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1 Direct solution methods for linear systems

1.1 Introduction

In this chapter we give direct solution methods to solve a linear system of equations. The
idea is based on elimination and given in Section 1.2. However using this method in practice
shows that it has some drawbacks. First round off errors can spoil the result, second for
simple problems the method may break down. To study this and give a better method we
first define some basic notions on distances in IRn and floating point numbers (Section 1.3).
In Section 1.4 we start with a theoretical result: how the solution may be changed if the
matrix and right-hand side are transformed from reals to floating point numbers. Thereafter
the properties of the Gaussian elimination process with respect to rounding errors are given.
This leads to a more stable process where pivoting is introduced. Furthermore, the solution
can be improved by a small number of iterations. Systems of equations arising from partial
differential equations have certain properties which can be used to optimize the direct solution
method. In Section 1.6 symmetric positive definite systems are considered. Finally, matrices
originated from discretized PDE’s are very sparse, which means that the number of nonzeroes
in a row is small with respect to the dimensions of the matrix. Special methods to use this
are given in Section 1.7 for structured problems (finite differences or finite volumes) and in
Section 1.8 for unstructured problems (finite elements).

1.2 The Gaussian elimination method

In many numerical computations one has to solve a system of linear equations Ax = b. In
this chapter we describe the method of Gaussian elimination, the algorithm of choice when
A is square nonsingular, dense, and relatively small.

Computing the LU decomposition
In this section we show how Gauss transformations M1, . . . ,Mn−1 can be found such that the
matrix U given by

Mn−1Mn−2 . . . M2M1A = U

is upper triangular. In deriving the algorithm for computing the Mi we suppose that the
Gauss transformations M1, . . . ,Mk−1 are determined such that

A(k−1) = Mk−1 . . . M1A =







A
(k−1)
11 A

(k−1)
12

0 A
(k−1)
22







k − 1

n− k + 1

k − 1 n− k + 1

where A
(k−1)
11 is upper triangular. If

A
(k−1)
22 =







a
(k−1)
kk . . . a

(k−1)
kn

...
...

a
(k−1)
nk . . . a

(k−1)
nn







and a
(k−1)
kk is nonzero, then the multipliers

`ik = a
(k−1)
ik /a

(k−1)
kk i = k + 1, . . . , n
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are defined. It follows that if Mk = I − α(k) eT
k where

α(k) = (0, . . . , 0, `k+1,k, . . . , `nk)
T ,

then

A(k) = Mk A(k−1) =







A
(k)
11 A

(k)
12

0 A
(k)
22







k

n− k

k n− k

with A
(k)
11 upper triangular. This illustrates the k-th step of Gaussian elimination. If the

pivots a
(k−1)
kk 6= 0 for k = 1, . . . , n− 1 then

A(n−1) = Mn−1 . . . M1 A = U.

The inverse of Mn−1 . . . M1 can be given by

L = (Mn−1 . . . M1)
−1 =

n−1
∏

i=1

(

I + α(i)eT
i

)

= I +

n−1
∑

i=1

α(i)eT
i .

This implies that A = LU and the matrix L is lower triangular and diag (L) = I.

The solution of the system Ax = b is easy, if the LU decomposition is obtained. The solution
of LUx = b can be splitted into two parts: first the solution of the lower triangular system
Ly = b and then the solution of the upper triangular system Ux = y.

Algorithms
In a computer program, the entries in A can be overwritten with the corresponding entries
of L and U as they are produced.

Gaussian elimination algorithm
Given A ∈ IRn×n the following algorithm computes the factorization A = LU . The element
aij is overwritten by lij if i > j and by uij if i ≤ j.
for k = 1, . . . , n− 1 do

if akk = 0 then
quit

else
for i = k + 1, . . . , n do

η := aik/akk

aik = η
for j = k + 1, . . . , n

aij := aij − η akj

end for
end for

end if
end for
Given an n × n nonsingular lower triangular matrix L and b ∈ IRn, the following algorithm
finds y ∈ IRn such that Ly = b.
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Forward substitution algorithm
for i = 1, . . . , n do

yi := bi

for j = 1, . . . , i− 1 do
yi := yi − `ij yj

end for
yi := yi/`ii

end for

Given an n× n nonsingular upper triangular matrix U and y ∈ IRn, the following algorithm
finds x ∈ IRn such that Ux = y.

Back substitution algorithm
for i = n, . . . , 1 do

xi := yi

for j = i + 1, . . . , n do
xi := xi − uij xj

end for
xi := xi/uii.

end for

To quantify the amount of arithmetic in these algorithms we define the notion flop. A flop is
one floating point operation. It can be shown that the Gaussian elimination algorithm costs
2n3/3 flops, whereas both the forward substitution and back substitution costs n2 flops.

It now seems that every system of linear equations can be solved. However in a practical
computation many problems remain. As a first example consider the following equations:

(

0 1
1 0

)(

x
y

)

=

(

1
1

)

.

These equations are easily solved without Gaussian elimination. However, when one uses
Gaussian elimination the first Gauss transformation does not exist and the algorithm breaks
down.

As a second example we consider the effect of rounding errors. Suppose the following system
is given:

(

1 1
1 0.999

)(

x
y

)

=

(

2
1.999

)

.

The exact solution is

(

1
1

)

. Suppose that the right-hand side

(

2
1.999

)

is slightly changed

to

(

2
2

)

, because the computer can only use numbers with less than three digits. The

approximate solution is then given by

(

2
0

)

which is totally different from the exact solution.

These problems motivates us to have a closer look at the Gaussian elimination process. For
this reason we state some definitions, in Section 1.3, to measure the distance between two
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vectors. Thereafter, in Section 1.4, we investigate the behavior of Gaussian elimination with
respect to rounding errors.

1.3 Norms and floating point numbers

In order to measure the distance of a perturbed vector to the exact vector, norms are intro-
duced. The perturbations can be originated from errors in measurements or rounding errors
during a computation.

Vector norms
A vector norm on IRn is a function ‖.‖ : IRn → IR that satisfies the following properties:

i) ‖x‖ ≥ 0 x ∈ IRn , and ‖x‖ = 0⇐⇒ x = 0,

ii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ x, y ∈ IRn ,

iii) ‖αx‖ = |α| ‖x‖ α ∈ IR , x ∈ IRn.

An important class of vector norms are the so-called p-norms (Hölder norms) defined by

‖x‖p = (|x1|p + . . . + |xn|p)1/p p ≥ 1.

The 1,2, and ∞ norms are the most commonly used

‖x‖1 = |x1|+ . . . + |xn|,
‖x‖2 = (x2

1 + . . . + x2
n)1/2 = (xT x)1/2,

‖x‖∞ = max
1≤i≤n

|xi|.

Inner product
The inner product is a function (.,.): IRn × IRn → IR that satisfies the following properties:

i) (x + y, z) = (x, z) + (y, z), x, y, z ∈ IRn ,

ii) (αx, y) = α(x, y), α ∈ IR, x, y ∈ IRn,

iii) (x, x) ≥ 0, x ∈ IRn ,

iv) (x, x) = 0⇐⇒ x = 0, x ∈ IRn .

Matrix norms
The analysis of matrix algorithms frequently requires use of matrix norms. For example, the
quality of a linear system solver may be poor if the matrix of coefficients is ”nearly singular”.
To quantify the notion of near-singularity we need a measure of distance on the space of
matrices. Matrix norms provide that measure.
The most commonly used matrix norms in numerical linear algebra are the p-norms induced
by the vector p-norms

‖A‖p = sup
x6=0

‖Ax‖p
‖x‖p

= max
‖x‖p=1

‖Ax‖p p ≥ 1.

Properties
The vector and matrix p-norms have the following properties
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- ‖AB‖p ≤ ‖A‖p‖B‖p A ∈ IRm×n , B ∈ IRn×q

- ‖A‖1 = max
1≤j≤n

m
∑

i=1
|aij | A ∈ IRm×n maximal absolute column sum

- ‖A‖∞ = max
1≤i≤m

n
∑

j=1
|aij | A ∈ IRm×n maximal absolute row sum

- ‖A‖2 is equal to the square root of the maximal eigenvalue of AT A.

- The 2 norm is invariant with respect to orthogonal transformations. A matrix Q is
orthogonal if and only if QT Q = I, with Q ∈ IRn×n. So for all orthogonal Q and Z of
appropriate dimensions we have

‖QAZ‖2 = ‖A‖2 .

The floating point numbers
Each arithmetic operation performed on a computer is generally affected by rounding errors.
These errors arise because the machine hardware can only represent a subset of the real
numbers. This subset is denoted by F and its elements are called floating point numbers.
The floating point number system on a particular computer is characterized by four integers:
the base β, the precision t, and the exponent range [L,U ]. F consists of all numbers f of the
form

f = ±.d1d2 . . . dt × βe, 0 ≤ di < β , d1 6= 0 , L ≤ e ≤ U,

together with zero. Notice that for a nonzero f ∈ F we have m ≤ |f | ≤M where m = βL−1

and M = βU (1− β−t). To have a model of computer arithmetic the set G is defined by

G = {x ∈ IR|m ≤ |x| ≤M} ∪ {0} ,

and the operator fl(oat): G → F , where fl maps a real number from G to a floating point
number by rounding away from zero. The fl operator satisfies the following equation

fl(x) = x(1 + ε), |ε| ≤ u, x ∈ G,

where u (unit roundoff) is defined by u = 1
2β1−t

Let a and b be elements of F . If |a ∗ b| ∈/G then an arithmetic fault occurs implying either
overflow (|a ∗ b| > M) or underflow (0 < |a ∗ b| < m). If a ∗ b ∈ G then we assume that the
computed version of a∗ b is given by fl(a∗ b) which is equal to (a∗ b)(1+ ε) with |ε| < u. This
shows that there is a small relative error associated with individual arithmetic operations.
This is not necessarily the case when a sequence of operations is involved. Then catastrophic
cancellation can occur. This term refers to the extreme loss of correct significant digits when
small numbers are additively computed from large numbers.

1.4 Error analysis of Gaussian elimination

Before we proceed with the error analysis of Gaussian elimination we consider how perturba-
tions in A and b affect the solution x. The condition number Kp(A), for a nonsingular matrix
A, is defined by Kp(A) = ‖A‖p‖A−1‖p.
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Theorem 1.1 Suppose Ax = b, A ∈ IRn×n and A is nonsingular, 0 6= b ∈ IRn, (A+∆A)y =
b+∆b, ∆A ∈ IRn×n, ∆b ∈ IRn with ‖∆A‖p ≤ δ‖A‖p and ‖∆b‖p ≤ δ‖b‖p. If Kp(A)δ = r < 1
then A + ∆A is nonsingular and

‖x− y‖p
‖x‖p

≤ 2δ

1− r
Kp(A).

Proof: see [37], p.83.

Consider the nearly ideal situation in which no round off occurs during the solution process
except when A and b are stored. Thus if fl(b) = b+∆b and the stored matrix fl(A) = A+∆A
is nonsingular, then we are assuming that the computed solution x̂ satisfies.

(A + ∆A)x̂ = b + ∆b ‖∆A‖∞ ≤ u‖A‖∞, ‖∆b‖∞ ≤ u‖b‖∞.

If K∞(A)u ≤ 1
2 , then by using Theorem 1.1 it can be shown that

‖x− x̂‖∞
‖x‖∞

≤ 4uK∞(A) . (1)

No general∞-norm error analysis of a linear equation solver that requires the storage of A and
b can render sharper bounds. As a consequence, we cannot justifiably criticize an algorithm
for returning an inaccurate x if A is ill conditioned relative to the machine precision, e.g.,
uK∞(A) ≈ 1

2 . This was the case in our second example at the end of Section 1.2.
In the next theorem we quantify the round off errors associated with the computed triangular
factors and the solution of the triangular systems.
We use the following conventions, if A and B are in IRm×n then

• B = |A| means bij = |aij | , i = 1, . . . ,m , j = 1, . . . , n.

• B ≤ A means bij ≤ aij , i = 1, . . . ,m , j = 1, . . . , n.

Theorem 1.2 Let L̂ and Û be the computed LU factors of the n×n floating point matrix A.
Suppose that ŷ is the computed solution of L̂y = b and x̂ is the computed solution of Ûx = ŷ.
Then (A +4A)x̂ = b with

|∆A| ≤ n(3|A|+ 5|L̂||Û |)u + O(u2).

Proof: see [37], p.107.

The result of this theorem compares favorably with the bound (1.1) except the possibility of
a large |L̂||Û | term. Such a possibility exists because there is nothing in Gaussian elimination
to rule out the appearance of small pivots. If a small pivot is encountered then we can
expect large numbers in L̂ and Û . We stress that small pivots are not necessarily due to

ill-conditioning as the example A =

[

ε 1
1 0

]

bears out. Thus Gaussian elimination can give

arbitrarily poor results, even for well-conditioned problems. The method may be unstable,
depending on the matrix.
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1.5 Pivoting and iterative improvement

In order to repair the shortcoming of the Gaussian elimination process, it may be necessary to
introduce row and/or column interchanges during the elimination process with the intention
of keeping the numbers that arise during the calculation suitably bounded. We start with a
definition of a permutation matrix. Suppose that the ith column of the identity matrix I is
denoted by ei. Column permutation matrix P consists of P = [es1 , . . . , esn ] where s1, . . . , sn

is a permutation of the numbers 1, . . . , n. The matrix AP is a column permuted version of

A. A row permuted version of A is given by PA, where P =







eT
s1

...
eT
sn






.

Partial Pivoting
Before the determination of the Gauss transformation Mk we determine a permutation ma-
trix Pk such that if z is the k-th column of PkA

(k−1), then |z(k)| = max
k≤i≤n

|z(i)|. The new

matrix A(k) is then given by A(k) = MkPkA
(k−1). Using partial pivoting we can show that no

multiplier is greater than one in absolute value.

Partial pivoting only works well if the elements of the matrix are scaled in some way. So if
one looks for the solution of Ax = b it is in general a good idea to multiply this equation by

a row scaling matrix D−1 where D is a diagonal matrix and Dii =
n
∑

j=1
|aij |. After this scaling

Gaussian elimination with partial pivoting should be used.

Theorem 1.3 If Gaussian elimination with partial pivoting is used to compute the upper
triangularization

Mn−1Pn−1 ... M1P1A = U

then
PA = LU where P = Pn−1...P1 and L is a unit lower triangular matrix with lij ≤ 1.

Proof: see [37], p. 113.

Using Theorem 1.2 it is easy to show that the computed solution x̂ satisfies (A +4A)x̂ = b
where

|∆A| ≤ nu (3|A| + 5P̂ T |L||U |) + O(u2)

Since the elements of L̂ are bounded by one ‖L̂‖∞ ≤ n which leads to

‖∆A‖∞ ≤ nu (3‖A‖∞ + 5n‖Û‖∞) + O(u2).

The problem now is to bound ‖Û‖∞. Define the growth factor ρ by

ρ = max
i,j,k

|â(k)
ij |

‖A‖∞
.

It follows that ‖4A‖∞ ≤ 8n3ρ‖A‖∞u + O(u2).
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The growth factor ρ measures how large the numbers become during the process of elimina-
tion. In practice, ρ is usually of order 10 but it can also be as large as 2n−1. Despite this the
Gaussian elimination with partial pivoting can be used with confidence. Fortran codes for
solving general linear systems based on the ideas give above may be found in the LAPACK
package [manual].

Complete pivoting

Before the determination of the Gauss transformation Mk we determine permutation matrices
Pk and Fk such that

|(PkA(k−1)Fk)kk| = max
k ≤ i ≤ n

|(PkA
(k−1)Fk)ij |

k ≤ j ≤ n

The matrix A(k) is given by MkPkA
(k−1)Fk.

Complete pivoting has the property that the associated growth factor bound is considerably
smaller than 2n−1. However, for complete pivoting one has to look for the maximum value in
the (n−k)×(n−k) lower block of A(k−1). This makes the algorithm approximately two times
as expensive than the method without pivoting. This together with the stability in practice
for partial pivoting implies that there is no justification for choosing complete pivoting.

It can be shown that for certain classes of matrices it is not necessary to pivot. A matrix
A ∈ IRn×n is strictly diagonal dominant if

|aii| >
n
∑

j = 1
j 6= i

|aij | i = 1, ..., n

Lemma 4
If AT is strictly diagonal dominant then A has an LU factorization and |lij | ≤ 1.

Proof: see [37], p. 120

After the solution is computed, it is possible to improve the computed solution in a cheap
way by iterative improvement.

Iterative improvement
Assume t-digit, base β arithmetic, then the computed solution x̂ satisfies

(A + ∆A)x̂ = b , ‖∆A‖∞ ≈ u‖A‖∞ , u =
1

2
β1−t.

The residual of a computed solution x̂ is the vector b−Ax̂.

Heuristic 1 Gaussian elimination produces a solution x̂ with a relatively small residual ‖b −
Ax̂‖∞ ≈ u‖A‖∞‖x̂‖∞.

Small residuals do not imply high accuracy. Using Theorem 1.1 we see that

‖x̂− x‖∞
‖x‖∞

≈ uK∞(A).
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Heuristic 2 If the unit round off and condition satisfy u ≈ 10−d and K∞(A) ≈ 10q, then
Gaussian elimination produces a solution x̂ that has about d− q correct decimal digits.

Suppose Ax = b has been solved via the partial pivoting factorization PA = LU in t-digit
arithmetic. Improvement of the accuracy of the computed solution x̂ can be obtained by the
following loop:

for i = 1, . . . until x is accurate enough, do

Compute r = b−Ax in 2t− digit arithmetic,

Solve Ly = Pr for y,

Solve Uz = y for z,

Form x := x + z.

end for

(2)

Heuristic 3
If the machine precision u and condition number satisfy u ≈ 10−d and K∞(A) ≈ 10q, then
after k executions of (2), x has approximately min(d, k(d − q)) correct digits.

If uK∞(A) ≤ 1, then iterative improvement can produce a solution x that has t correct
digits. Note that the process is relatively cheap in flops. Each improvement costs O(n2) flops
whereas the original LU decomposition costs O(n3) flops. Drawbacks are: the implementation
is machine dependent, and the memory requirements are doubled because an original copy of
A should be stored in memory.

1.6 Cholesky decomposition for symmetric positive definite systems

In many applications the matrix A, used in the linear system Ax = b, is symmetric and
positive definite. So matrix A satisfies the following rules:

- A = AT ,

- xT Ax > 0 , x ∈ IRn , x 6= 0.

For this type of matrices, memory and CPU time can be saved. Since A is symmetric only
the elements aij , i = j, . . . , n ; j = 1, . . . , n should be stored in memory. Furthermore, the
following result can be proved:

Theorem 1.4 If A ∈ IRn×n is symmetric positive definite, then there exists a unique lower
triangular G ∈ IRn×n with positive diagonal entries such that A = GGT .

Proof: see [37], p. 143

The factorization A = GGT is known as the Cholesky factorization and G is referred to as
the Cholesky triangle. Note that if we compute the Cholesky factorization and solve the
triangular systems Gy = b and GT x = y, then b = Gy = GGT x = Ax.
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Algorithm
Cholesky Decomposition (Column version). Given a symmetric positive definite A ∈ IRn×n,
the following algorithm computes a lower triangular G ∈ IRn×n such that A = GGT . The
entry aij is overwritten by gij(i ≥ j).

for k = 1, 2, . . . , n do

akk := (akk −
k−1
∑

p=1
a2

kp)
1/2

for i = k + 1, . . . , n do

aik := (aik −
k−1
∑

p=1
aipakp)/akk

end for

end for

The number of flops for this algorithm is equal to n3/3. Note that the amount of memory and
work is halved in comparison with Gaussian elimination for a general matrix. The inequality

g2
ij ≤

i
∑

p=1

g2
ip = aii ,

shows that the elements of the Cholesky triangle are bounded, without pivoting. This is again
an advantage of this type of matrices.
The round off errors associated with the Cholesky factorization have been studied in [86].
Using the results in this paper, it can be shown that if x̂ is the computed solution to Ax = b,
obtained via Cholesky decomposition then x̂ solves the perturbed system (A+E)x̂ = b where
‖E‖2 ≤ cnu‖A‖2 and cn is a small constant depending upon n. Moreover, in [86] it is shown
that if qnuK2(A) ≤ 1 where qn is another small constant, then the Cholesky process runs to
completion, i.e., no square roots of negative numbers arise.

1.7 Band matrices

In many applications that involve linear systems, the matrix is banded. This is the case
whenever the equations can be ordered so that each unknown xi appears in only a few equa-
tions in a ”neighborhood” of the ith equation. The matrix A has upper bandwidth q where
q ≥ 0 is the smallest number such that aij = 0 whenever j > i + q and lower bandwidth p
where p ≥ 0 is the smallest number such that aij = 0 whenever i > j + p. Typical examples
are obtained after finite element or finite difference discretizations. Substantial reduction of
work and memory can be realized for these systems. It can be shown that if A is banded and
A = LU then L and U inherits the lower and upper bandwidth of A.

Theorem 1.5 Suppose A ∈ IRn×n has an LU factorization A = LU . If A has upper band-
width q and lower bandwidth p, then U has upper bandwidth q and L has lower bandwidth
p.

Proof: see [37], p.152
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This result is easily checked by writing down some elimination steps for a banded system of
equations.

The LU decomposition can now be obtained using 2npq flops if n � p and n � q. The
solution of the lower triangular system costs 2np flops, n � p and the upper triangular
system costs 2nq flops, n� q.
Gaussian elimination with partial pivoting can also be specialized to exploit band structure
in A. If, however PA = LU then the band properties of L and U are not quite so simple.

Theorem 1.6 Suppose A ∈ IRn×n is nonsingular and has upper and lower bandwidths q
and p, respectively. If Gaussian elimination with partial pivoting is used to compute Gauss
transformations

Mj = I − α(j)eT
j j = 1, . . . , n− 1

and permutations P1, . . . , Pn−1 such that Mn−1Pn−1 . . . M1P1A = U is upper triangular, then

U has upper bandwidth p + q and α
(j)
i = 0 whenever i ≤ j or i > j + p.

