cur (p7,p1,nelm=n)

c8 = line shape_cur (p4,p7,nelm=m)

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1 = general shape_sur (c1,c2,c3,c8,c7)

s2 = general shape_sur (-c8,c4,c5,c6)

#

Couple each surface to a different element group in order to provide

different properties to the coefficients

#

meshsurf # See Users Manual Section 2.2

selm1 = s1

selm2 = s2

plot # make a plot of the mesh

See Users Manual Section 2.2

end

In program SEPCOMP we start by solving the linear problem, but once we have computed the
solution we refine the mesh 1 times. In this way we end up with two meshes: mesh 1, the original
mesh and mesh 2 the refined mesh. Next the problem is solved on the fine mesh.
In order to compare the accuracy of both solutions, the potential V1 at the fine mesh is first copied
to a new vector V2 and the vector V2 is interpolated to the coarse mesh. Next the vectors V1 and
V2 at the coarse mesh are compared, and the difference is printed. Finally the result at the fine

UM Potential problem with refinement January 2013 6.2.4.3

mesh is written together with the fine mesh. hence the results at the fine mesh will be plotted and
printed by SEPPOST.
Hence the program consists of the following steps:

Solve problem at coarse grid; store result in vector 1 (coarse grid)

Refine mesh

Solve problem at fine grid; store result in vector 1 (fine grid)

Copy vector 1 fine grid to vector 2 fine grid

Interpolate vector 2 to coarse grid

Compute the difference of both vectors at the coarse grid

Mark that vector 1 at the fine grid is another vector then vector 1 at the coarse grid, since each
vector has two sequence numbers: one indicating the vector sequence number and another indicating
the mesh sequence number. The input file for program SEPCOMP is given by:

!

! potrefin.prb

!

! Problem file for example 6.2.4 in users manual

!

constants

vector_names

potential

potential_ref

variables

difference ! norm of difference between 2 vectors

end

problem

types

elgrp1 = (type=800)

elgrp2 = (type=800)

essboundcond

curves (c1)

curves (c5)

end

!

! Define structure of main program

!

structure

Define structure of matrix

matrix_structure, storage_scheme=profile, symmetric

! The matrix is symmetrical, a direct solver will be used

First the problem is solved at a coarse grid

At this moment the mesh sequence number is 1

prescribe_boundary_conditions, potential, curves (c5), value=1

solve_linear_system, potential

next the mesh is refined

refine_mesh, mesh_out=2

plot_mesh

UM Potential problem with refinement January 2013 6.2.4.4

Now the mesh sequence number is set to 2

The problem is solved at the fine grid

prescribe_boundary_conditions, potential_ref, curves (c5), value=1

solve_linear_system, potential_ref

plot_contour potential_ref yfact=0.5

plot_coloured_levels potential_ref yfact=0.5

plot_3d potential_ref

plot_function potential_ref, curves = (c3),&

textx=’ x along curve 3’, texty=’potential’

In order to compare the results, the solution on the fine grid

is copied to the coarse grid

interpolate potential_ref, mesh_in=2, mesh_out=1

The difference at the coarse grid is computed and printed

The mesh sequence number is reset to 1

present_mesh = 1

difference = inf_norm(potential, potential_ref)

print difference, text=’difference between mesh 1 and mesh 2 is ’

The new mesh and solution are written for postprocessing purposes

The mesh sequence number is again set to 2

present_mesh = 2

write_mesh

output

end

!

! The coefficients for the differential equation

!

coefficients

elgrp1

coef 6 = (value=1)

coef 9 = (value=1)

elgrp2

coef 6 = (value=2)

coef 9 = (value=2)

end

!

! The matrix to be solved is positive definite

!

solve

positive definite

end

end_of_sepran_input

The potential at the fine mesh may be printed and plotted by program SEPPOST. In fact the same
input as in the Introduction may be used.
In this example we used the extra option to plot the mesh. The SEPPOST input file has the
following structure:

!

UM Potential problem with refinement January 2013 6.2.4.5

! potrefin.pst

!

! post file for example 6.2.4 in users manual

!

postprocessing

plot mesh

print potential_ref

plot identification, text=’Example of potential problem’, origin=(3,18)

open plot

plot contour potential_ref (yfact=0.5,plotfm=10)

plot text, text=’Contour plot potential’, origin = (0.4,-.2)

close plot

open plot

plot contour potential_ref (yfact=0.5),(levels=0.1,0.2,0.3,0.4)

plot text, text=’Contour plot potential, 4 levels given’//

origin=(0.4,-.2)

close plot

open plot

plot contour potential_ref (yfact=0.5,smoothing factor = 1)

plot text, text=’Contour plot potential, smoothing 1’//

origin = (0.4,-.2)

close plot

open plot

plot contour potential_ref (yfact=0.5,smoothing factor = 2)

plot text, text=’Contour plot potential, smoothing 2’//

origin = (.4,-.2)

close plot

open plot

plot coloured contour potential_ref (yfact=0.5)

plot text, text=’Contour plot potential’, origin = (.4,-.2)

close plot

plot boundary function potential_ref, curves = (c3),//

textx=’ x along curve 3’, texty=’potential’

plot boundary function potential_ref, curves = (c3),//

textx=’ x along curve 3’, texty=’potential’, symbol=3

plot boundary function potential_ref, curves = (c3),//

textx=’ x along curve 3’, texty=’potential’, symbol=14

open plot

3d plot potential_ref, angle = 135

plot text, text=’3D plot potential (angle 135 degrees)’//

origin = (.4,-.2)

close plot

end

Figure 6.2.4.1 shows the refined mesh.

UM Potential problem with refinement January 2013 6.2.4.6

Figure 6.2.4.1: Refined mesh for potential problem

In example potrefin1 the mesh is refined 3 times. To program this efficiently we use the while
loop in the structure block. The while is also able to perform a loop counting.
The program has the following structure:

Solve problem at coarse mesh and store result in vector 1

icount := 0

While icount < 3 do

icount := icount+1

Copy vector 1 to vector 2 at coarse mesh (1)

Refine mesh to mesh 2

Interpolate vector 2 to fine mesh (2)

Copy vector 2 to vector 1 at fine mesh (creates start vector)

Solve problem at fine mesh and store result in vector 1

Compute the difference between vectors 1 and 2 at fine mesh

Interchange the sequence numbers of both meshes so that for the

new computation 1 is again the coarse mesh

End_while

This all leads to the following input file:

!

! potrefin1.prb

!

! Problem file for example 6.2.4 in users manual

!

constants

vector_names

potential

UM Potential problem with refinement January 2013 6.2.4.7

potential_ref

variables

difference ! norm of difference between 2 vectors

icount = 0 ! counter

end

problem

types

elgrp1 = (type=800)

elgrp2 = (type=800)

essboundcond

curves (c1)

curves (c5)

end

!

! Define structure of main program

!

structure

Define structure of matrix

matrix_structure, storage_scheme=compact, symmetric

! The matrix is symmetrical, a direct solver will be used

First the problem is solved at a coarse grid

At this moment the mesh sequence number is 1

prescribe_boundary_conditions, potential, curves (c5), value=1

solve_linear_system, potential

Next a while loop is carried out, in which the mesh is refined 3 times

In subroutine USERBOOL the counting is performed

while (icount<3) do

the mesh is refined

From now on the present mesh is the fine mesh

potential_ref = potential

refine_mesh, mesh_out=2

icount = icount+1 ! raise icount

In order to compare the results, the solution on the coarse grid

is copied to vector potential_ref and this vector is interpolated

to the fine grid

interpolate potential_ref, mesh_in=1, mesh_out=2

vector potential_ref is copied to vector potential, since it is a good

starting value for the linear solver

potential_ref = potential

The problem is solved at the fine grid

UM Potential problem with refinement January 2013 6.2.4.8

prescribe_boundary_conditions, potential, curves (c5), value=1

solve_linear_system, potential

plot_contour potential_ref yfact=0.5

plot_coloured_levels potential_ref yfact=0.5

plot_3d potential_ref

plot_function potential_ref, curves = (c3),&

textx=’ x along curve 3’, texty=’potential’

The difference at the coarse grid is computed and printed

difference = norm_dif=3, vector1 = potential, vector2 = potential_ref

print difference, text=’difference between mesh 1 and mesh 2 is ’

In the next steps the roles of mesh 1 and mesh 2 are interchanged

Hence we are working with two meshes only

This implies that sequence number 1 refers to the present fine mesh

and sequence number 2 to the previous coarse mesh

The refine step at the start of the while loop puts the newly refined

mesh again in sequence number 2

interchange_mesh (1, 2)

end_while

The new mesh and solution are written for postprocessing purposes

present_mesh = 1

write_mesh

output

end

!

! The coefficients for the differential equation

!

coefficients

elgrp1

coef 6 = (value=1)

coef 9 = (value=1)

elgrp2

coef 6 = (value=2)

coef 9 = (value=2)

end

!

! The matrix to be solved is positive definite

!

solve

iteration_method=cg, accuracy=1d-4, start=old_solution, print_level=2

end

end_of_sepran_input

The post processing file is also identical to that of potrefin.

UM Potential problem with extras January 2013 6.2.5.1

6.2.5 An example of how to compute derived quantities and integrals
in combination with a simple potential problem

In this section we consider exactly the same problem as in Section 6.2.1. The user defined structure
as given in Section 6.2.2 will be used and it is shown how this structure cam be extended in order
to compute derived quantities like the gradient of the solution as well as some integrals.
The mesh input of Section 6.2.1 is used.
The starting point of the input for program SEPCOMP is the problem file defined in Section 6.2.2.
However, in this case we show how one can compute the following quantities:

• ∇T

•
∫
Ω

T (x)dΩ

•
∫
C3

T (x)dΩ

• The reaction force along a curve

According to the manual Standard Problems Section 3.1, the computation of the gradient of T may
be performed by the option derivative. The gradient is coupled to ICHELD=2.
The input block STRUCTURE must be extended with a command indicating that derivatives must
be computed and that these derivatives are stored in vector 2.

In order to compute the integral of the temperature T over the complete region the option integral
is required. According to the manual Standard Problems ICHELI must be set equal to 2 and a
function f must be defined by defining coefficients for the integral. These coefficients are stored in
input block COEFFICIENTS with sequence number 2. The input in this block is simple, since it
is only used to define the fourth coefficient (f) equal to 1. A separate command in the input block
STRUCTURE is necessary to activate the computation.

The integral of the temperature over curve C3 is computed by the command boundary integral in
the input block STRUCTURE.

To compute the reaction forces a separate call of derivative is required.
Mark that the reaction force is equal to the effect of a distributed flux ∂T

∂n in all nodes. This means

that in each node on the boundary we have a reaction force equal to
∫
Γ

∂T
∂nφidΓ, where φi is the

corresponding basis function for that node. In this example this means that the reaction force is
equal to ∂T

∂n multiplied by the element length.

The postprocessing is incorporated in the structure block.

So the input for program SEPCOMP has the following form:

examu625.prb

#

problem file for simple 2d Laplacian problem with computation of

derived quantities

See Users Manual Section 6.2.5

#

To run this file use:

sepcomp examu625.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

#

UM Potential problem with extras January 2013 6.2.5.2

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals # Define real parameters for the problem

kappa = 1 # diffusion parameter

vector_names # Define the names of all vectors that are to be used

temperature # Solution vector temperature (T)

gradient # Gradient of the temperature (grad T)

reaction_force

variables # Define the names of all scalars that are to be used

volint # Volume integral of temperature T

bounint # Boundary integral of temperature along curve

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # Essential boundary conditions on all boundaries

end

Define the coefficients for Laplacian equation

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrp1

coef6 = kappa # a11 = kappa

coef9 = coef 6 # a22 = kappa

end

Definition of coefficients for the volume integration

coefficients, sequence_number = 2

elgrp1

coef4 = 1 # f = 1

end

Define which linear solver must be used and what accuracy is required

In fact all these parameters are equal to the default values and so

this complete block may be omitted

See Users Manual Section 3.2.8

solve, sequence_number = 1

iteration_method = cg, accuracy = 1e-3

end

UM Potential problem with extras January 2013 6.2.5.3

Define the structure of the problem

In this part it is described how the problem must be solved

This part is superfluous, but if you want to solve a more sophisticated

problem this is a good start

#

structure # See Users Manual Section 3.2.3

Define the structure of the large matrix

matrix_structure storage_scheme=compact, symmetric ! symmetric compact matrix

Compute the temperature

First prescribe the essential boundary conditions

prescribe_boundary_conditions, temperature, curves(c3) value = 1

At C3 T=1, at all other boundaries we

have T=0, which does not require input

Next solve the system of equations

The sequence number seq_coef refers to the sequence number of the

input block coefficients and

the sequence number seq_solve refers to the sequence number of the

input block solve

solve_linear_system, temperature, seq_coef = 1, seq_solve=1

Compute the gradient of the temperature as a derivative and store in gradient

The sequence number seq_coef refers to the sequence number of the

input block coefficients. This is superfluous since it is the default

icheld = 2, indicates that the gradient must be computed

gradient = derivatives(temperature, icheld = 2, seq_coef = 1)

Plot the results

plot_contour temperature # make a contour plot of the temperature

plot_vector gradient # make a vector plot of the gradient

Compute the volume integral and the boundary integral and print both

The sequence number seq_coef refers to the sequence number of the

input block coefficients

icheli = 2 indicates that a function f times the temperature must be

integrated

volint = integral (temperature, icheli = 2, seq_coef = 2)

bounint = boundary_integral (temperature, ichint = 1, curves(c3))

print volint, text = ’integral of temperature over volume’

print bounint, text = ’integral of temperature over curve 3’

Print dT/dn along curve 1 by taking the normal component of the gradient

print gradient, curve = c1, normal_component

Compute the integrated flux dT/dn through curve 1 by computing reaction forces

along curves 1 to 4 and print

Mark that this flux is equal to the length of the element multiplied by dT/dn

UM Potential problem with extras January 2013 6.2.5.4

hence in this case exactly 0.1 dT/dn

reaction_force = derivatives (temperature, type_output = reaction_force &

curves (c1 to c4), seq_coef = 1)

print reaction_force, curve = c1

Write the results to a file

Since no extra information is used, we have omitted an input block

output

end

end_of_sepran_input

UM Periodical boundary conditions (2D) January 2013 6.2.6.1

6.2.6 An example of how to use periodical boundary conditions in R2

In this section we give an example of how periodical boundary conditions must be used in R2.
To get this example into your local directory give the command:

sepgetex periodic2d

As example we consider a very simple temperature problem defined on a unit square (0, 1)× (0, 1).
Figure 6.2.6.1 shows the definition of the curves. At the upper side (curve C21 = C4+C5) the

C C

C

CC

C

1 2

3

45

6

Figure 6.2.6.1: Definition of curves for 2D periodical example

temperature is given by T = x (0 ≤ x ≤ 0.5), T = 1 − x (0.5 ≤ x ≤ 1) At the lower side (curve
C20 = C1+C2) the temperature is equal to 0. At the left-hand side (curve C6) and the right-hand
side (curve C3) we have periodical boundary conditions.
The mesh input is given by the following file periodic2d.msh.

*

* periodic2d.msh

* Mesh for example with 2d periodic boundary conditions

*

constants

integers

n_half = 10

m = 8

reals

x_low = 0

x_upp = 1

x_mid = 0.5

y_low = 0

y_upp = 1

end

mesh2d

points

p1=(x_low, y_low)

p2=(x_mid, y_low)

UM Periodical boundary conditions (2D) January 2013 6.2.6.2

p3=(x_upp, y_low)

p4=(x_upp, y_upp)

p5=(x_mid, y_upp)

p6=(x_low, y_upp)

curves

c1 = line1(p1,p2,nelm= n_half)

c2 = line1(p2,p3,nelm= n_half)

c3 = line1(p3,p4,nelm= m)

c4 = line1(p4,p5,nelm= n_half)

c5 = line1(p5,p6,nelm= n_half)

c6 = line1(p6,p1,nelm= m)

c20 = curves(c1,c2)

c21 = curves(c4,c5)

surfaces

s1 = rectangle5 (c20,c3,c21,c6)

plot

end

To create the mesh give the command:

sepmesh periodic2d.msh

In the problem file it is also necessary to define the periodical boundary conditions. This is done
by using type number -1 for the connection elements (element group 2).
Since the boundary conditions depend on space, it is necessary to supply a user written function
subroutine FUNCBC. This is done in the following program (file periodic2d.f):

program periodic2d

call startsepcomp

end

function funcbc (ichois, x, y, z)

implicit none

integer ichois

double precision x, y, z, funcbc

if (ichois==1) then

! --- Curve c4: T = 1-x

funcbc = 1d0 - x

else

! --- Curve c5: T = x

funcbc = x

end if

end

This program must be linked by seplink:

seplink periodic2d

The corresponding input file periodic2d.prb is given by:

UM Periodical boundary conditions (2D) January 2013 6.2.6.3

*

* periodic2d.prb

*

* Example of periodical boundary conditions in 2D

*

#

Define some general constants

#

constants # See Users Manual Section 1.4

vector_names

potential

end

*

* Problem definition

*

problem

types

elgrp1 = (type=800) # Standard laplacian equation

periodical_boundary_conditions

curves(c3, -c6)

essboundcond

curves(c20) # lower side

curves(c21) # upper side

end

! Define the structure of the main program

structure

matrix_structure symmetric

prescribe_boundary_conditions potential, curves(c4), (func=1) # T = x

prescribe_boundary_conditions potential, curves(c5), (func=2) # T = 1-x

solve_linear_system potential

print potential

plot_contour potential

plot_colored_levels potential

end

*

* The coefficients for the differential equation

*

coefficients

elgrp1

coef 6 = (value=1) # Coefficient a_11

coef 9 = (value=1) # Coefficient a_22

end

*

* The matrix to be solved is positive definite

*

solve

positive definite

end

end_of_sepran_input

To run the program with input use:

periodic2d < periodic2d.prb

UM Periodical boundary conditions (2D) January 2013 6.2.6.4

Figure 6.2.6.2 shows the isotherms computed in this example and Figure 6.2.6.3 the corresponding
colour plot.

1

2

2

3

3
3

4

5

6

7

8

9

10

Figure 6.2.6.2: Isotherms in 2D periodical example

UM Periodical boundary conditions (2D) January 2013 6.2.6.5

Figure 6.2.6.3: Temperature levels in 2D periodical example

UM Periodical boundary conditions (3D) January 2013 6.2.7.1

6.2.7 An example of how to use periodical boundary conditions in R3

In this section we give an example of how periodical boundary conditions must be used in R3.
To get this example into your local directory give the command:

sepgetex periodic3d

As example we consider the natural extension of the 2D temperature problem defined in Section
6.2.6. As region we define a unit brick (0, 1) × (0, 1) × (0, 1). Figure 6.2.7.1 shows the definition
of the curves. The surfaces have the same numbering as in Section 2.5.1, i.e. the lower face S1

1 2

3
45 6

7
8

9

10

C

C

C

C

CC

C

C
C

C C

C
C

C

1

2

3

C4

5
6

78

9 20

10

1121

12 22

Figure 6.2.7.1: Definition of curves for 3D periodical example

is defined by the curves C1, C2, C3 and C4. The front face S2 by the curves C1, C6, -C9 and
-C5. The left-hand face S3 by the curves C2, C7, -C10 and -C6. The back face S4 by the curves
-C3, C7, C11 and -C8. The right-hand face S5 by the curves -C4, C8, C121 and -C5. The upper
surface S10 consists of two subfaces S6 and S7. The reason to this is the incorporation of the
essential boundary conditions. At the upper face (surface S10 = S6+S7) the temperature is given
by T = x (0 ≤ x ≤ 0.5), T = 1− x (0.5 ≤ x ≤ 1) At the lower surface (face S1) and the surfaces
S3 and S5 the temperature is equal to 0. At the front surface (S2) and the back surface (S4) we
have periodical boundary conditions.
The mesh input is given by the following file periodic3d.msh.

