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Introduction

In this note we treat some exercises that are meant as illustration for the theory treated in
the course Numerical methods for large linear algebraic systems wi4010. The corresponding
matlab routines can be find at:

http://ta.twi.tudelft.nl/nw/users/vuik/a228/pracfiles.zip

or

http://ta.twi.tudelft.nl/nw/users/vuik/a228/pracfiles.tar

save the file as: pracfiles.tar

tar -xvf pracfiles.tar
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Exercise 1

Experiments with the Gaussian elimination method

In this exercise we consider various properties of the Gaussian elimination method. The func-
tion [a,f] = poisson(n1,n2,u1,u2,disc) is used to construct a matrix, which originates
from a discretization of the following equation:

−( ∂2c
∂x2 + ∂2c

∂y2 ) + u1
∂c
∂x

+ u2
∂c
∂y

= g where x, y ∈ (0, 1) × (0, 1),

c(x, y) = 0 for x ∈ {0, 1} or y ∈ {0, 1}.

The number of point in the x- and y-direction is denoted by n1, n2 respectively. The value
disc = ’central’ gives a central discretization, whereas disc = ’upwind’ leads to an up-
wind discretization. The resulting matrix is a and the right-hand-side vector is f . To get
more information of the Matlab programs one can use the help-function. Try for instance
help poisson.

1 a First the fill-in is investigated for small matrices. Therefore the command [l,u,p]

= gauss(a); can be used. This function computes the LU-decomposition of a with
pivoting such that pa = lu. Furthermore the number of nonzero elements and the
bandwidth in l and u are given. Finally the nonzero structures of the matrices are
shown.

Execute the following commands in Matlab:

[a,f] = poisson(3,10,0,0,’central’);

[l,u,p] = gauss(a);

In the subroutine gauss the Matlab subroutine lu is called. Repeat this exercise with
[a,f] = poisson(10,3,0,0,’central’); and compare both examples.

Related theory: part II, Section 1.2, and 1.7
Exercise aims:

– The matrices L and U are less sparse than A.

– Numbering of the unknowns is important. Numbering such that n1 ≤ n2 is better
than n1> n2.

1 b In this exercise we take u1 6= 0, or u2 6= 0 and use central differences. It appears that
for some choices partial pivoting is used.

Take the following choices:

[a,f] = poisson(5,5,0,0,’central’);

[l,u,p] = gauss(a);

[a,f] = poisson(5,5,100,0,’central’);
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[l,u,p] = gauss(a);

[a,f] = poisson(5,5,0,100,’central’);

[l,u,p] = gauss(a);

Try also some other values. Warning: for large matrices the CPU-time can increase
considerably (ctrl c kills a job).

Related theory: part II, Section 1.2, 1.5, and 1.7
Exercise aims:

– Pivoting destroys the non-zero structure of the matrix.

– The amount of fill-in is comparable to that without pivoting.

1 c Do the same exercises as before for upwind differences. Compare the results.

Related theory: part II, Section 1.2, 1.5, and 1.7
Exercise aims:

– The choice of discretization influences the Gaussian elimination algorithm.

– No pivoting is necessary for diagonal dominant matrices.

1 d In this exercise matrices are considered where the amount of fill-in can be very large.
The matrices are not related to the Poisson equation. The matrices used here are
known as arrowhead matrices. This type of matrix occurs in Domain Decomposition
methods. Call uparrow and substitute 25 for the dimension. Execute thereafter [l,u,p]
= gauss(a);. Repeat the exercise for the downarrow matrix and compare the results.

Related theory: part II, Section 1.2, and 1.8
Exercise aims:

– Pivoting (or renumbering) can be used to minimize fill-in.

1 e In the following part we investigate the solution of the discretized Poisson equation.
Execute [a,f] = poisson(10,10,0,0,’central’);. The LU-decomposition of the
matrix a can be obtained by:

[l,u,p] = lu(a);

Compute with this LU-decomposition the solution of the linear system ax = f . The
solution of ly = f can be done by:

y = l\f;

To check if you have computed the correct solution compute:

norm(a*x-f)

The resulting solution x can be visualized using the call:
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plotsol(10,10,x)

Related theory: part II, Section 1.2, and 1.3
Exercise aims:

– Compute the solution of a linear system when the LU-decomposition is available.

– Visualization of the solution of the Poisson equation.

1 f Repeat the exercise for

[a,f] = poisson(10,10,200,0,’central’);

Compute again norm(a*x-f). Its value should be less than 10−10. Finally the same
problem can be solved using upwind differences. Compare both solutions.

Related theory: part II, Section 1.2, and 1.5
Exercise aims:

– Compute the solution of a linear system when the LU-decomposition with pivoting
is available.

– A comparison of the approximations using central and upwind differences.