Proof: see [37], p. 154

Thus pivoting destroys the band structure in the sense that U becomes larger than A’s upper
triangle, while nothing at all can be said about the bandwidth of L. However, since the j th

column of L is a permutation of the jth Gauss vector αj it follows that L has at most p + 1
nonzero elements per column.
For this reason pivoting is avoided as much as possible in the solution of banded systems.
Note that pivoting is not necessary for symmetric positive definite systems, so Cholesky
decomposition can be safely applied to banded system without destroying the band structure.

1.8 General sparse matrices

Using a finite difference method the matrix of the linear system can in general adequately
be described with a band structure. For the more general finite element method the matrix
can be better described using a profile structure. The profile of a matrix can be defined as
follows: in the lower triangle all the elements in the row from the first non zero to the main
diagonal, and the upper triangle all the elements in the column from the first non zero to
the main diagonal belong to the profile. All other elements are lying outside the profile. An
example is given in Figure 1.1. In this example the profile of the matrix is symmetric. Only

a 0 a11 13

a 0 0 0 a

000

22 26

a 0 a a a 0

0 a a 0

0

a

0 a 0 a 0

a 0 a 0 a

31 33 34 35

43 44 46

53 55

62 64 66

A  =

0

0

0

Figure 1: Example of a sparse matrix with its profile structure

the elements of the matrix within its profile are stored in memory. As can be seen from the
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example this can lead to a large saving, also with respect to a band structure. To give an
idea how to store this profile we give an example for the matrix of Figure 1.1. This matrix
requires the following arrays:

diag : [a11, a22, a33, a44, a55, a66],

row : [a31, 0, a43, a53, 0, a62, 0, a64, 0],

column : [a13, 0, a34, a35, 0, a26, 0, a46, 0],

position: [1, 1, 1, 3, 4, 6, 10].

The array diag contains all the diagonal elements, the array row contains the lower triangular
part row-wise, whereas the array column contains the upper triangular part column-wise. The
length of row (column) i is given by position(i + 1)-position(i). The contents of a nonzero
row i starts at row (position(i)) (the same for a column).
It can easily be seen that if A = LU , where L and U are constructed by Gaussian elimination
without pivoting, L + U has the same profile as A. So the above given storage scheme can
also be used to store L and U . Renumbering of the equations and unknowns can be used to
minimize the profile (band) of a given matrix. For finite element discretizations we refer to
[48] and [34].
If pivoting is necessary, or the non zero elements in the profile of original matrix are not stored,
the memory to store L and U can be much larger than the memory used to store A. For this
kind of applications we refer to the general purpose programs for sparse LU decomposition:
MA28 [23] and [22] and Y12M [88]. A survey of sparse matrix storage schemes is given in [8],
Section 4.3.1.
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1.9 Exercises

1. Show that if A ∈ IRn×n has an LU decomposition and is nonsingular, then L and U are
unique.

2. Show that sup
x6=0

‖Ax‖p

‖x‖p
= max

‖x‖p=1
‖Ax‖p for p ≥ 1.

3. Show that ‖A‖1 = max
1≤j≤n

m
∑

i=1
|aij | A ∈ IRm×n (the maximal absolute column sum).

4. Show that ‖A‖2 =
√

λmax(AT A).

5. Show that for every nonsingular matrix A, partial pivoting leads to an LU decomposition
of PA so: PA = LU .

6. Show that if A ∈ IRn×n has an LDMT decomposition and is nonsingular, then L, D,
and M are unique.

7. Suppose A = LU with L = (lij), U = (uij) and lii = 1. Derive an algorithm to compute
lij and uij by comparing the product LU with A.

8. Suppose that A is symmetric and positive definite. Show that the matrix Ak consisting
of the first k rows and columns of A is also symmetric and positive definite.

9. Suppose that A is a symmetric and positive definite tridiagonal matrix. Give an algo-
rithm to compute the LDLT decomposition, where lii = 1.

10. For a symmetric and positive definite matrix A, we define the numbers fi(A), i =
1, . . . , n as follows:

fi(A) = min{j|aij 6= 0}.
Show that for the Cholesky decomposition A = LLT the equality fi(L) = fi(A) holds
for i = 1, . . . , n.
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2 Basic iterative solution methods for linear systems

2.1 Introduction and model problem

Problems coming from discretized partial differential equations lead in general to large sparse
systems of equations. Direct solution methods can be impractical if A is large and sparse,
because the factors L and U can be dense. This is especially the case for 3D problems. So
a considerable amount of memory is required and even the solution of the triangular system
costs many floating point operations.

In contrast to the direct methods are the iterative methods. These methods generate a
sequence of approximate solutions

{

x(k)
}

and essentially involve the matrix A only in the
context of matrix-vector multiplication. The evaluation of an iterative method invariably
focuses on how quickly the iterates x(k) converge. The study of round off errors is in general
not very well developed. A reason for this is that the iterates are only approximations of the
exact solution, so round off errors in general only influence the speed of convergence but not
the quality of the final approximation.

The use of iterative solution methods is very attractive in time dependent and nonlinear
problems. For these problems the solution of the linear system is part of an outer loop: time
stepping for a time dependent problem and Newton Raphson (or other nonlinear methods)
for a nonlinear problem. So good start vectors are in general available: the solution of the
preceding outer iteration, whereas the required accuracy is in general low for these problems.
Both properties lead to the fact that only a small number of iterations is sufficient to obtain
the approximate solution of the linear system. Before starting the description and analysis
of iterative methods we describe a typical model problem obtained from a discretized partial
differential equation. The properties and definitions of the given methods are illustrated by
this problem.

Model problem
Consider the discrete approximation of the Poisson equation

∂2w

∂x2
+

∂2w

∂y2
= G(x, y) , 0 < x < 1 , 0 < y < 1,

and boundary conditions

w(x, y) = g(x, y) , x ∈ {0, 1} , or y ∈ {0, 1} .

In the sequel vij is an approximation of w(xi, yj) where xi = ih and yj = jh, 0 ≤ i ≤
m + 1, 0 ≤ j ≤ m + 1. The finite difference approximation may be written as:

4vi,j − vi+1,j − vi−1,j − vi,j+1 − vi,j−1 = −h2 G(xi, yj).

The ordering of the nodal points is given in Figure 2 for m = 3. The kth component uk of the
vector u is the unknown corresponding to the grid point labeled k. When all the boundary
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line  1

line  2

Figure 2: The natural (lexicographic) ordering of the nodal points

terms are moved to the right-hand side, the system of difference equations can be written as:





























4 −1 0 −1
−1 4 −1 0 −1 �

0 −1 4 0 0 −1
−1 0 0 4 −1 0 −1

−1 0 −1 4 −1 0 −1
−1 0 −1 4 0 0 −1

−1 0 0 4 −1 0
� −1 0 −1 4 −1

−1 0 −1 4
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u2
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u4

u5

u6
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u9
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g11 + g15 − h2G1

g12 − h2G2

g13 + g16 − h2G3

g17 − h2G4

− h2G5

g18 − h2G6

g19 + g22 − h2G7

g23 − h2G8

g20 + g24 − h2G9





























If the unknowns on lines parallel to the x-axis are grouped together the given system can be
written as:





A1,1 A1,2 0
A2,1 A2,2 A2,3

0 A3,2 A3,3









U1

U2

U3



 =





F1

F2

F3



 ,

where the unknowns on line k are denoted by Uk. The lines and grid points are given in
Figure 2.1. The matrices Ai,j are given by:

Ak,k =





4 −1 0
−1 4 −1

0 −1 4



 and Ak+1,k = Ak,k+1 =





−1 0 0
0 −1 0
0 0 −1



 .

The submatrix Ak,l gives the coupling of the unknowns from line k to those on line l.

2.2 Basic iterative methods

The basic idea behind iterative methods for the solution of a linear system Ax = b is: starting
from a given x(k), obtain a better approximation x(k+1) of x in a cheap way. Note that b−Ax(k)

is small if x(k) is close to x. This motivates the iteration process

x(k+1) = x(k) + M−1(b−Ax(k)) (3)

One immediately verifies that if this process converges, x is a possible solution.
So if ‖b−Ax(k)‖2 is large we get a large change of x(k) to x(k+1). The choice of M is crucial
in order to obtain a fast converging iterative method. Rewriting of (3) leads to:

Mx(k+1) = Nx(k) + b (4)

18



where the matrix N is given by N = M − A. The formula A = M − N is also known as a
splitting of A. It can easily be seen that if x(k+1) → x the vector x should satisfy

Mx = Nx + b ⇔ Ax = (M −N)x = b.

As a first example we describe the point Gauss Jacobi method. First we define D = diag (A)
and L and U which are the strictly lower respectively the strictly upper part of A. So
A = D + L + U .

Gauss Jacobi (point).
The choice M = D and N = −(L + U) leads to the point Gauss Jacobi iteration. This
algorithm can be described by the following formula:

for i = 1, . . . , n do

x
(k+1)
i =






bi −

n
∑

j=1

j 6=i

aijx
(k)
j






/aii

end for

(5)

One immediately sees that only memory is required to store the matrix A, the right-hand side
vector b and the approximation vector x(k) which can be overwritten in the next step. For
our model problem it is sufficient to store 7 vectors in memory. Furthermore, one iteration
costs approximately as much work as a matrix vector product.

Whether or not the iterates obtained by formula (4) converge to x = A−1b depends upon
the eigenvalues of M−1N . The set of eigenvalues of A is denoted as the spectrum of A. The
spectral radius of a matrix A is defined by

ρ(A) = max {|λ|, where λ ∈ spectrum of A} .

The size of ρ(M−1N) is critical to the convergence behavior of (4).

Theorem 2.1 Suppose b ∈ IRn and A = M−N ∈ IRn×n is nonsingular. If M is nonsingular
and the spectral radius of M−1N is less than 1, then the iterates x(k) defined by (4) converge
to x = A−1b for any starting vector x(0).

Proof: Let e(k) = x(k) − x denote the error in the kth iterate. Since Mx = Nx + b it follows
that

M(x(k+1) − x) = N(x(k) − x)

and thus the error in x(k+1) given by e(k+1) satisfies:

e(k+1) = M−1Ne(k) = (M−1N)ke(0) (6)

From [37], p. 336, Lemma 7.3.2 it follows that (M−1N)k → 0 for k → ∞ if ρ(M−1N) < 1,
so e(k+1) → 0 for k →∞. �

As an example we note that point Gauss Jacobi is convergent if the matrix A is strictly
diagonal dominant. To show this we note that

ρ(M−1N) ≤ ‖M−1N‖∞ = ‖D−1(L + U)‖∞ = max
1≤i≤n

n
∑

j=1

j 6=i

|aij |
|aii|

.
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Since a strictly diagonal dominant matrix has the property that
n
∑

j=1

j 6=i

|aij | < |aii| it follows that

ρ(M−1N) < 1.
In many problems an increase of the diagonal dominance leads to a decrease of the number
of iterations.

Summarizing the results given above we see that a study of basic iterative methods proceeds
along the following lines:

- a splitting A = M − N is given where systems of the form Mz = d (d given and z
unknown) are cheaply solvable in order to obtain a practical iteration method by (4),

- classes of matrices are identified for which the iteration matrix M−1N satisfies ρ(M−1N) <
1.

- further results about ρ(M−1N) are established to gain intuition about how the error
e(k) tends to zero.

For Gauss Jacobi we note that M is a diagonal matrix so that systems of the form Mz = d are
easily solvable. We have specified a class of matrices such that convergence occurs. The final
point given above is in general used to obtain new methods with a faster rate of convergence
or a wider class of matrices such that ρ(M−1N) < 1.

Below we first give a block variant of the Gauss Jacobi method. Thereafter other methods
are specified. In the remainder of this section we suppose that Ax = b is partitioned in the
form







A1,1 . . . A1,q
...

...
Aq,1 . . . Aq,q













X1
...

Xq






=







B1
...

Bq






,

where Ai,j is an ni × nj submatrix and n1 + n2 . . . + nq = n. Here the Xi and Bi represent
subvectors of order ni. Furthermore, we define

D =







A1,1 �
. . .

� Aq,q






, L =











©
A2,1 �

...
. . .

Aq,1 Aq,q−1 ©











and U =











© A1,2 A1,q

. . .

� Aq−1,q

©











Gauss Jacobi (block)
For the given matrices D, L and U the Gauss Jacobi method is given by M = D and
N = −(L + U). The iterates can be obtained by the following algorithm:

for i = 1, . . . , q do

X
(k+1)
i = A−1

i,i






Bi −

q
∑

j=1

j 6=i

AijX
(k)
j






.

end for

For the special case ni = 1, i = 1, . . . , n we get the point Gauss Jacobi back. In our example
a natural block ordering is obtained if we take ni = 3. In that case the diagonal block matri-
ces Ai,i are tridiagonal matrices for which cheap methods exist to solve systems of the form
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Ai,iz = d.

Note that in the Gauss Jacobi iteration one does not use the most recently available infor-

mation when computing X
(k+1)
i . For example X

(k)
1 is used in the calculation of X

(k+1)
2 even

though component X
(k+1)
1 is already known. If we revise the Gauss Jacobi iteration so that

we always use the most current estimate of the exact Xi then we obtain:

Gauss Seidel (block)
The Gauss Seidel method is given by M = D +L and N = −U . The iterates can be obtained
by

for i = 1, . . . , q do

X
(k+1)
i = A−1

i,i

(

Bi −
i−1
∑

j=1
Ai,jX

(k+1)
j −

q
∑

j=i+1
Ai,jX

(k)
j

)

.

end for

Note that again the solution of systems of the form Mz = d are easily obtained since M =
D + L and L is a strictly lower triangular block matrix. As an example for the convergence
results that can be proved for the point Gauss Seidel method (Ai,i = ai,i), we give the following
theorem:

Theorem 2.2 If A ∈ IRn×n is symmetric and positive definite, then the point Gauss Seidel
iteration converges for any x(0).

Proof: see [37], p. 512, Theorem 10.1.2.

This result is frequently applicable because many of the matrices that arise from discretized
elliptic partial differential equations are symmetric positive definite. In general Gauss Seidel
converges faster than Gauss Jacobi. Furthermore, block versions converge faster than point
versions. For these results and further detailed convergence proofs we refer to [79], [87], [43],
and [8].

The Gauss Seidel iteration is in general a slowly converging process. Inspections of the iterates
show that in general the approximations are monotonous increasing or decreasing. Hence we
may expect an improvement of the rate of convergence if we use an extrapolation in the
direction of the expected change. This leads to the so called successive over-relaxation (SOR)
method:

SOR (block)
The successive over-relaxation method is obtained by choosing a constant ω ∈ IR and compute
the iterates by

Mωx(k+1) = Nωx(k) + ωb,

where Mω = D + ωL and Nω = (1 − ω)D − ωU . Note that ωA = Mω − Nω. The following
algorithm can be used:

for i = 1, . . . , q do

X
(k+1)
i = ωA−1

i,i

(

Bi −
i−1
∑

j=1
Ai,jX

(k+1)
j −

q
∑

j=i+1
Ai,jX

(k)
j

)

+ (1− ω)X
(k)
i .

end for
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It can be shown that for 0 < ω < 2 the SOR method converges if A is symmetric and positive
definite. For ω < 1 we have underrelaxation and for ω > 1 we have overrelaxation. In
most examples overrelaxation is used. For a few structured (but important) problems such
as our model problem, the value of the relaxation parameter ω that minimizes ρ(M −1

ω Nω) is
known. Moreover, a significant reduction of ρ(M−1

ωopt
Nωopt) with respect to ρ(M−1

1 N1) can be
obtained. Note that for ω = 1 we get the Gauss Seidel method. As an example it appears that
for the model problem the number of Gauss Seidel iterations is proportional to 1

h2 whereas
the number of SOR iterations with optimal ω is proportional to 1

h . So for small values of h a
considerable gain in work results. However, in more complicated problems it may be necessary
to perform a fairly sophisticated eigenvalue analysis in order to determine an appropriate ω.
A complete survey of ”SOR theory” appeared in [87]. Some practical schemes for estimating
the optimum ω are discussed in [10], [15], and [84].

Chebyshev
The SOR method is presented as an acceleration of the Gauss Seidel method. Another method
to accelerate the convergence of an iterative method is the Chebyshev method. Suppose
x(1), . . . , x(k) have been obtained via (4), and we wish to determine coefficients µj(k), j =
0, . . . , k such that

y(k) =
k
∑

j=0

µj(k)x(j) (7)

is an improvement of x(k). If x(0) = . . . = x(k) = x, then it is reasonable to insist that y(k) = x.
Hence we require

k
∑

j=0

µj(k) = 1 (8)

and consider how to choose the µj(k) so that the error y(k) − x is minimized. It follows from
the proof of Theorem 2.1 that e(k+1) = (M−1N)ke(0) where e(k) = x(k)−x. This implies that

y(k) − x =
k
∑

j=0

µj(k)(x(j) − x) =
k
∑

j=0

µj(k)(M−1N)je(0). (9)

Using the 2-norm we look for µj(k) such that ‖y(k) − x‖2 is minimal. To simplify this
minimization problem we use the following inequality:

‖y(k) − x‖2 ≤ ‖pk(M
−1N)‖2‖x(0) − x‖2 (10)

where pk(z) =
k
∑

j=0
µj(k)zj and pk(1) = 1. We now try to minimize ‖pk(M

−1N)‖2 for all

polynomials satisfying pk(1) = 1. Another simplification is the assumption that M−1N is
symmetric with eigenvalues λi that satisfy α ≤ λn . . . ≤ λ1 ≤ β < 1. Using these assumptions
we see that

‖pk(M
−1N)‖2 = max

λi

|pk(λi)| ≤ max
α<λ<β

|pk(λ)|.

So to make the norm of pk(M
−1N) small we need a polynomial pk(z) that is small on [α, β]

subject to the constraint that pk(1) = 1. This is a minimization problem of polynomials on
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the real axis. The solution of this problem is obtained by Chebyshev polynomials. These
polynomials cj(z) can be generated by the following recursion

c0(z) = 1,
c1(z) = z,
cj(z) = 2zcj−1(z)− cj−2(z).

These polynomials satisfy |cj(z)| ≤ 1 on [−1, 1] but grow rapidly in magnitude outside this
interval. As a consequence the polynomial

pk(z) =
ck

(

−1 + 2 z−α
β−α

)

ck

(

1 + 2 1−β
β−α

)

satisfies pk(1) = 1, since −1 + 2 1−α
β−α = 1 + 2 1−β

β−α , and tends to be small on [α, β]. The last
property can be explained by the fact that

−1 ≤ −1 + 2
z − α

β − α
≤ 1 for z ∈ [α, β] so the

numerator is less than 1 in absolute value, whereas the denominator is large in absolute value
since 1 + 2 1−β

β−α > 1. This polynomial combined with (10) leads to

‖y(k) − x‖2 ≤
‖x− x(0)‖2

|ck

(

1 + 2 1−β
β−α

)

|
. (11)

Calculation of the approximation y(k) by formula (7) costs much time and memory, since all
the vectors x(0), . . . , x(k) should be kept in memory. Furthermore, to calculate y(k) one needs
to add k +1 vectors, which for the model problem costs for k ≥ 5 more work than one matrix
vector product. Using the recursion of the Chebyshev polynomials it is possible to derive a
three term recurrence among the y(k). It can be shown that the vectors y(k) can be calculated
as follows:

y(0) = x(0)

solve z(0) from Mz(0) = b−Ay(0) then y(1) is given by

y(1) = y(0) + 2
2−α−β z(0)

solve z(k) from Mz(k) = b−Ay(k) then y(k+1) is given by

y(k+1) =
4− 2β − 2α

β − α

ck

(

1 + 2 1−β
β−α

)

ck+1

(

1 + 2 1−β
β−α

)

(

y(k) − y(k−1) +
2

2− α− β
z(k)

)

+ y(k−1) .

We refer to this scheme as the Chebyshev semi-iterative method associated with My (k+1) =
Ny(k) + b. Note that only 4 vectors are needed in memory and the extra work consists of the
addition of 4 vectors. In order that the acceleration is effective it is necessary to have good
lower and upper bounds of α and β. These parameters may be difficult to obtain. Chebyshev
semi-iterative methods are extensively analyzed in [79], [38] and [43].
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In deriving the Chebyshev acceleration we assumed that the iteration matrix M −1N was
symmetric. Thus our simple analysis does not apply to the SOR iteration matrix M −1

ω Nω

because this matrix is not symmetric. To repair this Symmetric SOR (SSOR) is proposed. In
SSOR one SOR step is followed by a backward SOR step. In this backward step the unknowns
are updated in reversed order. For further details see [37], Section 10.1.5.
Finally we present some theoretical results for the Chebyshev method 1. Suppose that the
matrix M−1A is symmetric and positive definite and that the eigenvalues µi are ordered as
follows 0 < µ1 ≤ µ2 . . . ≤ µn. It is then possible to prove the following theorem:

Theorem 2.3 If the Chebyshev method is applied and M−1A is symmetric positive definite
then

‖y(k) − x‖2 ≤ 2

(

√

K2(M−1A)− 1
√

K2(M−1A) + 1

)k

‖x(0) − x‖2.

Proof Since M−1A = M−1(M − N) = I −M−1N we see that the eigenvalues satisfy the
following relation:

µi = 1− λi or λi = 1− µi.

This combined with (11) leads to the inequality:

‖y(k) − x‖2 ≤
‖x− x(0)‖2

|ck

(

1 + 2 (1−(1−µ1))
(1−µ1)−(1−µn)

)

|
. (12)

So it remains to estimate the denominator. Note that

ck

(

1 +
2(1− (1− µ1))

(1− µ1)− (1− µn)

)

= ck

(

µn + µ1

µn − µ1

)

= ck

(

1 + µ1

µn

1− µ1

µn

)

.