*

* periodic3d.msh

* Mesh for example with 3d periodic boundary conditions

*

constants

integers

n = 10 # number of elements in x-direction

n_half = 5 # half number of elements in x-direction

m = 8 # number of elements in y-direction

k = 6 # number of elements in z-direction

edge_1 = 1 # sequence number of 1-st edge (numbering of 2.5.1)

edge_2 = 2 # sequence number of 2-st edge (numbering of 2.5.1)

edge_3 = 3 # sequence number of 3-st edge (numbering of 2.5.1)

UM Periodical boundary conditions (3D) January 2013 6.2.7.2

edge_4 = 4 # sequence number of 4-st edge (numbering of 2.5.1)

edge_5 = 5 # sequence number of 5-st edge (numbering of 2.5.1)

edge_6 = 6 # sequence number of 6-st edge (numbering of 2.5.1)

edge_7 = 7 # sequence number of 7-st edge (numbering of 2.5.1)

edge_8 = 8 # sequence number of 8-st edge (numbering of 2.5.1)

edge_9 = 30 # sequence number of 9-st edge (numbering of 2.5.1)

edge_10= 10 # sequence number of 10-st edge (numbering of 2.5.1)

edge_11= 31 # sequence number of 11-st edge (numbering of 2.5.1)

edge_12= 12 # sequence number of 12-st edge (numbering of 2.5.1)

face_1 = 1 # sequence number of 1-st face (numbering of 2.5.1)

face_2 = 2 # sequence number of 2-st face (numbering of 2.5.1)

face_3 = 3 # sequence number of 3-st face (numbering of 2.5.1)

face_4 = 4 # sequence number of 4-st face (numbering of 2.5.1)

face_5 = 5 # sequence number of 5-st face (numbering of 2.5.1)

face_6 = 10 # sequence number of 6-st face (numbering of 2.5.1)

reals

x_low = 0 # Co-ordinates in x, y and z-direction

x_upp = 1

x_mid = 0.5

y_low = 0

y_upp = 1

z_low = 0

z_upp = 1

end

mesh3d

points

p1 =(x_low, y_low, z_low)

p2 =(x_upp, y_low, z_low)

p3 =(x_upp, y_upp, z_low)

p4 =(x_low, y_upp, z_low)

p5 =(x_low, y_low, z_upp)

p6 =(x_upp, y_low, z_upp)

p7 =(x_upp, y_upp, z_upp)

p8 =(x_low, y_upp, z_upp)

p9 =(x_mid, y_low, z_upp)

p10=(x_mid, y_upp, z_upp)

curves

c edge_1 = line1(p1,p2,nelm= n)

c edge_2 = line1(p2,p3,nelm= m)

c edge_3 = line1(p3,p4,nelm= n)

c edge_4 = line1(p4,p1,nelm= m)

c edge_5 = line1(p1,p5,nelm= k)

c edge_6 = translate c edge_5 (p2,p6)

c edge_7 = translate c edge_5 (p3,p7)

c edge_8 = translate c edge_5 (p4,p8)

c9 = line1(p5,p9,nelm= n_half)

c20 = line1(p9,p6,nelm= n_half)

c edge_9 = curves(c9,c20)

c edge_10= translate c edge_2 (p6,p7)

c11 = line1(p7,p10,nelm= n_half)

c21 = line1(p10,p8,nelm= n_half)

c edge_11= curves(c11,c21)

c edge_12= translate c edge_4 (p8,p5)

c22 = line1(p9,p10,nelm= m)

surfaces

UM Periodical boundary conditions (3D) January 2013 6.2.7.3

s face_1 = rectangle5 (c edge_1, c edge_2 , c edge_3 , c edge_4)

s face_2 = rectangle5 (c edge_1, c edge_6 ,-c edge_9 ,-c edge_5)

s face_3 = rectangle5 (c edge_2, c edge_7 ,-c edge_10,-c edge_6)

s face_4 = rectangle5 (-c edge_3, c edge_7 , c edge_11,-c edge_8)

s face_5 = rectangle5 (-c edge_4, c edge_8 , c edge_12,-c edge_5)

s6 = rectangle5 (c9, c22, c21, c edge_12)

s7 = rectangle5 (c20, c edge_10, c11,-c22)

s face_6 = ordered surfaces ((s6, s7))

volumes

v1 = brick13 (s face_1, s face_2, s face_3, s face_4, s face_5,&

s face_6)

plot, eyepoint = (-5, -5, -5)

end

To create the mesh give the command:

sepmesh periodic3d.msh

The mesh produced by sepmesh is plotted in Figure 6.2.7.2.
In the problem file it is also necessary to define the periodical boundary conditions. This is done

Figure 6.2.7.2: Mesh in 3D periodical example

by using type number -1 for the connection elements (element group 2).
Since the boundary conditions depend on space, it is necessary to supply a user written function
subroutine FUNCBC. This is done in the following program (file periodic3d.f):

program periodic3d

call startsepcomp

end

function funcbc (ichois, x, y, z)

UM Periodical boundary conditions (3D) January 2013 6.2.7.4

implicit none

integer ichois

double precision x, y, z, funcbc

if (ichois==1) then

! --- Surface S6: T = x

funcbc = x

else

! --- Surface S7: T = 1-x

funcbc = 1d0-x

end if

end

This program must be linked by seplink:

seplink periodic3d

The corresponding input file periodic3d.prb is given by:

*

* periodic3d.prb

*

* Example of periodical boundary conditions in 3D

*

#

Define some general constants

#

constants # See Users Manual Section 1.4

vector_names

potential

end

*

* Problem definition

*

problem

types

elgrp1 = (type=800) # Standard laplacian equation

periodical_boundary_conditions

surfaces(s2,s4)

essboundcond

surface(s1) # lower face

surface(s3) # right-hand side face

surface(s5) # left-hand side face

surface(s10) # upper face

end

! Define the structure of the main program

structure

UM Periodical boundary conditions (3D) January 2013 6.2.7.5

matrix_structure storage_scheme = compact, symmetric

prescribe_boundary_conditions potential, surface(s6), (func=1) # T = x

prescribe_boundary_conditions potential, surface(s7), (func=2) # T = 1-x

solve_linear_system potential

print potential, curve(c1 to c22)

plot_contour potential

plot_colored_levels potential

end

*

* The coefficients for the differential equation

*

coefficients

elgrp1

coef 6 = (value=1) # Coefficient a_11

coef 9 = (value=1) # Coefficient a_22

coef11 = (value=1) # Coefficient a_33

end

*

* The matrix is solved by the conjugate gradients method

*

solve

iteration_method = cg

end

end_of_sepran_input

To run the program with input use:

periodic3d < periodic3d.prb

The pictures produced by seppost are plotted in Figures 6.2.7.3 and 6.2.7.4.

UM Periodical boundary conditions (3D) January 2013 6.2.7.6

1
2

3
4

5
6

7
8

9
10

Figure 6.2.7.3: Isotherms in 3D periodical example

Figure 6.2.7.4: Colored temperature levels in 3D periodical example

UM sensor January 2013 6.2.8.1

6.2.8 An example of the manipulation of scalars

In this section we show how one can manipulate scalars.
In fact it concerns a very simplified model of 3D sensor model of microtomography.
To get this example into your local directory give the command:

sepgetex sensor

To run this example use:

sepmesh sensor.msh

jsepview sepplot.001

secomp sensor.prb

jsepview sepplot.001

As example we consider a pipe of height 2 and radius 1. The lower face of the pipe consists of one
electrode through which a current of 1 goes.
The upper face consists of two concentric disks. The inner disk has radius 0.5. The outer disk is the
electrode on the upper face and through it goes exactly the same current of 1. Figure 6.2.8.1 shows
the definition of the curves. The potential in the pipe satisfies the Laplacian equation: δV = 0.

1

2

3

4 5
6

7
8

9

10

11

Figure 6.2.8.1: Definition of curves for 3d sensor

On the electrodes the current density i is defined by ∂V
∂n = i, which is a natural boundary condition.

The value of i is equal to the current divided by the area of the corresponding electrode. Of course
the currents and hence the current densities have opposite signs. On the rest of the pipe there is
no current, hence we have a natural boundary condition.
The mesh input is given by the following file.

sensor.msh

#

mesh file for 3D sensor model of microtomography

See Users Manual Section 6.2.8

#

To run this file use:

sepmesh sensor.msh

UM sensor January 2013 6.2.8.2

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

radius = 1 # radius of cross section of pipe

inner_radius = 0.5 # inner radius of electrode

height = 2 # height of the pipe

end

#

Define the mesh

#

mesh3d # 3d mesh; see Users Manual Section 2.2

coarse(unit=0.25) # The concept of coarseness is used with a unit length

of 0.25

#

user points

#

points # See Users Manual Section 2.2

p1=(0,0, height) # centre of circles in upper face

pd2=(radius,0, height) # first point on outer circle of upper

face

pd3=(radius,120, height) # second point on outer circle of upper

face

pd4=(radius,240, height) # third point on outer circle of upper

face

pd5=(inner_radius,0, height) # first point on inner circle of upper

face

pd6=(inner_radius,120, height) # second point on inner circle of upper

face

pd7=(inner_radius,240, height) # third point on inner circle of upper

face

pd8=(radius,0,0) # point on outer circle of lower face

exactly below first point on upper face

#

curves

#

curves # See Users Manual Section 2.3

c1=carc1(p2,p3,p1) # First arc of outer circle of upper face

c2=carc1(p3,p4,p1) # Second arc of outer circle of upper face

c3=carc1(p4,p2,p1) # Third arc of outer circle of upper face

At least three curves are necessary to

define a complete circle in R^3

c4=curves(c1,c2,c3) # outer circle of upper face

c5=cline1(p2,p5) # Connection line between inner circle

and outer circle.

This line is necessary because general

is used and the boundary of general must

be closed

c6=carc1(p5,p6,p1) # First arc of inner circle of upper face

c7=carc1(p6,p7,p1) # Second arc of inner circle of upper face

c8=carc1(p7,p5,p1) # Third arc of inner circle of upper face

c9=curves(c6,c7,c8) # inner circle of upper face

UM sensor January 2013 6.2.8.3

c10=translate c4(p8) # outer circle of lower surface, is just a

translation of the outer circle of upper

face

c11=cline1(p2,p8) # generating curve for pipe surface

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1=general3(c4,c5,-c9,-c5) # region in upper face between inner and

outer circle. This defines the electrode

on the upper face

s2=general3(c9) # region in upper face enclosed by inner

circle

s3=surfaces(s2,s1) # Complete upper face

s4=translate s3(c10) # lower face is translation of upper face

s5=pipesurface3(c4,c10,c11) # pipe surface

#

volumes

#

volumes # See Users Manual Section 2.5

v1=pipe11(s3,s4,s5) # The complete pipe

plot, eyepoint=(4,4,4) # make a plot of the mesh

also a hidden line plot of the pipe

See Users Manual Section 2.2

end

Figure 6.2.8.2 shows the mesh created by sepmesh. The problem file in this case is special in

Figure 6.2.8.2: Mesh for 3d sensor

the sense that the current density must be computed by subdividing the current by the area of
the electrodes. This area must be computed first. The area is stored in a scalar (variable) and
the current in a constant. To compute the current density we have to divide the constant by a
scalar, which can only be done through the help of subroutine FUNCSCAL. The computed scalar
current density is used as coefficient for the natural boundary conditions.
At first sight it might seem as if one could compute the area analytically and hence compute the

UM sensor January 2013 6.2.8.4

current density before. However, in this problem we have an extra complication. We are solving the
Laplacian equation with natural boundary conditions. As a consequence the solution is fixed upon
an additive constant. If we use an iterative solver like conjugate gradients this is no problem and
there is no need to set the constant. However, it is necessary that the right-hand side corresponds
to correct space. The right-hand side must satisfy a so-called compatibility condition, which means
that the integral over the right-hand side must be equal to zero. Numerically this amounts to
saying that the sum of the elements of the right-hand side vector must be zero. Due to the fact
that the disk-like regions are not exact but approximated by piecewise straight lines the exact area
of the disks is not exactly equal to the area of the approximated disks. As a consequence the
analytically computed current density does not satisfy the compatibility constraint whereas the
numerical computed current density does.
It might look not so important to satisfy the compatibility constraint exactly, however, experiments
have shown that in that case the iterative solver does not converge. Only when the right-hand side
is compatible a fast convergence is possible.

The input file for the computational program is given by:

sensor.prb

#

problem file for 3D sensor model of microtomography

See Users Manual Section 6.2.8

#

To run this file use:

sepcomp sensor.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

Define some general constants

#

constants

reals

mu_1 = 0.001 # mu in volume V1

current_1 = 1 # current through surface s1 (i.e. electrode

in upper face)

current_2 = 1 # current through surface s4 (i.e. electrode

in lower face)

variables

currentdens_1 # Current density in surface s1, must be computed

currentdens_2 # Current density in surface s4, must be computed

area_1 # Area of surface s1, must be computed

area_2 # Area of surface s4, must be computed

vector_names

potential # Solution vector

electric_field # Derived quantity

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1 = (type=800) # A Laplacian equation is solved, see manual

Standard Problems Section 3.1

natboundcond # Natural boundary conditions are necessary to

UM sensor January 2013 6.2.8.5

define the current density

In this part the type of boundary conditions

is defined

bngrp1=(type=801) # Type 801 corresponds to the natural boundary

bngrp2=(type=801) # condition of type 800, see manual

Standard Problems Section 3.1

bounelements # Next the position of the boundary elements

must be given

belm1=surfaces(s1) # electrode in upper face (surface S1)

belm2=surfaces(s4) # electrode in lower face (surface S4)

end

Define the structure of the problem

In this part it is described how the problem must be solved

This is necessary because the area of the boundary must be determined

in order to compute the current density of each of the electrodes

#

structure # See Users Manual Section 3.2.3

Define the structure of the large matrix

matrix_structure storage_scheme=compact, symmetric ! symmetric compact matrix

Compute the area of surface S1 (electrode on upper face):

Store in scalar area_1

ichint = 9 means: do not integrate over solution

area_1 = boundary_integral (surfaces(s1), ichint = 9)

Compute the area of surface S4 (electrode on lower face):

Store in scalar area_2

area_2 = boundary_integral (surfaces(s4), ichint = 9)

Print both areas

print area_1, text = ’area of surface S3 is’

print area_2, text = ’area of surface S5 is’

Compute the current density by subdividing the current by the area

This can only be done in a function subroutine FUNCSCAL

currentdens_1 = current_1/area_1

currentdens_2 = -current_2/area_2

Print both computed current densities

print currentdens_1, text = ’current density in surface S1 is’

print currentdens_2, text = ’current density in surface S4 is’

solve the potential problem using the computed current densities as

coefficients

solve_linear_system potential

UM sensor January 2013 6.2.8.6

Compute the electric field

icheld = 6 defines the derivative as - A grad(phi),

where A is the diffusion matrix

electric_field = derivatives (potential, icheld=6)

Post processing:

print potential

plot_contour potential

plot_colored_levels potential

end

Define the coefficients for the problems (first iteration)

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1

coef 6=(value= mu_1) # alpha 11=mu(S1)

coef 9=coef 6 # alpha 22=alpha 11

coef 11=coef 6 # alpha 33=alpha 11

bngrp1 # first boundary group (upper electrode)

coef7= currentdens_1 # The current density has been computed in a

scalar

bngrp2 # second boundary group (lower electrode)

coef7= currentdens_2 # The current density has been computed in a

scalar

end

input for the linear solver

See Users Manual Section 3.2.8

solve

iteration_method=CG, preconditioning=mod_eisenstat, accuracy=1e-3&

print_level=2

end

end_of_sepran_input

Figure 6.2.8.3 shows the equi-potential lines computed in this example and Figure 6.2.8.4 the cor-
responding colour plot.

UM sensor January 2013 6.2.8.7

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

9

9

9

10

10

10

Figure 6.2.8.3: Equi-potential lines in
3d sensor

Figure 6.2.8.4: Colored potential levels
in 3D sensor

UM square sensor January 2013 6.2.9.1

6.2.9 An example of the use of the for loop

In this section we show how one can use a for loop in the structure block in combination with the
use of variables (scalars). The same example without for loop can be found in 6.2.10
In fact it concerns a very simplified model of a square 2D sensor model of electrical capacitance
tomography.
To get this example into your local directory give the command:

sepgetex squaresensor

To run this example use:

sepmesh squaresensor.msh

jsepview sepplot.001

sepcomp squaresensor.prb

jsepview sepplot.001

As example we consider a square region of size 16 × 16. On each side there are 2 electrodes of
length 14 at distance 1 of the vertex.
Figure 6.2.9.1 shows the definition of the region and the electrodes (fat). The electrodes are num-
bered 11 to 18. This is also the numbering used for the corresponding curves in the definition of
the mesh. The potential in the square satisfies the diffusion equation: div ε∇V = 0.

11 12

13

14

15 16

17

18

Figure 6.2.9.1: Definition of region and electrodes for square 2d sensor

On the electrodes the potential is given. This problem is a part of a so-called inverse problem, where
one tries to find the value of ε by doing some measurements for different values of the potential on
the electrodes.
It is the purpose of this exercise to put a zero potential on all electrodes, except one. In a loop over
all electrodes the potential at one of the electrodes is set equal to 1. For the inverse problem one is
interested in the so-called capacity of an electrode as function of the given boundary condition.
The capacity cij is defined as: cij =

∫
Ej

εV dΓ, where i refers to the electrode where the potential V

is equal to 1, and j refers to the jth electrode Ej over which the integral must be computed. Due
to symmetry, it is sufficient to compute cij only for j ≤ i.
The mesh input is given by the following file.

UM square sensor January 2013 6.2.9.2

squaresensor.msh

#

set warn off ! suppress warnings

Mesh for example sensor

#

Square grid with 8 electrodes

#

This example shows how to use the for loop in a structure block

See Users Manual Section 6.2.9

#

To run this file use:

sepmesh squaresensor.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

x_left = -16 # x-coordinate of left-hand side

x_right = 16 # x-coordinate of right-hand side

x_left_elec_1 = -15 # left x-coordinate of left electrode on

lower and upper side

x_right_elec_1 = -1 # right x-coordinate of left electrode on

lower and upper side

x_left_elec_2 = 1 # left x-coordinate of right electrode on

lower and upper side

x_right_elec_2 = 15 # right x-coordinate of right electrode on

lower and upper side

y_low = -16 # y-coordinate of lower side

y_top = 16 # y-coordinate of upper side

y_low_elec_1 = -15 # lower y-coordinate of lower electrode on

left and right side

y_top_elec_1 = -1 # upper y-coordinate of lower electrode on

left and right side

y_low_elec_2 = 1 # lower y-coordinate of upper electrode on

left and right side

y_top_elec_2 = 15 # upper y-coordinate of upper electrode on

left and right side

integers

nelm_elec = 14 # number of elements along an electrode

nelm_side = 1 # number of elements between electrode and

closest vertex of the square

nelm_between = 2 # number of elements between two electrodes

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1 = (x_left, y_low) # left-under vertex

UM square sensor January 2013 6.2.9.3

p2 = (x_right, y_low) # right-under vertex

p3 = (x_left, y_top) # left-upper vertex

p4 = (x_right, y_top) # right-upper vertex

p11 = (x_left_elec_1, y_low) # left point left electrode at bottom

p12 = (x_right_elec_1, y_low) # right point left electrode at bottom

p13 = (x_left_elec_2, y_low) # left point right electrode at bottom

p14 = (x_right_elec_2, y_low) # right point right electrode at bottom

p21 = (x_right, y_low_elec_1) # lowest point of lower electrode at

right-hand side

p22 = (x_right, y_top_elec_1) # highest point of lower electrode at

right-hand side

p23 = (x_right, y_low_elec_2) # lowest point of upper electrode at

right-hand side

p24 = (x_right, y_top_elec_2) # highest point of upper electrode at

right-hand side

p31 = (x_left_elec_1, y_top) # left point left electrode at top

p32 = (x_right_elec_1, y_top) # right point left electrode at top

p33 = (x_left_elec_2, y_top) # left point right electrode at top

p34 = (x_right_elec_2, y_top) # right point right electrode at top

p41 = (x_left, y_low_elec_1) # lowest point of lower electrode at

left-hand side

p42 = (x_left, y_top_elec_1) # highest point of lower electrode at

left-hand side

p43 = (x_left, y_low_elec_2) # lowest point of upper electrode at

left-hand side

p44 = (x_left, y_top_elec_2) # highest point of upper electrode at

left-hand side

#

curves

#

curves # See Users Manual Section 2.3

Four sides of square

c1 = curves(c21,c11,c22,c12,c23) # bottom line

c2 = curves(c31,c13,c32,c14,c33) # right-hand side

c3 = curves(c41,c15,c42,c16,c43) # top line

c4 = curves(c51,c17,c52,c18,c53) # left-hand side

electrodes on side 1

c11 = line1(p11,p12,nelm= nelm_elec) # left

c12 = line1(p13,p14,nelm= nelm_elec) # right

electrodes on side 2

c13 = line1(p21,p22,nelm= nelm_elec) # bottom

c14 = line1(p23,p24,nelm= nelm_elec) # top

electrodes on side 3

c15 = line1(p31,p32,nelm= nelm_elec) # left

c16 = line1(p33,p34,nelm= nelm_elec) # right

electrodes on side 4

UM square sensor January 2013 6.2.9.4

c17 = line1(p41,p42,nelm= nelm_elec) # bottom

c18 = line1(p43,p44,nelm= nelm_elec) # top

parts between electrodes on side 1

c21 = line1(p1,p11,nelm= nelm_side)

c22 = line1(p12,p13,nelm= nelm_between)

c23 = line1(p14,p2,nelm= nelm_side)

parts between electrodes on side 2

c31 = line1(p2,p21,nelm= nelm_side)

c32 = line1(p22,p23,nelm= nelm_between)

c33 = line1(p24,p4,nelm= nelm_side)

parts between electrodes on side 3

c41 = line1(p3,p31,nelm= nelm_side)

c42 = line1(p32,p33,nelm= nelm_between)

c43 = line1(p34,p4,nelm= nelm_side)

parts between electrodes on side 1

c51 = line1(p1,p41,nelm= nelm_side)

c52 = line1(p42,p43,nelm= nelm_between)

c53 = line1(p44,p3,nelm= nelm_side)

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1=rectangle5(c1,c2,-c3,-c4)

plot # make a plot of the mesh

See Users Manual Section 2.2

end

Figure 6.2.9.2 shows the curves and Figure 6.2.9.3 shows the mesh created by sepmesh. In the
problem file we define a loop over the boundary conditions (loop i) and a loop over the integrals
to be computed (loop j). The parameters i and j must be defined as variables in the input block
constants.
The best way to compute the integral in this case is to use the concept of reaction forces, since the
sum of the reaction forces over an electrode is exactly the integral we want.

The input file for the computational program is given by:

squaresensor.prb

#

set warn off ! suppress warnings

Problem for example sensor

#

Square grid with 8 electrodes

#

This example shows how to use the for loop in a structure block

UM square sensor January 2013 6.2.9.5

11

15

17

18

21 22

41 42

51

52

53

Figure 6.2.9.2: Curves for 2d square
sensor

Figure 6.2.9.3: Mesh for 2d square sen-
sor

See Users Manual Section 6.2.9

#

To run this file use:

sepcomp squaresensor.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

eps = 1 # diffusion parameter

variables

i # i parameter in loop

j # j parameter in loop

capacity # computed capacity

vector_names

potential

reaction_force

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=(type=800) # Type number for diffusion problem

See Standard problems Section 3.1

essboundcond # Define where essential boundary conditions are

given (not the value)

UM square sensor January 2013 6.2.9.6

See Users Manual Section 3.2.2

curves(c11 to c18) # Essential boundary conditions on all electrodes

end

Define the coefficients for the problems (first iteration)

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1

coef 6=(value= eps) # alpha 11=eps

coef 9=coef 6 # alpha 22=eps

end

Define the structure of the large matrix

See Users Manual Section 3.2.4

structure

Define the structure of the large matrix

matrix_structure symmetric, reaction_force ! symmetric matrix

print_text ’ i j capacity ’ # Heading for the output

Loop over i from 11 to 18, i.e. for all electrodes

for i = 11 to 18

for each i we use a different value of the boundary

conditions

The parameter i in the for-loop is used

create_vector potential, value = 0 ! clear potential

prescribe_boundary_conditions potential, curves(c i), value=1

Compute the potential as function of the boundary conditions

by solving a linear system of equations

solve_linear_system, potential, reaction_force = reaction_force

Loop over j from 11 to i, i.e. for all electrodes

i.e. for all electrodes with number not larger than i

for j = 11 to i

Compute the capacity by summing the reaction forces over the

electrodes

capacity = boundary_integral (reaction_force, curves = c j, ichint=8)

Print i, j and the computed capacity

print i, j, capacity

UM square sensor January 2013 6.2.9.7

end_for

end_for

post processing

plot_contour potential

plot_colored_levels potential

output

end

end_of_sepran_input

Figure 6.2.9.4 shows the equi-potential lines computed in this example and Figure 6.2.9.5 the cor-
responding color plot.