1 g Finally some experiments are done with iterative improvement. First the matrix and
right-hand side are formed by [a,f] = poisson(5,5,0,0,’central’); Compute the
LU-decomposition with

[l,u,p] = lu(a);

It is not easy to work with single precision numbers in Matlab. To simulate iterative
improvement we disturb the matrix l as follows:

l = random(l,10^(-5));

This function changes the lower triangular matrix l with random numbers of order
less than 10−5. Compute norm(a-lu) to check that a 6= lu (the matrix u can also be
changed). Write a function iterna(a,l,u,p,f) which uses the disturbed matrix l (and
possible the disturbed matrix u). First construct a termination criterion and make the
function such that it stops after 100 iterations.

Related theory: part II, Section 1.2, and 1.5
Exercise aims:

– Get experience with the iterative improvement algorithm.
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Exercise 2

Experiments with iterative methods

In this exercise we consider various iterative methods to solve linear systems. We start with
systems where the coefficient matrix is symmetric and positive definite. These systems are
solved by basic iterative methods and the Conjugate Gradient method. Finally we investigate
if these methods can also be applied to non-symmetric systems.

2 a Construct the matrix a and the right-hand-side vector f using the call
[a,f] = poisson(10,11,0,0,’central’); Compute the solution of the linear system
with the Gauss-Jacobi method:

x = jacobi(a,f,10^-10);

Write down the number of iterations for comparison with other methods.

Related theory: part II, Section 2.2
Exercise aims:

– Gauss-Jacobi is a slowly converging method.

– A linear converging iteration method.

2 b First try to modify the program jacobi.m to obtain the Gauss-Seidel method. To
check your implementation you also use:

x = seidel(a,f,10^-10);

Compare the results with those obtained in exercise 2 a.

Related theory: part II, Section 2.2
Exercise aims:

– Gauss-Seidel converges two times as fast as Gauss-Jacobi.

2 c In this exercise we use the SOR method. The estimate of the optimal ω is not straight-
forward. Therefore we do some experiments with various choices of ω. Type

x = sor(a,f,10^-10,omega);

where omega is a real number between 0 and 2. Try to approximate the optimal value.
Using the call

x = sor(a,f,10^-10,0);

an approximation of the optimal ω is calculated from theory. Compare the results.

Related theory: part II, Section 2.2
Exercise aims:

– SOR converges much faster than the previous methods.



Practical exercises CFD II 8

– The convergence behavior can be non-linear.

– There are values of ω which leads to somewhat less iterations than the optimal ω

calculated from theory.

2 d In this part we consider the Conjugate Gradient method.

x = cg(a,f,10^-10);

Compare the results with the results obtained with the basic iterative methods.

Related theory: part II, Section 3.2 and 3.3
Exercise aims:

– CG converges very fast.

– It is not necessary to estimate an optimal parameter.

– The convergence behavior is super linear.

2 e In the theory used to analyze CG three quantities are used: ‖x − xi‖2, ‖x − xi‖A, and
‖b − Axi‖2. These quantities are plotted by the call

x = cganal(a,f,10^-10);

Compute the condition of a by the Matlab command cond(a) and estimate the number
of required CG iterations. Compare this with your experiments.

Related theory: part II, Section 3.2 and 3.3
Exercise aims:

– All quantities decrease.

– The number of required estimations obtained from the theory is an upper bound.

2 f There are matrices where the theory for the CG method no longer holds, due to rounding
errors. One of them is a discretization of the bending beam equation:

d4c

dx4
= f.

The matrix can be constructed by beam; Take for the dimension 40 (thereafter also try
80 and 160). Solve the system by

x = cganal(a,f,10^-10);

and observe the results.

Related theory: part II, Section 3.3
Exercise aims:

– ‖x − xi‖A forms a monotone decreasing sequence.

– ‖x − xi‖2 increases at some iterations.
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– CG has not been converged when the number of iterations is equal to the dimension
of a.

2 g In the final exercises we investigate if the methods given in Chapter 2 and 3 can be
used when the matrices are non-symmetric. Construct the matrix as follows: [a,f]

= poisson(5,5,0.1,0,’central’); and apply Gauss-Jacobi, Gauss-Seidel, SOR, and
CG.

Exercise aims:

– All methods converge although the theory for CG is not valid.

2 h Construct the matrix as follows: [a,f] = poisson(5,5,1,0,’central’); and apply
Gauss-Jacobi, Gauss-Seidel, SOR, and CG.

Exercise aims:

– The basic iterative methods converge but CG does no longer converge.

2 i Construct the matrix as follows: [a,f] = poisson(5,5,100,0,’central’); and ap-
ply Gauss-Jacobi, Gauss-Seidel, SOR, and CG.

Exercise aims:

– The iterative methods are divergent.

2 j Construct the matrix as follows: [a,f] = poisson(5,5,100,0,’upwind’); and apply
Gauss-Jacobi, Gauss-Seidel, SOR, and CG.

Exercise aims:

– The basic iterative methods converge.

– The choice of the discretization influences the convergence behavior of an iterative
method.