The Chebyshev polynomial can also be given by

ck(z) =
1

2

{

(

z +
√

z2 − 1
)k

+
(

z −
√

z2 − 1
)k
}

[4], p. 180.

This expression can be used to show that

ck

(

1+
µ1
µn

1−
µ1
µn

)

> 1
2





1+
µ1
µn

1−
µ1
µn

+

√

(

1+
µ1
µn

1−
µ1
µn

)2

− 1





k

=

= 1
2

(

1+
µ1
µn

+2
q

µ1
µn

1−
µ1
µn

)k

= 1
2

(

1+
q

µ1
µn

1−
q

µ1
µn

)k

.

(13)

The condition number K2(M
−1A) is equal to µn

µ1
. Together with (12) and (13) this leads to

‖y(k) − x‖2 ≤ 2

(

√

K2(M−1A)− 1
√

K2(M−1A) + 1

)k

‖x(0) − x‖2.

�

Chebyshev type methods which are applicable to a wider range of matrices are given in the
literature. In [52] a Chebyshev method is given for matrices with the property that their
eigenvalues are contained in an ellipse in the complex plane, and the origin is no element of
this ellipse. For a general theory of semi-iterative methods of Chebyshev type we refer to [24].

1These results are used in the following chapters to analyze the converge behavior of other iterative methods
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2.3 Starting vectors and termination criteria

Starting vectors

All the given iterative solution methods used to solve Ax = b start with a given vector x(0).
In this subsection we shall give some ideas how to choose a good starting vector x(0). These
choices depend on the problem to be solved. If no further information is available one always
starts with x(0) = 0. The solution of a nonlinear problem is in general approximated by the
solution of a number of linear systems. In such a problem the final solution of the iterative
method at a given outer iteration can be used as a starting solution for the iterative method
used to solve the next linear system.

Suppose we have a time dependent problem. The solution of the continuous problem is

denoted by u(n). In every time step this solution is approximated by a discrete solution u
(n)
h

satisfying the following linear system

A(n)u
(n)
h = b(n).

These systems are approximately solved by an iterative method where the iterates are denoted

by x(n,k). An obvious choice for the starting vector is x(n+1,0) = x(n,kn) where kn denotes the
number of iterations in the nth time step. A better initial estimate can be obtained by the
following extrapolation:

u(n+1) ∼= u(n) +4t
du(n)

dt
,

where du(n)

dt is approximated by x(n,kn)−x(n−1,kn−1)

4t . This leads to the following starting vector

x(n+1,0) = 2x(n,kn) − x(n−1,kn−1) .

Finally starting vectors can sometimes be obtained by solution of related problems, e.g.,
analytic solution of a simplified problem, a solution computed by a coarser grid, a numerical
solution obtained by a small change in one of the parameters etc.

Termination criteria
In Subsection 2.2 we have specified iterative methods to solve Ax = b. However, no criteria
to stop the iterative process have been given. In general, the iterative method should be
stopped if the approximate solution is accurate enough. A good termination criterion is
very important for an iterative method, because if the criterion is too weak the approximate
solution is useless, whereas if the criterion is too severe the iterative solution method never
stops or costs too much work.

We start by giving a termination criterion for a linear convergent process. An iterative method
is linear convergent if the iterates satisfy the following equation:

‖x(k) − x(k−1)‖2 ≈ r‖x(k−1) − x(k−2)‖2, r < 1 (14)

and x(k) → A−1b for k → ∞. Relation (14) is easily checked during the computation. In

general initially (14) is not satisfied but after some iterations the quantity ‖x(k)−x(k−1)‖2

‖x(k−1)−x(k−2)‖2

converges to r. The Gauss Jacobi, Gauss Seidel and SOR method all are linear convergent.
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Theorem 2.4 For a linear convergent process we have the following inequality

‖x− x(i)‖2 ≤
r

1− r
‖x(i) − x(i−1)‖2.

Proof
Using (14) we obtain the following inequality for k ≥ i + 1.

‖x(k) − x(i)‖2 ≤
k−1
∑

j=i
‖x(j+1) − x(j)‖2 ≤

k−i
∑

j=1
rj‖x(i) − x(i−1)‖2

= r 1−rk−i−1

1−r ‖x(i) − x(i−1)‖2 .

Since lim
k→∞

x(k) = x this implies that

‖x− x(i)‖2 ≤
r

1− r
‖x(i) − x(i−1)‖2.

�

The result of this theorem can be used to give a stopping criterion for linear convergent
methods. Sometimes the iterations are stopped if ‖x(i)−x(i−1)‖2 is small enough. If r is close
to one this may lead to inaccurate results since r

1−r‖x(i) − x(i−1)‖2 and thus ‖x− x(i)‖2 may
be large. A safe stopping criterion is: stop if

r

1− r

‖x(i) − x(i−1)‖2
‖x(i)‖2

≤ ε.

If this condition holds then the relative error is less than ε:

‖x− x(i)‖2
‖x‖2

∼= ‖x− x(i)‖2
‖x(i)‖2

≤ r

1− r

‖x(i) − x(i−1)‖2
‖x(i)‖2

≤ ε.

Furthermore, Theorem 2.4 yields the following result:

‖x− x(i)‖2 ≤
ri

1− r
‖x(1) − x(0)‖2 . (15)

So assuming that the expression (15) can be replaced by an equality

log ‖x− x(i)‖2 = i log (r) + log

(

‖x(1) − x(0)‖2
1− r

)

. (16)

This implies that the curve log ‖x − x(i)‖2 is a straight line as function of i. This was the
motivation for the term linear convergent process. Given the quantity r, which is also known
as the rate of convergence, or reduction factor, the required accuracy and ‖x(1) − x(0)‖2 it
is possible to estimate the number of iterations to achieve this accuracy. In general r may
be close to one and hence a small increase of r may lead to a large increase of the required
number of iterations.

For iterative methods, which have another convergence behavior most stopping criteria are
based on the norm of the residual. Below we shall give some of these criteria and give comment
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on their properties.

Criterion 1 ‖b−Ax(i)‖2 ≤ ε.

The main disadvantage of this criterion is that it is not scaling invariant. This implies that
if ‖b − Ax(i)‖2 < ε this does not hold for ‖100(b − Ax(i))‖2. Although the accuracy of x(i)

remains the same. So a correct choice of ε depends on properties of the matrix A.

The remaining criteria are all scaling invariant.

Criterion 2 ‖b−Ax(i)‖2

‖b−Ax(0)‖2
≤ ε

The number of iterations is independent of the initial estimate x(0). This may be a drawback
since a better initial estimate does not lead to a decrease of the number of iterations.

Criterion 3 ‖b−Ax(i)‖2

‖b‖2
≤ ε

This is a good termination criterion. The norm of the residual is small with respect to the
norm of the right-hand side. Replacing ε by ε/K2(A) we can show that the relative error in
x is less than ε. It follows (compare Theorem 1.1) that:

‖x− x(i)‖2
‖x‖2

≤ K2(A)
‖b−Ax(i)‖2
‖b‖2

≤ ε.

In general ‖A‖2 and ‖A−1‖2 are not known. Some iterative methods gives approximations of
these quantities.

Criterion 4 ‖b−Ax(i)‖2

‖x(i)‖2
≤ ε/‖A−1‖2

This criterion is closely related to Criterion 3. In many cases this criterion also implies that
the relative error is less then ε:

‖x− x(i)‖2
‖x‖2

∼= ‖x− x(i)‖2
‖x(i)‖2

=
‖A−1(b−Ax(i))‖2

‖x(i)‖2
≤ ‖A

−1‖2‖b−Ax(i)‖2
‖x(i)‖2

≤ ε

Sometimes physical relations lead to other termination criteria. This is the case if the residual
has a physical meaning, for instance the residual is equal to some energy or the deviation
from a divergence free vector field etc.

In Theorem 1.1 we have seen that due to rounding errors the solution x represented on a
computer has a residual which may be of the magnitude of u‖b‖2, where u is the machine
precision. So we cannot expect that a computed solution by an iterative solution method
has a smaller norm of the residual. In a good implementation of an iterative method, a
warning is given if the required accuracy is too high. If for instance the termination criterion
is ‖b−Ax(i)‖2 ≤ ε and ε is chosen less then 1000u‖b‖2 a warning should be given and ε should
be replaced by ε = 1000u‖b‖2. The arbitrary constant 1000 is used for safety reasons.
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2.4 Exercises

1. Suppose ‖E‖ < 1 for some matrix E ∈ IRn×n. Show that

(I −E)−1 =

∞
∑

k=0

Ek and ‖(I −E)−1‖ ≤ 1

1− ‖E‖ .

2. Show that if A is strictly diagonal dominant then the Gauss Seidel method converges.

3. Suppose that A is symmetric and positive definite.

(a) Show that one can write A = D − L − LT where D is diagonal with dii > 0 for
each 1 ≤ i ≤ n and L is strictly lower triangular. Further show that D − L is
nonsingular.

(b) Let Tg = (D − L)−1LT and P = A− T T
g ATg. Show that P is symmetric.

(c) Show that Tg can also be written as Tg = I − (D − L)−1A.

(d) Let Q = (D − L)−1A. Show that Tg = I −Q and

P = QT (AQ−1 −A + (QT )−1A)Q.

(e) Show that P = QT DQ and P is symmetric and positive definite.

(f) Let λ be an eigenvalue of Tg with eigenvector x. Use part (b) to show that xT Px >
0 implies that |λ| < 1.

(g) Show that the Gauss Seidel method converges.

4. Extend the method of proof in Exercise 3 to the SOR method with 0 < ω < 2.

5. Suppose that µ̃1 is an estimate for µ1 and µ̃n for µn.

(a) Show that in general the Chebyshev method converges slower if 0 < µ̃1 < µ1 and
µ̃n > µn if µ̃1 and µ̃n are used in the Chebyshev method.

(b) Show that divergence can occur if µ̃n < µn.

6. (a) Do two iterations with Gauss Jacobi to the system:

(

2 0
−2 2

)(

x1

x2

)

=

(

2
2

)

Note that the second iterate is equal to the exact solution.

(b) Is the following claim correct?

The Gauss Jacobi method converges in mostly n iterations if A is a lower triangular
matrix
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3 A Krylov subspace method for systems with a symmetric
positive definite matrix

3.1 Introduction

In the basic iterative solution methods we compute the iterates by the following recursion:

xi+1 = xi + M−1(b−Axi) = xi + M−1ri

Writing out the first steps of such a process we obtain:

x0 ,

x1 = x0 + (M−1r0),

x2 = x1 + (M−1r1) = x0 + M−1r0 + M−1(b−Ax0 −AM−1r0)

= x0 + 2M−1r0 −M−1AM−1r0,
...

This implies that

xi ∈ x0 + span
{

M−1r0,M
−1A(M−1r0), . . . , (M

−1A)i−1(M−1r0)
}

.

The subspace K i(A; r0) := span
{

r0, Ar0, . . . , A
i−1r0

}

is called the Krylov-space of dimension
i corresponding to matrix A and initial residual r0. An xi calculated by a basic iterative
method is an element of x0 + Ki(M−1A;M−1r0).

In the preceding chapter we tried to accelerate convergence by the Chebyshev method. In
this method one approximates the solution x by a vector xi ∈ x0 + Ki(M−1A;M−1r0) such
that ‖x − xi‖2 is minimized in a certain way. One of the drawbacks of that method is that
information on the eigenvalues of M−1A should be known. In this chapter we shall describe
the Conjugate Gradient method. This method minimizes the error x − xi in an adapted
norm, without having to know any information about the eigenvalues. In Section 3.3 we give
theoretical results concerning the convergence behavior of the CG method.

3.2 The Conjugate Gradient (CG) method

In this section we assume that M = I, and x0 = 0 so r0 = b. These assumptions are
only needed to facilitate the formula’s. They are not necessary for the CG method itself.
Furthermore, we assume that A satisfies the following condition.

Condition 3.2.1
The matrix A is symmetric (A = AT ) and positive definite (xT Ax > 0 for x 6= 0).

This condition is crucial for the derivation and success of the CG method. Later on we shall
derive extensions to non-symmetric matrices.
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The first idea could be to construct a vector xi ∈ Ki(A, r0) such that ‖x − xi‖2 is minimal.
The first iterate x1 can be written as x1 = α0r0 where α0 is a constant which has to be chosen
such that ‖x− x1‖2 is minimal. This leads to

‖x− x1‖22 = (x− α0r0)
T (x− α0r0) = xT x− 2α0r

T
0 x + α2

0r
T
0 r0 . (17)

The norm given in (17) is minimized if α0 =
rT
0 x

rT
0 r0

. Since x is unknown this choice cannot be

determined, so this idea does not lead to a useful method. Note that Ax = b is known so
using an adapted inner product implying A could lead to an α0 which is easy to calculate.
To follow this idea we define the following inner product and related norm.

Definition 3.2.2
The A-inner product is defined by

(y, z)A = yT Az,

and the A-norm by ‖y‖A =
√

(y, y)A =
√

yT Ay.

It is easy to show that if A satisfies Condition 3.2.1 (., .)A and ‖.‖A satisfy the rules for inner
product and norm (see Section 1.3) respectively. In order to obtain x1 such that ‖x − x1‖A
is minimal we note that

‖x− x1‖2A = xT Ax− 2α0r
T
0 Ax + α2

0 rT
0 Ar0,

so α0 =
rT
0 Ax

rT
0 Ar0

=
rT
0 b

rT
0 Ar0

. We see that this new inner product leads to a minimization problem,

which can be easily solved. In the next iterations we compute xi such that

‖x− xi‖A = min
y∈Ki(A;r0)

‖x− y‖A (18)

The solution of this minimization problem leads to the conjugate gradient method. First we
specify the CG method, thereafter we summarize some of its properties.

Conjugate Gradient method

k = 0 ; x0 = 0 ; r0 = b initialization
while rk 6= 0 do termination criterion

k := k + 1 k is the iteration number
if k = 1 do

p1 = r0

else

βk =
rT
k−1rk−1

rT
k−2rk−2

pk is the search direction vector

pk = rk−1 + βkpk−1 to update xk−1 to xk

end if

αk =
rT
k−1rk−1

pT
k

Apk

xk = xk−1 + αkpk update iterate
rk = rk−1 − αkApk update residual

end while
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The first description of this algorithm is given in [44]. For recent results see [76]. Besides
the two vectors xk, rk and matrix A only one extra vector pk should be stored in memory.
Note that the vectors from the previous iteration can be overwritten. One iteration of CG
costs one matrix vector product and 10 n flops for vector calculations. If the CG algorithm
is used in a practical application the termination criterion should be replaced by one of the
criteria given in Section 2.3. In this algorithm rk is computed from rk−1 by the equation
rk = rk−1 − αkApk. This is done in order to save one matrix vector product for the original
calculation rk = b − Axk. In some applications the updated residual obtained from the CG
algorithm can deviate much from the exact residual b−Axk due to rounding errors. So it is
strongly recommended to recompute b − Axk after the termination criterion is satisfied for
the updated residual and compare the norm of the exact and updated residual. If the exact
residual does no satisfy the termination criterion the CG method should be restarted with xk

as its starting vector.

The vectors defined in the CG method have the following properties:

Theorem 3.1

1. span {p1, . . . , pk} = span {r0, . . . , rk−1} = Kk(A; r0), (19)

2. rT
j ri = 0 i = 0, . . . , j − 1 ; j = 1, . . . , k , (20)

3. rT
j pi = 0 i = 1, . . . , j ; j = 1, . . . , k , (21)

4. pT
j Api = 0 i = 1, . . . , j − 1 ; j = 2, . . . , k (22)

5. ‖x− xk‖A = min
y∈Kk(A;r0)

‖x− y‖A. (23)

Proof: see [37], Section 10.2.

Remarks on the properties given in Theorem 3.1

- It follows from (19) and (20) that the vectors r0, . . . , rk−1 form an orthogonal basis of
Kk(A; r0).

- In theory the CG method is a finite method. After n iterations the Krylov subspace is
identical to IRn. Since ‖x − y‖A is minimized over Kn(A; r0) = IRn the norm is equal
to zero and xn = x. However in practice this property is never utilized for two reasons:
firstly in many applications n is very large so that it is not feasible to do n iterations,
secondly even if n is small, rounding errors can spoil the results such that the properties
given in Theorem 3.1 do not hold for the computed vectors.

- The sequence ‖x− xk‖A is monotone decreasing, so

‖x− xk+1‖A ≤ ‖x− xk‖A .

This follows from (23) and the fact that Kk(A; r0) ⊂ Kk+1(A; r0). In practice ‖x−xk‖A
is not easy to compute since x is unknown. The norm of the residual is given by ‖rk‖2 =
‖x− xk‖AT A. This sequence is not necessarily monotone decreasing. In applications it
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may occur that ‖rk+1‖2 is larger than ‖rk‖2. This does not mean that the CG process
becomes divergent. The inequality

‖rk‖2 = ‖Axk − b‖2 ≤
√

‖A‖2‖x− xk‖A

shows that ‖rk‖2 is less than the monotone decreasing sequence
√

‖A‖2‖x − xk‖A, so
after some iterations the norm of the residual decreases again.

- The direction vector pj is A-orthogonal or A-conjugate to all pi with index i less than
j. This is the motivation for the name of the method: the directions or gradients of the
updates are mutually conjugate.

- In the algorithm we see two ratios, one to calculate βk and the other one for αk. If
the denominator is equal to zero, the CG method breaks down. With respect to βk

this implies that rT
k−2rk−2 = 0, which implies rk−2 = 0 and thus xk−2 = x. The linear

system is solved. The denominator of αk is zero if pT
k Apk = 0 so pk = 0. Using property

(19) this implies that rk−1 = 0 so again the problem is already solved.
Conclusion: If the matrix A satisfies Condition 3.2.1 then the CG method is robust.

In the following chapter we shall give CG type methods for general matrices A. But first we
shall extend Condition 3.2.1 in such a way that also singular matrices are permitted. If the
matrix A is symmetric and positive semi definite (xT Ax ≥ 0) the CG method can be used to
solve the linear system Ax = b, provided b is an element of the column space of A (range(A)).
This is a natural condition because if it does not hold there is no vector x such that Ax = b.
For further details and references see [47].

3.3 The convergence behavior of the CG method

An important research topic is the rate of convergence of the CG method. The optimality
property enables one to obtain easy to calculate upper bounds of the distance between the
kth iterate and the exact solution.

Theorem 3.2 The iterates xk obtained from the CG algorithm satisfy the following inequal-
ity:

‖x− xk‖A ≤ 2

(

√

K2(A)− 1
√

K2(A) + 1

)k

‖x− x0‖A.

Proof
We shall only give a sketch of the proof. It is easily seen that x − xk can be written as a
polynomial, say pk(A) with pk(0) = 1, times the initial residual (compare the Chebyshev
method)

‖x− xk‖A = ‖pk(A)(x− x0)‖A.

Due to the minimization property every other polynomial qk(A) with qk(0) = 1 does not
decrease the error measured in the A-norm:

‖x− xk‖A ≤ ‖qk(A)(x − x0)‖A.

The right-hand side can be written as

‖qk(A)(x− x0)‖A = ‖qk(A)
√

A(x− x0)‖2 ≤ ‖qk(A)‖2‖
√

A(x− x0)‖2 = ‖qk(A)‖2‖x− x0‖A
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Taking qk(A) equal to the Chebyshev polynomial gives the desired result. �

Note that the rate of convergence of CG is comparable to that of the Chebyshev method,
however it is not necessary to estimate or calculate eigenvalues of the matrix A. Furthermore,
increasing diagonal dominance leads to a better rate of convergence.

Initially the CG method was not very popular. The reason for this is that the convergence
can be slow for systems where the condition number K2(A) is very large. On the other hand
the fact that the solution is found after n iteration is also not useful in practice. Firstly n
may be very large, secondly the property does not hold in the presence of rounding errors.
To illustrate this we consider the following classical example:

Example 1

The linear system Ax = b should be solved where n = 40 and b = (1, 0, . . . , 0)T . The matrix
A is given by

A =





























5 −4 1
−4 6 −4 1 �

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
� 1 −4 6 −4

1 −4 5





























.

This can be seen as a finite difference discretization of the bending beam equation:
u′′′′ = f . The eigenvalues of this matrix are given by:

λk = 16sin4 kπ

82
k = 1, . . . , 40.

The matrix A is symmetric positive definite so the CG method can be used to solve the linear
system. The condition number of A is approximately equal to

(

82
π

)4
. The resulting rate of

convergence given by
√

K2(A)− 1
√

K2(A) + 1
∼= 0.997

is close to one. This explains a slow convergence of the CG method for the first iterations.
However after 40 iterations the solution should be found. In Figure 3 the convergence behavior
is given where the rounding error is equal to 10−16, [35]. This example suggests that CG has
only a restricted range of applicability. These ideas however changed after the publication of
[63]. Herein it is shown that the CG method can be very useful for a class of linear systems, not
as a direct method, but as an iterative method. These problems originate from discretized
partial differential equations. It appears that not the size of the matrix is important for
convergence but the extreme eigenvalues of A.

One of the results which is based on the extreme eigenvalues is given in Theorem 3.2. This
inequality is an upper bound for the error of the CG iterates, and suggests that the CG
method is a linearly convergent process (see Figure 4). However, in practice the convergence
behavior looks like the one given in Figure 5. This is called superlinear convergence behavior.
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Figure 3: The convergence behavior of CG applied to Example 1.

So the upper bound is only sharp for the initial iterates. It seems that after some iterations
the condition number in Theorem 3.2 is replaced by a smaller ”effective” condition number.
To illustrate this we give the following example:

log  || x   - x || A

i

i

Figure 4: A linear convergent behavior

Example 2
The matrix A is the discretized Poisson operator. The physical domain is the two-dimensional
unit square. The grid used consists of an equidistant distribution of 30× 30 grid points. The
dimension of A is equal to 900 and the eigenvalues are given by

λk,l = 4− 2cos
πk

31
− 2cos

πl

31
, 1 ≤ k, l ≤ 30.