1 1

1

1

2

3
4

5
6

7
891011

Figure 6.2.9.4: Equi-potential lines in
square 2d sensor

Figure 6.2.9.5: Colored potential levels
in square 2D sensor

UM Example of capacities January 2013 6.2.10.1

6.2.10 An example of the computation of capacities

In this section we compute exactly the same problem as in Section 6.2.9.
The only difference is that instead of using the for loop, the option COMPUTE_CAPACITY in the
structure block is used, in combination with input concerning the CAPACITY.
To get this example into your local directory give the command:

sepgetex capacity

To run this example use:

sepmesh capacity.msh

jsepview sepplot.001

sepcomp capacity.prb

jsepview sepplot.001

Since the problem is exactly the same as in 6.2.9, only a different input file for sepcomp is used.

The input file for the computational program is given by:

capacity.prb

#

Problem for example sensor

#

Square grid with 8 electrodes

#

This example shows how to compute the capacities of the various electrodes

See Users Manual Section 6.2.10

#

To run this file use:

sepcomp capacity.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

Define some general constants

#

constants # See Users Manual Section 1.4

integers

sensor_first = 11 # curve number of first sensor

sensor_last = 18 # curve number of last sensor

all curves sensor_first to sensor_last

correspond to sensors

reals

eps = 1 # the permittivity of the medium

vector_names

potential # solution vector

reaction_force # help vector to store the reaction force

capacity_vector # Vector containing all capacities

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

UM Example of capacities January 2013 6.2.10.2

See Users Manual Section 3.2.2

elgrp1=(type=800) # Type number for diffusion problem

See Standard problems Section 3.1

essboundcond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c sensor_first to c sensor_last) # Essential boundary conditions

on all electrodes

end

Define the coefficients for the problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number=1

elgrp1

coef 6=(value= eps) # alpha 11=eps

coef 9=coef 6 # alpha 22=eps

end

Define the structure of the large matrix

See Users Manual Section 3.2.4

structure

Define the structure of the large matrix

matrix_structure, symmetric, reaction_force ! symmetric matrix

Store the essential boundary conditions into the potential vector

Only the zero bc’s have to be filled.

The boundary conditions 1 are filled in a loop over de electrodes

prescribe_boundary_conditions, potential # all are zero

Compute the vector of capacities

compute_capacity, capacity_vector

print capacity_vector

plot_contour potential

plot_colored_levels potential

end

Input for the computation of the capacity

See Users Manual Section 3.2.18

capacity, sequence_number=1

lin_solver = 1 # Defines the type of linear solver

This is the default value

seq_coef = 1 # Defines the coefficients (default value)

curve_begin = sensor_first # curve number of first sensor

curve_end = sensor_last # curve number of lasst sensor

solution_vector = potential # sequence number of solution vector

UM Example of capacities January 2013 6.2.10.3

reaction_vector = reaction_force # sequence number of reaction force

end

The results of this program are identical to the ones in Section 6.2.9.

UM Example of inverse problem January 2013 6.2.11.1

6.2.11 An example of the solution of an inverse problem

In this section we show how an inverse problem might be solved. For that purpose we take the
same problem as in Sections 6.2.10.
In this case, however, we assume that the permittivity is unknown. Instead of reading a vector of
measured values, which can be done by create_vector we create a capacity vector by choosing a
given permittivity field and try to reconstruct this field by solving the inverse problem. So this is
just an demonstration of how an inverse problem could be solved, not a real example.
To get this example into your local directory give the command:

sepgetex inversesensor

To run this example use:

sepmesh inversesensor.msh

jsepview sepplot.001

sepcomp inversesensor.prb

jsepview sepplot.001

The mesh that is used is exactly the same as in 6.2.9.
The problem definition is of course completely different.
First we start with a reference permittivity field that is equal to 0.9 in the whole domain, except
in element 1, where it gets the value 0.8.
Next the corresponding capacity vector is computed, in the same way as in Section 6.2.10. This
vector is used as given vector of measured values for the solution of the inverse problem.

The input file for the computational program is given by:

inversesensor.prb

#

set warn off ! suppress warnings

Problem for example inverse problem for the sensor

#

Square grid with 8 electrodes

#

This example shows how to solve an inverse problem

See Users Manual Section 6.2.11

#

To run this file use:

sepcomp inversesensor.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

Define some general constants

#

constants # See Users Manual Section 1.4

integers

sensor_first = 11 # curve number of first sensor

sensor_last = 18 # curve number of last sensor

all curves sensor_first to sensor_last

correspond to sensors

reals

delta_eps = 0.1 # Step for computation of sensitivity matrix

eps_ref = 1 # Reference value for permittivity used

UM Example of inverse problem January 2013 6.2.11.2

for computation of sensitivity matrix

regular_parm = 0.01 # Regularization parameter to be used

for computation of sensitivity matrix

eps = 0.9 # Value of the given permittivity field

This value will be changed in one element

eps_1 = 0.8 # Value of the given permittivity field

in element 1

vector_names

potential # solution vector

reaction_force # help vector to store the reaction force

capacity_vector # Vector containing all capacities

epsilon_vector # vector containing the permittivities

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=(type=800) # Type number for diffusion problem

See Standard problems Section 3.1

essboundcond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c sensor_first to c sensor_last) # Essential boundary conditions

on all electrodes

end

Define the coefficients for the problem (first for the reference problem)

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1

coef 6= old_solution epsilon_vector # alpha 11=eps

The given permittivity field is stored

in vector epsilon_vector

coef 9=coef 6 # alpha 22=eps

end

coefficients, sequence_number=2

elgrp1

coef 6= old_solution epsilon_vector # alpha 11=eps

The permittivity field is stored

in vector epsilon_vector

This vector changes during the computation

coef 9=coef 6 # alpha 22=eps

end

Define the structure of the main program

See Users Manual Section 3.2.4

structure

UM Example of inverse problem January 2013 6.2.11.3

Define the structure of the large matrix

matrix_structure symmetric, reaction_force ! symmetric compact matrix

Store the essential boundary conditions into the potential vector

prescribe_boundary_conditions, potential ! all are zero

Solve the reference problem to compute the vector of measured values

create_vector, epsilon_vector

compute_capacity, capacity_vector

print capacity_vector

Next solve inverse problem, using the just computed vector of

measured values as right-hand side

solve_inverse_problem, epsilon_vector

print epsilon_vector

post processing

plot_contour potential

plot_colored_levels potential

Make colored_levels plot of permeability vector

plot_colored_levels epsilon_vector

write result to output file

output

end

Create the reference vector of permittivities

See Users Manual Section 3.2.10

create

type = vector defined per element 1

value = eps # The reference value is set equal to eps

elements 1, value = eps_1 # In element 1 it gets the value eps_1

end

Input for the computation of the capacity

See Users Manual Section 3.2.18

capacity

lin_solver = 1 # Defines the type of linear solver

This is the default value

seq_coef = 1 # Defines the coefficients (default value)

curve_begin = sensor_first # curve number of first sensor

curve_end = sensor_last # curve number of last sensor

solution_vector = potential # sequence number of solution vector

reaction_vector = reaction_force # sequence number of reaction force

UM Example of inverse problem January 2013 6.2.11.4

end

Input for the inverse problem

See Users Manual Section 3.2.19

inverse_problem

lin_solver = 1 # Defines the type of linear solver

This is the default value

seq_coef = 2 # Defines the coefficients for the inverse

problem

curve_begin = sensor_first # curve number of first sensor

curve_end = sensor_last # curve number of last sensor

solution_vector = potential # sequence number of solution vector

reaction_vector = reaction_force # sequence number of reaction force

capacity_vector = capacity_vector # sequence number of capacity vector

This vector must contain the measured

values

epsilon_vector = epsilon_vector # sequence number of permittivity vector

This vector contains the result

of the computations at output

During the computations it is used to

store various values of the permittivity

element_group = 1 # The unknown medium corresponds to the

first element group (default)

method = capacity_simple # Type of solution method (default)

regular_parm = regular_parm # Regularization parameter

eps_ref = eps_ref # Reference permittivity

delta_eps = delta_eps # Step in permittivity

end

end_of_sepran_input

Figure 6.2.11.1 shows the equi-potential lines of the last potential computed in this example and
Figure 6.2.11.2 the corresponding color plot. Figure 6.2.11.3 shows the computed permittivity field.

In general the inverse problem is solved in combination with reading a file of data. In that case the
input file for program sepcomp is slightly different. Example inversesensorrd corresponds to that
case.
To get this example into your local directory give the command:

sepgetex inversesensorrd

To run this example use:

sepmesh inversesensorrd.msh

jsepview sepplot.001

sepcomp inversesensorrd.prb

jsepview sepplot.001

The corresponding input file has the following structure:

inversesensorrd.prb

The capacities are read from a file

#

UM Example of inverse problem January 2013 6.2.11.5

1 1

1
1

2

3
4

56

789
10

11

Figure 6.2.11.1: Equi-potential lines of
last computed potential

Figure 6.2.11.2: Colored potential lev-
els of last computed potential

set warn off ! suppress warnings

Problem for example inverse problem for the sensor

#

Square grid with 8 electrodes

#

This example shows how to solve an inverse problem

See Users Manual Section 6.2.11

#

To run this file use:

sepcomp inversesensor.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

Define some general constants

#

constants # See Users Manual Section 1.4

integers

sensor_first = 11 # curve number of first sensor

sensor_last = 18 # curve number of last sensor

all curves sensor_first to sensor_last

correspond to sensors

nelectrodes = 8 # Number of electrodes (18-11+1)

reals

delta_eps = 0.1 # Step for computation of sensitivity matrix

eps_ref = 1 # Reference value for permeability used

for computation of sensitivity matrix

regular_parm = 0.01 # Regularization parameter to be used

for computation of sensitivity matrix

vector_names

UM Example of inverse problem January 2013 6.2.11.6

Figure 6.2.11.3: Colored levels of permittivity field

potential # solution vector

reaction_force # help vector to store the reaction force

capacity_vector # Vector containing all capacities

epsilon_vector # vector containing the permeabilities

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=(type=800) # Type number for diffusion problem

See Standard problems Section 3.1

essboundcond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c sensor_first to c sensor_last) # Essential boundary conditions

on all electrodes

end

Define the coefficients for the problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1

coef 6= old_solution epsilon_vector # alpha 11=eps

The given permeability field is stored

in vector epsilon_vector

coef 9=coef 6 # alpha 22=eps

end

UM Example of inverse problem January 2013 6.2.11.7

Define the structure of the main program

See Users Manual Section 3.2.4

structure

Define the structure of the large matrix

matrix_structure symmetric, reaction_force ! symmetric compact matrix

Store the essential boundary conditions into the potential vector

prescribe_boundary_conditions, potential ! all are zero

Read the measured values

create_vector, capacity_vector

print capacity_vector

Next solve inverse problem, using the just read vector of

measured values as right-hand side

solve_inverse_problem, epsilon_vector

print epsilon_vector

post processing

plot_contour potential

plot_colored_levels potential

Make colored_levels plot of permeability vector

plot_colored_levels epsilon_vector

write result to output file

output

end

Create the reference vector of permeabilities

See Users Manual Section 3.2.10

create

type = capacity_vector, nelectrodes = nelectrodes # create a capacity

vector

file_capacity_values = ’capacity.file’ # Read the data from the file

capacity file

end

Input for the inverse problem

See Users Manual Section 3.2.19

inverse_problem

lin_solver = 1 # Defines the type of linear solver

UM Example of inverse problem January 2013 6.2.11.8

This is the default value

seq_coef = 1 # Defines the coefficients for the inverse

problem

curve_begin = sensor_first # curve number of first sensor

curve_end = sensor_last # curve number of last sensor

solution_vector = potential # sequence number of solution vector

reaction_vector = reaction_force # sequence number of reaction force

capacity_vector = capacity_vector # sequence number of capacity vector

This vector must contain the measured

values

epsilon_vector = epsilon_vector # sequence number of permeability vector

This vector contains the result

of the computations at output

During the computations it is used to

store various values of the permeability

element_group = 1 # The unknown medium corresponds to the

first element group (default)

method = capacity_simple # Type of solution method (default)

regular_parm = regular_parm # Regularization parameter

eps_ref = eps_ref # Reference permeability

delta_eps = delta_eps # Step in permeability

end

end_of_sepran_input

This input requires a user provided input file capacity.file. An example of such a file is:

28 #number of lines

1 2 7.84631E-01

1 3 9.90854E-02

1 4 5.36668E-02

1 5 5.41135E-02

1 6 4.53446E-02

1 7 1.71442E+00

1 8 9.90835E-02

2 3 1.79338E+00

2 4 9.90860E-02

2 5 4.53453E-02

2 6 5.41144E-02

2 7 9.90835E-02

2 8 5.36679E-02

3 4 7.84631E-01

3 5 5.36673E-02

3 6 9.90858E-02

3 7 5.41135E-02

3 8 4.53453E-02

4 5 9.90858E-02

4 6 1.79338E+00

4 7 4.53446E-02

4 8 5.41144E-02

5 6 7.84631E-01

5 7 9.90854E-02

5 8 1.79338E+00

6 7 5.36668E-02

6 8 9.90860E-02

7 8 7.84631E-01

UM Example of arrays in constants January 2000 6.2.12.1

6.2.12 An example of the use of arrays in the input block constants

In this section we will consider exactly the same problem as in Section 6.2.1. The only difference is
that we perform a loop over three different κ values. Although the solution is not dependent on the
actual value of κ, this demonstrates the use of arrays in the input block constants in combination
with a for loop.
To get this example into your local directory give the command:

sepgetex array_example

To run the example use:

sepmesh array_example.msh

sepcomp array_example.prb

seppost array_example.pst

sepview sepplot.001

You may combine sepgetex and running by using:

sepexam array_example

The input files for sepmesh and seppost for this example are exactly the same as in Section 6.2.1.
The only new part is the input file for program sepcomp, where an array is defined, a for loop is
carried out and a variable coefficient is used.

array_example.prb

#

problem file for example of arrays in block constants

See Users Manual Section 6.2.12

#

To run this file use:

sepcomp array_example.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

#

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa_array = 1, 10, 100 # array of diffusion parameters

vector_names

potential

variables

i # Loop variable

kappa # diffusion parameter

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

UM Example of arrays in constants January 2000 6.2.12.2

See Users Manual Section 3.2.2

elgrp1=800 # Type number for second order elliptic equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # Essential boundary conditions on all boundaries

end

Define the structure of the problem

In this part it is described how the problem must be solved

In this example a loop over the various kappa values is carried out

#

structure # See Users Manual Section 3.2.3

Loop over all kappa values

for i = 1 to 3

Prescribe the essential boundary conditions

prescribe_boundary_conditions, potential

Copy the value of kappa from the i^th position in kappa_array to kappa

This is necessary since only scalars may be used as coefficients

kappa = kappa_array(i)

Build and solve the system of linear equations

solve_linear_system, potential

Write the results to a file

output

end_for

end

Define the structure of the large matrix

See Users Manual Section 3.2.4

matrix

storage_method = compact, symmetric # Symmetrical compact matrix

So an iterative method will be applied

end

Define the essential boundary conditions

See Users Manual Section 3.2.5

essential boundary conditions

curves(c3) value = 1 # At C3 T=1, at all other boundaries we

have T=0, which does not require input

end

Define the coefficients for Laplacian equation

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1 (nparm=20) # The coefficients are defined by 20 parameters

coef6 = kappa # a11 = kappa, in this case it is a scalar

variable

UM Example of arrays in constants January 2000 6.2.12.3

coef9 = coef 6 # a22 = kappa

end

UM Examples of non-linear problems December 1995 6.3.1

6.3 Examples of non-linear problems

In this section we treat some examples of non-linear problems to show some of the possibilities to
solve these equations.
The following examples will be treated:

6.3.1 An example of a simple Navier-Stokes equation.
This example shows how a simple laminar incompressible bend flow may be computed by
SEPRAN. No special input is required, nor is the structure of the program defined by the
user.
As a demonstration of the concept of constants the mesh utilizes the input bock ”CON-
STANTS”.

6.3.2 An example of a simple Navier-Stokes problem with a user defined structure.
This example is exactly the same as the one in 6.3.1, however in this case the user defines the
structure of the program himself.

6.3.3 An example of a simple Navier-Stokes problem showing the use of the WHILE option in the
user defined structure.
This example is exactly the same as the one in 6.3.1, however in this case the concept of non-
linear equations is not used but instead the problem is solved as a series of linear equations.
Convergence is tested using the WHILE concept in the user defined structure.

UM Example of Navier-Stokes equation November 2008 6.3.1.1

6.3.1 An example of a simple Navier-Stokes problem

In this section we will consider the laminar flow of an incompressible fluid through a bend as
sketched in Figure 6.3.1.1.
In order to get the corresponding files into your local directory use:

sepgetex bend

To run the example use the following commands:

sepmesh bend.msh

sepview sepplot.001

sepcomp bend.prb

seppost bend.pst

sepview sepplot.001

1

2

3

4

5

6

7

8

Figure 6.3.1.1: Definition region of the 90 degree bend

The instream velocity at curve C1 is assumed to be a quadratic velocity profile.
The curved boundaries C9 and C10 are fixed walls with a no-slip condition and at the outflow
boundary C5, we do not impose boundary conditions. According to the Standard Problems Manual
(Chapter 6.8.1) this is equivalent to a zero stress condition, implying that the pressure at outflow
is equal to zero.
At the inflow and outflow of the bend straight pipes have been constructed in order to be able to
prescribe more or less fully developed flow.
In order to create the mesh program SEPMESH may be used.
First we consider the mesh input file bend1.msh (The comments are sufficiently self explaining):

bend.msh

#

mesh file for bend problem

See Users Manual Section 6.3.1

Examples Section 7.1.12

UM Example of Navier-Stokes equation November 2008 6.3.1.2

#

To run this file use:

sepmesh bend.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

r_in = 1 # inner radius of bend

r_out = 2 # outer radius of bend

width = 0 # width = r_out - r_in, see COMPCONS

h_in = 1 # length of inflow pipe

h_out = 1 # length of outflow pipe

x_2 = -r_in # right-hand x-coordinate of inlet

y_2 = -h_in # right-hand y-coordinate of inlet

x_9 = -r_out # left-hand x-coordinate of inlet

integers

nelm_width = 5 # Number of elements in the cross section

nelm_in = 3 # Number of elements in the length direction

of the inflow pipe

nelm_out = 3 # Number of elements in the length direction

of the outflow pipe

nelm_bend = 5 # Number of elements in the length direction

of the bend

shape_curve = 2 # Shape number of elements along curve

(2 is quadratic)

shape_surface = 4 # Shape number of elements in region

(4 is quadratic triangle)

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

user points

#

points

p1 = (0, 0) # Center of arcs

p2 = (x_2, y_2) # right-hand point of inlet

pd3 = (r_in, 180) # lower point of circle at inner bend

Use polar co-ordinates

pd4 = (r_in, 90) # upper point of circle at inner bend

Use polar co-ordinates

p5 = (h_out, r_in) # Point on outlet and inner bend

p6 = (h_out, r_out) # Point on outlet and outer bend

pd7 = (r_out, 90) # upper point of circle at outer bend

Use polar co-ordinates

pd8 = (r_out, 180) # lower point of circle at outer bend

Use polar co-ordinates

p9 = (x_9, y_2) # left-hand point of inlet

#

curves

#

UM Example of Navier-Stokes equation November 2008 6.3.1.3

curves # See Users Manual Section 2.3

c1 = line shape_curve(p9,p2,nelm= nelm_width) # inlet

c2 = line shape_curve(p2,p3,nelm= nelm_in) # lower part of inner

bend

c3 = arc shape_curve(p3,p4,-p1,nelm= nelm_bend) # circle part of inner

bend

c4 = line shape_curve(p4,p5,nelm= nelm_out) # upper part of inner

bend

c5 = line shape_curve(p5,p6,nelm= nelm_width) # outlet

c6 = line shape_curve(p6,p7,nelm= nelm_out) # upper part of outer

bend

c7 = arc shape_curve(p7,p8,p1,nelm= nelm_bend) # circle part of outer

bend

c8 = line shape_curve(p8,p9,nelm= nelm_in) # lower part of outer

bend

c9 = curves(c2,c3,c4) # inner bend

c10= curves(c6,c7,c8) # outer bend

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1 = rectangle shape_surface (c1,c9,c5,c10)

plot # make a plot of the mesh

See Users Manual Section 2.2

end

The flow problem is nonlinear and it is solved with the standard element of type 900 as described
in the manual Standard Problems Section 7.1.
The physical parameters are density ρ = 1, viscosity η = 0.01 and the penalty parameter ε = 10−6.
The inflow profile is parabolic with a maximum velocity of 1 m/sec, resulting in a Reynolds number
of 100.
sepcomp requires input from the standard input file describing the problem definition, the boundary
conditions and the non-linear solution process.
In the first iteration a Stokes problem is solved, the second iteration is based upon a Picard lin-
earization and for all other iterations a Newton linearization is used.
The input file bend.prb can be used for this example:

bend.prb

#

problem file for 2d bend problem

penalty function approach

problem is stationary and non-linear

See Users Manual Section 6.3.1

Examples Section 7.1.12

#

To run this file use:

sepcomp bend.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

#

set warn off ! suppress warnings

#

UM Example of Navier-Stokes equation November 2008 6.3.1.4

Define some general constants

#

constants # See Users Manual Section 1.4

reals

rho = 1 # density

eta = 0.01 # viscosity

vector_names

velocity

pressure

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=900 # Type number for Navier-Stokes, without swirl

6-point triangle

Approximation 7-point extended triangle

Penalty function method

See Standard problems Section 7.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1) # Inflow

curves(c9) # Inner bend (noslip)

curves(c10) # Outer bend (noslip)

All not prescribed boundary conditions

satisfy corresponding stress is zero

end

Define the structure of the large matrix

See Users Manual Section 3.2.4

matrix

Non-symmetrical profile matrix, So a direct method will be applied

end

Create start vector and put the essential boundary conditions into this

vector

See Users Manual Section 3.2.5

essential boundary conditions

curves(c1), degfd2, quadratic # The v-component of the velocity at

inflow is quadratic

end

Define the coefficients for the problems (first iteration)

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 7.1

coefficients

UM Example of Navier-Stokes equation November 2008 6.3.1.5

elgrp1 (nparm=20) # The coefficients are defined by 20 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = 1d-6 # 6: Penalty function parameter eps

coef7 = rho # 7: Density

coef12 = eta #12: Value of eta (viscosity)

end

Define the coefficients for the next iterations

See Users Manual Section 3.2.7

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 5: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 5: Type of linearization (2=Newton iteration)

end

input for non-linear solver

See Users Manual Section 3.2.9

nonlinear_equations

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

Define output, and compute pressure

output

v1 = icheld=7 # pressure

end

end_of_sepran_input

As usual postprocessing may be performed by SEPPOST.
We show the sample input file bend.pst:

bend.pst

Input file for postprocessing for channel problem

See Users Manual Section 6.3.1

Examples Section 7.1.12

#

#

To run this file use:

seppost bend.pst > bend.out

#

Reads the files meshoutput and sepcomp.out

#

UM Example of Navier-Stokes equation November 2008 6.3.1.6

postprocessing # See Users Manual Section 5.2

#

Print both vectors completely

print velocity

print pressure

compute the stream function

See Users Manual Section 5.2

store in stream_function

compute stream function velocity

Plot the results

See Users Manual Section 5.4

plot vector velocity # Vector plot of velocity

plot contour pressure # Contour plot of pressure

plot coloured contour pressure

plot contour stream_function # Contour plot of stream function

plot coloured contour stream_function

end

UM Example of Navier-Stokes equation with STRUCTURE November 2008 6.3.2.1

6.3.2 An example of a simple Navier-Stokes problem with a user defined
structure

In this section we will consider exactly the same problem as in Section 6.3.1.
In order to get the corresponding files into your local directory use:

sepgetex bend1

To run the example use the following commands:

sepmesh bend1.msh

sepview sepplot.001

sepcomp bend1.prb

seppost bend1.pst

sepview sepplot.001

The only difference is that we use explicitly the input block STRUCTURE to define the course of
the program.
Since the files bend1.msh and bend1.pst are exactly the same as in Section 6.3.1 we do not repeat
them here.

The file bend.prb however, is replaced by the file bend.prb:

*bend1.prb

set warn off ! suppress warnings

#

Define some general constants

#

constants # See Users Manual Section 1.4

vector_names

velocity

pressure

end

problem

Define type of elements

types

elgrp1=900 # Type number for Navier-Stokes, without swirl

6-point triangle

Approximation 7-point extended triangle

Penalty function method

Define where essential boundary conditions are present

essbouncond

curves(c1) # Inflow

curves(c9) # Inner boundary (noslip)

curves(c10) # Outer boundary (noslip)

end

* define type of matrix

matrix

Non-symmetrical profile matrix, So a direct method will be applied

end

Define the structure of the main program

structure

UM Example of Navier-Stokes equation with STRUCTURE November 2008 6.3.2.2

prescribe_boundary_conditions, velocity

solve_nonlinear_system velocity

print velocity

output

end

* Create start vector and put the essential boundary conditions into this

* vector

essential boundary conditions

value = 0 # First set vector equal to zero

Next fill all non-zero essential boundary conditions

curves(c1), degfd2, quadratic # The v-component of the velocity at

inflow is quadratic

end

* Define coefficients for the first iteration

coefficients

elgrp1 (nparm=20) # The coefficients are defined by 8 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = 1d-6 # 6: Penalty function parameter eps

coef7 = 1 # 7: Density

8: angular velocity = 0

9: body force in x-direction = 0

#10: body force in y-direction = 0

coef12 = 0.01 #12: Value of etha (viscosity)

end

* Define the coefficients for the next iterations

change coefficients, sequence_number = 1 # Input for iteration 2

elgrp1

icoef5 = 1 # 3: Type of linearization (1=Picard iteration)

end

change coefficients, sequence_number = 2 # Input for iteration 3

elgrp1

icoef5 = 2 # 3: Type of linearization (2=Newton iteration)

end

* Define the parameters for the non-linear solver

nonlinear_equations, sequence_number = 1

global_options, maxiter=10, accuracy=1d-4,print_level=1, lin_solver=1

equation 1

fill_coefficients 1

change_coefficients

at_iteration 2, sequence_number 1

at_iteration 3, sequence_number 2

end

UM Example of Navier-Stokes equation with STRUCTURE November 2008 6.3.2.3

* Define output, and compute pressure

output

v1 = icheld=7 # pressure

end

end_of_sepran_input

UM Example of Navier-Stokes equation with WHILE March 2000 6.3.3.1

6.3.3 An example of a simple Navier-Stokes problem showing the use
of the WHILE option in the user defined structure

In this section we will consider exactly the same problem as in Section 6.3.1.
The only difference is that we use explicitly the input block STRUCTURE in combination with the
WHILE concept to define the course of the program.
Since the files bend.msh and bend.pst are exactly the same as in Section 6.3.1 we do not repeat
them here.

In order to get the files into your local directory use:

sepgetex bend2

The file bend.prb however, is replaced by the file bend2.prb.
In this example we start with the solution of the Stokes equation as initial guess and then repeat
the iterations with Newton linearization until the difference between two succeeding iterations is
less than the required accuracy ε.
The norm of the difference of two succeeding iterations is stored in scalar 1, which gets the name
max differ in the input block CONSTANTS.
The WHILE statement requires a boolean expression.
The input file bend2.prb reads:

*bend2.prb

set warn off ! suppress warnings

constants

reals

eps = 1d-4 # Accuracy for non-linear iteration

variables

max_differ = 1 # Norm of difference between two succeeding

iterations

vector_names

velocity

vel_prev

pressure

end

problem

Define type of elements

types

elgrp1=900 # Type number for Navier-Stokes, without swirl

6-point triangle

Approximation 7-point extended triangle

Penalty function method

Define where essential boundary conditions are present

essbouncond

curves(c1) # Inflow

curves(c9) # Inner boundary (noslip)

curves(c10) # Outer boundary (noslip)

end

* define type of matrix

matrix

Non-symmetrical profile matrix, So a direct method will be applied

end

Define the structure of the main program

UM Example of Navier-Stokes equation with WHILE March 2000 6.3.3.2

structure

prescribe_boundary_conditions, velocity

First step: solve Stokes equation as start

solve_linear_system, seq_coef=1, velocity

Next solve the Navier-Stokes equations using the while concept

The process is stopped when the difference between two iterations

is less than eps

Newton linearization is applied

while (max_differ>eps) do

vel_prev = velocity

solve_linear_system, seq_coef=2, velocity

max_differ = norm_dif=3, vector1 = velocity, vector2 = vel_prev

print max_differ, text=’Max difference = ’

end_while

output

end

* Create start vector and put the essential boundary conditions into this

* vector

essential boundary conditions

value = 0 # First set vector equal to zero

Next fill all non-zero essential boundary conditions

curves(c1), degfd2, quadratic # The v-component of the velocity at

inflow is quadratic

end

* Define coefficients for the first iteration

coefficients, sequence_number = 1

elgrp1 (nparm=20) # The coefficients are defined by 8 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 0 # 5: Type of linearization (0=Stokes flow)

coef6 = 1d-6 # 6: Penalty function parameter eps

coef7 = 1 # 7: Density

8: angular velocity = 0

9: body force in x-direction = 0

#10: body force in y-direction = 0

coef12 = 0.01 #12: Value of etha (viscosity)

end

* Define coefficients for the next iteration

coefficients, sequence_number = 2

elgrp1 (nparm=20) # The coefficients are defined by 8 parameters

icoef2 = 1 # 2: type of constitutive equation (1=Newton)

icoef5 = 2 # 5: Type of linearization (2=Newton)

coef6 = 1d-6 # 6: Penalty function parameter eps

UM Example of Navier-Stokes equation with WHILE March 2000 6.3.3.3

coef7 = 1 # 7: Density

8: angular velocity = 0

9: body force in x-direction = 0

#10: body force in y-direction = 0

coef12 = 0.01 #12: Value of etha (viscosity)

end

* Define output, and compute pressure

output

v2 = icheld=7 # pressure

end

end_of_sepran_input

UM Examples of time-dependent problems November 1995 6.4.1

6.4 Examples of time-dependent problems

In this section we treat some examples of (artificial) time-dependent problems to show some of the
possibilities to solve these equations.
The following examples will be treated:

6.4.1 An example of a simple heat equation.
This example shows how a simple artificial heat equation may be solved by SEPRAN. No
special input is required, nor is the structure of the program defined by the user.

6.4.2 An example of a simple heat equation with a user defined structure.
This example is exactly the same as the one in 6.4.1, however in this case the user defines the
structure of the program himself.

6.4.3 An example of the solution of a coupled set of time-dependent equations.
This example is a non-linear artificial example, which shows how coupled non-linear time-
dependent problems may be solved

6.4.4 An example of a stationary equation solved by the limit of a time-dependent problem.
In this example the time-dependent equations are used to iterate to the final stationary
solution.

6.4.5 An example of a time-dependent equation coupled with a stationary equation.
In this example it is shown how a time-dependent problem may be coupled with a stationary
problem that must be solved in each time step. The construction time loop in the structure
block is used.

UM Example of heat equation August 2008 6.4.1.1

6.4.1 An example of a simple heat equation

In this section we will consider the solution of a simple heat equation defined on a unit square by
SEPRAN.
This example is just meant to demonstrate the use of the time integration in the case of a SEPRAN
program. No special options are used.
Consider the heat equation

∂T

∂t
− 0.5∆T = 0 (6.4.1.1)

with ∆ the Laplacian operator. We assume that the region at which this equation is defined is the
unit square (0, 1)× (0, 1).
We suppose that the initial condition is given by

T (x,0) = sin(x)sin(y)

and the boundary conditions by

T (x, t) = sin(x)sin(y)exp(−t) at all four boundaries.

It is easy to verify that the exact solution in this case is also equal to

T (x, t) = sin(x)sin(y)exp(−t)

To get this example into your local directory use:

sepgetex heatequ1

In order to solve this problem a mesh is created by sepmesh using the submesh generator general.
An example input file for sepmesh is the file heatequ1.msh:

* heatequ1.msh

*

* mesh for the unit square (0,1) x (0,1)

mesh2d

coarse(unit=0.1)

points

p1=(0,0,1)

p2=(1,0,1)

p3=(1,1,1)

p4=(0,1,1)

curves

c1=cline1(p1,p2)

c2=cline1(p2,p3)

c3=cline1(p3,p4)

c4=cline1(p4,p1)

surfaces

s1=general3(c1,c2,c3,c4)

plot (jmark=5, numsub=1)

end

In order to prescribe the initial conditions and the boundary conditions it is necessary to pro-
vide function subroutines since both depend on space and time. The boundary condition is time-
dependent, which implies that the time t must be present. This time t can be found in the common
block CTIMEN as described in Section 3.2.15.
The main program may have the following shape (file heatequ1.f)

program heatequ1

UM Example of heat equation August 2008 6.4.1.2

implicit none

call sepcom(0)

end

! ***

!

! function func for the initial condition

!

! ***

function func (ichoice, x, y, z)

implicit none

double precision func, x, y, z

integer ichoice

double precision t, tout, tstep, tend, t0, rtimdu

integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, t0, rtimdu(5), iflag,

+ icons, itimdu(8)

func = exp(-t)*sin(x)*sin(y)

end

! ***

!

! function for essential boundary conditions

!

! ***

function funcbc (ichoice, x, y, z)

implicit none

double precision funcbc, x, y, z

integer ichoice

double precision t, tout, tstep, tend, t0, rtimdu

integer iflag, icons, itimdu

common /ctimen/ t, tout, tstep, tend, t0, rtimdu(5), iflag,

+ icons, itimdu(8)

if (ichoice==1) then

funcbc = sin(x)*sin(y)*exp(-t)

else if (ichoice==2) then

funcbc = sin(x)*sin(y)*exp(-t)

else if (ichoice==3) then

funcbc = sin(x)*sin(y)*exp(-t)

else if (ichoice==4) then

funcbc = sin(x)*sin(y)*exp(-t)

end if

end

Mark that the boundary conditions at the four sides have the same structure and that one choice
parameter would be sufficient.
The way the problem is solved is completely defined by the input file for the program heatequation 1.
The following input file (heatequ1.prb) may for example be used:

* heatequ1.prb

*

set warn off ! suppress warnings

UM Example of heat equation August 2008 6.4.1.3

* problem definition for time-dependent heat equation

* linear triangles type number 800

constants # See Users Manual Section 1.4

vector_names

potential

end

problem

types

elgrp1 = 800

essbouncond

curves(c1,c4)

end

*

* Definition of matrix structure

*

matrix

symmetric

end

*

* Define initial conditions

*

create vector

func = 1

end

*

* Essential boundary conditions

*

essential boundary conditions

curves(c1),(func=1)

curves(c2),(func=2)

curves(c3),(func=3)

curves(c4),(func=4)

end

*

* Definition of coefficients for the heat equation (t=0 only)

*

coefficients

elgrp1(nparm=20)

coef6 = 0.5 # a11 = 0.5

coef9 = coef 6 # a22 = 0.5

coef17 = 1 # rho = 1

end

time_integration, sequence_number = 1

method = euler_implicit

tinit = 0

tend = 1

tstep = 0.1

toutinit = 0

toutend = 1

toutstep = 0.1

seq_boundary_conditions = 1

seq_coefficients = 1

UM Example of heat equation August 2008 6.4.1.4

diagonal_mass_matrix

stiffness_matrix = constant

mass_matrix = constant

right_hand_side = zero

end

In this input file the elements are defined by type number 800, which is the standard element for
general second order elliptic and parabolic equations. A description of this element can be found
in the manual Standard Problems Section 3.1.
At all four boundaries we have essential boundary conditions.
Since no convection is present in this example the matrix is symmetric and positive definite.
The only coefficients that have to be given in this particular case are the coefficients a11 and a22,
which are both equal to 0.5 and the parameter ρcp which is equal to 1.
Since the problem is time-dependent it is necessary to have a block TIME INTEGRATION in
the input file, otherwise only the stationary problem will be solved. In this block all necessary
information for the time integration must be given. In this example it has been chosen to use the
Euler implicit method, with the step size TSTEP equal to 0.1. The initial time for the integration
is 0 and the end time 1. In each time step the solution is written to the file sepcomp.out.
In this example both the stiffness matrix and the mass matrix are independent of time. Since linear
elements are used, we may apply a diagonal mass matrix. There is no force term present in the
equation, hence the right-hand side is equal to zero.

The input block CREATE is necessary to create the initial condition, if omitted the initial condition
is made equal to zero.

In order to run this program it is necessary to link the program heatequation 1 with the sepran
libraries with the command seplink:

seplink heatequ1

To run the program we use

heatequ1 < heatequ1.prb

The solution may be vizualised by seppost using the file heatequ1.pst as input file:

* heatequ1.pst

*

set warn off ! suppress warnings

*

* input for seppost

*

postprocessing

time = (0,1)

print potential

plot contour potential, minlevel = 0, maxlevel = 1

time history plot point(.5,.5) potential

end

UM Example of heat equation and structure August 2008 6.4.2.1

6.4.2 An example of a simple heat equation with a user defined structure

The example we will consider in this section is exactly the same as the one treated in Section 6.4.1.
The only difference is that, since we know what the exact solution is, we also want to compute the
accuracy of the solution. To that end we use exactly the same program and input files as in Section
6.4.1. The only difference is that the input file for the program heatequ1 in this case must contain a
block STRUCTURE which defines the structure of the main program and also computes the error.
In order to make a slight difference the Euler implicit method has been replaced by Crank Nicolson.
The input file (heatequ2.prb) for the program heatequ1.prb is now:

* heatequ2.prb

*

set warn off ! suppress warnings

* problem definition for time-dependent heat equation

* linear triangles type number 800

constants # See Users Manual Section 1.4

vector_names

potential

exact_potential

variables

error

end

problem

types

elgrp1 = 800

essbouncond

curves(c1,c4)

end

*

* Definition of matrix structure

*

matrix

symmetric

end

structure

create_vector, potential

solve_time_dependent_problem

create_vector, exact_potential

error = norm_dif=3,vector1=potential, vector2=exact_potential

print error, text = ’difference at time = 1’

end

*

* Define initial conditions

*

create vector

func = 1

end

*

* Essential boundary conditions

*

essential boundary conditions

curves(c1,c4),(func=1)

end

UM Example of heat equation and structure August 2008 6.4.2.2

*

* Definition of coefficients for the heat equation (t=0 only)

*

coefficients

elgrp1(nparm=20)

coef6 = 0.5 # a11 = 0.5

coef9 = coef 6 # a22 = 0.5

coef17 = 1 # rho = 1

end

time_integration, sequence_number = 1

method = crank_nicolson

tinit = 0

tend = 1

tstep = 0.1

toutinit = 0

toutend = 1

toutstep = 0.1

seq_boundary_conditions = 1

seq_coefficients = 1

diagonal_mass_matrix

stiffness_matrix = constant

mass_matrix = constant

right_hand_side = zero

end

The block STRUCTURE defines the complete program.
First the initial condition is created by the command CREATE VECTOR.
Next the time-dependent solution is solved.
After that the exact solution at time t = 1 is created and stored in the vector V2.
Finally the difference between exact and computed solution is computed and printed.

UM Example of coupled time-dependent equations November 2008 6.4.3.1

6.4.3 An example of the solution of a coupled set of time-dependent
equations

In this section we consider another artificial example, the solution of two coupled non-linear time-
dependent simple parabolic equations. This example is introduced in order to show how coupled
equations may be handled. This example is available in 4 versions:

timedcop Standard case, only one call to a time dependent solver

timedcop 01 Special case, the time dependent solver is replaced by a time loop in the structure
block.
Both equations are solved by a separate call to the time integration routine.

timedcop 02 See timedcop 01, however, in this case only one call to the time integration routine
is made. Both equations are solved consecutively in this subroutine.

timedcop 03 See timedcop 01, however, now the boundary conditions are filled in extra vectors
outside the integration subroutine.

To get one of these example in your local directory use:

sepgetex timedcopxx

with xx either nothing, _01, _02, or _03. To run this example use the following commands:

sepmesh timedcopxx.msh

view the plots

seplink timedcopxx

timedcop < timedcopxx.prb

seppost timedcopxx.pst

view the plots

Consider the following set of parabolic equations:

∂p

∂t
−∆p+ Tp = x+ 3t2x2 (6.4.3.1)

∂T

∂t
−∆T + Tp = 3x+ 3t2x2 (6.4.3.2)

defined at the unit square (0, 1)× (0, 1).
At the boundaries we impose the following boundary conditions:

p = tx (6.4.3.3)

T = 3tx (6.4.3.4)

One easily verifies that the exact solution of this artificial problem is also given by equations 6.4.3.3
and 6.4.3.4.
As usual the mesh is created by sepmesh for example using the following input file:

timedcop.msh

#

mesh file for the solution of a coupled set of time-dependent equations

See Users Manual Section 6-4-3

#

To run this file use:

sepmesh timedcop.msh

#

UM Example of coupled time-dependent equations November 2008 6.4.3.2

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

width = 1 # width of the region

height = 1 # height of the region

integers

m = 5 # number of elements in height direction

n = 5 # number of elements in width direction

lin = 1 # linear elements

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

#

user points

#

points # See Users Manual Section 2.2

p1=(0,0) # Left under point

p2=(height,0) # Right under point

p3=(height, width) # Right upper point

p4=(0, width) # Left upper point

#

curves

#

curves # See Users Manual Section 2.3

Linear elements are used

c1=line lin (p1,p2,nelm= n) # lower boundary

c2=line lin (p2,p3,nelm= m) # right-hand side boundary

c3=line lin (p3,p4,nelm= n) # upper boundary

c4=line lin (p4,p1,nelm= m) # left-hand side boundary

#

surfaces

#

surfaces # See Users Manual Section 2.4

Linear triangles are used

s1=rectangle3(c1,c2,c3,c4)

plot # make a plot of the mesh

See Users Manual Section 2.2

end

In order to prescribe the initial conditions and the boundary conditions it is necessary to pro-
vide function subroutines since both depend on space and time. The boundary condition is time-
dependent, which implies that the time t must be present. This time t can be found in the common
block CTIMEN as described in Section 3.2.15.
The main program may have the following shape (file timedcop.f)

program timedcop

! --- Main program for for the solution of a coupled set of time-dependent

UM Example of coupled time-dependent equations November 2008 6.4.3.3

! equations as described in the Users Manual Section 6-4-3

! This program is only necessary since function subroutines must be

! provided to define the time and space dependent coefficients

! boundary conditions, initial condition and exact solution

implicit none

call sepcom(0)

end

! ***

!

! function func for the initial condition and the exact solution

!

! ***

function func (ichoice, x, y, z)

implicit none

double precision func, x, y, z

integer ichoice

include ’SPcommon/ctimen’

if (ichoice==1) then

func = t * x

else if (ichoice==2) then

func = 3d0 * t * x

end if

end

! ***

!