Using Theorem 3.2 it appears that 280 iteration are necessary to ensure that

‖x− xi‖A
‖x− x0‖A

≤ 10−12.
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Figure 5: A super linear convergent behavior

Computing the solution it appears that CG iterates satisfy the given termination criterion
after 120 iterations. So in this example the estimate given in Theorem 3.2 is not sharp.

To obtain a better idea of the convergence behavior we have a closer look to the CG method.
We have seen that CG minimizes ‖x − xi‖A on the Krylov subspace. This can also be seen
as the construction of a polynomial qi of degree i and qi(0) = 1 such that

‖x− xi‖A = ‖qi(A)(x − x0)‖A = min
q̃i,

q̃i(0) = 1

‖q̃i(A)(x − x0)‖A .

Suppose that the orthonormal eigen system of A is given by: {λj, yj}j=1,...,n where

Ayj = λjyj , ‖yj‖2 = 1, yT
j yi = 0, j 6= i, and 0 < λ1 ≤ λ2 . . . ≤ λn. The initial errors can be

written as x− x0 =
n
∑

j=1
γjyj, which implies that

x− xi =

n
∑

j=1

γjqi(λj)yj . (24)

If for instance λ1 = λ2 and γ1 6= 0 and γ2 6= 0 it is always possible to change y1 and y2 in
ỹ1 and ỹ2 such that γ̃1 6= 0 but γ̃2 = 0. This combined with equation (24) implies that if
qi(λj) = 0 for all different λj then xi = x. So if there are only m < n different eigenvalues
the CG method stops at least after m iterations. Furthermore, the upper bound given in
Theorem 3.2 can be sharpened.

Remark

For a given linear system Ax = b and a given x0 (note that x− x0 =
n
∑

j=1
γjyj) the quantities

α and β are defined by:
α = min {λj |γj 6= 0} ,
β = max {λj|γj 6= 0} .

It is easy to show that the following inequality holds:

‖x− xi‖A ≤ 2





√

β
α − 1

√

β
α + 1





i

‖x− x0‖A. (25)
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The ratio β
α is called the effective condition number of A.

It follows from Theorem 3.1 that r0, . . . , rk−1 forms an orthogonal basis for Kk(A; r0). So
the vectors r̃i = ri/‖ri‖2 form an orthonormal basis for Kk(A; r0). We define the following
matrices

Rk ∈ IRn×k and the jth column of Rk is r̃j ,

Tk = RT
k ARk where Tk ∈ IRk×k.

The matrix Tk can be seen as the projection of A on Kk(A; r0). It follows from Theorem 3.1
that Tk is a tridiagonal symmetric matrix. The coefficients of Tk can be calculated from the
αi’s and βi’s of the CG process. The eigenvalues θi of the matrix Tk are called Ritz values of
A with respect to Kk(A; r0). If zi is an eigenvector of Tk so that Tkzi = θizi and ‖zi‖2 = 1
then Rk zi is called a Ritzvector of A. Ritzvalues and Ritzvectors are approximations of
eigenvalues and eigenvectors and play an important role in a better understanding of the
convergence behavior of CG. The properties of the Ritzvalues are given in more detail in
Chapter 6. Some important properties are:

- the rate of convergence of a Ritzvalue to its limit eigenvalue depends on the distance of
this eigenvalue to the rest of the spectrum

- in general the extreme Ritzvalues converge the fastest and their limits are α and β.

In practical experiments we see that, if Ritzvalues approximate the extreme eigenvalues of A,
then the rate of convergence seems to be based on a smaller effective condition number (the
extreme eigenvalues seem to be absent). We first give an heuristic explanation. Thereafter
an exact result from the literature is cited.

From Theorem 3.1 it follows that rk = A(x − xk) is perpendicular to the Krylov subspace
Kk(A; r0). If a Ritzvector is a good approximation of an eigenvector yj of A this eigenvector is
nearly contained in the subspace Kk(A; r0). These two combined yields that (A(x−xk))T yj

∼=
0. The exact solution and the approximation can be written as

x =
n
∑

i=1

(xT yi)yi and xk =
n
∑

i=1

(xT
k yi)yi.

From (A(x−xk))T yj = (x−xk)
T λjyj

∼= 0 it follows that xT yj
∼= xT

k yj. So the error x−xk has
a negligible component in the eigenvector yj. This suggest that λj does no longer influence
the convergence of the CG process.

For a more precise result we define a comparison process. The iterates of this process are
comparable to that of the original process, but its condition number is less than that of
original process.

Definition
Let xi be the i-th iterate of the CG process for Ax = b. For a given integer i let xj denote
the j-th iterate of the comparison CG process for this equation, starting with x0 such that
x− x0 is the projection of x− xi on span{y2, . . . , yn}.

Note that for the comparison process the initial error has no component in the y1 eigenvector.
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Theorem 3.3 [72]
Let xi be the i-th iterate of CG, and xj the j-th iterate of the comparison process. Then for
any j there holds:

‖x− xi+j‖A ≤ Fi‖x− xj‖A ≤ Fi
‖x− xj‖A
‖x− x0‖A

‖x− xi‖A

with Fi =
θ
(i)
1
λ1

max
k≥2

|λk−λ1|

|λk−θ
(i)
1 |

, where θ
(i)
1 is the smallest Ritz value in the i-th step of

the CG process.

Proof: see [72], Theorem 3.1.

The theorem shows that from any stage i on for which θ
(i)
1 does not coincide with an eigenvalue

λk, the error reduction in the next j steps is at most the fixed factor Fi worse than the error
reduction in the first j steps of the comparison process in which the error vector has no

y1-component. As an example we consider the case that λ1 < θ
(i)
1 < λ2 we then have

Fi =
θ
(i)
1

λ1

λ2 − λ1

λ2 − θ
(i)
1

,

which is a kind of relative convergence measure for θ
(i)
1 relative to λ1 and λ2−λ1. If

θ
(i)
1 −λ1

λ1
<

0.1 and
θ
(i)
1 −λ1

λ2−λ1
< 0.1 then we have Fi < 1.25. Hence, already for this modest degree of

convergence of θ
(i)
1 the process virtually converges as well as the comparison process (as if the

y1-component was not present). For more general results and experiments we refer to [72].
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3.4 Exercises

1. Show that (y, z)A =
√

yT Az is an inner product if A is symmetric and positive definite.

2. Give the proof of inequality (25).

3. (a) Show that an A-orthogonal set of nonzero vectors associated with a symmetric and
positive definite matrix is linearly independent.

(b) Show that if {v(1), v(2), . . . , v(n)} is a set of A-orthogonal vectors in IRn and zT v(i) =
0 for i = 1, . . . , n then z = 0.

4. Define

tk =
(v(k), b−Ax(k−1))

(v(k), Av(k))

and x(k) = x(k−1)+tkv
(k), then (r(k), v(j)) = 0 for j = 1, . . . , k, if the vectors v(j) form an

A-orthogonal set. To prove this, use the following steps using mathematical induction:

(a) Show that (r(1), v(1)) = 0.

(b) Assume that (r(k), v(j)) = 0 for each k ≤ l and j = 1, . . . , k and show that this
implies that

(r(l+1), v(j)) = 0 for each j = 1, . . . , l.

(c) Show that (r(l+1), v(l+1)) = 0.

5. Take A =





1 0 0
0 1 0
0 0 2



 and b =





2
1
−1



. We are going to solve Ax = b.

(a) Show that Conjugate Gradients applied to this system should convergence in 1 or
2 iterations (using the convergence theory).

(b) Choose x(0) =





0
0
0



 and do 2 iterations with the Conjugate Gradients method.

6. Suppose that A is nonsingular, symmetric, and indefinite. Give an example to show
that the Conjugate Gradients method can break down.
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4 Preconditioning of Krylov subspace methods

We have seen that the convergence behavior of Krylov subspace methods depends strongly
on the eigenvalue distribution of the coefficient matrix. A preconditioner is a matrix that
transforms the linear system such that the transformed system has the same solution but the
transformed coefficient matrix has a more favorable spectrum. As an example we consider a
matrix M which resembles the matrix A. The transformed system is given by

M−1Ax = M−1b ,

and has the same solution as the original system Ax = b. The requirements on the matrix M
are the following:

- the eigenvalues of M−1A should be clustered around 1,

- it should be possible to obtain M−1y with low cost.

Most of this chapter contains preconditioners for symmetric positive definite systems (Sec-
tion 4.1). For non-symmetric systems the ideas are analogously, so in Section 4.2 we give
some details, which can be used only for non-symmetric systems.

4.1 The Preconditioned Conjugate Gradient (PCG) method

In Section 3.3 we observed that the rate of convergence of CG depends on the eigenvalues of
A. Initially the condition number λn

λ1
determines the decrease of the error. After a number of

iterations the λn

λ1
is replaced by the effective condition number λn

λ2
etc. So the question arises,

is it possible to change the linear system Ax = b in such a way that the eigenvalue distribution
becomes more favorable with respect to the CG convergence? This is indeed possible and the
approach is known as: the preconditioning of a linear system. Consider the n× n symmetric
positive definite linear system Ax = b. The idea behind Preconditioned Conjugate Gradients
is to apply the ”original” Conjugate Gradient method to the transformed system

Ãx̃ = b̃ ,

where Ã = P−1AP−T , x = P−T x̃ and b̃ = P−1b, and P is a nonsingular matrix. The
matrix M defined by M = PP T is called the preconditioner. The resulting algorithm can be
rewritten in such a way that only quantities without a ˜ sign occurs.
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Preconditioned Conjugate Gradient method

k = 0 ; x0 = 0 ; r0 = b ; initialization
while (rk 6= 0) do termination criterion

zk = M−1rk preconditioning
k := k + 1
if k = 1 do

p1 = z0

else

βk =
rT
k−1zk−1

rT
k−2zk−2

update of pk

pk = zk−1 + βkpk−1

end if

αk =
rT
k−1zk−1

pT
k

Apk

xk = xk−1 + αkpk update iterate
rk = rk−1 − αkApk update residual

end while

Observations and properties for this algorithm are:

- it can be shown that the residuals and search directions satisfy:

rT
j M−1ri = 0 , i 6= j ,

pT
j (P−1AP−T )pi = 0 , i 6= j .

- The denominators rT
k−2zk−2 = zT

k−2Mzk−2 never vanish for rk−2 6= 0 because M is a
positive definite matrix.

With respect to the matrix P we have the following requirements:

- the multiplication of P−T P−1 by a vector should be cheap. (comparable with a matrix
vector product using A). Otherwise one iteration of PCG is much more expensive than
one iteration of CG and hence preconditioning leads to a costlier algorithm.

- The matrix P−1AP−T should have a favorable distribution of the eigenvalues. It is easy
to show that the eigenvalues of P−1AP−T are the same as for P−T P−1A and AP−T P−1.
So we can choose one of these matrices to study the spectrum.

In order to give more details on the last requirement we note that the iterate xk obtained by
PCG satisfies

xk ∈ x0 + Kk(P−T P−1A ; P−TP−1r0), and (26)

‖x− xk‖A ≤ 2

(

√

K2(P−1AP−T )− 1
√

K2(P−1AP−T ) + 1

)k

‖x− x0‖A . (27)

So a small condition number of P−1AP−T leads to fast convergence. Two extreme choices
of P show the possibilities of PCG. Choosing P = I we get the original CG method back,
whereas if P T P = A the iterate x1 is equal to x so PCG converges in one iteration. For a
classical paper on the success of PCG we refer to [53]. In the following pages some typical
preconditioners are discussed.
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Diagonal scaling
A simple choice for P is a diagonal matrix with diagonal elements pii =

√
aii. In [71] it has

been shown that this choice minimizes the condition number of P −1AP−T if P is restricted
to be a diagonal matrix. For this preconditioner it is advantageous to apply CG to Ãx̃ = b̃.
The reason is that P−1AP−T is easily calculated. Furthermore, diag (Ã) = 1 which saves n
multiplications in the matrix vector product.

Basic iterative method
The basic iterative methods described in Section 2.2 use a splitting of the matrix A = M−N .
In the beginning of Section 3.2 we show that the k-th iterate yk from a basic method is an
element of x0 + Kk(M−1A,M−1r0). Using this matrix M in the PCG method we see that
the iterate xk obtained by PCG satisfies the following inequality:

‖x− xk‖A = min
z∈Kk(M−1A;M−1r0)

‖x− z‖A .

This implies that ‖x− xk‖A ≤ ‖x− yk‖A, so measured in the ‖ . ‖A norm the error of a PCG
iterate is less than the error of a corresponding result of a basic iterative method. The extra
costs to compute a PCG iterate with respect to the basic iterate are in general negligible.
This leads to the notion that any basic iterative method based on the splitting A = M −N
can be accelerated by the Conjugate Gradient method so long as M (the preconditioner) is
symmetric and positive definite.

Incomplete decomposition
This type of preconditioner is a combination of an iterative method and an approximate di-
rect method. As illustration we use the model problem defined in Section 2.1. The coefficient
matrix of this problem A ∈ IRn×n is a matrix with at most 5 nonzero elements per row. Fur-
thermore, the matrix is symmetric and positive definite. The nonzero diagonals are numbered
as follows: m is number of grid points in the x-direction.

A =





















a1 b1 c1

b1 a2 b2 c2
...

. . .
. . .

. . . ©/
c1 bm am+1 bm+1 cm+1

. . . ©/ . . .
. . .

. . . ©/ . . .

©/





















(28)

An optimal choice with respect to converge is take a lower triangular matrix L such that
A = LT L and P = L (L is the Cholesky factor). However it is well known that the zero
elements in the band of A become non zero elements in the band of L. So the amount of
work to construct L is large. With respect to memory we note that A can be stored in 3n
memory positions, whereas L needs m . n memory positions. For large problems the memory
requirements are not easily fulfilled.

If the Cholesky factor L is calculated one observes that the absolute value of the elements in
the band of L decreases considerably if the ”distance” to the non zero elements of A increases.
The non zero elements of L on positions where the elements of A are zero are called fill-in
(elements). The observation of the decrease of fill-in motivates to discard fill in elements
entirely, which leads to an incomplete Cholesky decomposition of A. Since the Cholesky
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decomposition is very stable this is possible without break down for a large class of matrices.
To specify this in a precise way we use the following definition:

Definition 5.1.1
The matrix A = (aij) is an M -matrix if aij ≤ 0 for i 6= j, the inverse A−1 exists and has
positive elements (A−1)ij ≥ 0.

The matrix of our model problem is an M -matrix.
Furthermore, we give a notation for these elements of L which should be kept to zero. The
set of all pairs of indices of off-diagonal matrix entries is denoted by

Qn = {(i, j)| i 6= j , 1 ≤ i ≤ n , 1 ≤ j ≤ n } .

The subset Q of Qn are the places (i, j) where L should be zero. Now the following theorem
can be proved:

Theorem 4.1 If A is a symmetric M -matrix, there exists for each Q ⊂ Qn having the
property that (i, j) ∈ Q implies (j, i) ∈ Q, a uniquely defined lower triangular matrix L and a
symmetric nonnegative matrix R with lij = 0 if (i, j) ∈ Q and rij = 0 if (i, j) ∈/Q, such that
the splitting A = LLT −R leads to a convergent iterative process

LLT xi+1 = Rxi + b for every choice x0 ,

where xi → x = A−1b.

Proof (see [53]; p.151.)

After the matrix L is constructed it is used in the PCG algorithm. Note that in this algorithm
multiplications by L−1 and L−T are necessary. This is never done by forming L−1 or L−T .
It is easy to see that L−1 is a full matrix. If for instance one wants to calculate z = L−1r we
compute z by solving the linear system Lz = r. This is cheap since L is a lower triangular
matrix so the forward substitution algorithm can be used.

Example 5.1.3
We consider the model problem and compute a slightly adapted incomplete Cholesky decom-
position: A = LD−1LT −R where the elements of the lower triangular matrix L and diagonal
matrix D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j,

b) lii = dii,

c) (LD−1LT )ij = aij for all (i, j) where aij 6= 0 i ≥ j.

In this example Q0 = {(i, j)| |i− j| 6= 0, 1,m}
If the elements of L are given as follows:

L =





















d̃1

b̃1 d̃2

. . .
. . . ©/

c̃1 b̃m d̃m+1

. . . ©/ . . .
. . .

©/





















(29)
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it is easy to see that (using the notation as given in (28))

d̃i = ai −
b2i−1

d̃i−1
− c2i−m

d̃i−m

b̃i = bi

c̃i = ci











i = 1, ..., n . (30)

where elements that are not defined should be replaced by zeros. For this example the
amount of work for P−T P−1 times a vector is comparable to the work to compute A times a
vector. The combination of this incomplete Cholesky decomposition process with Conjugate
Gradients is called the ICCG(0) method ([53]; p. 156). The 0 means that no extra diagonals
are used for fill in. Note that this variant is very cheap with respect to memory: only one
extra vector to store D is needed.

Another successfull variant is obtained by a smaller set Q. In this variant the matrix L
has three more diagonals than the lower triangular part of the original matrix A. This
preconditioning is obtained for the choice

Q3 = {(i, j)| |i− j| 6= 1, 2,m − 2,m− 1,m}

For the formula’s to obtain the decomposition we refer to ([53]; p. 156). This preconditioner
combined with PCG is known as the ICCG(3) method. A drawback is that all the elements
of L are different from the corresponding elements of A so 6 extra vectors are needed to store
L in memory.

To give an idea of the power of the ICCG methods we have copied some results from [53]. As
a first example we consider the model problem, where the boundary conditions are somewhat
different:

∂u
∂x(x, y) = 0 for

{

x = 0 , y ∈ [0, 1]
x = 1 , y ∈ [0, 1]

,

∂u
∂y (x, y) = 0 for y = 1 , x ∈ [0, 1] ,

u(x, y) = 1 for y = 0 , x ∈ [0, 1] .

The distribution of the grid points is equidistant with h = 1
31 . The results for CG, ICCG(0)

and ICCG(3) are plotted in Figure 6.

From inequality (27) it follows that the rate of convergence can be bounded by

r =

√

K2(P−1AP−T )− 1
√

K2(P−1AP−T ) + 1
. (31)

To obtain a better insight in the fast convergence of ICCG(0) and ICCG(3) the eigenvalues
of A, (L0L

T
0 )−1A and (L3L

T
3 )−1A are computed and given in Figure 7. For this result given

in [53] a small matrix of order n = 36 is used, so all eigenvalues can be calculated.
The eigenvalues as given in Figure 7 can be substituted in formula (31). We then obtain

r = 0.84 for CG ,
r = 0.53 for ICCG(0) ,
r = 0.23 for ICCG(3) ,

(32)

which explains the fast convergence of the PCG variants. In our explanation of the conver-
gence behavior we have also used the notion of Ritz values. Applying these ideas to the given
methods we note the following:
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Figure 6: The results for the CG, ICCG(0) and ICCG(3) methods, compared with SIP
(Strongly Implicit Procedure) and SLOR (Successive Line Over Relaxation method)

- For CG the eigenvalues of A are more or less equidistantly distributed. So if a Ritzvalue
has converged we only expect a small decrease in the rate of convergence. This agrees
with the results given in Figure 6, the CG method has a linear convergent behavior.

- For the PCG method the eigenvalue distribution is very different. Looking to the
spectrum of (L3L

T
3 )−1A we see that λ36 = 0.446 is the smallest eigenvalue. The distance

between λ36 and the other eigenvalues is relatively large which implies that there is a
fast convergence of the smallest Ritz-value to λ36. Furthermore, if the smallest Ritzvalue
is a reasonable approximation of λ36 the effective condition number is much less than
the original condition number. Thus super linear convergence is expected. This again
agrees very well with the results given in Figure 6.

So the faster convergence of ICCG(3) comes from a smaller condition number and a more
favorable distribution of the internal eigenvalues.
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Figure 7: The eigenvalues of A, (L0L
T
0 )−1A and (L3L
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3 )−1A.

Finally, the influence of the order of the matrix on the number of iterations required to reach
a certain precision was checked for both ICCG(0) and ICCG(3). Therefore several uniform
rectangular meshes have been chosen, with mesh spacings varying from ∼ 1/10 up to ∼ 1/50.
This resulted in linear systems with matrices of order 100 up to about 2500. In each case
it was determined how many iterations were necessary, in order that the magnitude of each
entry of the residual vector was below some fixed small number ε. In Figure 8 the number of
iterations are plotted against the order of the matrices for ε = 10−2, ε = 10−6 and ε = 10−10.
It can be seen that the number of iterations, necessary to get the residual vector sufficiently
small, increases only slowly for increasing order of the matrix. The dependence of K2(A) for
this problem is O( 1

h2 ). For ICCG preconditioning it can be shown that there is a cluster of
large eigenvalues of (L0L

T
0 )−1A in the vicinity of 1, whereas the small eigenvalues are of order

O(h2) and the gaps between them are relatively large. So also for ICCG(0) the condition
number is O( 1

h2 ). Faster convergence can be explained by the fact that the constant before
1
h2 is less for the ICCG(0) preconditioned system than for A and the distribution of the
internal eigenvalues is much better so super linear convergence sets in after a small number
of iterations.

The success of the ICCG method has led to many variants. In the following we describe two
of them MICCG(0) given in [42] (MICCG means Modified ICCG) and RICCG(0) given in [5]
(RICCG means Relaxed ICCG).

MICCG
In the MICCG method the MIC preconditioner is constructed by slightly adapted rules. Again
A is splitted as follows A = LD−1LT −R, where L and D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j,
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b) lii = dii,

c) rowsum (LD−1LT )=rowsum(A) for all rows and (LD−1LT )ij = aij for all (i, j) where
aij 6= 0 i > j .