! function funccf for the coefficients

!

! ***

function funccf (ichoice, x, y, z)

implicit none

double precision funccf, x, y, z

integer ichoice

include ’SPcommon/ctimen’

if (ichoice==3) then

funccf = x + 3d0 * (t * x) ** 2

else if (ichoice==4) then

funccf = 3d0 * x + 3d0 * (t * x) ** 2

end if

end

! ***

!

! function for essential boundary conditions :

!

! ***

function funcbc (ichoice, x, y, z)

implicit none

double precision funcbc, x, y, z

UM Example of coupled time-dependent equations November 2008 6.4.3.4

integer ichoice

include ’SPcommon/ctimen’

if (ichoice==1) then

funcbc = t * x

else if (ichoice==2) then

funcbc = 3d0 * t * x

end if

end

In our example the unknown p is considered as first unknown and T as second one.
The input file for program timedcop (timedcop.prb) actually defines the complete structure of the
program as well as what is solved.
The two equations are solved as separate equations by elements of the type 800 as described in
the manual STANDARD PROBLEMS Section 3.1. In each time step first the p equation is solved
using the value of T at the preceding time level and then the T equation is solved using the value
of p at the present time level.
The following input file may be used for example:

timedcop.prb

#

problem file for the solution of a coupled set of time-dependent equations

See Users Manual Section 6-4-3

#

To run this file use:

sepcomp timedcop.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

#

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 1 # diffusion coefficient

rho = 1 # density times heat capacity

t0 = 0 # initial time

t_end = 1 # end time

dt = 0.1 # time step

vector_names

Pressure

Temperature

P_exact

T_exact

variables

p_error

T_error

end

#

Define the type of problems to be solved

#

UM Example of coupled time-dependent equations November 2008 6.4.3.5

problem 1 # See Users Manual Section 3.2.2

This concerns the first problem with the

pressure p as unknown

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=800 # Type number for Laplacian equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # There are essential boundary conditions on

all four boundaries

problem 2

This concerns the second problem with the

temperature T as unknown

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=800 # Type number for Laplacian equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # There are essential boundary conditions on

all four boundaries

end

Define the structure of the large matrix

See Users Manual Section 3.2.4

matrix

symmetric, problem = 1 # Symmetrical profile matrix

So a direct method will be applied

symmetric, problem = 2 # The same for the second problem

end

Create the start vector for the process, i.e. the solution at t-0

See Users Manual Section 3.2.10

By omitting the end between both creates pressure and temperature

are created in one call.

This option is not recommended and only works because pressure and

temperature are consecutive solution vectors

create vector 1, problem 1

function = 1 # The initial condition for the pressure is

a function of x and y

This function is defined in subroutine

func, see the main program

The parameter ichoice gets value 1

create vector 2, problem 2

function = 2 # The initial condition for the temperature is

a function of x and y

This function is defined in subroutine

func, see the main program

The parameter ichoice gets value 2

end

UM Example of coupled time-dependent equations November 2008 6.4.3.6

Define the essential boundary conditions for both vectors pressure

and temperature

See Users Manual Section 3.2.5

Since we are using a coupled solution, no end between the two is allowed

essential boundary conditions 1

func=1 # The boundary condition for the pressure is

a function of t, x and y

This function is defined in subroutine

funcbc, see the main program

The parameter ichoice gets value 1

essential boundary conditions 2

func=2 # The boundary condition for the temperature is

a function of t, x and y

This function is defined in subroutine

funcbc, see the main program

The parameter ichoice gets value 2

end

Define the coefficients for the pressure problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrp1(nparm=20) # The coefficients are defined by 20 parameters

coef6 = kappa # a11 = kappa

coef9 = coef 6 # a22 = kappa

coef15 = old solution Temperature # beta = T

coef16 = func=3 # The right-hand side is a

a function of t and x defined by

f = x + 3 t^2 x^2

This function is defined in subroutine

funccf, see the main program

The parameter ichoice gets value 3

coef17 = rho # rho_cp = rho

end

Define the coefficients for the temperature problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 2

elgrp1(nparm=20) # The coefficients are defined by 20 parameters

coef6 = kappa # a11 = kappa

coef9 = coef 6 # a22 = kappa

coef15 = old solution pressure # beta = p

coef16 = func=4 # The right-hand side is a

a function of t and x defined by

g = 3 x + 3 t^2 x^2

This function is defined in subroutine

funccf, see the main program

The parameter ichoice gets value 4

coef17 = rho # rho_cp = rho

end

UM Example of coupled time-dependent equations November 2008 6.4.3.7

Define the time integration process

See Users Manual Section 3.2.15

time_integration, sequence_number = 1

method = euler_implicit # Time discretization algorithm

number_of_coupled_equations = 2 # p and T are treated as a

coupled system

tinit = t0 # initial time

tend = t_end # end time

tstep = dt # time step

toutinit = t0 # initial time for output

toutend = t_end # end time for output

toutstep = dt # time step for output

seq_boundary_conditions = 1 # defines which essential boundary

conditions must be used

seq_coefficients = 1, 2 # defines the coefficients for

both equations

diagonal_mass_matrix # The mass matrix is lumped

mass_matrix = constant # and constant for both problems

end

Write only pressure and temperature to output file for postprocessing,

not the exact solutions

See Users Manual, Section 3.2.13

output

write 2 solutions

end

Define the structure of the problem

In this part it is described how the problem must be solved

This is necessary since some extra output is required

#

structure

Create initial condition for pressure and temperature

create_vector, pressure

Solve the coupled time dependent problems in a decoupled way

solve_time_dependent_problem

Create the exact solution for pressure and temperature and t = tend

create_vector, p_exact

Compute and print the error of both solutions at t = tend

p_error = norm_dif=3,vector1=pressure, vector2=p_exact

print p_error, text = ’difference in p at time = 1’

T_error = norm_dif=3,vector1=Temperature, vector2=t_exact

print T_error, text = ’difference in T at time = 1’

end

The program starts with the creation of the initial conditions by the command create vector. In
this case both the p and T vectors are created.
Next the time-dependent equations are solved from t = 0 to t = 1 and in each time-step the solution
is written to the file sepcomp.out.

UM Example of coupled time-dependent equations November 2008 6.4.3.8

Finally the exact solution is stored in vectors 3 and 4. The reason to use vectors 3 and 4 is that
already p is stored in vector 1 and T in vector 2.
Mark that although in both cases only one vector is mentioned in the structure block actually in
each case two vectors are created because of the input.
The difference between exact solution and numerical solution is computed and printed.

Post processing may be performed in the standard way by program seppost. See for example Section
6.4.1.

UM Example of coupled time-dependent equations November 2008 6.4.3.9

Instead of using the statement solve_time_dependent_problem in the structure block, it is also
possible to perform an explicit time loop in that block. This offers the opportunity to perform all
kinds of extra actions during the time stepping procedure. There are two alternatives to do this:

• By calling the integration subroutine for both equations separately

• By solving the equations in a ”coupled” way.

To get the first option in your local directory use:

sepgetex timedcop_01

and for the second one:

sepgetex timedcop_02

The corresponding problem files are:

timedcop_01.prb

#

problem file for the solution of a coupled set of time-dependent equations

In this case a time loop in the structure block is used

See Users Manual Section 6-4-3

#

To run this file use:

sepcomp timedcop_01.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

#

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 1 # coefficient in diffusion term

rho = 1 # density times heat capacity

t0 = 0 # initial time

t_end = 1 # end time

dt = 0.1 # time step

vector_names

1: Pressure

2: Temperature

3: P_exact

4: T_exact

variables

p_error

T_error

end

#

Define the type of problems to be solved

#

problem 1 # See Users Manual Section 3.2.2

This concerns the first problem with the

pressure p as unknown

UM Example of coupled time-dependent equations November 2008 6.4.3.10

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=800 # Type number for Laplacian equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # There are essential boundary conditions on

all four boundaries

problem 2

This concerns the second problem with the

temperature T as unknown

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=800 # Type number for Laplacian equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # There are essential boundary conditions on

all four boundaries

end

Define the structure of the large matrix

See Users Manual Section 3.2.4

matrix

symmetric, problem = 1 # Symmetrical profile matrix

So a direct method will be applied

symmetric, problem = 2 # The same for the second problem

end

Create the start vector for the process, i.e. the solution at t-0

See Users Manual Section 3.2.10

create vector, problem 1, sequence_number = 1

Mark that no sequence number is given after

create vector. The vector that is used is

defined in the structure block

function = 1 # The initial condition for the pressure is

a function of x and y

This function is defined in subroutine

func, see the main program

The parameter ichoice gets value 1

end

create vector, problem 2, sequence_number = 2

function = 2 # The initial condition for the temperature is

a function of x and y

This function is defined in subroutine

func, see the main program

The parameter ichoice gets value 2

end

Define the essential boundary conditions for both vectors pressure

and temperature

UM Example of coupled time-dependent equations November 2008 6.4.3.11

See Users Manual Section 3.2.5

essential boundary conditions, sequence_number = 1

func=1 # The boundary condition for the pressure is

a function of t, x and y

This function is defined in subroutine

funcbc, see the main program

The parameter ichoice gets value 1

end

essential boundary conditions, sequence_number = 2

func=2 # The boundary condition for the temperature is

a function of t, x and y

This function is defined in subroutine

funcbc, see the main program

The parameter ichoice gets value 2

end

Define the coefficients for the pressure problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrp1(nparm=20) # The coefficients are defined by 20 parameters

coef6 = kappa # a11 = kappa

coef9 = coef 6 # a22 = kappa

coef15 = old solution Temperature # beta = T

coef16 = func=3 # The right-hand side is a

a function of t and x defined by

f = x + 3 t^2 x^2

This function is defined in subroutine

funccf, see the main program

The parameter ichoice gets value 3

coef17 = rho # rho_cp = rho

end

Define the coefficients for the temperature problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 2

elgrp1(nparm=20) # The coefficients are defined by 20 parameters

coef6 = kappa # a11 = kappa

coef9 = coef 6 # a22 = kappa

coef15 = old solution pressure # beta = p

coef16 = func=4 # The right-hand side is a

a function of t and x defined by

g = 3 x + 3 t^2 x^2

This function is defined in subroutine

funccf, see the main program

The parameter ichoice gets value 4

coef17 = rho # rho_cp = rho

end

Define the time integration process

See Users Manual Section 3.2.15

UM Example of coupled time-dependent equations November 2008 6.4.3.12

First with respect to the pressure problem

time_integration, sequence_number = 1

method = euler_implicit # Time discretization algorithm

tinit = t0 # initial time

tend = t_end # end time

tstep = dt # time step

toutinit = t0 # initial time for output

toutend = t_end # end time for output

toutstep = dt # time step for output

seq_boundary_conditions = 1 # defines which essential boundary

conditions must be used

seq_coefficients = 1 # defines the coefficients for

both equations

diagonal_mass_matrix # The mass matrix is lumped

mass_matrix = constant # and constant for both problems

end

Next with respect to the temperature problem

This part is used in the same time loop, so no method or time steps

are given

Only specific parts referring to the second equation

time_integration, sequence_number = 2

seq_coefficients = 2

seq_boundary_conditions = 2

mass_matrix = constant

end

Write only pressure and temperature to output file for postprocessing,

not the exact solutions

See Users Manual, Section 3.2.13

output

write 2 solutions

end

Define the structure of the problem

In this part it is described how the problem must be solved

This is necessary since some extra output is required

#

structure

Create initial condition for pressure and temperature

create_vector, sequence_number=1, pressure

create_vector, sequence_number=2, Temperature

Write the results in the first time step

output

Explicit time loop

This offers the possibility to do more in each time step

start_time_loop

time_integration, sequence_number = 1, Pressure

UM Example of coupled time-dependent equations November 2008 6.4.3.13

print time

time_integration, sequence_number = 2, Temperature

output

end_time_loop

Create the exact solution for pressure and temperature and t = tend

create_vector, sequence_number=1, p_exact

create_vector, sequence_number=2, T_exact

Compute and print the error of both solutions at t = tend

p_error = norm_dif=3,vector1=pressure, vector2=p_exact

print p_error, text = ’difference in p at time = 1’

T_error = norm_dif=3,vector1=Temperature, vector2=t_exact

print T_error, text = ’difference in T at time = 1’

end

timedcop_02.prb

#

problem file for the solution of a coupled set of time-dependent equations

In this case a time loop with a coupled problem in the structure block is used

See Users Manual Section 6-4-3

#

To run this file use:

sepcomp timedcop_02.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

#

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 1 # coefficient in diffusion term

rho = 1 # density times heat capacity

t0 = 0 # initial time

t_end = 1 # end time

dt = 0.1 # time step

vector_names

Pressure

Temperature

P_exact

T_exact

variables

p_error

T_error

end

#

Define the type of problems to be solved

#

problem 1 # See Users Manual Section 3.2.2

This concerns the first problem with the

pressure p as unknown

UM Example of coupled time-dependent equations November 2008 6.4.3.14

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=800 # Type number for Laplacian equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # There are essential boundary conditions on

all four boundaries

problem 2

This concerns the second problem with the

temperature T as unknown

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=800 # Type number for Laplacian equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # There are essential boundary conditions on

all four boundaries

end

Define the structure of the large matrix

See Users Manual Section 3.2.4

matrix

symmetric, problem = 1 # Symmetrical profile matrix

So a direct method will be applied

symmetric, problem = 2 # The same for the second problem

end

Create the start vector for the process, i.e. the solution at t-0

See Users Manual Section 3.2.10

create vector, problem 1, sequence_number = 1

Mark that no sequence number is given after

create vector. The vector that is used is

defined in the structure block

function = 1 # The initial condition for the pressure is

a function of x and y

This function is defined in subroutine

func, see the main program

The parameter ichoice gets value 1

end

create vector, problem 2, sequence_number = 2

function = 2 # The initial condition for the temperature is

a function of x and y

This function is defined in subroutine

func, see the main program

The parameter ichoice gets value 2

end

Define the essential boundary conditions for both vectors pressure

and temperature

UM Example of coupled time-dependent equations November 2008 6.4.3.15

See Users Manual Section 3.2.5

Since we are using a coupled solution, no end between the two is allowed

essential boundary conditions 1

func=1 # The boundary condition for the pressure is

a function of t, x and y

This function is defined in subroutine

funcbc, see the main program

The parameter ichoice gets value 1

essential boundary conditions 2

func=2 # The boundary condition for the temperature is

a function of t, x and y

This function is defined in subroutine

funcbc, see the main program

The parameter ichoice gets value 2

end

Define the coefficients for the pressure problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrp1(nparm=20) # The coefficients are defined by 20 parameters

coef6 = kappa # a11 = kappa

coef9 = coef 6 # a22 = kappa

coef15 = old solution Temperature # beta = T

coef16 = func=3 # The right-hand side is a

a function of t and x defined by

f = x + 3 t^2 x^2

This function is defined in subroutine

funccf, see the main program

The parameter ichoice gets value 3

coef17 = rho # rho_cp = rho

end

Define the coefficients for the temperature problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 2

elgrp1(nparm=20) # The coefficients are defined by 20 parameters

coef6 = kappa # a11 = kappa

coef9 = coef 6 # a22 = kappa

coef15 = old solution pressure # beta = p

coef16 = func=4 # The right-hand side is a

a function of t and x defined by

g = 3 x + 3 t^2 x^2

This function is defined in subroutine

funccf, see the main program

The parameter ichoice gets value 4

coef17 = rho # rho_cp = rho

end

Define the time integration process

See Users Manual Section 3.2.15

UM Example of coupled time-dependent equations November 2008 6.4.3.16

First with respect to the pressure problem

time_integration

method = euler_implicit # Time discretization algorithm

number_of_coupled_equations = 2 # p and T are treated as a

coupled system

tinit = t0 # initial time

tend = t_end # end time

tstep = dt # time step

toutinit = t0 # initial time for output

toutend = t_end # end time for output

toutstep = dt # time step for output

diagonal_mass_matrix # The mass matrix is lumped

mass_matrix = constant # and constant for both problems

seq_boundary_conditions = 1 # defines which essential boundary

conditions must be used for the

two coupled problems

Information for the pressure equation

equation 1

local_options

seq_coefficients = 1 # defines the coefficients for

both equations

Information for the temperature equation

equation 2

local_options

seq_coefficients = 2 # defines the coefficients for

both equations

end

Write only pressure and temperature to output file for postprocessing,

not the exact solutions

See Users Manual, Section 3.2.13

output

write 2 solutions

end

Define the structure of the problem

In this part it is described how the problem must be solved

This is necessary since some extra output is required

#

structure

Create initial condition for pressure and temperature

create_vector, sequence_number=1, pressure

create_vector, sequence_number=2, Temperature

Write the results in the first time step

output

Explicit time loop

UM Example of coupled time-dependent equations November 2008 6.4.3.17

This offers the possibility to do more in each time step

start_time_loop

Mark that a coupled system can only be solved if the vectors are

stored consecutively in the solution vector

time_integration, Pressure

print time

output, sequence_number=1

end_time_loop

Create the exact solution for pressure and temperature and t = tend

create_vector, sequence_number=1, p_exact

create_vector, sequence_number=2, T_exact

Compute and print the error of both solutions at t = tend

p_error = norm_dif=3,vector1=pressure, vector2=p_exact

print p_error, text = ’difference in p at time = 1’

T_error = norm_dif=3,vector1=Temperature, vector2=t_exact

print T_error, text = ’difference in T at time = 1’

end

UM Example of coupled time-dependent equations November 2008 6.4.3.18

Finally we demonstrate an option that for this problem has no practical use at all. It concerns the use
of the options no_computation, reuse_time_parameters and boundary_conditions = old_vector.
In this case first the time parameters are set and the time raised. Next the essential boundary con-
ditions are filled in two separate vectors and after that the actual time integration is carried out
using these two special vectors. The time is not raised in this step. To get this option in your local
directory use:

sepgetex timedcop_03

The corresponding problem file is:

timedcop_03.prb

#

problem file for the solution of a coupled set of time-dependent equations

In this case a time loop with a coupled problem in the structure block

is used in combination with boundary conditions stored in a separate vector

See Users Manual Section 6-4-3

#

To run this file use:

sepcomp timedcop_03.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

#

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

kappa = 1 # coefficient in diffusion term

rho = 1 # density times heat capacity

t0 = 0 # initial time

t_end = 1 # end time

dt = 0.1 # time step

vector_names

Pressure # Pressure

Temperature # Temperature

P_exact # Exact pressure

T_exact # Exact temperature

Press_bc # Special vector to store the boundary

conditions for the pressure

Temp_bc # Special vector to store the boundary

conditions for the temperature

variables

p_error

T_error

end

#

Define the type of problems to be solved

#

problem 1 # See Users Manual Section 3.2.2

This concerns the first problem with the

pressure p as unknown

types # Define types of elements,

UM Example of coupled time-dependent equations November 2008 6.4.3.19

See Users Manual Section 3.2.2

elgrp1=800 # Type number for Laplacian equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # There are essential boundary conditions on

all four boundaries

problem 2

This concerns the second problem with the

temperature T as unknown

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1=800 # Type number for Laplacian equation

See Standard problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1 to c4) # There are essential boundary conditions on

all four boundaries

end

Define the structure of the large matrix

See Users Manual Section 3.2.4

matrix

symmetric, problem = 1 # Symmetrical profile matrix

So a direct method will be applied

symmetric, problem = 2 # The same for the second problem

end

Create the start vector for the process, i.e. the solution at t-0

See Users Manual Section 3.2.10

create vector, problem 1, sequence_number = 1

Mark that no sequence number is given after

create vector. The vector that is used is

defined in the structure block

function = 1 # The initial condition for the pressure is

a function of x and y

This function is defined in subroutine

func, see the main program

The parameter ichoice gets value 1

end

create vector, problem 2, sequence_number = 2

function = 2 # The initial condition for the temperature is

a function of x and y

This function is defined in subroutine

func, see the main program

The parameter ichoice gets value 2

end

Define the essential boundary conditions for both vectors pressure

and temperature

In this case the boundary conditions are filled in the vectors Press_bc and

UM Example of coupled time-dependent equations November 2008 6.4.3.20

Temp_bc

#

create vector, problem 1, sequence_number = 3

curves(c1 to c4), func=3 # The boundary condition for the pressure is

a function of t, x and y

The parameter ichoice in func gets value 3

end

create vector, problem 2, sequence_number = 4

curves(c1 to c4), func=4 # The boundary condition for the temperature is

a function of t, x and y

The parameter ichoice in func gets value 4

end

Define the coefficients for the pressure problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 1

elgrp1(nparm=20) # The coefficients are defined by 20 parameters

coef6 = kappa # a11 = kappa

coef9 = coef 6 # a22 = kappa

coef15 = old solution Temperature # beta = T

coef16 = func=3 # The right-hand side is a

a function of t and x defined by

f = x + 3 t^2 x^2

This function is defined in subroutine

funccf, see the main program

The parameter ichoice gets value 3

coef17 = rho # rho_cp = rho

end

Define the coefficients for the temperature problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients, sequence_number = 2

elgrp1(nparm=20) # The coefficients are defined by 20 parameters

coef6 = kappa # a11 = kappa

coef9 = coef 6 # a22 = kappa

coef15 = old solution pressure # beta = p

coef16 = func=4 # The right-hand side is a

a function of t and x defined by

g = 3 x + 3 t^2 x^2

This function is defined in subroutine

funccf, see the main program

The parameter ichoice gets value 4

coef17 = rho # rho_cp = rho

end

Define the time integration process

In this case it is done in two separate input blocks

See Users Manual Section 3.2.15

First input block defines the initial time, time step and end time

UM Example of coupled time-dependent equations November 2008 6.4.3.21

Both for computing and output

It is also used to raise the actual time, but not to perform a time step

time_integration, sequence_number = 1

tinit = t0 # initial time

tend = t_end # end time

tstep = dt # time step

toutinit = t0 # initial time for output

toutend = t_end # end time for output

toutstep = dt # time step for output

no_computation # In the first timestep no computation is carried

out, only the parameters are set and the time is

raised

end

Second input block defines the process, and reuses the parameters defined

in the first block

It is assumed that the boundary conditions are stored in two separate

vectors press_bc and its successor temp_bc

Mark that this is only allowed if both vectors hare numbered consecutively,

press_bc with the lowest number

time_integration, sequence_number = 2

method = euler_implicit # Time discretization algorithm

number_of_coupled_equations = 2 # p and T are treated as a

coupled system

reuse_time_parameters

diagonal_mass_matrix # The mass matrix is lumped

mass_matrix = constant # and constant for both problems

seq_boundary_conditions = press_bc # defines which essential boundary

conditions must be used for the

two coupled problems

These conditions are stored

boundary_conditions = old_vector # in the vectors press_bc and

temp_bc

Information for the pressure equation

equation 1

local_options

seq_coefficients = 1 # defines the coefficients for

both equations

Information for the temperature equation

equation 2

local_options

seq_coefficients = 2 # defines the coefficients for

both equations

end

Write only pressure and temperature to output file for postprocessing,

not the exact solutions, nor the boundary value vectors

See Users Manual, Section 3.2.13

output

write 2 solutions

UM Example of coupled time-dependent equations November 2008 6.4.3.22

end

Define the structure of the problem

In this part it is described how the problem must be solved

This is necessary since some extra output is required

#

structure

Create initial condition for pressure and temperature

create_vector, sequence_number=1, pressure

create_vector, sequence_number=2, Temperature

Write the results in the first time step

output

Explicit time loop

This offers the possibility to do more in each time step

start_time_loop

Mark that a coupled system can only be solved if the vectors are

stored consecutively in the solution vector

First the time parameters are set and the time raised

time_integration, sequence_number = 1, Pressure

Next the essential boundary conditions are stored in the arrays

press_bc and temp_bc

Since the time is raised, it concerns the new time level

create_vector, sequence_number=3, press_bc

create_vector, sequence_number=4, Temp_bc

The actual time integration is carries out

time_integration, sequence_number = 2, Pressure

Some output

print time

output

print Pressure

print Temperature

end_time_loop

Create the exact solution for pressure and temperature and t = tend

create_vector, sequence_number=1, p_exact

create_vector, sequence_number=2, T_exact

Compute and print the error of both solutions at t = tend

p_error = norm_dif=3,vector1=pressure, vector2=p_exact

print p_error, text = ’difference in p at time = 1’

T_error = norm_dif=3,vector1=Temperature, vector2=t_exact

print T_error, text = ’difference in T at time = 1’

end

UM Example of stationary problem using time-integration November 1995 6.4.4.1

6.4.4 An example of a stationary equation solved by the limit of a time-
dependent problem

In this section we consider exactly the same problem as in Section 6.2.1. The difference is that
now we solve the heat equation and use the result for t → ∞ as stationary solution. Hence a
time-stepping algorithm is used to solve the Laplacian equation.
The parameter ρcp is set equal to 1 and an Euler implicit method with time-step ∆t = 0.1 is used
for the time integration. The reason to use Euler implicit is that it has the best known damping
properties in combination with a very simple scheme. To solve the system of linear equations in each
time-step a conjugate gradient method is used in combination with a standard preconditioning.