A consequence of c) is that LD−1LT







1
...
1






= A







1
...
1






so (LD−1LT )−1A







1
...
1






=







1
...
1






.

this means that if Ax = b and x and/or b are slowly varying vectors this incomplete Cholesky
decomposition is a very good approximation for the inverse of A with respect to x and/or b.
Using the same notation of L as given in (29) we obtain

d̃i = ai − (bi−1 + ci−1)
bi−1

d̃i−1
− (bi−m + ci−m) ci−m

d̃i−m

b̃i = bi

c̃i = ci











i = 1, .., n (33)

It can be proved that for this preconditioning there is a cluster of small eigenvalues in the
vicinity of 1 and the largest eigenvalues are of order 1

h and have large gap ratio’s. So the
condition number is O(1/h).

In many problems the initial iterations of MICCG(0) converge faster than ICCG(0). There-
after for both methods super linear convergence sets in. Using MICCG the largest Ritz values
are good approximations of the largest eigenvalues of the preconditioned matrix. A drawback
of MICCG is that due to rounding errors components in eigenvectors related to large eigen-
values return after some iterations. This deteriorates the rate of convergence. So if many
iterations are needed ICCG can be better than MICCG.

In order to combine the advantage of both methods the RIC preconditioner is proposed in [5],
which is an average of the IC and MIC preconditioner. For the details we refer to [5]. Only
the algorithm is given: choose the average parameter α ∈ [0, 1] then d̃i, b̃i and c̃i are given by:

d̃i = ai − (bi−1 + αci−1)
bi−1

d̃i−1
− (αbi−m + ci−m) ci−m

d̃i−m

b̃i = bi

c̃i = ci











i = 1, ..., n (34)

However the question remains: how to choose α? In Figure 9 which is copied from [74] a
typical convergence behavior as function of α is given. This motivates the choice α = 0.95,
which leads to a very good rate of convergence on a wide range of problems.

Diagonal scaling
The above given preconditioners IC, MIC and RIC can be optimized with respect to work.
One way to do this is to look at the explicitly preconditioned system:

D1/2L−1AL−T D1/2y = D1/2L−1b (35)

Applying CG to this system one has to solve lower triangular systems of equations with matrix
LD−1/2. The main diagonal of this matrix is equal to D1/2. It saves time if we can change
this in such a way that the main diagonal is equal to the identity matrix. One idea could be
to replace (35) by

D1/2L−1D1/2D−1/2AD−1/2D1/2L−T D1/2y = D1/2L−1D1/2D−1/2b .

47



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

alpha

nu
m

be
r 

of
 it

er
at

io
ns

Figure 9: Convergence in relation with α

with Ã = D−1/2AD−1/2 , L̃ = D−1/2LD−1/2 and b̃ = D−1/2b we obtain

L̃−1ÃL̃−Ty = L̃b̃ . (36)

Note that L̃ii = 1 for i = 1, ..., n. PCG now is the application of CG to this preconditioned
system.

Eisenstat implementation
In this section we restrict ourselves to the IC(0), MIC(0) and RIC(0) preconditioner. We
have already noted that the amount of work of one PCG iteration is approximately 2 times
as large than a CG iteration. In [25] it is shown that much of the extra work can be avoided.
If CG is applied to (36) products of the following form are calculated: vj+1 = L̃−1ÃL̃−T vj .
For the preconditioners used, the off diagonal part of L̃ is equal to the off-diagonal part of Ã.
Using this we obtain:

vj+1 = L̃−1ÃL̃−T vj = L̃−1(L̃ + Ã− L̃− L̃T + L̃T )L̃−T vj (37)

= L̃−Tvj + L̃−1(vj + (diag (Ã)− 2I)L̃−T vj)

So vj+1 can be calculated by a multiplication by L̃−T and L̃−1 and some vector operations.
The saving in CPU time is the time to calculate the product of A times a vector. Now one
iteration of PCG costs approximately the same as one iteration of CG.

General stencils
In practical problems the stencils in finite element methods may be larger or more irregular
distributed than for finite difference methods. The same type of preconditioners can be used.
However there are some differences. We restrict ourselves to the IC(0) preconditioner. For the
five point stencil we see that the off diagonal part of L is equal to the strictly lower triangular
part of A. For general stencils this property does not hold. Drawbacks are: All the elements
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of L should be stored, so the memory requirements of PCG are two times as large as for CG.
Furthermore, the Eisenstat implementation can no longer be used. This motivates another
preconditioner constructed by the following rules:

ICD (Incomplete Cholesky restricted to the Diagonal).
A is again splitted as A = LD−1LT −R and L and D satisfy the following rules:

a) lij = 0 for all (i, j) where aij = 0 i > j

b) lii = dii, i = 1, ..., n

c) lij = aij for all (i, j) where aij 6= 0 i > j
(LD−1LT )ii = aii i = 1, ..., n.

This enables us to save memory (only the diagonal D should be stored) and CPU time (since
now Eisenstat implementation can be used) per iteration. For large problems the rate of
convergence of ICD is worse than for IC. Also MICD and RICD preconditioners can be given.

4.2 Preconditioning for general matrices

The preconditioning for non-symmetric matrices goes along the same lines as for symmetric
matrices. There is a large amount of literature for generalization of the incomplete Cholesky
decompositions. In general it is much more difficult to prove that the decomposition does not
break down or that the resulting preconditioned system has a spectrum which leads to a fast
convergence. Since symmetry is no longer important the number of possible preconditioners
is much larger. Furthermore, if we have an incomplete LU decomposition of A, we can apply
the iterative methods from 5.3.3 to the following three equivalent systems of equations:

U−1L−1Ax = U−1L−1b , (38)

L−1AU−1y = L−1b , x = U−1y , (39)

or
AU−1L−1y = b , x = U−1L−1y . (40)

The rate of convergence is approximately the same for all variants. When the Eisenstat
implementation is applied one should use (39). Otherwise we prefer (40) because then the
stopping criterion is based on ‖r‖2 = ‖b−Axk‖2 whereas for (38) it is based on ‖U−1L−1rk‖2,
and for (39) it is based on ‖L−1rk‖2.
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4.3 Exercises

1. Derive the preconditioned CG method using the CG method applied to Ãx̃ = b̃.

2. (a) Show that the formula’s given in (30) are correct.

(b) Show that the formula’s given in (33) are correct.

3. (a) Suppose that ai = 4 and bi = −1. Show that lim
i→∞

d̃i = 2 +
√

3, where d̃i is as

defined in (30).

(b) Do the same for ai = 4, bi = −1 and ci = −1 with m = 10, and show that
lim
i→∞

d̃i = 2 +
√

2.

(c) Prove that the LD−1LT decomposition (30) exists if ai = a, bi = b, ci = c and A is
diagonally dominant.

4. A practical exercise
Use as test matrices:

[a, f ] = poisson(30, 30, 0, 0,′ central′)

(a) Adapt the matlab cg algorithm such that preconditioning is included. Use a diag-
onal preconditioner and compare the number of iterations with cg without precon-
ditioner.

(b) Use the formula’s given in (30) to obtain an incomplete LD−1LT decomposition
of A. Make a plot of the diagonal elements of D. Can you understand this plot?

(c) Use the LD−1LT preconditioner in the method given in (a) and compare the con-
vergence behavior with that of the diagonal preconditioner.

50



5 Krylov subspace methods for general matrices

5.1 Introduction

In the preceding chapter we discuss the Conjugate Gradient method. This Krylov subspace
method can only be used if the coefficient matrix is symmetric and positive definite. In this
chapter we discuss Krylov subspace methods for an increasing class of matrices. For these we
give different iterative methods, and at this moment there is no method which is the best for
all cases. This is in contrast with the symmetric positive definite case. In Subsection 5.3.4 we
give some guidelines for choosing an appropriate method for a given system of equations. In
Section 5.2 we consider symmetric indefinite systems. General real matrices are the subject
of Section 5.3. We end this chapter with a section containing iterative methods for complex
linear systems.

5.2 Indefinite symmetric matrices

In this section we relax the condition that A should be positive definite (Chapter 3), and only
assume that A is symmetric. This means that xT Ax > 0 for some x and possibly yT Ay < 0
for some y. For the real eigenvalues this implies that A has positive and negative eigenvalues.
For this type of matrices ‖.‖A defines no longer a norm. Furthermore, CG may have a serious
break down since pT

k Apk may be zero whereas ‖pk‖2 is not zero. In this section we give two
different (but related) methods to overcome these difficulties. These methods are defined in
[57].

SYMMLQ

In the CG method we have defined the orthogonal matrix Rk ∈ IRn×k where the jth column
of Rk is equal to the normalized residual rj/‖rj‖2. It appears that the following relation holds

ARk = Rk+1T̄k, (41)

where T̄k ∈ IRk+1×k is a tridiagonal matrix. This decomposition is also known as the Lanczos
algorithm for the tridiagonalisation of A ([37]; p.477). This decomposition is always possible
for symmetric matrices, also for indefinite ones. The CG iterates are computed as follows:

xk = Rkyk, where (42)

RT
k ARkyk = Tkyk = RT

k b. (43)

Note that Tk consists of the first k rows of T̄k. If A is positive definite then Tk is positive
definite. It appears further that in the CG process an LDLT factorization of Tk is used to
solve (43). This can lead to break down because Tk may be indefinite in this section (compare
[37]; Section 9.3.1, 9.3.2, 10.2.6). In the SYMMLQ method [57] problem (43) is solved in a
stable way by using an LQ decomposition. So Tk is factorized in the following way:

Tk = L̄kQk where QT
k Qk = I (44)

with L̄k lower triangular. For more details to obtain an efficient code we refer to [57] section 5.
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MINRES
In SYMMLQ we have solved (43) in a stable way and obtain the ”CG” iteration. However
since ‖.‖A is no longer a correct norm, the optimality properties of CG are lost. To get these
back we can try to use the decomposition

ARk = Rk+1T̄k

and minimize the error in the ‖.‖AT A norm. This is a norm if A is nonsingular. This leads to
the following approximation:

xk = Rkyk, (45)

where yk is such that
‖Axk − b‖2 = min

y∈IRk
‖ARky − b‖2. (46)

Note that ‖ARky − b‖2 = ‖Rk+1T̄ky − b‖2 using (41).

Starting with x0 = 0 implies that r0 = b. Since Rk+1 is an orthogonal matrix and b =

Rk+1‖r0‖2e1, where e1 =











1
0
...
0











∈ IRk+1, we have to solve the following least squares problem

min
y∈IRk

‖T̄ky − ‖r0‖2e1‖2 . (47)

Again for more details see [57]; Section 6.7. A comparison of both methods is given in [57].
In general the rate of convergence of SYMMLQ or MINRES for indefinite symmetric systems
of equations is much worse than of CG for definite systems. Preconditioning techniques for
these methods are specified in [64].

5.3 Iterative methods for general matrices

In this section we consider iterative methods to solve Ax = b where the only requirement is
that A ∈ IRn×n is nonsingular. In the symmetric case we have seen that CG has the following
two nice properties:

- optimality, the error is minimal measured in a certain norm,

- short recurrences, only the results of one foregoing step is necessary so work and memory
do not increase for an increasing number of iterations.

It is shown in [27] that it is impossible to obtain a Krylov method based on K i(A; r0), which
has both properties for general matrices. So either the method has an optimality property but
long recurrences, or no optimality and short recurrences. Recently some surveys on general
iteration methods have been published: [13], [37] Section 10.4, [31], [66], [39], [8].

It appears that there are essentially three different ways to solve non-symmetric linear systems,
while maintaining some kind of orthogonality between the residuals:

1. Solve the normal equations AT Ax = AT b with Conjugate Gradients.
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2. Construct a basis for the Krylov subspace by a 3-term bi-orthogonality relation.

3. Make all the residuals explicitly orthogonal in order to have an orthogonal basis for the
Krylov subspace.

These classes form the subject of the following subsections. An introduction and comparison
of these classes is given in [55].

5.3.1 CG applied to the normal equations

The first idea to apply CG to the normal equations

AT Ax = AT b, (48)

or
AAT y = b with x = AT y (49)

is obvious. When A is nonsingular AT A is symmetric and positive definite. So all the prop-
erties and theoretical results for CG can be used. There are however some drawbacks first
the rate of convergence now depends on K2(A

T A) = K2(A)2. In many applications K2(A)2

is very large so the convergence of CG applied to (48) is very slow. Another difference is that
CG applied to Ax = b depends on the eigenvalues of A whereas CG applied to (48) depends
on the eigenvalues of AT A, which are equal to the singular values of A squared.

Per iteration a multiplication with A and AT is necessary, so the amount of work is approxi-
mately two times as much as for the CG method. Furthermore, in several (FEM) applications
Av is easily obtained but AT v not due to the unstructured grid and the data structure used.
Finally not only the convergence depends on K2(A)2 but also the error due to rounding er-
rors. To improve the numerical stability it is suggested in [9] to replace inner products like
pT AT Ap by (Ap)T Ap. Another improvement is the method LSQR proposed by [58]. This
method is based on the application of the Lanczos method to the auxiliary system

(

I A
AT 0

)(

r
x

)

=

(

b
0

)

.

This is a very reliable algorithm. It uses reliable stopping criteria and estimates of standard
errors for x and the condition number of A.

5.3.2 BiCG type methods

In this type of methods we have short recurrences but no optimality property. We have
seen that CG is based on the Lanczos algorithm. The Lanczos algorithm for non-symmetric
matrices is called the bi-Lanczos algorithm. BiCG type methods are based on bi-Lanczos. In
the Lanczos method we try to find a matrix Q such that QT Q = I and

QT AQ = T tridiagonal .

In the Bi-Lanczos algorithm we construct a similarity transformation X such that

X−1AX = T tridiagonal .
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To obtain this matrix we construct a basis r0, ..., ri−1, which are the residuals, for K i(A; r0)
such that rj⊥Kj(AT ; s0) and s0, ..., si−1 form a basis for K i(AT ; s0) such that sj⊥Kj(A; r0),
so the sequences {ri} and {si} are bi-orthogonal. Using these properties and the definitions
Rk = [r0...rk−1], Sk = [s0...sk−1] the following relation can be proved [75]:

ARk = RkTk + αkrke
T
k , (50)

and
ST

k (Axk − b) = 0 .

Using (50), r0 = b and xk = Rky we obtain

ST
k RkTky = s0r

T
0 e1. (51)

Since ST
k Rk is a diagonal matrix with diagonal elements rT

j sj, we find, that if all these diagonal
elements are nonzero,

Tky = e1 , xk = Rky .

We see that this algorithm fails when a diagonal element of ST
k Rk becomes (nearly) zero,

because these elements are used to normalize the vectors sj (compare [37] §9.3.6). This is
called a serious (near) break down. The way to get around this difficulty is the so-called
look-ahead strategy. For details on look-ahead we refer to [61], and [32]. Another way to
avoid break down is to restart as soon as a diagonal element gets small. This strategy is very
simple, but one should realize that at a restart the Krylov subspace that has been built up
so far, is thrown away, which destroys possibilities for faster (superlinear) convergence. (The
description of the methods given below is based on those given in [75].)

BiCG
As has been shown for Conjugate Gradients, the LU decomposition of the tridiagonal system
Tk can be updated from iteration to iteration and this leads to a recursive update of the
solution vector. This avoids to save all intermediate r and s vectors. This variant of Bi-
Lanczos is usually called Bi-Conjugate Gradients, or shortly Bi-CG [28]. Of course one can in
general not be sure that an LU decomposition (without pivoting) of the tridiagonal matrix Tk

exists, and if it does not exist then a serious break-down of the Bi-CG algorithm occurs. This
break-down can be avoided in the Bi-Lanczos formulation of this iterative solution scheme.
The algorithm is given as follows:

Bi-CG
x0 is given; r0 = b−Ax0;
r̂0 is an arbitrary vector (r̂0, r0) 6= 0
possible choice r̂0 = r0 ;
ρ0 = 1
p̂0 = p0 = 0
for i = 1, 2, ...

ρi = (r̂i−1, ri−1) ; βi = (ρi/ρi−1) ;
pi = ri−1 + βipi−1 ;
p̂i = r̂i−1 + βip̂i−1 ;
vi = Api

αi = ρi/(p̂i, vi);
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xi = xi−1 + αipi

ri = ri−1 − αivi

r̂i = r̂i−1 − αiA
T p̂i

end for

Note that for symmetric matrices Bi-Lanczos generates the same solution as Lanczos, provided
that s0 = r0, and under the same condition, Bi-CG delivers the same iterates as CG, for
positive definite matrices. However, the Bi-orthogonal variants do so at the cost of two
matrix vector operations per iteration step.

QMR
The QMR method [33] relates to Bi-CG in a similar way as MINRES relates to CG. For
stability reasons the basis vectors rj and sj are normalized (as is usual in the underlying
Bi-Lanczos algorithm).

If we group the residual vectors rj, for j = 0, ..., i − 1 in a matrix Ri, then we can write the
recurrence relations as

ARi = Ri+1T̄i ,

with
←− i −→

T̄i =





















. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .
. . .





















↑

i + 1

↓

.

Similar as for MINRES we would like to construct the xi, with

xi ∈ span {r0, Ar0, ..., A
i−1r0} , xi = Riȳ,

for which

‖Axi − b‖2 = ‖ARiȳ − b‖2
= ‖Ri+1T̄iy − b‖2
= ‖Ri+1{T̄iy − ‖r0‖2e1}‖2

is minimal. However, in this case that would be quite an amount of work since the columns
of Ri+1 are not necessarily orthogonal. In [33] it is suggested to solve the minimum norm
least squares problem

min
y∈IRi

‖barTiy − ‖r0‖2e1‖2 . (52)

This leads to the simplest form of the QMR method. A more general form arises if the least
squares problem (52) is replaced by a weighted least squares problem. No strategies are yet
known for optimal weights, however. In [33] the QMR method is carried out on top of a look-
ahead variant of the bi-orthogonal Lanczos method, which makes the method more robust.
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Experiments suggest that QMR has a much smoother convergence behavior than Bi-CG, but
it is not essentially faster than Bi-CG. For the algorithm we refer to [8] page 24.

CGS
For the bi-conjugate gradient residual vectors it is well-known that they can be written as
rj = Pj(A)r0 and r̂j = Pj(A

T )r̂0, and because of the bi-orthogonality relation we have that

(rj , r̂i) = (Pj(A)r0, Pi(A
T )r̂0) = (Pi(A)Pj(A)r0, r̂0) = 0 , for i < j.

The iteration parameters for bi-conjugate gradients are computed from innerproducts like
above. Sonneveld observed in [70] that we can also construct the vectors rj = P 2

j (A)r0, using
only the latter form of the innerproduct for recovering the bi-conjugate gradients parameters
(which implicitly define the polynomial Pj). By doing so, it can be avoided that the vectors
r̂j have to be formed, nor is there any multiplication with the matrix AT . The resulting CGS
[70] method works in general very well for many non-symmetric linear problems. It converges
often much faster than Bi-CG (about twice as fast in some cases). However, CGS usually
shows a very irregular convergence behavior. This behavior can even lead to cancellation and
a spoiled solution [74].

The following scheme carries out the CGS process for the solution of Ax = b, with a given
preconditioner K:

Conjugate Gradient Squared method
x0 is an initial guess; r0 = b−Ax0;
r̃0 is an arbitrary vector, such that
(r0, r̃0) 6= 0 ,
e.g., r̃0 = r0 ; ρ0 = (r0, r̃0) ;
β−1 = ρ0 ; p−1 = q0 = 0 ;
for i = 0, 1, 2, ... do

ui = ri + βi−1qi ;
pi = ui + βi−1(qi + βi−1pi−1) ;
p̂ = K−1pi ;
v̂ = Ap̂ ;
αi = ρi

(r̃0,v̂) ;
qi+1 = ui − αiv̂ ;
û = K−1(ui + qi+1)
xi+1 = xi + αiû ;
if xi+1 is accurate enough then quit;
ri+1 = ri − αiAû ;
ρi+1 = (r̃0, ri+1) ;
if ρi+1 = 0 then method fails to converge!;
βi = ρi+1

ρi
;

end for

In exact arithmetic, the αj and βj are the same constants as those generated by BiCG. There-
fore, they can be used to compute the Petrov-Galerkin approximations for eigenvalues of A.

Bi-CGSTAB
Bi-CGSTAB [75] is based on the following observation. Instead of squaring the Bi-CG
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polynomial, we can construct other iteration methods, by which xi are generated so that
ri = P̃i(A)Pi(A)r0 with other ith degree polynomials P̃i. An obvious possibility is to take for
P̃j a polynomial of the form

Qi(x) = (1− ω1x)(1− ω2x)...(1 − ωix) ,

and to select suitable constants ωj ∈ IR. This expression leads to an almost trivial recurrence
relation for the Qi. In Bi-CGSTAB ωj in the jth iteration step is chosen as to minimize rj ,
with respect to ωj, for residuals that can be written as rj = Qj(A)Pj(A)r0.
The preconditioned Bi-CGSTAB algorithm for solving the linear system Ax = b, with pre-
conditioning K reads as follows:

Bi-CGSTAB method
x0 is an initial guess; r0 = b−Ax0;
r̄0 is an arbitrary vector, such that (r̄0, r0) 6= 0, e.g., r̄0 = r0 ;
ρ−1 = α−1 = ω−1 = 1 ;
v−1 = p−1 = 0 ;
for i = 0, 1, 2, ... do

ρi = (r̄0, ri) ; βi−1 = (ρi/ρi−1)(αi−1/ωi−1) ;
pi = ri + βi−1(pi−1 − ωi−1vi−1) ;
p̂ = K−1pi ;
vi = Ap̂ ;
αi = ρi/(r̄0, vi) ;
s = ri − αivi ;
if ‖s‖ small enough then

xi+1 = xi + αip̂ ; quit;
z = K−1s ;
t = Az ;
ωi = (t, s)/(t, t) ;
xi+1 = xi + αip̂ + ωiz ;
if xi+1 is accurate enough then quit;
ri+1 = s− ωit ;

end for

The matrix K in this scheme represents the preconditioning matrix and the way of precondi-
tioning [75]. The above scheme in fact carries out the Bi-CGSTAB procedure for the explicitly
postconditioned linear system

AK−1y = b ,

but the vectors yi and the residual have been transformed back to the vectors xi and ri

corresponding to the original system Ax = b. Compared to CGS two extra innerproducts
need to be calculated.

In exact arithmetic, the αj and βj have the same values as those generated by Bi-CG and
CGS. Hence, they can be used to extract eigenvalue approximations for the eigenvalues of A
(see Bi-CG).

An advantage of these methods is that they use short recurrences. A disadvantage is that
there is only a semi-optimality property. As a result of this, more matrix vector products
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are needed and no convergence properties have been proved. In experiments we see that the
convergence behavior looks like CG for a large class of problems. However, the influence of
rounding errors is much more important than for CG. Small changes in the algorithm can lead
to instabilities. Finally it is always necessary to compare the norm of the updated residual
to the exact residual ‖b−Axk‖2. If ”near” break down had occurred these quantities may be
different by several orders of magnitude. In such a case the method should be restarted.

5.3.3 GMRES-type methods

These methods are based on long recurrences, and have certain optimality properties. The
long recurrences imply that the amount of work per iteration and required memory grow for
increasing number of iterations. Consequently in practice one cannot afford to run the full
algorithm, and it becomes necessary to use restarts or to truncate vector recursions. In this
section we describe GMRES, GCR and a combination of both GMRESR.

GMRES
In this method, Arnoldi’s method is used for computing an orthonormal basis {v1, ..., vk} of
the Krylov subspace Kk(A; r0). The modified Gram-Schmidt version of Arnoldi’s method can
be described as follows [67]:

1. Start: choose x0 and compute r0 = b−Ax0 and v1 = r0/‖r0‖2,

2. Iterate: for j = 1, ..., k do:
vj+1 = Avj

for i = 1, .., j do:
hij := vT

j+1vi , vj+1 := vj+1 − hijvi ,
end for
hj+1,j := ‖vj+1‖2 , vj+1 := vj+1/hj+1,j

end for
The entries of the upper k + 1× k Hessenberg matrix H̄k are the scalars hij .

In GMRES (General Minimal RESidual method) the approximate solution xk = x0 + zk with
zk ∈ Kk(A; r0) is such that

‖rk‖2 = ‖b−Axk‖2 = min
z∈Kk(A;r0)

‖r0 −Az‖2 (53)

As a consequence of (53) it appears that rk is orthogonal to AKk(A; r0), so rk⊥Kk(A;Ar0).
If A is symmetric the GMRES method is equivalent to the MINRES method as described in
[57]. Using the matrix H̄k it follows that AVk = Vk+1H̄k where the n×k matrix Vk is defined
by Vk = [v1, ..., vk]. With this equation it is shown in [67] that xk = x0 + Vkyk where yk is
the solution of the following least squares problem:

‖βe1 − H̄kyk‖2 = min
y∈IRk

‖βe1 − H̄ky‖2 (54)

with β = ‖r0‖2 and e1 is the first unit vector in IRk+1. GMRES is a stable method and
no break down occurs, if hj+1,j = 0 than xj = x so this is a ”lucky” break down (see [67];
Section 3.4).
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Due to the optimality (see inequality (53) convergence proofs are possible [67]. If the eigen-
values of A are real the same bounds on the norm of the residual can be proved as for the CG
method. For a more general eigenvalue distribution we shall give one result in the following
theorem. Let Pm be the space of all polynomials of degree less than m and let σ represent
the spectrum of A.

Theorem 5.1 Suppose that A is diagonalizable so that A = XDX−1 and let

ε(m) = min
p∈Pm
p(0)=1

max
λi∈σ
|p(λi)|

Then the residual norm of the m-th iterate satisfies:

‖rm‖2 ≤ K(X)ε(m)‖r0‖2 (55)

where K(X) = ‖X‖2‖X−1‖2. If furthermore all eigenvalues are enclosed in a circle centered
at C ∈ IR with C > 0 and having radius R with C > R, then

ε(m) ≤
(

R

C

)m

. (56)

Proof: see [67]; p. 866.

For GMRES we see in many cases a super linear convergence behavior comparable to CG.
Recently the same type of results are proved for GMRES [77]. As we have already noted in
the beginning, work per iteration and memory requirements increase for an increasing num-
ber of iterations. In this algorithm the Arnoldi process requires k vectors in memory in the
k-th iteration. Furthermore, 2k2 · n flops are needed for the total Gram Schmidt process.
To restrict work and memory requirements one stops GMRES after m iterations, form the
approximate solution and use this as a starting vector for a following application of GMRES.
This is denoted by the GMRES(m) procedure. Not restarted GMRES is denoted by full GM-
RES. However restarting destroys many of the nice properties of full GMRES, for instance the
optimality property is only valid inside a GMRES(m) step and the superlinear convergence
behavior is lost. This is a severe drawback of the GMRES(m) method.

GCR
Slightly earlier than GMRES, [26] proposed the GCR method (Generalized Conjugate Resid-
ual method). The algorithm is given as follows:

GCR algorithm
choose x0, compute r0 = b−Ax0

for i = 1, 2, ... do
si = ri−1 ,
vi = Asi ,
for j = 1, ..., i − 1 do

α = (vi, vj) ,
vi := vi − αvj , si := si − αsj ,

end for
vi := vi/‖vi‖2 , si := si/‖vi‖2
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xi := xi−1 + (ri−1, vi)si ;
ri := ri−1 − (ri−1, vi)vi ;

end for

The storage of si and vi costs two times as much memory as for GMRES. The rate of con-
vergence of GCR and GMRES are comparable. However there are examples where GCR
breaks down. So comparing full GMRES and full GCR the first one is preferred in many
applications.
When the required memory is not available GCR can be restarted. Furthermore, another
strategy is possible which is known as truncation. An example of this is to replace the j-loop
by

for j = i−m, ..., i − 1 do

Now 2m vectors are needed in memory. Other truncation variants to discard search direction
are possible. In general we see that truncated methods have a better convergence behavior
especially if super linear convergence plays an important role. So if restarting or truncation is
necessary truncated GCR is in general better than restarted GMRES. For convergence results
and other properties we refer to [26].

GMRESR
Recently, methods are proposed to diminish the disadvantages of restarting and or trunca-
tion. One of these methods is GMRESR proposed in [78] and further investigated in [81].
This method consists of an outer- and an inner loop. In the inner loop we approximate the
solution of a linear system with GMRES to find a good search direction. Thereafter in the
outer loop the minimal residual approximation using these search directions is calculated by
a GCR approach.

GMRESR algorithm
choose x0 and m, compute r0 = b−Ax0

for i = 1, 2, ... do
si = Pm,i−1(A)ri−1 ,
vi = Asi ,
for j = 1, ..., i − 1 do

α = (vi, vj) ,
vi := vi − αvj , si := si − αsj ,

end for
vi := vi/‖vi‖2 , si := si/‖vi‖2
xi := xi−1 + (ri−1, vi)si ;
ri := ri−1 − (ri−1, vi)vi ;

end for

The notation si = Pm,i−1(A)ri−1 denotes that one applies one iteration of GMRES(m) to the
system As = ri−1. The result of this operation is si. For m = 0 we get GCR, whereas for
m→∞ one outer iteration is sufficient and we get GMRES. For the amount of work we refer
to [78], where also optimal choices of m are given. In many problems the rate of convergence
of GMRESR is comparable to full GMRES, whereas the amount of work and memory is much
less. In the following picture we have tried to visualize the strong point of GMRESR in com-
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parison with GMRES(m) and truncated GCR. A search directions is indicated by the symbol
vi. We see for GMRES(3) that after 3 iterations all information is thrown away. For GCR(3)

v1v2v3 restart v1v2v3 restart GMRES(3)

v1v2v3bv4v5v6c ... GCR truncated with 3 vectors
→

v̂1v̂2v̂3 v̂1v̂2v̂3 ...
↓ ↓ GMRESR with GMRES(3) as

condense condense innerloop.
v1 v2

Figure 10: The use of search directions for restarted GMRES, truncated GCR and full GM-
RESR.

a window of the last 3 vectors moves from left to right. For GMRESR the information after
3 inner iterations is condensed in to one search direction so ”no” information gets lost.
Also for GMRESR restarts and truncation is possible [81]. In the inner loop other iterative
methods can be used. Several of these choices lead to a good iterative method. In theory we
can call the same loop again, which motivates the name GMRES Recursive. A comparable
approach is the FGMRES method give in [65]. Herein the outer loop consists of a slightly
adapted GMRES algorithm. Since FGMRES and GMRESR are comparable in work and
memory but FGMRES can not be truncated we prefer the GMRESR method.

5.3.4 Choice of an iterative method

For non-symmetric matrices it is very difficult to decide which iterative method should be
used. All the methods treated here have their own type of problems for which they are winners.
Furthermore, the choice depends on the computer used and the availability of memory. In
general CGS and Bi-CGSTAB are easy to implement and reasonably fast for a large class
of problems. If break down or bad convergence appear, GMRES like methods are better.
Finally LSQR always converges but can take a large number of iterations.

In [81] we have tried to specify some easy to obtain parameters to facilitate a choice. First
one should have an (crude) idea of the total number of iterations (mg) using full GMRES,
secondly one should measure the ratio f which is defined as

f =
the CPU time used for one preconditioned matrix vector product

the CPU time used for a vector update

Note that f depends on the used computer. Under certain assumptions given in [81] we obtain
Figure 11. This figure gives only qualitative information. It illustrates the dependence of the
choice on f and mg. If mg is large and f is small, Bi-CGSTAB is the best method. For large
values of f and small values of mg the GMRES method is optimal and for intermediate values
GMRESR is the best method. In [8] a flowchart is given with suggestions for the selection of
a suitable iterative method.
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Figure 11: Regions of feasibility of Bi-CGSTAB, GMRES, and GMRESR.

5.3.5 Iterative methods for complex matrices

There are in practice, important applications that lead to linear systems where the coef-
ficient matrix has complex valued entries. Examples are: complex Helmholtz equations,
Schrödinger’s equation, under water acoustics etc. If the resulting system is Hermitian the
methods of Chapter 3 can be used. In these algorithms the inner product xT y should be
replaced by the complex inner product x̄T y. For non Hermitian matrices iterative methods as
given in Sections 5.3.1 to 5.3.3 can be used. Again they should be adapted to use the correct
inner product.
In many applications the resulting complex linear systems have additional structure that can
be exploited. For instance matrices of the following form arise:

A = eiΘ(T + σI) where T = T̄ T , Θ ∈ IR , σ ∈ CI

Another special case that arises frequently in applications are complex symmetric matrices

A = AT

For example, the complex Helmholtz equations leads to complex symmetric systems. For
methods to solve these systems we refer to [32]; section 2.2, 2.3, 6.
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5.4 Exercises

1. Show that the solution

(

y
x

)

of the augmented system

(

I A
AT 0

)(

y
x

)

=

(

b
0

)

is such that x satisfies AT Ax = AT b.

2. Take the following matrix
(

2 −1
−1 2

)

.

(a) Suppose that GCR is applied to the system Ax = b. Show that GCR converges in
1 iteration if x− x0 = cr0, where c 6= 0 is a scalar and r0 = b−Ax0.

(b) Apply GCR for the choices b =

(

1
1

)

and x0 =

(

0
0

)

.

(c) Do the same for x0 =

(

1
0

)

.

3. In the GCR algorithm the vector ri is obtained from vectorupdates. Show that the
relation ri = b−Axi is valid.

4. Prove the following properties for the GMRES method:

• AVk = Vk+1H̄k,

• xk = x0 + Vkyk, where yk is obtained from (54).

5. Figure 11 can give an indication which solution method should be used. Give an advice
in the following situations:

• Without preconditioning Bi-CGSTAB is the best method. What happens if pre-
conditioning is added?

• We use GMRESR for a stationary problem. Switching to an instationary problem,
what are good methods?

• We use GMRES. After optimizing the matrix vector product, which method is
optimal?

6. A practical exercise
For the methods mentioned below we use as test matrices:

[a, f ] = poisson(5, 5, 100, 0,′ central′)

and
[a, f ] = poisson(5, 5, 100, 0,′ upwind′)

(a) Adapt the matlab cg algorithm such that it solves the normal equations. Apply
the algorithm to both matrices.
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(b) Implement Bi-CGSTAB from the lecture notes. Take K = I (identity matrix).
Apply the algorithm to both matrices.

(c) Implement the GCR algorithm from the lecture notes. Apply the algorithm to
both matrices.

(d) Compare the convergence behavior of the three methods.
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6 Iterative methods for eigenvalue problems

6.1 Introduction

In many technical problems eigenvalues play an important role. For example eigenvalues give
information of physical properties like eigenmodes, or eigenvalues are used to analyze and/or
enhance mathematical methods for the solution of a physical problem.
As examples of the first kind we mention the following:

- eigenvalues are important to obtain eigenfrequences of a construction,

- characteristic properties of a fluid flow problem are defined using eigenvalues,

- if a bifurcation occurs eigenvalues and eigenvectors can be used to calculate a solution
after the bifurcation point.

Examples of the second kind are:

- estimation of the 2-norm of a matrix (or its inverse),

- to predict and understand the convergence behavior of an iterative method,

- as a check of a discretization method. In general the matrices are so large that it is not
easy to check their contents. However a small number of extreme eigenvalues can give
sufficient information to decide wether the obtained discretization is correct or not,

- the choice of the time step for stable time integration methods.

In the remainder of this section we give some general information about eigenvalue problems.

The mathematical eigenvalue problem for a linear system of equations can be defined as
follows: find λ ∈ CI and x ∈ CI n such that Ax = λx and x 6= 0.
Some references for the theory on this type of problems are [37]; Chapter 7, 8, 9, [85], [17],
[18] and [59]. Again the symmetric eigenvalue problem is much easier than the unsymmetric
eigenvalue problem (compare the situation for linear systems). This observation not only
holds from a computational point of view but also for the theory of the eigenvalue problem.
All methods to solve the eigenvalue problem are of an iterative nature. We distinguish between
two different classes of methods. In the first class of methods the matrix A is transformed
to a condensed form (computational costs O(n3)) and the iteration process is applied to the
condensed matrix (costs O(n2)). As an example of these methods we mention the QR method.
This class of methods is used in the public domain linear algebra software library LAPACK
and is described in [37]; Chapter 7, 8. Drawback of these methods are that the matrix A
should be given explicitly, and in general a large amount of memory is required. It is advised
to use these methods for matrices with relatively small dimensions (say n < 200). In the
second class the iteration is applied to the original matrix. A clear advantage is that the
matrix A does not have to be available. The only requirement is that one is able to calculate
matrix vector-products. It is advised to use this type of methods only if a small number of
eigenvalues is wanted or the matrix A can not be easily formed.
In Section 6.2 we consider the classical power method. Krylov subspace methods are described
in Section 6.3 for symmetric matrices and Section 6.4 for unsymmetric matrices.

65



6.2 The Power method

The Power method is the classical method to compute the largest few eigenvalues of a matrix.
The method is motivated by the property that if we multiply a vector by a matrix, the con-
tribution of the eigenvector corresponding to the largest eigenvalue (in absolute value sense)
increased more than the contribution of the other eigenvectors. If the vector is multiplied a
large number of times by the matrix, the contribution of this eigenvector will dominate, so
the resulting iteration vector will approximate this eigenvector. So we arrive at the following
algorithm.

The Power method
q0 ∈ CI n is given
for k = 1, 2, ...

zk = Aqk−1

qk = zk/‖zk‖2
λ(k) = qT

k−1zk

endfor

It is easily be seen that if qk−1 is an eigenvector corresponding to λj then

λ(k) = qT
k−1Aqk−1 = λjq

T
k−1qk−1 = λj‖qk−1‖22 = λj .

In order to derive the convergence behavior of the Power method we assume that the n
eigenvalues are ordered such that |λ1| > |λ2| ≥ ... ≥ |λn| and the eigenvectors by x1, ..., xn so
Axi = λixi. Each arbitrary start vector q0 can be written as:

q0 = a1x1 + a2x2 + ... + anxn

and if a1 6= 0 if follows that

Akq0 = a1λ
k
1(x1 +

n
∑

j=2

aj

a1

(

λj

λ1

)k

xj) . (57)

Using this equality we conclude that

|λ1 − λ(k)| = O

(

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k
)

, and also (58)

the angle between span {qk} and span {x1} is of order |λ2
λ1
|k.

These formula’s (57) and (58) can be used to obtain the following observations. First it is im-
portant that a1 6= 0 so the starting vector should have a non-zero component in the x1-vector.
Due to rounding errors this is in general no problem because if q0 has no component in the
x1 direction such a component is created during the computation. However, a large compo-
nent in the start vector leads to a faster convergence. Secondly we see that the convergence
depends on |λ2

λ1
|. So applying the Power method to A − cI the rate of convergence is equal

to |λ2−c
λ1−c |. This property shows that the Power method is not shift invariant. Furthermore, it

can be used to increase the convergence speed. Finally if c is chosen carefully we can compute
other eigen values. For example: suppose λi ∈ IR i = 1, ..., n then the choice c ∼= λ1 leads to
the fact that the in norm largest eigenvalue of A − λ1I is equal to λn. So also the smallest
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eigenvalue can be computed by the Power method. Thirdly we see that the Power method is
a linearly converging method. This implies that the following stopping criterion can be used:

estimate r from r̃ =
|λ(k+1) − λ(k)|
|λ(k) − λ(k−1)| , (59)

and stop if r̃
1−r̃

|λ(k+1)−λ(k)|

|λ(k+1)|
≤ ε .

This stopping criterion leads to ||λ1| − λ(k+1)| ≤ ε.

Note that there is a problem if |λ1| = |λ2|, which is the case for instance if λ1 = λ̄2. A vector
q0 which has a nonzero component in x1 and x2 can be written as

q0 = a1x1 + a2x2 +

n
∑

j=3

ajxj .

The component in the direction of x3, ..., xn will vanish in the Power method, but qk will not
tend to a limit. In [85], pp. 579-582 a method is given to obtain the eigenvalues λ1 and λ2

from the last three iterates. However when the imaginary part of λ1 is small the obtained
results have a poor accuracy.

The inverse Power method
We have seen that small eigenvalues can be computed by a correct shift of the matrix. How-
ever, in general the differences between small eigenvalues are much less then the differences
between the large eigenvalues. So convergence to the smallest eigenvalue is very slow. A
remedy for this is to apply the Power method to the inverse matrix A−1. It is easily seen
that the eigenvalues of A−1 are 1

λi
. So the smallest eigenvalue of A is the largest eigenvalue

of A−1. This leads to a much faster rate of convergence. As an example suppose

λ1 = 1000 , λn−1 = 1.1 and λn = 1 .

The rate of convergence of the Power method applied to

A− 1000I is equal to
|1.1− 1000|
1− 1000| = 0.99989

whereas application to

A−1 leads to
1

1.1
1
1

= 0.909 .

In order to compute zk = A−1qk−1 one solves the zk from the linear system

Azk = qk−1,

by Gaussian elimination, or an iterative solver. In general the inverse Power method costs
less work than the Power method applied to the shifted matrix.

Orthogonal iteration
A straightforward generalization of the power method is ”orthogonal iteration” which can be
used to compute more than one eigenvalue. Let p be an integer less than n, and Q0 ∈ CI n×p
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an orthogonal matrix. Compute a sequence of matrices {Qk} where Qk ∈ CI n×p as follows:

for k = 1, 2, ...
Zk = AQk−1

orthonormalize the columns of Zk such that
QkRk = Zk , Rk ∈ IRk×k is an upper triangular matrix,

and Q̄T
k Qk = I.

endfor

This can be used to approximate the p largest eigenvalues. For more details we refer to [37];
Section 7.3.2.

6.3 A Krylov subspace method for symmetric matrices

Symmetry simplifies the real eigenvalue problem Ax = λx in two ways. It implies that all
eigenvalues are real and that there is an orthogonal basis of eigenvectors. It can be shown
that if A is a real n× n symmetric matrix then there exists a real orthogonal matrix Q such
that

QT AQ = diag (λ1, ..., λn) .

The iterative method considered in this section is known as the Lanczos method [50], [37];
Chapter 9. The relation between the Power method and the Lanczos method is comparable
to the relation between basic iterative methods for linear systems and the CG method. We
have seen that in the Power method one calculates q0, Aq0, A

2q0, ... and sees that the vector
Akq0 tends to the eigenvector corresponding to the largest eigenvalue. In the Power method
only one vector is used. To explain the properties of the Lanczos method we first define the
Rayleigh quotient

r(x) =
xT Ax

xT x
, x 6= 0 .

It is easily seen that min
x∈IRn

r(x) = λn the smallest eigenvalue and max
x∈IRn

r(x) = λ1 the largest

eigenvalue.

In the Lanczos method the approximations after k iterations are θ
(k)
1 of λ1 and θ

(k)
k of λn.

They satisfy the following (in)equalities

θ
(k)
1 = max

y∈Kk(A;q0)
r(y) ≤ λ1

and
θ
(k)
k = min

y∈Kk(A;q0)
r(y) ≥ λn .