The mesh input file is the same as for the example in Section 6.2.1:

*examu644.msh

* mesh for the unit square (0,1) x (0,1)

mesh2d

points

p1=(0,0)

p2=(1,0)

p3=(1,1)

p4=(0,1)

curves

c1=line1(p1,p2,nelm=10)

c2=line1(p2,p3,nelm=10)

c3=line1(p3,p4,nelm=10)

c4=line1(p4,p1,nelm=10)

surfaces

s1=quadrilateral5(c1,c2,c3,c4)

plot

end

No special program is needed to solve these equations, it is sufficient to use program sepcomp.
The following input file may be used for example:

*examu644.prb

* problem definition for simple Laplacian problem solved as a time-dependent

* problem

* type number 800

constants

vector_names

potential

end

problem

types

elgrp1 = 800

essbouncond

curves (c1,c4)

end

*

* Definition of matrix structure

Symmetrical compact matrix

So an iterative method will be applied

UM Example of stationary problem using time-integration November 1995 6.4.4.2

matrix

storage_method = compact, symmetric

end

*

* Essential boundary conditions

*

essential boundary conditions

curves (c3) value = 1 # At C3 T=1, at all other boundaries we

have T=0, which does not require input

end

*

* Definition of coefficients for the Laplacian equation

*

coefficients

elgrp1(nparm=20)

coef6 = 1 # a11 = 1

coef9 = coef 6 # a22 = 1

coef17 = 1 # rho cp = 1

end

time_integration

method = euler_implicit

tinit = 0

tstep = 0.1

tend = 10

abs_stationary_accuracy = 0.01

mass_matrix = constant

stiffness_matrix = constant

right_hand_side = zero

diagonal_mass_matrix

seq_coefficients = 1

boundary_conditions = constant

end

solve

iteration_method = cg

end

In fact the block solve is not necessary at all, since due to the compact storage method cg is the
default value.

Post processing may be performed in the standard way by program seppost. A sample input file is:

* examu644.pst

* input for seppost

*

postprocessing

plot contour potential

end

UM Example of coupled time-dependent and stationary problem April 1998 6.4.5.1

6.4.5 An example of a time-dependent equation coupled with a station-
ary equation

In this section we consider an artificial time-dependent problem (the heat equation) that is solved
using the option time_integration. Special in this example is that in each time-step we solve a
stationary problem (elasticity equation) with an initial strain that depends on the just computed
temperature. To get this example in your local directory use:

sepgetex stresstm

To run this example use the following commands:

sepmesh stresstm.msh

view the plots

seplink stresstm

stresstm < stresstm.prb

seppost stresstm.pst

view the plots

In order to solve this problem with program SEPCOMP, it is necessary to use the option TIME_LOOP

in the input bock STRUCTURE.
Consider the the cross-section of a long glass plate of length 2 m and height 0.02 m. Assuming
symmetry it is sufficient to consider only one quarter of the plate. The domain Ω is sketched in
Figure 6.4.5.1. On this region we assume that the temperature satisfies a heat equation with

Ω

C

C

C

C

1

2

3

4

L=1

h
=

 0
.0

1

Figure 6.4.5.1: Definition of region for coupled heat equation and elasticity equation

heat conductivity λ = 1
ρcp = 2.5106

No convection nor any heat supply is assumed.
At the symmetry boundaries (C1 and C4) we have the natural boundary conditions ∂T

∂n = 0.
At the two other boundaries we prescribe a time-dependent temperature T = 700− 20t.
In the initial state the temperature is equal to T0 = 700.

In each time step we want to compute the displacement due to initial strain. The plate is free at
the boundaries, which implies that we have natural boundary conditions at the sides C2 and C3.
At the symmetry boundaries C1 and C4 the normal displacement is equal to 0. The data for the
elasticity equation are:

Young’s modulus E = 7.2 1010

Poisson’s ratio ν = 0.2
Initial strain = α(T − T0)

UM Example of coupled time-dependent and stationary problem April 1998 6.4.5.2

The mesh is refined in the neighborhood of the boundaries resulting in the following input file:

* stresstm.msh

*

* mesh for glass plate

* only one quarter is considered

*

constants

integers

n = 20

n1 = 30

reals

length = 1 # plate has half length of 1 m

width = 0.01 # plate has half width of 1 cm

end

mesh2d

points

p1=(0,0)

p2=(length,0)

p3=(length, width)

p4=(0, width)

curves

c1=line 1(p1,p2, nelm= n1,ratio=3, factor=2) # refined in the direction

c2=line 1(p2,p3, nelm= n,ratio=3, factor=2) # of the outer boundary

c3=line 1(p3,p4, nelm= n1,ratio=1, factor=2)

c4=line 1(p4,p1, nelm= n,ratio=1, factor=2)

surfaces

s1=rectangle3(c1,c2,c3,c4)

plot (jmark=5, numsub=1)

end

Since the boundary conditions for the velocity are time dependent, it is necessary to use a function
subroutine FUNCBC. Hence one must provide the following main program stresstm.f:

program stresstm

implicit none

call sepcom(0)

end

c ***

c

c function for essential boundary conditions

c

c ***

function funcbc (ichoice, x, y, z)

implicit none

double precision funcbc, x, y, z

integer ichoice

include ’SPcommon/ctimen’

if (ichoice==1) then

funcbc = 700-20*t

end if

end

UM Example of coupled time-dependent and stationary problem April 1998 6.4.5.3

Common block ctimen contains the parameter t, which gives the actual time.
For the solution of this problem we have to define 2 problems, one for the temperature and one for
the displacement. In our example we are using four vectors:

V1 = T
V2 = u
V3 = α(T − T0)
V4 = σ (the stress)

The third vector is used to define the initial strain, the last vector for output purposes. In the
program we need the option TIME LOOP, since during each time step we have to solve a linear
problem for the displacement. As a consequence a STRUCTURE block is necessary. The structure
of the program is as follows:

compute the start vector for the temperature T (initial condition)

fill the boundary conditions for the displacement $\bf u$

For all time steps do

Perform one time step to compute T

Store alpha(T-T0)

Compute the displacement

Compute the stress tensor

Write information to output file if necessary

end loop

The following input file may be used:

! stresstm.prb

!

! problem definition for time-dependent heat equation

! linear triangles type number 800

! In each time step the displacement due to initial strain is computed

!

! 1: temperature T

! 2: displacement u

! 3: alpha(T-T0)

! 4: stress tensor

!

constants

reals

T0 = 700

alpha = 1d-5

alphT0 = 7d-3

vector_names

temperature # T

displacement # u

alpha_T # alpha(T-T0)

stress # stress tensor

end

problem 1

types

elgrp1 = 800 # standard for heat equation

essbouncond

curves(c2) # temperature is given at

curves(c3) # sides C2 and C3

problem 2

types

elgrp1 = 250 # Elasticity equation

essbouncond

UM Example of coupled time-dependent and stationary problem April 1998 6.4.5.4

degfd1, curves(c4) # normal displacement at sides

degfd2, curves(c1) # C1 and C4 is 0

end

!

! Definition of matrix structure

!

matrix,

symmetric, problem = 1 # heat equation

symmetric, problem = 2 # elasticity equation

end

structure

create_vector, temperature

prescribe_boundary_conditions, sequence_number=2, displacement

scalar 1 = alpha

start_time_loop

time_integration,sequence_number = 1, temperature # Compute T

alpha_T = alpha temperature

alpha_T = subtract constant alphT0 # alpha_T = alpha(T-T0)

solve_linear_system, seq_coef=2, problem=2, displacement # Compute u

derivatives, seq_coef=2, seq_deriv=1, stress # Compute stress

output # write results

end_time_loop

end

!

! Define initial conditions for temperature

!

create vector

value=700

end

!

! Essential boundary conditions

!

essential boundary conditions

curves (c2,c3),(func=1) # T at boundary is function of time

end

essential boundary conditions, sequence_number=2, problem=2

Displacement at symmetry is zero

end

!

! Definition of coefficients for the heat equation (t=0 only)

!

coefficients

elgrp1(nparm=20)

coef6 = 1 # a_11 = 1 (lambda)

coef9 = coef 6 # a_22 = 1 (lambda)

coef17 = 2.5d6 # rho_cp = 2.5d6

end

!

! Coefficients for the elasticity equation

!

coefficients, sequence_number=2

elgrp1(nparm=45)

coef6 = 7.2d10 # E = 7.2d10

coef7 = 0.2 # nu = 0.3

coef31 = old_solution alpha_T # alpha(T0-T)

UM Example of coupled time-dependent and stationary problem April 1998 6.4.5.5

coef32 = coef31 # alpha(T0-T)

end

!

! Derivatives block, to compute the stress tensor

!

derivatives

icheld = 6

seq_input_vector = displacement

end

!

! Definition of the time integration for the temperature

!

time_integration

method = euler_implicit # euler implicit method

tinit = 0 # T_0 = 0

tend = 10 # Tend = 10

tstep = 1 # dt = 1

toutinit = 0 # Each time step is written

toutend = 10

toutstep = 1

seq_boundary_conditions = 1 # bc’s for temperature

seq_coefficients = 1 # coefficients for temperature

diagonal_mass_matrix # lumped mass matrix

stiffness_matrix = constant # stiffness matrix is time independent

mass_matrix = constant # mass matrix is time independent

right_hand_side = zero # no source term

end

Post processing may be performed in the standard way by program seppost. The y-coordinate is
multiplied by a factor of 30 in order to get a better view.
A sample input file is:

* stresstm.pst

*

*

* input for seppost

*

postprocessing

time = (0,10)

plot contour temperature, minlevel = 500, maxlevel = 700//

yfact=30 # temperature T

plot coloured contour temperature, minlevel = 500 //

maxlevel = 700, yfact=30

plot vector displacement,factor=250 //

yfact=30 # displacement u

plot contour stress, degfd1=1, yfact=30 # sigma_xx

plot coloured contour stress, degfd1=1, yfact=30

time history plot point(0.5,0.05) temperature # T in point(0.5,0.05)

end

Figures 6.4.5.2 and 6.4.5.3 show the isotherms at t = 6 and t = 10 respectively. Figures 6.4.5.4 and
6.4.5.5 show the colored temperature levels at t = 6 and t = 10 respectively. Figures 6.4.5.6 and
6.4.5.7 show a vector plot of the displacements at t = 6 and t = 10 respectively. Figures 6.4.5.8
and 6.4.5.9 show a contour plot of the xx-component of the stress tensor (σxx at t = 6 and t = 10
respectively. Figures 6.4.5.10 and 6.4.5.11 show colored contour levels of the xx-component of the

UM Example of coupled time-dependent and stationary problem April 1998 6.4.5.6

6
7

8

9

10

Figure 6.4.5.2: Isotherms at t=6

2
3

4
5

6
7

8

9

10

Figure 6.4.5.3: Isotherms at t=10

Figure 6.4.5.4: Temperature levels at
t=6

Figure 6.4.5.5: Temperature levels at
t=10

stress tensor (σxx at t = 6 and t = 10 respectively. Finally in Figure 6.4.5.12 the temperature
history in point (0.5,0.05) is shown.

UM Example of coupled time-dependent and stationary problem April 1998 6.4.5.7

Figure 6.4.5.6: Vector plot of displace-
ment at t=6

Figure 6.4.5.7: Vector plot of displace-
ment at t=10

2

3

4
5
6

7
89

10

Figure 6.4.5.8: Contour plot of σxx at
t=6

2

3

4

5
6
7

8
9

10

Figure 6.4.5.9: Contour plot of σxx at
t=10

Figure 6.4.5.10: Contour plot of σxx
at t=6

Figure 6.4.5.11: Contour plot of σxx
at t=10

UM Example of coupled time-dependent and stationary problem April 1998 6.4.5.8

1.0 2.8 4.6 6.4 8.2 10.0

500

518

536

554

572

590

608

626

644

662

680

Figure 6.4.5.12: Temperature history in point (0.5,0.05)

UM Examples of instationary free boundary problems January 1997 6.6.1

6.6 Examples of instationary free boundary problems

In this section we treat some examples of time-dependent free boundary problems. It will be shown
how such problems may be solved by means of program sepfree.
The following examples will be treated:

6.6.1 The solution of a Stefan problem.
This example shows how a typical Stefan problem may be solved. It concerns in this case the
homogenization of an aluminum alloy.

6.6.2 The dissolution of a disk-like particle in a disk-shape environment.
This example shows how a more complex Stefan problem may be solved. It concerns in
this case the homogenization of an aluminum alloy, consisting of a Al2Cu disk-like particle
dissolving in disk-like environment. It is demonstrated why the boundary must be adapted
by the option adaptation_method = stefan.

6.6.3 The dissolution of a two particles.
This example is an extension of the previous one. In this case two circular particles of unequal
size are dissolved.

UM Stefan problem November 2008 6.6.1.1

6.6.1 An example of a simple Stefan problem

In this section we consider a free boundary problem of Stefan type. Typical technical applications,
which are described by this problem are: melting or freezing of ice, etching of semi-conductor devices
and homogenization of aluminum alloys.
In this particular example, we model the homogenization of an aluminum alloy.
We consider a rectangular region in which a zinc part at the left-hand side is in contact with
aluminum at the right-hand side. See Figure 6.6.1.1 for the configuration.

At a certain temperature the zinc dissolves in the aluminum. The problem to be solved is the

zinc aluminium

Figure 6.6.1.1: Zinc in contact with aluminum

concentration (c) of zinc in aluminum and the position of the interface between zinc and aluminum.
This interface (S) moves slowly to the left as time increases.
All computations take place in the aluminum and none in the zinc.
If we make the equations dimensionless we may formulate the problem in the following way:

∂c

∂t
− div(k∇c) = 0 (x, y) ∈ (Ω), t ∈ (0, T], (6.6.1.1)

The region Ω is defined by the rectangle Ω = (S(y, t), 5)× (0, 1), whereas S(y, t) is the free surface,
which has to be computed.
The initial conditions are:

S(y, 0) = 1, y ∈ [0, 1], (6.6.1.2)

c(x, y, 0) = 0, (x, y) ∈ [1, 5]× [0, 1], (6.6.1.3)

and the boundary conditions

∂c

∂n
(x, 0, t) = 0, x ∈ [S(0, t), 5], (6.6.1.4)

∂c

∂n
(x, 1, t) = 0, x ∈ [S(1, t), 5], (6.6.1.5)

∂c

∂n
(5, y, t) = 0, y ∈ [S(0, t), 5]. (6.6.1.6)

Finally at the free boundary we need 2 boundary conditions, one for the solution of the differential
equation and one for the displacement of the free boundary.
In this example we use:

c(S(t), y, t) = 1, λ
∂c

∂n
(S(t), y, t) = v · n = vn (6.6.1.7)

In Equation 6.6.1.7, vn denotes the velocity in which the free surface moves along the normal to
the free surface. Note that this example is in fact one-dimensional.

This free boundary problem is solved by the method of Murray and Landis, (1959).
In the first time-step the diffusion equation together with the initial and boundary conditions is

UM Stefan problem November 2008 6.6.1.2

solved. On the free boundary S only the Dirichlet condition is used.
In the next time steps first the boundary is moved using the boundary condition 6.6.1.7. This
means that the co-ordinates of the free surface at time t+ ∆t are given by:

x(t+ ∆t) = x(t) + ∆tvnn = x(t) + λ
∂c

∂n
∆t n (6.6.1.8)

Once the boundary is moved, the concentration c can be computed in the new region using equa-
tion 6.6.1.1. However, the computation of the concentration implies that we have to compute
c(t+∆t)−c(t)

∆t . We do not know c(t) in the nodal points, since due to the displacement of the bound-
ary also all nodes have been moved. So either we have to interpolate the concentration to the new
nodes, or we have to make a correction for the displacement. Interpolation is of course possible,
but relatively expensive. The correction is much more simple. All we have to do is to subtract a

convection term, where the velocity is equal to the so-called mesh velocity defined by x(t+∆t)−x(t)
∆t .

Mark that due to the subtraction, the negative mesh velocity is used in the convective terms. This
is just the other sign as in standard convection due to a material derivative. So in each step we
have to solve:

∂c

∂t
− div(k∇c)− umesh · ∇c = 0 (6.6.1.9)

The first step in the solution process is the creation of the initial mesh. This may be done by
program SEPMESH, or immediately by program SEPFREE. In this example we have chosen for a
start with SEPMESH.
The corresponding input file is given by:

*stefan.msh

constants

integers

nelm1 = 50 # number of grid points in x-direction

nelm2 = 4 # number of grid points in y-direction

end

mesh2d

points

p1 = (1,0)

p2 = (5,0)

p3 = (5,1)

p4 = (1,1)

curves

c1 = line1(p1,p2,nelm= nelm1)

c2 = line1(p2,p3,nelm= nelm2)

c3 = line1(p3,p4,nelm= nelm1)

c4 = line1(p4,p1,nelm= nelm2) # free surface

surfaces

s1 = quad3(c1,c2,c3,c4)

plot

end

After mesh generation, program SEPFREE is used to perform the time integration, adapt the
boundary and the mesh and produce some intermediate prints and plots.
The convection diffusion equation is solved with the standard elements described in Section 3.1 of
the Manual Standard Problems. The corresponding type number is 800. The natural boundary
conditions at the boundaries c1 to c3 are all homogeneous and do not require extra input. The
boundary condition c = 1 along the free surface is an essential boundary condition.
The structure of the main program is defined in the input block STRUCTURE.
Three different vectors are used:

UM Stefan problem November 2008 6.6.1.3

concentration contains the concentration in the zinc.

u mesh contains the mesh velocity.

grad c contains the gradient of the concentration.

First the initial vector for the concentration is created (c = 0) and stored in concentration.
Next the gradient of the concentration is computed and stored in u_mesh. This creates a vector
with 2 unknowns per point. Since the concentration is constant, the initial velocity vector is equal
to 0. In this way we can start with the solution of the convection diffusion equation with initial
velocity 0.
After the velocity is computed, the essential boundary condition (c = 1) can be applied.
After these preparations, which may include printing of initial conditions, the time-dependent free
surface problem may be solved.
We want to produce one picture, with the boundaries of the region at all output steps. This makes
it possible to show the progress of the free boundary. In order to put all plots in one picture it is
necessary to surround the computation with a open_plot and close_plot statement.
In order to plot the initial boundary we give the plot_boundary command before the time integra-
tion.
The instationary free boundary loop consists of the following steps:

1. The gradient of the concentration is computed and stored in grad_c

2. Some vectors are printed at the times where output is required

3. The boundary of the region is adapted using the option normal_velocity and multiplication
by ∆t. This is in fact exactly the method given by Equation 6.6.1.8. The velocity to compute
the normal velocity is defined by vector grad_c multiplied by λ. In this example we use
λ = 0.0101.
If output is required the boundary of the mesh is plotted.

4. Once the boundary is adapted the mesh is adapted without changing the topology and the
mesh velocity is computed and stored in vector u_mesh.

5. Finally the concentration is computed by solving the convection diffusion equation with the
negative mesh velocity as convection velocity.

The time integration applied is an implicit Euler method with time-step 1, for t in the range
(0,10). At times 2, 4, 6, 8 and 10 output is required. This is indicated by the parameters
toutinit, toutstep and toutend.
A diagonal (lumped) mass matrix is used, and the right-hand side vector is of course zero, because
no source term is present.
The input file for program sepfree is given by:

*stefan.prb

*

constants

reals

k = 1 # diffusion coefficient

lambda = 0.0101 # velocity multiplication factor

vector_names

concentration # concentration of zinc

u_mesh # mesh velocity

grad_c # gradient of concentration

end

problem

types

UM Stefan problem November 2008 6.6.1.4

elgrp 1 = 800 # convection diffusion equation

essboundcond

curves(c4) # essential boundary conditions at free

surface

at the other boundaries we use natural

boundary conditions which do not

need any input

end

structure

initial condition, See input block create

create_vector, concentration

derivatives, u_mesh # mesh velocity = 0

See input block

derivatives

essential boundary conditions. See input block essential boundary cond

prescribe_boundary_conditions, concentration

print concentration

print u_mesh, text=’mesh velocity’

open_plot # all pictures in one plot

plot_boundary # plot initial boundary

start_instationary_free_boundary_loop

See input block

instationary free boun

time_integration # actual time integration

See input block

time_integration

derivatives, grad_c # gradient of c

See input block

derivatives

print concentration, text=’concentration’

print u_mesh, text=’mesh velocity’

print grad_c, text=’gradient concentration’

end_instationary_free_boundary_loop

close_plot # end plotting in one

picture

end

create vector

value = 0 # initial concentration

end

instationary_free_boundary

adapt_mesh = 1 # mesh adaptation,

see input block adapt_mesh

seq_vector = grad_c # vector to be used for adaptation of

boundary (gradient of concentration)

mesh_velocity = u_mesh # mesh velocity is computed and stored in V2

end

time_integration

method = euler_implicit # time integration method

tinit = 0 # initial time

UM Stefan problem November 2008 6.6.1.5

tend = 10 # final time

tstep = 1 # time-step

toutinit = 0 # initial time for output

toutend = 10 # final time for output

toutstep = 2 # time-step for output

seq_solution_method = 1 # see input block solve

right_hand_side = zero # no source term

seq_coefficients = 1 # see input block coefficients

seq_boundary_conditions = 1 # see input block essential boundary cond

diagonal_mass_matrix # lumped mass matrix

end

solve # defines the linear solver to be used

direct_solver = profile

end

essential boundary conditions, sequence_number = 1 # defines the values of the

essential boundary conditions

curves(c4), value = 1 # value of the Dirichlet boundary

condition at the free surface

end

coefficients # defines the coefficients for the

convection-diffusion equation

See manual standard problems 3.1

elgrp1, nparm=20

coef 6 = k # div k grad

coef 9 = coef 6 # div k grad

coef 12 old_solution u_mesh//

degree_of_freedom 1, coef = -1 # u-velocity adaptation of the mesh

is equal to -u component of

mesh velocity (V2)

coef 13 old_solution u_mesh//

degree_of_freedom 2, coef = -1 # v-velocity adaptation of the mesh

is equal to -v component of

mesh velocity (V2)

coef 17 = 1 # density rho

end

adapt_mesh # adaptation of the mesh

adapt_boundary = 1 # see input block adapt_boundary

change_topology = not # topology is kept

end

adapt_boundary # defines how the boundary is

adapted

curves = c4 # free surface

plot_boundary # The boundary is plotted in

each output step

adaptation_method = normal_velocity # the normal velocity is adapted by

factor = lambda, multiply = dt # lambda times dt times the

normal derivative of the

the concentration

end

UM Stefan problem November 2008 6.6.1.6

derivatives # defines which derivative to be

computed

icheld = 2, seq_input_vector = concentration # gradient of first input

vector (c)

See manual standard problems 3.1

end

end_of_sepran_input

UM Dissolution of one particle January 1997 6.6.2.1

6.6.2 The dissolution of a disk-like particle in a disk-shape environment

In this section we consider the same type of problem as in Section 6.6.1. The type of material in
this case is different, since it concerns the dissolution of an Al2Cu particle in an Al − CU alloy.
The mathematical model applied is exactly the same as the one used in Section 6.6.1. The constants
used are of course different and moreover, the shape of the particle is different. In this case it
concerns a rectangular particle and it this shape that causes the difficulties. Figure 6.6.2.1 shows
the configuration.

S(t)

Γ Γ

Γ

Γ

Al-Cu
1

4

3

2

Ω (t)

Al Cu2

Figure 6.6.2.1: Dissolution of a Al2Cu particle in an Al − Cu alloy

The first step in the solution process is the creation of the initial mesh. This may be done by
program SEPMESH, or immediately by program SEPFREE. In this example we have chosen for a
start with SEPMESH.
The corresponding input file is given by:

*stefan1.msh

constants

reals

L_cell = 4 # Length of the cell

L_edge = 1 # Initial length of an edge of the particle

end

mesh2d

coarse(unit=1)

points

p1 = (L_edge,0,0.1)

p2 = (L_cell,0,0.1)

p3 = (L_cell, L_cell,0.1)

p4 = (0, L_cell,0.1)

p5 = (0, L_edge,0.1)

p6 = (L_edge, L_edge,0.1)

p7 = (0,0,0.1)

curves

c1 = cline1(p1,p2)

c2 = cline1(p2,p3)

c3 = cline1(p3,p4)

c4 = cline1(p4,p5)

c5 = cline1(p5,p6)

c6 = cline1(p6,p1)

c7 = curves(c2,c3)

c8 = curves(c5,c6)

UM Dissolution of one particle January 1997 6.6.2.2

c9 = cline1(p5,p7)

c10 = cline1(p1,p7)

c11 = cline1(p6,p3)

surfaces

s1 = general3(c1,c2,-c11,c6)

s2 = general3(c3,c4,c5,c11)

plot

end

If we apply the method used in Section 6.6.1 the free boundary shows a non-physical behavior as
shown in Figure 6.6.2.2 For that reason the improved method indicated by adaptation_method = stefan

Figure 6.6.2.2: Position of free bound-
ary at first 10 time-steps using the nor-
mal velocity method

Figure 6.6.2.3: Position of free bound-
ary at first 10 time-steps using the ste-
fan method

is applied.
The input file for program sepfree is given by:

*stefan1.prb

constants

reals

k = 0.04858

lambda = 0.000969

vector_names

concentration # concentration of zinc

u_mesh # mesh velocity

grad_c # gradient of concentration

end

start

norotate

end

problem

UM Dissolution of one particle January 1997 6.6.2.3

types

elgrp 1 = 800 # convection diffusion equation

essboundcond

curves(c8) # essential boundary conditions at free

surface

end

structure

create_vector, concentration

derivatives, u_mesh

prescribe_boundary_conditions, concentration

open_plot # all pictures in one plot

plot_boundary, region = (0,1.1,0,1.1) # plot initial boundary

start_instationary_free_boundary_loop

time_integration

derivatives, grad_c

end_instationary_free_boundary_loop

close_plot

end

matrix

storage_scheme = compact # compact matrix

end

create vector

value = 0.0011

end

instationary_free_boundary

adapt_mesh = 1

seq_vector = grad_c

mesh_velocity = u_mesh

interpolate_solution(concentration)

check_boundary = 1

check_mesh = 1

end

time_integration

method = euler_implicit

tinit = 0

tend = 80

tstep = 0.5

toutinit = 0 # initial time for output

toutend = 500 # final time for output

toutstep = 10 # time-step for output

seq_solution_method = 1

right_hand_side = zero

seq_coefficients = 1

seq_boundary_conditions = 1

diagonal_mass_matrix

end

solve

iteration_method=cg, start=old_solution, print_level=1

end

UM Dissolution of one particle January 1997 6.6.2.4

essential boundary conditions

curves(c8), value = 3.88

end

coefficients

elgrp1, nparm=20

coef 6 = k # div k grad

coef 9 = coef 6 # div k grad

coef 12 old_solution u_mesh, degree_of_freedom 1, coef = -1 # u-velocity

coef 13 old_solution u_mesh, degree_of_freedom 2 , coef = -1 # v-velocity

coef 17 = 1 # density rho

end

adapt_mesh

adapt_boundary = 1, change_topology = not,# plot_mesh

end

adapt_boundary

curves = c8

plot_boundary

adaptation_method = stefan

factor = lambda, multiply = dt

redistribute_nodes

move_begin = c9

move_end = c10

end

derivatives

icheld = 12, seq_input_vector = concentration

end

end_of_sepran_input

Mark that in this case different parameters, boundary conditions and initial concentration are used:

initial concentration = 0.0011
concentration at interface = 3.88
diffusion coefficient k = 0.04858
Stefan constant λ = 0.000969

Furthermore the begin and end points are forced to move along given curves. Figure 6.6.2.3 shows
the free boundary for several time-steps.

UM Dissolution of two particles August 2008 6.6.3.1

6.6.3 The dissolution of two particles

In fact this example is identical to the one in Section 6.6.2, except that we consider the case that
two particles are dissolved.

To get this example into your local directory use:

sepgetex 2partsys

and to run it use:

sepmesh 2partsys.msh

sepfree 2partsys.prb

seppost 2partsys.pst

1

2

3

4

5

6

7
8

9

10

Figure 6.6.3.1: Boundaries of the mesh

Figure 6.6.3.2: Mesh for two particles

The mesh input file in this case is given by:

constants

reals

R_part_1 = 0.5 # Radius particle 1

C_part_2 = 5 # Centroid particle 2

S_part_2 = 3 # End point particle 2

end

mesh2d

coarse (unit = 0.5)

points

p1 = (0,0,0.3)

p2 = (R_part_1,0,0.3)

p3 = (C_part_2,0,0.3)

p4 = (C_part_2, S_part_2,0.3)

p5 = (C_part_2, C_part_2,0.3)

p6 = (S_part_2, C_part_2,0.3)

p7 = (0, C_part_2,0.3)

p8 = (0, R_part_1,0.3)

curves

c1 = carc1(p8,p2,-p1)

c2 = cline1(p2,p3)

c3 = cline1(p3,p4)

UM Dissolution of two particles August 2008 6.6.3.2

c4 = carc1(p4,p6,-p5)

c5 = cline1(p6,p7)

c6 = cline1(p7,p8)

c7 = cline1(p8,p1)

c8 = cline1(p1,p2)

c9 = cline1(p4,p5)

c10= cline1(p5,p6)

c11= curves(c2,c3)

c12= curves(c5,c6)

surfaces

s1 = general3(c1,c11,c4,c12)

plot

end

Figure 6.6.3.1 shows the boundaries of the mesh and Figure 6.6.3 the corresponding mesh.

The input file for program sepfree is given by:

* 2partsys.prb

constants

reals

k = 0.04858 # diffusion coefficient

vector_names

concentration # concentration of zinc

u_mesh # mesh velocity

grad_c # gradient of concentration

end

start

norotate

end

problem

types

elgrp 1 = 800 # convection diffusion equation

essboundcond

curves(c1) # essential boundary conditions at free

curves(c4) # surface

end

structure

create_vector

derivatives, u_mesh

prescribe_boundary_conditions

open_plot

plot_boundary

start_instationary_free_boundary_loop

time_integration

derivatives, grad_c

plot_boundary

end_instationary_free_boundary_loop

close_plot

end

matrix

storage_method = compact # matrix is unsymmetrical

a compact storage is used

end

UM Dissolution of two particles August 2008 6.6.3.3

create vector

value = 0.0011

end

instationary_free_boundary

adapt_mesh = 1

seq_vector = grad_c

mesh_velocity = u_mesh

interpolate_solution(v1)

check_boundary = 1

check_mesh = 1

write_mesh

end

time_integration,sequence_number = 1

method = euler_implicit

tinit = 0

tend = 50

tstep = 0.5

toutinit = 0 # initial time for output

toutend = 400 # final time for output

toutstep = 10 # time-step for output

seq_solution_method = 1

right_hand_side = zero

seq_coefficients = 1

seq_boundary_conditions = 1

diagonal_mass_matrix

end

solve

iteration_method=cg, start=old_solution, print_level=0

end

essential boundary conditions

curves(c1), value = 3.88

curves(c4), value = 3.88

end

coefficients

elgrp1, nparm=20

coef 6 = $k # div k grad

coef 9 = coef 6 # div k grad

coef 12 old_solution u_mesh, degree_of_freedom 1, coef = -1 # u-velocity

coef 13 old_solution u_mesh, degree_of_freedom 2 , coef = -1 # v-velocity

coef 17 = 1 # density rho

end

adapt_mesh

adapt_boundary = (1,2), change_topology = not # plot_mesh to be inserted for mesh plots

end

adapt_boundary, sequence_number = 1

curves = (c1)

adaptation_method = stefan

UM Dissolution of two particles August 2008 6.6.3.4

factor = 0.000969, multiply = dt

redistribute_nodes

move_begin = c7

move_end = c8

end

adapt_boundary, sequence_number = 2

curves = c4

adaptation_method = stefan

factor = 0.000969, multiply = dt

redistribute_nodes

move_begin = c9

move_end = c10

end

derivatives

icheld = 12, seq_input_vector = concentration

enD

end_of_sepran_input

In this case we need to describe the movement of both free boundaries. At the end of the process
the final mesh is written to the file meshoutput so that the solution can be plotted by seppost.
Figure 6.6.3.3 shows the free boundary during various time steps.

Figure 6.6.3.3: Position of free bound-
ary during a number of time-steps

Figure 6.6.3.4: Concentration profiles
for two-particle problem at t=50

A typical input file for seppost is given by

* 2partsys.pst

postprocessing

plot mesh

3d plot concentration

plot contour concentration, noaxis, noplot_legenda, noplot_scales, nonumber

plot coloured contour concentration

end

UM Dissolution of two particles August 2008 6.6.3.5

Figure 6.6.3.4 shows the computed concentration. The options nonumber and so on are used to
suppress all information.

UM Auxiliary examples July 1999 6.7.1

6.7 Auxiliary examples

In this section we treat some special examples not directly related to a special category.
The following examples will be treated:

6.7.1 An example of reading own data for postprocessing purposes.
This shows how one can read own data defined on some grid. A mesh is created automatically
and the data may be processed by seppost.

UM Reading own data November 2008 6.7.1.1

6.7.1 An example of reading own data for postprocessings purposes

In this section we consider the use of SEPRAN for postprocessings purposes only.
Suppose the user has a field of co-ordinates and data and he wants to use SEPRAN or AVS (or
both) for postprocessings purposes. Such data may be for example the result of measurements.
Unless the co-ordinates are positioned in a rectangular grid, AVS does not have the possibility to
read and visualize the data, since AVS always expects an underlying structure.
With SEPRAN it is possible to read the co-ordinates and create an unstructured mesh using the
option NODAL_POINTS as described in Section 2.7. The corresponding data may then be read by the
option INPUT_VECTOR in the input block STRUCTURE (Section 3.2.3).
Since in this case SEPRAN is not used to solve a problem, the default problem description is used.
With the option OUTPUT the result may be written to an AVS input file as well to the file
sepcomp.out. Hence also program SEPPOST may be used to visualize the data.

In this example we show this process for some arbitrary data using an unstructured 2d grid. The
boundary is defined by the user.
First we consider the input for program sepmesh:

*owndat2d.msh

Example of creation of mesh in a set of points

mesh2d

#

nodal_points, unstructured, element_shape = 3

#

boundary_points

0. , 0.

0.5 , 0.

1. , 0.

1. , 0.5

1. , 1.

0.5 , 1.

0. , 1.

0. , 0.5

#

internal_points

0.25 , 0.25

0.50 , 0.50

0.75 , 0.25

0.25 , 0.75

0.75 , 0.75

#

plot

UM Reading own data November 2008 6.7.1.2

#

end

Figure 6.7.1.1 shows the mesh created by SEPRAN. Once the mesh has been created the data may

x

y

1 2 3

4

567

8

9

10

11

12 13

1 2

3

4

56

7

8 9 10

11

12

1314

15

16

Figure 6.7.1.1: Mesh created by SEPRAN

be read by program sepcomp. The following input may be used for this purpose.

*owndat2d.prb

constants

vector_names

potential

end

problem default

structure

input_vector potential, scalar, file = ’owndat2d.fil’

print potential

output

end

output

to_avs

end

The data to be read are stored in the file owndat2d.fil. In this artificial case this file contains the
x-coordinates as data. The file owndat2d.fil may have the following shape.

0.

0.5

1.

1.

1.

0.5

0.

0.

UM Reading own data November 2008 6.7.1.3

0.25

0.50

0.75

0.25

0.75

SEPCOMP makes an AVS input file as well as the files necessary for program SEPPOST.
An example input file for SEPPOST is the following one:

*owndat2d.pst

postprocessing

print potential

plot contour potential

plot coloured contour potential

3d plot potential, angle = 135

end

Figure 6.7.1.2 shows the contour lines of the data and Figure 6.7.1.3 a 3D plot.

1

2

3 4

5

6

7

8 9

10

11

LEVELS
 1 0.000
 2 0.100
 3 0.200
 4 0.300
 5 0.400
 6 0.500
 7 0.600
 8 0.700
 9 0.800
10 0.900
11 1.000

Contour levels of potential

Figure 6.7.1.2: Contour plot of artificial data

UM Reading own data November 2008 6.7.1.4

3D plot of potential

Figure 6.7.1.3: 3D plot of artificial data

UM Eigenvalue examples July 1999 6.8.1

6.8 Examples of eigenvalue computations

In this section we treat examples of the computation of eigenvalues and eigenvectors.
The following examples will be treated:

6.8.1 Eigenvalues and eigenvectors for a potential problem in an L-shape

UM Eigenvalues in L-shape May 2008 6.8.1.1

6.8.1 Eigenvalues and eigenvectors for a potential problem in an L-shape

In this example we compute the 3 smallest eigenvalues and corresponding eigenvectors of the Laplace
equation on a L-shaped region.
In order to get this example into your local directory use:

sepgetex eigenvalue

To run the example use the following commands:

sepmesh eigenvalue.msh

sepview sepplot.001

sepcomp eigenvalue.prb

seppost eigenvalue.pst

sepview sepplot.001

Consider the eigenvalue problem associated to the Laplace operator:

−∆u = λu x ∈ Ω (6.8.1.1)

with
u = 0 at the boundary Γ of Ω. (6.8.1.2)

Our purpose is to find the 3 smallest eigenvalues of the problem 6.8.1.1, 6.8.1.2 and their corre-
sponding non-trivial eigenfunctions u. Discretization of 6.8.1.1, 6.8.1.2 by the finite element method
yields the following generalized eigenvalue problem:

S u = λ M u, (6.8.1.3)

with S and M positive definite. The region Ω is sketched in Figure 6.8.1.1 The discretization

1

2

3

4

5

6

Figure 6.8.1.1: L-shaped region for the eigenvalue problem

is performed with linear triangles and the standard Laplacian equation described in the manual
Standard Problems Section 3.1 (type number 800).