These (in)equalities imply that θ
(k)
1 is always closer to λ1 than the approximation of the Power

method. Furthermore, Lanczos gives an approximation of the smallest eigenvalue. The rate

of convergence of θ
(k)
1 to λ1 and θ

(k)
k to λn is comparable. The Lanczos method involves

partial tridiagonalizations of the matrix A. Information of A’s extremal eigenvalues tends
to emerge long before the tridiagonalization is complete. This makes the Lanczos algorithm
particularly useful in situations where a few of A’s largest or smallest eigenvalues are desired.
Unfortunately, roundoff errors make the Lanczos method somewhat difficult to use in practice.
The central problem is a loss of orthogonality among the Lanczos vectors that the iteration
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produces. Some ideas are given to repair orthogonality. We start by the specification of the
Lanczos algorithm:
Choose a starting vector q1 where ‖q1‖2 = 1
Lanczos method
r0 = q1 ; β0 = 1 ; q0 = 0 ; j = 0 initialization

while βj 6= 0 do iteration
qj+1 = rj/βj normalization of q
j := j + 1
αj = qT

j Aqj

rj = (A− αjI)qj − βj−1qj−1 new direction
orthogonal to

βj = ‖rj‖2 previous q.
end while

Thereafter we form the tridiagonal symmetric matrix Tj as follows

Tj =



















α1 β1 0

β1 α2
. . .

. . .
. . .

. . .

0
. . .

. . . βj−1

βj−1 αj



















.

This matrix is called the Ritz matrix. The eigenvalues of Tj : θ
(j)
1 , ..., θ

(j)
j are called Ritz

values and are approximations of the eigenvalues of A.
With respect to work we note that the Lanczos method costs one matrix vectorproduct
per iteration and 5 vector operations. The memory requirements are 5 vectors in memory.
Therafter the eigenvalues of Tj have to be calculated. Note that Tj is in general much smaller
than A and has only three non zero elements per row. So this eigenvalue problem is always
solved by a QR like method ([37]; Section 8.2) for instance by a call to a LAPACK subroutine.
The Lanczos vector qj has several nice properties. In the following theorem it is proved that
the vectors q1, ..., qj form an orthonormal basis for K j(A; q1).

Theorem 6.1 Let A ∈ IRn×n be symmetric and assume q1 ∈ IRn satisfies ‖q1‖2 = 1. Then
the Lanczos algorithm runs until j = m where m is the number of independent vectors in
Kn(A; q1). Moreover for j ∈ [1,m] we have

AQj = QjTj + rje
T
j , (60)

where Qj = [q1, ..., qj ] has orthonormal columns that span K j(A; q1).

Proof: see [37]; Section 9.1.3.

The Lanczos results can also be used to obtain an approximation of the eigenvectors of A.

In order to do this all Lanczos vectors should be kept in memory. Suppose that θ
(j)
i is an

eigenvalue of Tj and its corresponding eigenvector is denoted by si where ‖si‖2 = 1. The
vector yi = Qjsi is called the Ritzvector and is an approximation of the eigenvector of A
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belonging to the eigenvalue approximated by θ
(j)
i . Heuristically this can be seen as follows:

suppose ‖rje
T
j ‖2 in (60) is small then

AQj
∼= QjTj

so
Ayi = AQjsi

∼= QjTjsi = Qjθ
(j)
i si = θ

(j)
i yi .

It can be shown that ‖Ayi− θ
(j)
i yi‖2 = |βj | |(si)j | where (si)j denotes the final element of the

vector si ([37]; Section 9.13). This equation can be used to obtain the following error bound:

min
µ∈λ(A)

|θ(j)
i − µ| ≤ |βj | |(si)j | i = 1, ..., j . (61)

It is much cheaper to check this bound than forming yi and compute ‖Ayi− θ
(j)
i yi‖2. So (61)

can be used as a stopping criterion.

In [37]; Section 9.1.4 some theoretical results are given on the convergence behavior of the
extremal Ritzvalues. Suppose λ1 is the largest eigenvalue of A than it is proved that the
largest Ritzvalue θ1 converges to λ1. The speed of convergence depends on the so called
gap-ratio

ρ1 =
(λ1 − λ2)

(λ2 − λn)
. (62)

The value of ρ1 measures the distance of λ1 to the rest of the spectrum divided by the distance
of λ2 to λn. A large gap ratio leads to a fast convergence of θ1 to λ1.
It can be shown that the Lanczos algorithm is shift invariant. If it is applied to

Ã = A− cI the new matrix T̃j is equal to T̃j = Tj − cI .

So all the results are only shifted and the convergence speed remains the same. This is a clear
difference with the Power method. This is in agreement with the fact that the gap ratio is
shift invariant:

ρ̃1 =
λ̃1 − λ̃2

λ̃2 − λ̃n

=
λ1 − c− (λ2 − c)

λ2 − c− (λn − c)
=

λ1 − λ2

λ2 − λn
= ρ1 .

If the smallest eigenvalues of a matrix A are wanted it is a good idea to apply the Lanczos
method to the inverse system

A−1x = µx .

This can lead to a much better gap ratio. Note that µ = 1
λ . Suppose we have an example

where λ1 = 1000, λn−1 = 1.1 and λn = 1. The gap ratio for the smallest eigenvalue is equal
to

ρn =
|λn − λn−1|
|λn−1 − λ1|

=
0.1

1000
= 10−4

so the iteration takes very long to obtain a good approximation. For the inverse problem we
want to calculate the largest eigenvalue

µ1 = 1 , µ2 =
1

1.1
, ..., µn =

1

1000
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the gap ratio is now equal to

ρ̃1 =
|µ1 − µ2|
|µ2 − µn|

=
1− 1

1.1
1

1.1 − 1
1000

' 0.1

which is much larger than for the original matrix. A drawback is again that one has to solve
a linear system of equations in every iteration.

The convergence of Ritz values to interior eigenvalues is not so good. Moreover theoretical
results for this convergence are not sharp. In general the same behavior as the for CG method
applied to linear systems is observed. So if the Ritzvalue θ1 is close to λ1, the method behaves
as if the eigenvalue λ1 is absent. So once λ1 has been approximated, θ2 converges faster to
λ2.
With respect to rounding errors we note that equation (60) holds to working precision. How-
ever loss of orthogonality of the computed vectors qj appears if one of the Ritz values converges
to an eigenvalue. One remedy is to orthogonalize each newly computed Lanczos vector against
its predecessors. This leads to the complete reorthogonalization Lanczos method. However,
such an orthogonalization requires many vector operations. This makes the method unprac-
tical if many iterations are necessary. To decrease the costs, a selective orthogonalization
procedure is proposed [37]; Section 9.2.4. In this algorithm the new Lanczos vector is not
orthogonalized against all its predecessors, but only against the much smaller set of converged
Ritz vectors. For details we refer to [60], [69] and [46].

6.4 Krylov subspace methods for unsymmetric matrices

Arnoldi
A generalization of the Lanczos method to unsymmetric matrices is the Arnoldi method [2].
In this method the matrix A is transformed to an upper Hessenberg matrix by an orthogonal
transformation. An upper Hessenberg matrix has the following nonzero pattern:

The relation between Lanczos and Arnoldi is comparable to the relation between CG and
GMRES for linear systems. The Arnoldi method has the same nice properties with respect to
convergence as the Lanczos method. A drawback is that for Lanczos only 5 vector operations
are necessary during computation, whereas for Arnoldi the number of vector operations is
proportional to the number of iterations.
The Arnoldi algorithm is given by: choose a starting vector q1 where ‖q1‖2 = 1.
Arnoldi method
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r = q1 ; β = 1 ; j = 0 initialization

while β 6= 0 iteration
qj+1 = r/β ; normalization
j = j + 1 ; r = Aqj ;
for i = 1, ..., j modified Gram

hij = qT
i r Schmidt orthogonalization

r = r − hijqi

end for
β = ‖r‖2
if j < n

hj+1,j = β
end if

end while

After the iteration is stopped one can form the Hessenberg matrix Hj as follows

Hj =













h11 . . . . . . h1j

h21
. . .

...
. . .

. . .
...

O hjj−1 hjj













.

Hj is the Ritzmatrix, θi the Ritzvalue. In the same way as for Lanczos we have if Hjsi = θisi

then Qjsi is an approximation of the corresponding eigenvector.

If the matrix A is symmetric the matrix Hj becomes tridiagonal so we get the same results as
using the Lanczos method. Many of the properties of the Lanczos method can be generalized
to the Arnoldi method. In general it is a stable method with respect to rounding errors. There
is no break down possible, only the case β = 0 can occur, but then an invariant subspace is
obtained and all eigenvalues can be calculated (Assuming that q0 has nonzero components in
all eigenvector directions). A drawback of this method is the fact that due to the modified
Gram Schmidt orthogonalization the amount of work increases quadratically. Restarting the
Arnoldi method prevents this, however in such a case the good convergence properties are lost.
The rate of convergence can be much different from Lanczos, because complex eigenvalues can
occur. If all the eigenvalues are real than the convergence behavior of Arnoldi is comparable
to Lanczos. In the general case of complex eigenvalues we see that the Ritz values converging
to the extreme eigenvalues are converging much faster than the interior ones.

Bi-Lanczos
To get rid of the Gram Schmidt process another generalization is proposed: Bi-Lanczos. It is
possible to reduce A to tridiagonal form using a general similarity transformation. However,
this leads to an unstable procedure ([85]; pp. 388-405). In the Bi-Lanczos procedure two
vector sequences are produced xj and yj, which have the property that they are bi-orthogonal:
if Xj = [x1, ..., xj ] , Yj = [y1, ..., yj ] we have XT Y = I. The Bi-Lanczos method runs as
follows: choose starting vectors x1, y1 such that xT

1 y1 = 1.

Bi-Lanczos
j = 0 , β0 = 1 , x0 = 0 , r0 = x1 , y0 = 0 , p0 = y1
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while βj 6= 0
∧

rT
j pj 6= 0

γj = rT
j pj/βj

xj+1 = rj/βj ; yj+1 = pj/γj

j := j + 1
αj = yT

j Axj ; rj = (A− αjI)xj − γj−1xj−1 ,

βj = ‖rj‖2 ; pj = (A− αjI)T yj − βj−1yj−1 ,
end while

The tridiagonal Ritz matrix Tj is formed by:

Tj =

















α1 γ1

β1 α2 γ2 O
. . .

. . .
. . .

O
. . .

. . . γj−1

βj−1 αj

















.

The amount of work per iteration is equal to two matrix vector products one with A and
the other with AT . Furthermore, 12 vector operations are needed. To circumvent stability
problems the look ahead Lanczos procedures are developed per iteration [32]. However, many
open questions remain as there are: how to implement complete or selective orthogonalization,
which stop criterion can be used, multiple eigenvalues etc.

6.5 The generalized eigenvalue problem

In practical finite element eigenvalue problems one also wants to solve generalized eigenvalue
problems. In such a problem one has to solve the following problem: for A,B ∈ IRn×n given,
compute λ ∈ CI and x ∈ CI n where x 6= 0 such that

Ax = λBx . (63)

In finite element problems A may be the stiffness matrix and B the mass matrix. For theoreti-
cal properties and QR like methods we refer to [37]; Section 7.7. If A and B are symmetric and
B also positive definite we refer to [37]; Section 8.7.2. If B−1 exists (63) can be transformed
to

B−1Ax = λx (64)

so iteration methods can be applied to (64).
There are also iterative methods which are suited to be applied to (63) directly. For these
methods we refer to: [36] and [73].
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6.6 Exercises

1. The Power method can be used to approximate the largest eigenvalue λ1. In this exercise
two methods are given to estimate the eigenvalue λ2 if λ1 and eigenvector x1 are known.

(a) Take q0 = (A−λ1I)q, where q is an arbitrary vector. Show that the Power method
applied to this starting vector leads to an approximation of λ2 (Annihilation Tech-
nique).

(b) Take A is symmetric and show that if the Power method is applied to the matrix

B = A− λ1

xT
1 x1

x1x
T
1

one gets an approximation of λ2. What is the amount of work per iteration using
B (Hotelling Deflation).

2. Suppose that A ∈ IRn×n is skew-symmetric.

(a) Derive a Lanczos-like algorithm for computing a skew-symmetric tridiagonal ma-
trix Tm such that

AQm = QmTm,

where m = dim{K(A; q1, n)} and QT
mQm = Im.

(b) Show that if m is equal to the dimension of the smallest invariant subspace for A
that contains q1.

3. Suppose A ∈ IRn×n is symmetric and that we wish to compute its largest eigenvalue.
Let η be an approximate eigenvector and set

α =
ηT Aη

ηT η
, z = Aη − αη.

(a) Show that there is an eigenvalue of A in the interval [α − δ, α + δ], where δ =
‖z‖2/‖η‖2.

(b) Consider η̄ = aη + bz and show how to determine a and b such that ā = η̄T Aη̄/η̄T η̄
is maximal.

(c) Compare this with the first two iterations of Lanczos.

4. A practical exercise
A bending beam with a force P on top (see Figure 12) can be described by the following
equation:

EI
d2w

dx2
= Pw, w(0) = w(L) = 0.

The solution of this equation is w(0) = 0. For certain values of P , there is also a non-

trivial solution. The smallest value of such a P is: P = EIπ2

L2 .

We can also approximate the smallest value of P by the smallest eigenvalue of

A =
EI

h2
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<−− PP −−>

Figure 12: Bending beam configuration

where A ∈ IRn×n and h = L
n+1 . Take n = 100, EI = 10 and L = 2.

(a) Compute an approximation of P by doing 50 iterations of the inverse Power method
applied to A.

(b) Do 10 iterations with the Lanczos method and form T10.

(c) Compute the eigenvalues of Tj using the ’eig’ command of Matlab.

(d) Compare the convergence of the inverse Power method and the Lanczos method.
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7 Vector computers

The solution of large 3D PDE problems requires a considerable amount of memory and com-
puting time. At present the fastest computers are provided with a large and fast internal
memory (core). Two types of supercomputers are distinguished, the so called vector comput-
ers and parallel computers. Both types of machines have their own characteristic properties.
It is only possible to obtain fast algorithms if these properties are taken into account. In
the following sections we shall give a short introduction to vector machines. The following
chapter contains an introduction to parallel computers. For more details we refer to the fol-
lowing surveys: [56], [37]; Sections 1.4, 6.1, 6.2, [21] and [20]. It is much easier to implement
an algorithm on a supercomputer by using FORTRAN95 instead of FORTRAN77. For a
good description of the language we refer to [54]. Finally we note that it makes only sense to
optimize an algorithm for a supercomputer if the original code is optimized with respect to
the number of floating point operations. For instance if ICCG(0) is used a diagonal scaling,
and Eisenstat implementation should have been used.

7.1 Introduction

We shall give a short description of the special features of a vector computer. Thereafter we
shall show which parts of ICCG are easily vectorizable. For the parts which are difficult to
vectorize we present some ideas to obtain better vectorizable code.

Pipe-lining and time model
In a computer an internal clock influences all the operations. In every clock cycle one operation
is performed: for instance fetching a number from memory, part of an addition of two real
numbers, etc. The length of one clock cycle influences the speed of the computer. In order
to explain the special nature of a vector computer we analyze the addition of two reals. In
classical functional units it takes some clock cycles to add two real number. To understand
this we refer to Figure 13 where we see that 5 different sub-operations are used. This means
that in a classical computer every 5 clock cycles one results is obtained. In a vector functional

real a−→
compare align normalize normalize

add
result c=a+b−→

exponents operands count shift
real b−→

Figure 13: The add operation divided into 5 sub-operations

unit each sub-operation is executed on a piece of hardware that operates concurrently with
the other stages of the pipeline. Each sub-operation is started at the beginning of a clock
cycle and completed at the end of a clock cycle. Note that the concept of pipe-lining is similar
to that of an assembly line process in an industrial plant. Furthermore, there is no gain if
one pair of reals is added. This technique makes only sense if a large amount of reals in a
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row are added. As an example we mention the following operation:

do i = 1, n
c(i) = a(i) + b(i)

enddo

To follow this process we give in Figure 14 the first clock cycles of this operation. It is easily
seen that the first 5 clock cycles no result appears, but in the 6th clock cycle we get the first

from a(3) b(3) a(4) b(4) a(5) b(5) a(6) b(6) a(7) b(7) a(8) b(8)
memory ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a(2) b(2) a(3) b(3) a(4) b(4) a(5) b(5) a(6) b(6) a(7) b(7)
a(1) b(1) a(2) b(2) a(3) b(3) a(4) b(4) a(5) b(5) a(6) b(6)

functional a(1) b(1) a(2) b(2) a(3) b(3) a(4) b(4) a(5) b(5)
unit a(1) b(1) a(2) b(2) a(3) b(3) a(4) b(4)

a(1) b(1) a(2) b(2) a(3) b(3)
a(1) b(1) a(2) b(2)

c(1)
1 2 3 4 5 6

clock cycle−→

Figure 14: The first clock cycles for adding two vectors

result, in the 7th the second result etc. So for a classical functional unit the addition costs 5n
clock cycles, whereas for the vector functional unit this costs 5+n clock cycles. This is much
better for n large enough. Suppose one clock cycle costs µ seconds. The time to compute the
addition is equal to

t(n) = tstart + nµ .

In our example the start-up time tstart = 5µ. For other operations the start-up time may be
different.

Mflop rates
To compare different machines the speed is measured in Mflop. One Mflop means that 106

flops (floating point operations +, ∗,−) are performed in one second. In the given example
the speed R(n) is given by

R(n) =
number of flops ∗ 10−6

required time
=

n

tstart + nµ
· 10−6 Mflop. (65)

Using (65) two characteristic quantities are defined [45] :
the asymptotic rate of performance.

R∞ = lim
n→∞

R(n) =
10−6

µ
Mflop , (66)

and n 1
2
, the smallest n for which half of the peak performance is achieved so:

R(n 1
2
) =

10−6

2µ
. (67)
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For the operation given this leads to

n 1
2

tstart + n 1
2
µ

=
1

2µ

so

n 1
2

=
tstart

µ
. (68)

Machines which have large n 1
2

values do not perform well on short vectors.

Vector registers
Until now we have not said how to obtain all these reals from memory and how to store
the results. This is very important since memory is in general slower than the functional
units. The first special feature is an intermediate very-high-speed memory the so-called
vector register. The reals are first fetched from the ”slow” main memory and put into the
fast vector registers. The results c are stored in a vector register and then put in main
memory. In general several vector registers are used also to store intermediate results. In this
way it is possible to link certain operations together, for instance the loop

for i = 1, ..., n do
x(i) = x(i) + a ∗ y(i)

end for

can be done in the way sketched in Figure 15. So after some start-up time every clock cycle 2

load

memory

memory

y

a

multiply a *  y

load

memory

x add x + a * y

vector  register  1 vector  register  2 vector

register  3

vector

register  4

store

Figure 15: The flow of operands by a vector update

flops (+ and ∗) are done. Since vector registers are costly they can contain only a relatively
small number of reals (e.g. 64 or 128 double precision numbers). This means that vectors too
large to fit into the vector registers are broken into pieces that can be accommodated by the
registers. After the first segment (or strip) is complete, the next one is started. This is done
automatically by the compiler and is known as strip-mining. Because each break up costs
overhead, strip-mining incurs a start-up overhead for each piece.

Memory banks
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It seems that the problem is only shifted since the fast vector registers have to be filled from
the ”slow” main memory. To solve this problem the main memory is divided in to several
different parts, which are called memory banks (memory interleaving). Suppose we have a
computer where the load operation of one real costs 8 clock cycles (this is called the bank
cycle time). The minimum number of memory banks for this machine is 8 in order to keep
the functional units busy. The storing pattern of the vector a, used in c(i) = a(i) + b(i) is
shown in Figure 16. If the vector is loaded the load of a(1) is started in the first clock cycle,
the load of a(2) in the second clock cycle until a(8). The real number a(9) is again in the
first memory bank, however since there are 8 clock cycles passed the operation to load a(9)
can be started in the 9th clock cycle. So again after some start up time every clock cycle one
real is loaded from main memory to a vector register.

bank bank bank
1 2 · · · · · · · · · 8

a(1) a(2) a(8)
a(9) a(10) a(16)
a(17) · · · · · ·

...
...

...

Figure 16: Storage pattern of a in the banks of the main memory

Memory bank conflicts
If the following loop must be carried out

for i = 1, ..., n do
c(2 ∗ i) = a(2 ∗ i) + b(2 ∗ i)

end for
we see that a(10) is needed after 4 cycles from the second memory bank. However this bank
is busy loading a(2) and the load of a(10) has to wait 4 cycles. This is called a memory
bank conflict. This can degrade the performance of the computer used considerably. In many
computers the number of memory banks is larger than the bank cycle time (two to four times
as large). Memory bank conflicts can also occur if one uses a two-dimensional array. Suppose
a, b and c are two-dimensional arrays where the first dimension is equal to 2 and the second
one equal to n. The loop

for i = 1, ..., n do
c(1, i) = a(1, i) + b(1, i)

end for
leads again to memory bank conflicts. This can be explained by the fact that two-dimensional
arrays are always stored (FORTRAN) column-wise (see Figure 17). This problem is easily
repaired by changing the order of the arrays: so a(1 : 2 , 1 : n) is replaced by a(1 : n , 1 : 2)

for i = 1, ..., n do
c(i, 1) = a(i, 1) + b(i, 1)

end for
and no memory bank conflicts occur. It is a good idea to have a loop in the first dimension.
In the literature the quantity stride is introduced to describe the above given problems. The
stride of a stored floating point vector is the distance (in memory locations) between the
vector components. For a unit stride the vector components are stored contiguously.
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bank bank bank bank
1 2 3 8

a(1, 1) a(2, 1) a(1, 2) a(2, 4)
a(1, 5) a(2, 5) a(1, 6)

...
...

...
...

Figure 17: Storage pattern of a two-dimensional array a(1 : 2 , 1 : n)

Cache
In some computers there is an additional level in the memory hierarchy: the cache. The
cache is a part of the memory between the main memory and the vector registers (see Figure
18). The cache is much larger than a vector register, but much smaller than main memory.

processor

memory bank

memory bank

memory bank

cache
pipeline

Figure 18: A pipelined processor with memory interleaving and cache

Data transfer between cache and vector registers is fast but transfer between cache and main
memory is slow. In many iterative algorithms this deteriorates the performance considerably.
In some algorithms (direct methods) part of the problem can be stored in the cache, then
several flops (� 10) are done per point and then a new part is loaded. These ideas are
used in BLAS3 routines and LAPACK solvers, which lead to favorable Mflop rates for these
computers. The cache is not only used in supercomputers, but also in present day workstations
and PC’s.