To create the mesh, program SEPMESH is used with input file eigenvalue.msh:

UM Eigenvalues in L-shape May 2008 6.8.1.2

eigenvalue.msh

#

mesh file for eigenvalue problem in an L-shaped region

See Users Manual Section 6.8.1

#

#

The shape of the mesh is defined as follows:

#

P6 C5 P5

--

| |

| |

| | C4

C6| P3 |

| *----------------------*

| | C3 P4

| |

| |C2

| |

P1 C1 P2

#

To run this file use:

sepmesh eigenvalue.msh

#

Creates the file meshoutput

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

width_lower = 1 # width of the lower part of the L-shape

width = 2 # width of the complete L-shape

height = 2 # height of the complete L-shape

height_lower = 1 # height of the lower part of the L-shape

end

#

Define the mesh

#

mesh2d # See Users Manual Section 2.2

coarse(unit=0.05) # The concept of coarseness is used with a unit length

of 0.05

#

user points

#

points # See Users Manual Section 2.2

p1=(0 , 0 ,1) # Point left under

p2=(width_lower, 0 ,1) # Point right under (lower part)

p3=(width_lower, height_lower,1) # Point right upper (lower part)

p4=(width , height_lower,1) # Point right under (upper part)

p5=(width , height ,1) # Point right upper

p6=(0 , height ,1) # Point left upper

In all these points we have a unit

length of 0.05

#

UM Eigenvalues in L-shape May 2008 6.8.1.3

curves

#

curves # See Users Manual Section 2.3

c1=cline1(p1,p2) # lower boundary

c2=cline1(p2,p3) # right boundary of lower part

c3=cline1(p3,p4) # lower boundary of upper part

c4=cline1(p4,p5) # right boundary of upper part

c5=cline1(p5,p6) # upper boundary

c6=cline1(p6,p1) # left boundary

#

surfaces

#

surfaces # See Users Manual Section 2.4

s1=general3(c1,c2,c3,c4,c5,c6)

plot # make a plot of the mesh

See Users Manual Section 2.2

end

The mesh created is shown in Figure 6.8.1.2 In the computational part (program SEPCOMP) 3

Figure 6.8.1.2: Mesh of L-shaped region generated by GENERAL

eigenvalues and eigenvectors are computed. The eigenvalues are stored as scalars and printed.
The eigenvectors get the names eigenvector_j with j = 1, 2, 3. These names are reused in the
postprocessing. The eigenvectors are written to the postprocessing file sepcom.out.
Besides that also the integrals over the eigenvectors are computed and printed, in order to show
how one can manipulate the vectors just computed.
The input file is given below:

eigenvalue.prb

#

problem file for eigenvalue problem in an L-shaped region

See Users Manual Section 6.8.1

#

UM Eigenvalues in L-shape May 2008 6.8.1.4

To run this file use:

sepcomp eigenvalue.prb

#

Reads the file meshoutput

Creates the file sepcomp.out

#

Define some general constants

#

constants # See Users Manual Section 1.4

reals

mu = 1 # diffusion coefficient

rho = 1 # density

vector_names

eigenvector_1 # The first three vectors are the eigenvectors

eigenvector_2

eigenvector_3

variables

eigenvalue_1 # The first three scalars are the eigenvalues

eigenvalue_2

eigenvalue_3

end

#

Define the type of problem to be solved

#

problem # See Users Manual Section 3.2.2

types # Define types of elements,

See Users Manual Section 3.2.2

elgrp1 = (type=800) # A Laplacian equation is solved, see manual

Standard Problems Section 3.1

essbouncond # Define where essential boundary conditions are

given (not the value)

See Users Manual Section 3.2.2

curves(c1,c6) # In all boundaries of the region

essential boundary conditions are defined

phi = 0

end

Define the structure of the problem

In this part it is described how the problem must be solved

This is necessary because the integral of the pressure over the boundary

is required

#

structure # See Users Manual Section 3.2.3

compute 3 eigenvalues and eigenvectors

compute_eigenvalues, num_eigval = 3, eigenvector_1, eigenvalue_1

print eigenvalue_1, text = ’eigenvalue 1’ # Print the 3

print eigenvalue_2, text = ’eigenvalue 2’ # eigenvalues

print eigenvalue_3, text = ’eigenvalue 3’

output # write the three eigenvectors for postprocessing purposes

end

Define the structure of the large matrix

See Users Manual Section 3.2.4

UM Eigenvalues in L-shape May 2008 6.8.1.5

matrix

The matrix is a compact symmetric matrix

This is necessary for the eigenvalue algorithm

storage_method = compact, symmetric

end

Define the coefficients for the problem

All parameters not mentioned are zero

See Users Manual Section 3.2.6 and Standard problems Section 3.1

coefficients

elgrp1 (nparm=20) # The coefficients are defined by 20 parameters

icoef1 = 1 # diagonal mass matrix

coef6 = mu # a11 = mu (1)

coef9 = coef 6 # a22 = a11

coef17 = rho # rho = 1 (mass matrix)

end

Definition of the eigenvalue input

See Users Manual Section 3.2.18

eigenvalues

seq_coef = 1 # Coefficients for the differential equation

Since a vector sequence numberis given in

structure, automatically eigenvectors

are computed

All other parameters are standard

end

end_of_sepran_input

To show the eigenvectors, program seppost is used with the following input:

eigenvalue.pst

Input file for postprocessing for eigenvalue problem in an L-shaped region

See Users Manual Section 6.8.1

#

#

To run this file use:

seppost eigenvalue.pst > eigenvalue.out

#

Reads the files meshoutput and sepcomp.out

#

postprocessing # See Users Manual Section 5.2

Print the three eigen vectors

See Users Manual Section 5.3

The names of the vectors have already been defined in the input for sepcomp

print eigenvector_1

print eigenvector_2

print eigenvector_3

Define plot identification

See Users Manual Section 5.4

UM Eigenvalues in L-shape May 2008 6.8.1.6

plot identification, text=’Example of eigenvalue problem’, origin=(3,18)

Make contour plots and coloured level plots of all three eigenvectors

See Users Manual Section 5.4

plot contour eigenvector_1

plot coloured contour eigenvector_1

plot contour eigenvector_2

plot coloured contour eigenvector_2

plot contour eigenvector_3

plot coloured contour eigenvector_3

end

Figures 6.8.1.3 to 6.8.1.5 show the contour lines of the eigenvalues, Figures 6.8.1.6 to 6.8.1.8 show
the colored contour levels.

1

2

3

4
5

6
7

8

910

Contour levels of eigenvector_1

Figure 6.8.1.3: Contour lines of eigenvector 1

1

2

3

4

5

6

7

8

9

10

11

Contour levels of eigenvector_2

Figure 6.8.1.4: Contour lines of eigenvector 2

UM Eigenvalues in L-shape May 2008 6.8.1.7

1

2

2

3

3

4

4

5

5

6

7

8

9

10 11

Contour levels of eigenvector_3

Figure 6.8.1.5: Contour lines of eigenvector 3

Contour levels of eigenvector_1

Figure 6.8.1.6: Colored contour levels of eigenvector
1

Contour levels of eigenvector_2

Figure 6.8.1.7: Colored contour levels of eigenvector
2

Contour levels of eigenvector_3

Figure 6.8.1.8: Colored contour levels of eigenvector
3

UM References January 1997 7.1

References

Caswell and Viriyayuthakorn (1983) Finite element simulation of die swell for a Maxwell fluid,
J. of Non-Newt. Fluid Mech. Vol 12, 13-29.

Cuthill, E. and J. McKee (1969) Reducing the band width of sparse symmetric matrices. Proc.
ACM Nat. Conf. Association of Computing Machinery, New York.

W.D. Murray and F. Landis (1959) Numerical and machine solutions of transient heat-conduction
problems involving melting or freezing,
Trans. ASME (C) J. Heat Transfer, 81, p. 106-112.

Segal Guus, Kees Vuik and Fred Vermolen (1997) A conservative discretization for the free
boundary in a two-dimensional Stefan problem. Report

Sloan, S.W. (1986) An algorithm for profile and wavefront reduction of sparse matrices. Int. J.
for Num. Meth. in Engng, 23, p. 239-251.

UM Index August 2010 8.1

Index

approximate projection vector 3.2.8
arc 2.3
array defined per element 1.1, 3.2.2
array of special structure 1.1, 3.2.2
array of the structure of the solution vector 1.1, 3.2.2
avs 3.2.13
adapting boundary of mesh 3.4.3, 3.4.4
adapting of mesh 3.4.3
bearing 3.2.24
band method 2.2
bend problem 6.3, 6.3.1, 6.3.2, 6.3.3
block ilu 3.2.8
block ssor 3.2.8
boolean expression 3.2.3
bool expr 3.2.3
boundary conditions 1.2, 3.2.2
boundary conditions of the type u constant 1.2.5, 3.2.2
boundary conditions of the type ψr = c2ψl + cl 1.2.5, 3.2.2
boundary element 1.1, 3.2.2
boundary element group 1.1, 3.2.2
boundary integral 3.2, 3.2.3, 3.2.14, 6.2.5
brick 2.5, 2.5.1
bubble 3.2.3.7
capacity 3.2.3, 3.2.19, 6.2.10, 6.2.11
carc 2.3
cavitation 3.2.2.4, 3.2.24
CFUN1B 3.3, 3.3.4
CFUNOL 3.3, 3.3.5
cg 3.2.8
cgs 3.2.8
change coefficients 3.2, 3.2.7, 3.2.9
change coordinates 2.2, 2.2.1, 3.2.3
change structure 3.2.3
change topology 3.4.3
channel 2.5.3
circle 2.3
cline 2.3
coefficients 3.2, 3.2.6, 3.2.9
colored mesh 5.4
command record 1.4
compatibility 1.1, 6.2.8
COMPCONS 1.4, 1.6
compute bubble 3.2.3.7
conjugate gradients 3.2.8
conjugate vector 3.2.3
connection elements 1.2.3, 1.2.6, 2.2
constants 1.4, 1.6, 3.2.3
constraint 3.2.8
contact 3.2.2, 3.2.16, 3.2.2, 3.2.10, 3.2.14
contact algorithm 3.2.16
contact distance 3.2.16
contact force 3.2.16
contact surface 3.2.16

UM Index August 2010 8.2

copy 3.2.3
coupled problems 1.1, 1.3, 3.2.9, 3.2.15, 6.4.5
cparam 2.3
cprofile 2.3
create vector 3.2, 3.2.10
cross-section 3.2.2
cspline 2.3
CTIMEN 3.2.15, 6.4.1
curve 2.2, 2.3
curve generator 2.3
CUSCONS 1.6
CUSNAME 1.6
database 3.2.1, 3.2.3
data record 1.4
defect correction 3.2.8
deform mesh 3.2.3
degree of freedom 1.1, 3.2.2
derivatives 3.2, 3.2.3, 3.2.11, 3.2.15, 6.2.5
direct method 3.2.8
dissolution of particles 6.3.2, 6.3.3
eigenvalues 3.2.3, 3.2.18, 6.8.1
eigenvectors 3.2.3, 3.2.18, 6.8.1
elasticity equation 6.4.5
ELCERV 4.6
ELDERV 4.5
electrode 6.2.8, 6.2.9, 6.2.10
ELEM 4.2
ELEM1 4.3
ELEM2 4.4
element group 1.1, 3.2.2
element group properties 2.2
element subroutine 4.1, 4.2
ELINT 4.7
ELSTRM 4.8
environment file 1.5
essential boundary conditions 1.2.1, 3.2, 3.2.2, 3.2.5
essential boundary conditions not connected to degrees of freedom 1.2.4
extract vector 3.2.3
files 3.5
file with electrodes and capacities 3.5, 3.5.4
file with elements and values 3.5, 3.5.3
file with nodes 3.5, 3.5.1
file with nodes and values 3.5, 3.5.2
film method 3.4.4
for-loop 3.2.3, 6.2.9
FRAMESURF 2.4.12
free surface problems 3.1, 3.4, 3.4.5, 3.4.6, 6.3
FUNC1B 3.2.10, 3.3, 3.3.4
FUNALC 3.3, 3.3.1
FUNALG 3.3, 3.3.1
FUNCC1 3.3, 3.3.6
FUNCC3 3.3, 3.3.6
FUNCCOOR 2.2, 2.2.1
FUNCCR 3.3, 3.3.9, 3.4.4
FUNCCV 2.3, 2.3.1

UM Index August 2010 8.3

FUNCFL 3.3, 3.3.3
FUNCOL 3.3, 3.3.5
FUNCSOLCR 3.3, 3.3.15, 3.4.4
FUNCTR 3.2.2, 3.3, 3.3.7
FUNCVECT 3.2.10, 3.3.11
FUNSCAL 3.3, 3.3.2, 6.2.8
Gaussian elimination 3.2.8
general 2.4, 2.4.1, 2.5, 2.5.4
general constants 1.4, 1.7
generalized alpha 3.2.15
generalized theta 3.2.15
GETCONST 1.4, 3.3.12.2
GETINT 1.4, 3.3.12.1
GETNAMEINT 1.4, 3.3.14.1
GETNAMEREAL 1.4, 3.3.14.2
GETNAMEVAR 1.4, 3.3.14.3
GETVAR 1.4, 3.3.12.3
global elements 3.2.2
global unknowns 3.2.2
gmres 3.2.8
gmresr 3.2.8
heat equation 6.4, 6.4.1, 6.4.2, 6.4.5
ilu 3.2.8
imaginary vector 3.2.3
include 1.4
input file 1.4
instationary free boundaries 3.4, 3.4.2, 3.4.6, 6.3
integer properties 2.2, 3.2.8
integers 1.4, 1.6
integral 3.2, 3.2.3, 3.2.12, 6.2.5
intermediate points 2.2
interpolate solution 3.4.3
intersection 5.4
inverse problem 3.2.3, 3.2.20, 6.2.11
isopar 2.4, 2.4.9
iteration 3.2.8
iterative improvement 3.2.8
Krylov space 3.2.8
Kumar 3.2.24
length 3.2.3
level 3.2.2
level set 3.2.2, 3.2.2.4, 3.2.3.18, 3.2.10
line 2.3
linear combination 3.2.3
linking SEPRAN programs 2.1
local transformations 3.2.2
loop 3.2.3
lumping 3.2.8
mass conserving 3.2.24
matrix 3.2, 3.2.4
mesh deformation 3.2.3
mesh refinement 2.2, 3.2.3, 6.2.4
mesh velocity 3.4.6
MESHUS 2.4, 2.4.6
modulus 3.2.3

UM Index August 2010 8.4

moving boundary problems 3.1, 3.4
natural boundary conditions 1.2.2, 3.2.2
Navier-Stokes 3.2.23, 6.3, Newmark 3.2.15
6.3.1, 6.3.2, 6.3.3
non-linear equations 3.2, 3.2.3, 3.2.9, 6.3
norm 3.2.3
NPROB 1.3
obstacle 2.2, 3.2.2, 3.2.10
open dx 3.2.13
output 3.2, 3.2.3, 3.2.13
overrelaxation 3.2.8
parallel 2.2, 3.6, 3.6.1
PARAM 2.3
PARSURF 2.4, 2.4.8
particle trace 5.4
periodical boundary conditions 1.2.3, 2.2, 3.2.2, 6.2.6, 6.2.7
permittivity 3.2.19, 3.2.20, 6.2.9, 6.2.10, 6.2.11
phase 3.2.3
pipe 2.5, 2.5.2
pipe surface 2.4, 2.4.5
plot 5.1, 5.4
plot colored levels 3.2.3, 5.1, 5.4
plot colored mesh 5.4
plot contour 3.2.3, 5.1, 5.4
plot mesh 5.4
plot tensor 3.2.3
plot vector 5.1, 5.4, 3.2.3
positive definite 3.2.8
post processing 5.1
preconditioning 3.2.8
preprocessing 2.1
prescribe boundary condition 3.2.3
prescribed degree of freedom 1.1, 3.2.3
pressure correction 3.2.3.3, 3.2.22, 3.2.23
PRGETNAME 1.4, 3.3.14.4
principal stresses 3.2.3
print 5.1, 5.3
problem 3.2, 3.2.2
profile 2.3
profile method 2.2
projection method 3.2.8
projection vector 3.2.8
properties 2.2
PUTINT 1.4, 3.3.13.1
PUTREAL 1.4, 3.3.13.2
PUTVAR 1.4, 3.3.13.3
quadratic (velocity profile) 3.2.10
quadrilateral 2.4, 2.4.3
ray tube 2.5.3
reaction force 3.2.3, 3.2.11
read vector 3.2.3
real properties 2.2
real vector 3.2.3
reals 1.4, 1.6
rectangle 2.4, 2.4.2

UM Index August 2010 8.5

reflect 2.3, 2.4, 2.5
renumber 2.2, 3.2.1, 3.2.2
refinement of the mesh 2.2, 3.2.3, 3.2.21,6.2.4
residual 3.2.8
rotate 2.3, 2.4, 2.5
scalar 1.4, 1.6, 3.2.2, 6.2.8
scaling 3.2.8
sensor 6.2.8, 6.2.9, 6.2.10
sepcombineout 3.6
sepcomp 1, 3.1, 3.2
sepfree 3.1, 3.4
seplink 2.1
sepmakeparmesh 3.6, 3.6.1
sepmesh 1, 2.1, 2.2
sepmpi 3.6
seppost 1, 5.1, 5.2
sepran.env 1.5
set commands 1.4
similar 2.4
simple iteration 3.2.4, 3.2.2.13, 3.2.8
simple gcr 3.2.8
solve 3.2, 3.2.3, 3.2.7
solve linear system 3.2.3
solve non-linear system 3.2.3
solve time-dependent system 3.2.3
special files 3.5
sphere 2.4, 2.4.11
spline 2.3
spline curve 2.3
standard element 1.1
start 3.2, 3.2.1
stationary free surface problem 3.4, 3.4.5
stefan problem 6.3.1, 6.3.2, 6.3.3
stream function 4.8, 5.2
structure 3.2, 3.2.3, 3.4.2, 6.4.2
substepping 3.2.22
subtract 3.2.3
surface 2.2, 2.4
surface generator 2.4
tensor 3.2.3
time integration 3.2, 3.2.3, 3.2.15, 6.4
time history 5.5, 3.2.15
time loop 3.2.3, 6.4.5
transformation 2.2
transformation matrix 3.2.2
translate 2.3, 2.4, 2.5
triangle 2.4, 2.4.7
type 3.2.2
USERBOOL 3.2.3, 3.3.8, 6.3.3
user curve 2.3, 2.3.1, 2.3.2
USEROUT 3.2.3
USEROUTS 3.2.3
user point 2.2
variables 1.4, 1.6, 3.2.2, 3.2.3, 6.2.9
vector 3.2.3

UM Index August 2010 8.6

vector defined per element 1.1, 3.2.2
vector names 1.4, 3.2.2
vector of special structure 1.1, 3.2.2
vector of the structure of the solution vector 1.1, 3.2.2
velocity profile 5.4
volume 2.2, 2.5
volume generator 2.5
while loop 3.2.3, 6.3.3

	 Introduction
	Some definitions used in SEPRAN
	 Boundary conditions
	 Essential boundary conditions
	 Natural boundary conditions
	 Periodical boundary conditions
	 Essential boundary conditions not connected with degrees of freedom
	 Boundary conditions of the type u is constant along a part of the boundary
	 Boundary conditions of the type r = c2l + c1

	 The solution of coupled problems at one mesh
	The standard SEPRAN input file
	 The SEPRAN environment file
	 Manipulation of constants and variables(subroutine COMPCONS)
	Definition of general constants
	Overview of the SEPRAN commands

	 The pre-processing part of SEPRAN
	 Introduction
	Input for program SEPMESH from the standard input file
	 Subroutine FUNCCOOR

	 Curve generators
	 Subroutine FUNCCV
	 Subroutine OWN_CURVE

	 Surface generators
	 Surface generator GENERAL
	 Surface generator RECTANGLE
	 Surface generator QUADRILATERAL
	 Surface generator COONS
	 Surface generator PIPESURFACE
	 Surface generator MESHUS
	 Surface generator TRIANGLE
	 Surface generator PARSURF
	 Surface generator ISOPAR
	 Surface generator PAVER
	 Surface generator SPHERE
	 Surface generator FRAMESURF

	 Volume generators
	 Volume generator BRICK
	 Volume generator PIPE
	 Volume generator CHANNEL
	 Volume generator GENERAL

	Some examples of meshes generated by SEPRAN
	 Special input for program SEPMESH from the standard input file

	The computational part of SEPRAN
	 Introduction
	 Description of the input for program SEPCOMP
	 The main keyword START
	 The main keyword PROBLEM
	The main keyword STRUCTURE
	 The main keyword MATRIX
	 The main keywords ESSENTIAL BOUNDARY CONDITIONS
	 The main keyword COEFFICIENTS
	 The main keywords CHANGE COEFFICIENTS
	 The main keyword SOLVE
	 The main keyword NONLINEAR_EQUATIONS
	 The main keyword CREATE
	 The main keyword DERIVATIVES
	 The main keyword INTEGRALS
	 The main keyword OUTPUT
	 The main keyword BOUNDARY_INTEGRAL
	 The main keyword TIME_INTEGRATION
	 The main keyword CONTACT
	 The main keyword LOOP_INPUT
	 The main keyword EIGENVALUES
	 The main keyword CAPACITIES
	 The main keyword INVERSE_PROBLEM
	 The main keyword REFINE
	 The main keyword Navier_Stokes
	 The main keyword PRESSURE_CORRECTION
	 The main keyword BEARING

	 Description of some function subroutines to be used
	 Subroutines FUNALG and FUNALC
	 Function subroutine FUNCSCAL
	 Subroutine FUNCFL
	 Subroutines FUNC1B and CFUN1B
	 Function subroutines FUNCOL and CFUNOL
	 Function subroutines FUNCC1 and FUNCC3
	 Function subroutine FUNCTR
	 Function subroutine USERBOOL
	 Subroutine FUNCCR
	 Subroutine FUNCC2
	 Subroutine FUNCVECT
	Function subroutines to get the values of constants and variables.
	Subroutines to put the values of constants and variables in common CUSCONS
	Subroutines to get the positions of variables, constants and vectors in common CUSCONS
	 Subroutine FUNCSOLCR

	 Description of the input for program SEPFREE
	 Introduction
	 Extra possibilities for the main keyword STRUCTURE
	 The main keyword ADAPT_MESH
	 The main keyword ADAPT_BOUNDARY
	 The main keyword STATIONARY_FREE_BOUNDARY
	 The main keyword INSTATIONARY_FREE_BOUNDARY

	 Description of some special files that may be used
	Description of the file with the nodal point numbers
	Description of the file with the nodal point numbers and corresponding values
	Description of the file with the element numbers and corresponding values
	Description of the file with the electrode pairs and corresponding capacities

	Parallel computing
	The command sepmakeparmesh

	 How to program your own element subroutines
	 Introduction
	 Subroutine ELEM
	 Subroutine ELEM1
	 Subroutine ELEM2
	 Subroutine ELDERV
	 Subroutine ELCERV
	 Function subroutine ELINT
	 Subroutine ELSTRM

	 The postprocessing part of SEPRAN
	 Introduction
	 General input for program SEPPOST
	 Print commands for program SEPPOST
	 PLOT commands for program SEPPOST
	 Special commands for time-dependent problems with respect to program SEPPOST"

	 Some examples of complete SEPRAN runs
	 Introduction
	Examples of elliptic equations with one degree of freedom per point
	 An example of a simple potential problem
	 An example of a simple potential problem with a user defined structure
	 An example of a simple potential problem with a user defined element subroutine
	 An example of a simple potential problem with a refinement of the mesh
	 An example of how to compute derived quantities and integrals in combination with a simple potential problem
	 An example of how to use periodical boundary conditions in R2
	 An example of how to use periodical boundary conditions in R3
	An example of the manipulation of scalars
	An example of the use of the for loop
	An example of the computation of capacities
	An example of the solution of an inverse problem
	 An example of the use of arrays in the input block constants

	 Examples of non-linear problems
	 An example of a simple Navier-Stokes problem
	 An example of a simple Navier-Stokes problem with a user defined structure
	 An example of a simple Navier-Stokes problem showing the use of the WHILE option in the user defined structure

	 Examples of time-dependent problems
	 An example of a simple heat equation
	 An example of a simple heat equation with a user defined structure
	 An example of the solution of a coupled set of time-dependent equations
	 An example of a stationary equation solved by the limit of a time-dependent problem
	 An example of a time-dependent equation coupled with a stationary equation

	 Examples of instationary free boundary problems
	 An example of a simple Stefan problem
	 The dissolution of a disk-like particle in a disk-shape environment
	 The dissolution of two particles

	 Auxiliary examples
	 An example of reading own data for postprocessings purposes

	Examples of eigenvalue computations
	Eigenvalues and eigenvectors for a potential problem in an L-shape