Expensive operations
There are several operations which are more expensive than the standard operations +,−,
and ∗. The first one is the division operation. On many vector-computers it takes at least two
clock cycles to compute a division of a vector element by a given constant a. So if possible,
it is better to avoid divide operations. One possibility for the given example is to calculate
β = 1/α and multiply all vector elements by β. Note that both the division by α and the
multiplication by β leads to fully vectorizable code, whereas the first operation costs two
times as much as the second operation. However, the multiplication by β can more sensitive
to rounding errors than the division by α.

Other operations which are hard to vectorize are recurrences. The following algorithm is used
to solve a bi-diagonal lower triangular system of equations Ax = b, where A has elements aij :
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for i = 1, ..., n do
x(i) = (b(i)− ai,i−1 ∗ x(i− 1))/aii

end for

Note that x(i) can only be calculated if x(i − 1) is already known. So it is impossible to do
this in a vectorized way. This implies that this loop runs in scalar speed instead of vector
speed.

Amdahl’s law
In a large problem there are parts which runs in scalar speed and parts which run in vector
speed. Suppose that the algorithm considered costs n flops. A part pn of the flops where
p ∈ [0, 1] is done in vector speed v (Mflops), and the remaining part (1− p)n is done in scalar
speed s (Mflops). The total time to perform the computations is:

t =
pn

v
+

(1− p)n

s
(69)

and the speed R is given by

R =
n

t
=

1
p
v + (1−p)

s

. (70)

This is known as Amdahl’s law [1]. It easily follows from (70) that

R ≤ s

1− p
. (71)

So if the fraction p which runs in vector speed is small, for instance p = 1
2 , it has no sense

to use a computer with a slow scalar speed and a fast vector speed. Suppose v = 130 Mflops
and s = 4 Mflops [21]; Section 4.1.1 (these are realistic numbers for the Cray 1) then for
p = 1

2 , R ≤ 2 · s = 8 Mflops which is very disappointing in comparison with the very fast
vector speed.

Compiler directives
Sometimes compilers cannot vectorize a loop which is vectorizable. As an example consider
the copy of the array x to a shifted array. The following loop can achieve this:

ishift = 1
for i = 1, ..., n-ishift do

x(i) = x(i + ishift) .
end for

Many compilers see this as a recurrence and it runs in scalar speed. However, it is only a
copy and x(i) can be copied without waiting (provided the sequence is kept). Many compilers
enable the user to force vectorization of such a loop by compiler directives. A drawback is
that they are machine-dependent so code tuned to a certain vector machine has to be adapted
if it is run on another machine.

7.2 ICCG and vector computers

In this section we shall consider the various parts of the preconditioned CG algorithm with
respect to its vectorization properties. The main parts of ICCG consist of vector updates
(y = x+a ∗ y), inner products (and norms), matrix vector multiplications and the solution of
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lower and upper triangular systems of equations. In the remainder of this section we discuss
these operations.

Vector update
This operation is the easiest to vectorize. Since an add and multiply operation are used they
can be linked together. However, it is useful to look into more detail to this operation, be-
cause it illustrates a difference between types of vector computers. Some vector computers
like Cray 1, and Convex can only load or store one vector from main memory to a vector
register. For the vector update y = y + a ∗x this means that first the vector y is loaded, then
vector x is loaded and concurrently it is multiplied by a and summed with y. Thereafter y is
stored in main memory. The total time is equal to 3n/v and 2n flops are done so the speed
is equal to 2

3v Mflops.

On other machines like the Cray Y -MP it is possible to load two vectors and store one vector
concurrently. For such a computer the total time is n/v and the speed is 2nv

n = 2v Mflops.
This is much better than the speed of the foregoing machines.

Inner product
The inner product can be computed by the following loop

dot = 0
for i = 1, ..., n do

dot = dot + x(i) ∗ y(i)
end for

This looks like a recurrence since the next dot can only be calculated if the current dot is
known. It is possible to avoid this. To do this one reserves one vector-register, which is
denoted by helpdot. The inner product can now be calculated as follows (where we suppose
that n is a multiple of 64):

for i = 1, ..., 64 do
helpdot(i) = 0

end for
for j = 1, ..., n/64 do

for i = 1, ..., 64 do
helpdot(i) = helpdot(i) + x((j − 1) ∗ 64 + i) ∗ y((j − 1) ∗ 64 + i)

end for
end for
dot = 0
for i = 1, ..., 64 do

dot = dot + helpdot(i)
end for

Note that a large part of the calculation can be done in vector speed. It is not necessary to
do this explicitly if the inner product is calculated in a for the compiler clear way or by a call
to a BLAS routine. In this case the compiler replaces the original code by optimized code.
In general the start up time for an inner product is larger than for a vector update. When
only one load or store is possible the asymptotic rate of performance is v Mflops which is 30%
higher than the vector update. The reason for this is that the result of an inner product is a
number so no storing of a result vector is necessary.
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Matrix vector products
If the matrix is structured the matrix vector product has good vectorization properties. Sup-
pose the matrix has 5 non-zero diagonals, then the product can be computed by:

for i = 1, ..., n do
y(i) = 0

end for
for j = 1, ..., 5 do

for i = 1, ..., n do
y(i) = a(i, j) ∗ x(i + ishift(j)) + y(i) (72)

end for
end for

or

for i = 1, ..., n do
y(i) = a(i, 1) ∗ x(i + ishift(1)) + a(i, 2) ∗ x(i + ishift(2))

+a(i, 3) ∗ x(i + ishift(3)) + a(i, 4) ∗ x(i + ishift(4))
+a(i, 5) ∗ x(i + ishift(5))

(73)

end for

Especially for machines with one load/store operation loop (73) is much faster than loop
(72) because all intermediate results in (73) are kept in vector registers, whereas in (72) all
intermediate results are loaded and stored from main memory.

For general unstructured matrices the matrix vector product is harder to vectorize. First the
number of nonzero elements per row may be different for different rows. Secondly the shift also
depends on the row number. Suppose the number of non zero elements per row is fixed and
equal to 5, the non zero elements are stored in a two dimensional matrix a(1 : n, 1 : 5) (row i
is stored in a(i, 1 : 5)) and the column number of each element is stored in col (1 : n, 1 : 5).
Then the matrix vector product can be calculated by

for i = 1, ..., n do
y(i) = 0

end for
for j = 1, ..., 5 do

for i = 1, ..., n do
y(i) = y(i) + a(i, j) ∗ x(col(i, j))

end for
end for

This means that x(col(i, j)) is not a contiguous vector. This is called indirect addressing
and can reduce the speed considerably (memory bank conflicts can occur etc.). At least the
asymptotic rate of performance is reduced by a factor 2 with respect to direct addressing.
(compare [21]: Section 4.4).

Preconditioning
With preconditioning one has to solve an upper or a lower triangular matrix. This leads in
general to reccurences which are not easily vectorizable. For the model problem the lower
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triangular matrix L is given by (compare (29))

L =

















d1

b1 d2

. . .
. . .

c1 bm dm+1

. . .
. . .

. . .

















(74)

where m is the number of grid points in the x-direction. Solving the linear system

Ly = x

can be done by the following loop
for i = 1, ..., n do

(75)

y(i) = (x(i)− bi−1 ∗ y(i− 1)− ci−m ∗ y(i−m))/di

end for

This contains a recurrence and is not vectorizable. There are several ideas to change this loop
to faster versions, we describe two of them: partial vectorization and diagonal ordering.

Partial vectorization
For more details and other ideas we refer to [3] and [74]. To explain partial vectorization we
consider the grid used for this problem. It can be easily seen that in order to calculate y(i)
the value of y(i−1) and y(i−m) should be known. For the partial vectorization we rearrange
the order of computation. We first calculate all y(i) on line 1, then on line 2 etc. This implies

i - mline  2

line  1

i - 1 i

Figure 19: Partial vectorization

that if y(i) on line 2 is calculated the values of y(i−m) are on the foregoing line and hence
known. This means that along line 2 this part can be done in vector speed. This leads to the
following loops:

for j = 1, ..., n/m do number of lines
c$dir force vector compiler directive

for k = 1, ...,m do
i = (j − 1) ∗m + k vector part
y(i) = x(i)− ci−m ∗ y(i−m)
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end for
for k = 1, ...,m do

i = (j − 1) ∗m + k scalar part
y(i) = (y(i)− bi−1 ∗ y(i− 1))/di

end for
end for

A compiler directive is necessary to force vectorization of the first loop, since it looks to the
compiler as a recurrence. Drawback of this approach is that only a small part of the algorithm
is vectorized, and the vector-length is equal to m, which is in general much less than n.

Diagonal ordering
In the diagonal ordering the numbering is rearranged in the following way (see Figure 20).
Now we first calculate y(i) on diagonal 1 then on diagonal 2 etc. If y(i) is calculated at

diagonal 3

ii - 1

i - m

21 4 7 11

3

6

10

diagonal 1

diagonal 2

Figure 20: Diagonal reordering

diagonal j all the values y(i − 1), and y(i − m) are on diagonal j − 1 so they are already
known. This means that all the computations can be done in vector speed. A drawback is
again the small vector length especially for the first and final diagonals. In general for this
problem the diagonal ordering is faster than the partial vectorization (on Convex C3840),
but harder to program. For other stencils partial vectorization can be better than diagonal
ordering.

85



7.3 Exercises

1. Explain why loop (73) can be faster than loop (72).

2. Make a comparison (theoretical) of the required time to perform loop (75) with the time
to perform partial vectorization and diagonal ordering.

3. Given a scalar speed s and a vector speed v.

(a) Compute the time to solve Ly = x with loop (75).

(b) Suppose that L = I −B, where ‖B‖ < 1. Furthermore, a Neumann series of three
terms I + B + B2 is a good approximation of L−1. Compute the required time
using the Neumann series.

(c) Compare both approaches.

4. (a) Try to compute the Mflop rate of your computer using the loop

for i = 1, . . . , n do
c(i) = c(i) + a ∗ b(i)

end for

(b) Do the same for the loop

for i = 1, . . . , n do
c(i) = c(i) + a ∗ b(i ∗ k)

end for

for various values of k (k = 2, 8, 64, . . .).

(c) Do you see any cache effects?
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8 Parallel computers

A good introduction to parallel computing is given in [49]. Topics in parallel numerical al-
gebra are discussed in [20]. Until now the algorithms considered are sequential which means
that a new task (subroutine) is started if the foregoing task is completed. On parallel ma-
chine tasks are done concurrently. This enables one to speed up the rate of performance
considerably. Furthermore, in many applications memory requirements are the bottleneck.
Using parallel machines it may be easier to obtain enough memory depending on the type
of architecture. However, there are drawbacks. Only recently fast, general purpose parallel
computers are available. To program them such that the performance is in the vicinity of the
peak performance is a tedious task. It leads to totally new methods or old methods which
have been discarded on sequential machines, but have good parallelization properties. In the
future some of the work will be done by the compiler, however this takes several years and it
is impossible to make a good parallel program from every sequential program.

8.1 Introduction

In this section we give an introduction on parallel computing.

Flynn’s categories
A much referenced classification of computer architectures was given in [29]. In this paper,
computers are divided into four categories. An instruction stream consists of subroutines,
statements etc., whereas a data stream consists of numbers, for instance the contents of a
matrix etc.

SISD - Single Instruction stream, Single Data stream;
SIMD - Single Instruction stream, Multiple Data stream
MISD - Multiple Instruction stream, Single Data stream
MIMD - Multiple Instruction stream, Multiple Data stream

Classical sequential computers are examples of the SISD category. An array of processors
with a central controller is an SIMD computer. MISD machines are seldomly built, some
special-purpose machines execute different instructions on the same data. Finally, the most
general form are MIMD computers. In such a computer different instructions can be executed
on different parts of data. See [49] p.17, 18 for a comparison of SIMD and MIMD computers.
Some machines consists of a mix of processors belonging to different categories.

Memory organization
Shared memory: each processor has access to a common shared memory. Such a machine is
easy to use because all data is available on every processor. However if two processes read
and write the same part of data, the order of these processes is important. A drawback of
shared-memory parallel computers is that a fast interconnection network is needed in order
to obtain good performance. To enhance the performance some shared-memory computers
use local and global memory. In many applications this leads to a considerable decrease in
the amount of memory references, which use the interconnection network. If the time to
access any memory word is identical the computer is called a uniform memory access (UMA)
computer. On a non-uniform memory access (NUMA) computer the time to access remote
memory is longer than the time to access local memory. When the processors use a cache
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there is the problem that a shared variable is only adapted in one of the caches, which leads to
incorrect results. This implies that software should be available to solve this problem (cache
coherence).

Distributed memory: a network of processors each with its own local memory. The processors
need to communicate by sending and receiving messages to access memory on another proces-
sor. In this memory organization, two models of computations are possible: the synchronous
”systolic” model and the a-synchronous message-passing model. In the systolic model the
processors pace their computations and communications according to the tick of a global
clock. In a message-passing computer, the processors coordinate their activities on the ba-
sis of received messages. There is no global clock. A message-passing computer looks like a
NUMA computer. The difference between them is that a remote memory access in a message-
passing computer is done by explicit messages, whereas this is done by the hardware/software
on a NUMA computer. Mixes of memory organizations are also proposed, for instance in the
concept of a virtual-shared memory system [51]: the distributed memory system (hardware)
looks like a shared memory system (done by software) to the user.

Static interconnection network
In order to communicate between processors they have to be interconnected. The easiest
way (from user point) would be that every processor is connected to every other processor.
However, this is not possible for a high number of processors since the number of connec-
tions increases quadratically. So in most parallel computers every processor (node) is only
connected to a limited number of other processors. A drawback is that if there is no direct
link between processors then two or more messages are necessary to get the data at the right
place. There are many interconnection schemes, for instance the hypercube (is optimal in
some sense), the tree (divide and conquer procedures) and the torus. The torus seems a good
scheme to be used for pde problems. Below we sketch the 1D torus (or ring) and the 2D torus.
Every rectangle is a processor and every line is a connection. Looking at the block structure

Proc(4)Proc(1) Proc(2) Proc(3)

Figure 21: 1D torus: all neighbors (in 1D) and the end nodes are connected

of the model problem (see Section 8.3) one sees that the 2D torus seems a good choice for a
block structured program because the only data transfer is between neighboring nodes. For a
three dimensional pde problem a 3D torus seems to be the best. For more details and criteria
to evaluate static interconnection networks we refer to [49] Section 2.4.

Communication
In this paragraph we only consider a distributed memory system. As we have already re-
marked, information from one processor which is needed on another processor leads to com-
munication. Depending on the machine this may be done by the hardware when the program
refers to non-local data, or it may require explicit sending and/or receiving of messages on
the part of the programmer. A very simple model for the time it takes to move n data items
from one location to another is α + βn, with β, α > 0. The quantity α is the start-up time
of the operation; another term for this is latency. The incremental time per data item moved
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Proc(4,4)
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Proc(3,1) Proc(3,2) Proc(3,3) Proc(3,4)

Proc(4,1) Proc(4,2) Proc(4,3)

Figure 22: 2D torus: all neighbors (in 2D) and the end nodes in every line and column are
connected

is β; its reciprocal is called bandwidth (see [49] Section 2.7). In general β � α, it takes a
relatively long time to start-up a message, after which data items arrive at a higher rate (this
is comparable with the start-up time of a vector operation). Sometimes communication and
computation can overlap. This saves wall-clock time. Wall-clock time is the real time one has
to wait between the start and the termination of a program.

A special kind of communication is synchronization. This appears if two or more processors
have to wait until a certain stage is reached. This costs time since one or more processors are
idle part of the time.

Granularity
An important aspect of a parallel algorithm is its granularity. This qualitative term refers
to the amount of computation that takes place between synchronization points (messages).
We think that for pde problems coarse grained parallelism (block structure, domain decom-
position) is easier to use than fine grained parallelism. With coarse grained parallelism it is
possible that the amount of communication is an order of magnitude less then the amount
of computation. This is important because communication takes in general more time than
the same amount of computation. Which algorithm is preferred is also motivated by the
computer used. A coarse grain algorithm is suitable for a cluster of workstations where com-
munication is much slower than computation, but it can also be used on a Cray T3E where
communication and computation performance are close together. However using a fine grain
algorithm on a cluster of workstations leads to a disappointing performance.

Load balancing
Note that processes on different processors consist of a different amount of work. So some
processors may be ready while others are busy with computations. We call a parallel com-
putation load balanced if each processor has roughly the same amount of work to perform.
This is a difficult problem.
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Speed up and scalability
Finally one wants to quantify the speed up from the sequential program to the parallel pro-
gram ([37] Section 6.1.1 and [49] Chapter 4). A fair comparison is the fastest sequential
program on a sequential machine (possible 1 node of a parallel machine) to the fastest par-
allel program (in general different from the sequential one) on p parallel processors. The
theoretical value, a speedup with a factor p, is very unlikely in practice. The title of [7]
Bailey’s paper: ”Twelve ways to fool the masses when giving performance results on parallel
computers”, shows that the measurement of the speed up factor is a tricky business.

Algorithms should be scalable, which means that they remain efficient as they run on larger
problems and larger machines (see [49] Section 4.4). As problems (machines) grow, it is de-
sirable to avoid algorithm redesign.

Two models to study the accelerating effect of parallel processing are known: Amdahl’s law
and Gustafson’s law.

Amdahl’s law: Assume that a process consists of basic operations all carried out with the
same computational speed and that a fraction f of these operations can be carried out in
parallel. The parallel part costs ft1

p time and the serial part (1 − f)t1. The speedup on p
processors is equal to

Sp =
t1
tp

=
t1

t1
p (f + (1− f)p)

=
p

f + (1− f)p
<

1

1− f
. (76)

Such a process is not scalable because Sp < 1
1−f so if p is large (with respect to 1

1−f ) no gain
is obtained to include more processors.

Gustafson’s law: In Amdahl’s law one assumes that the portion of the code that can be
parallelized remains constant as the problem size increases. As Gustafson [41] pointed out,
this is often not appropriate. In Gustafson’s model it is supposed that a fraction g of the
total wall-clock time tp is done in parallel, whereas 1− g is the fraction of the time used for
serial work. The time for a single processor to do the same job would be (1− g + gp)tp. The
speedup is given by

S =
(1− g + gp)tp

tp
= 1− g + gp (77)

and we see that for p large S = gp. Such a job is scalable. It can be seen that the amount of
work in parallel mode increases if the number of processors p increases. This means that f
used in Amdahl’s law depends on p and f → 1 if p→∞.

Below we give some classes of parallel machines and discuss the advantages and disadvantages
from our point of view. We shall give some computers as examples, it is not the intend to be
complete.

Vector-computers with multiple CPU’s
Most of the present-day supercomputers have more than one central processor unit (CPU).
They are shared memory machines and the number of CPU’s is limited (less than 16). An
advantage is that the CPU’s are very fast and easy to program, however they are only useful
(as a parallel machine) if they are used in dedicated mode. This means that only one user is
active on the machine. This is only possible in very special cases. Otherwise only one CPU
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with timesharing is used per process. Examples of these machines are: Cray Y-MP and NEC
SX.

Massive Parallel Processing (slow processors)
In these machines a high number (up to 65,536) of simple (slow) processors are used. A typi-
cal example of such a machine is the Connection Machine (CM5) built by Thinking Machines
Corporation. These machines can give very fast results for very well parallelized code. How-
ever, in general they are hard to program to give results in optimized code. As an example we
refer to [20]; p. 130 where it is stated that the matrix multiplication subroutine in the CM-2
Scientific Subroutine Library took approximately 10 person-years of effort. Furthermore, in
general the code is not (or not easily) portable to other MPP machines. We think that for
3D PDE problems the type of machines presented in the foregoing paragraph (Cray, NEC)
are faster than MPP machines (CM-2). As an illustration of this we refer to [80].

Massive Parallel Processing (fast processors)
In this type of machines a moderate number of computers (workstations) are connected.
These machines have a distributed memory and the node computers are very fast (much
faster than that of the CM5). Until now the number of processors is in the range (1-1000).
Some examples are2: Fujitsu VPP, Hitachi SR, HP Exemplar, IBM SP2, and SGI/Cray T3E.
Besides these machines, there are software packages which can be used to make a cluster of
workstations that can be used as a parallel machine. These packages are discussed in the next
section.

Beowulf cluster
A Beowulf cluster is not a particular product. It is a concept for clustering varying number of
small, relatively inexpensive computers running the Linux operating system and using MPI
or PVM for message passing. The goal of Beowulf clustering is to create a parallel processing
supercomputer environment at a price well below that of conventional supercomputers.

A Beowulf cluster is ideal for tackling very complex problems that can be split up and run
simultaneously in separate computers. And that’s a key point: not every problem can be
approached in parallel so not every problem will benefit from the Beowulf approach. In the
taxonomy of parallel computers, Beowulf clusters fall somewhere between MPP (Massively
Parallel Processors, like the nCube, CM5, Convex SPP, Cray T3D, Cray T3E, etc.) and
NOWs (Networks of Workstations).

Beowulf clusters benefit from developments in both these classes of architecture. MPPs
are typically larger and have a lower latency interconnect network than an Beowulf clus-
ter. Programmers are still required to worry about locality, load balancing, granularity, and
communication overheads in order to obtain the best performance. Even on shared memory
machines, many programmers develop their programs in a message passing style. Programs
that do not require fine-grain computation and communication can usually be ported and run
effectively on Beowulf clusters.

A Beowulf class cluster computer is distinguished from a Network of Workstations by several
subtle but significant characteristics. First, the nodes in the cluster are dedicated to the clus-
ter. This helps ease load balancing problems, because the performance of individual nodes

2an up to date list of high-performance computers is given at: http://www.top500.org/
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are not subject to external factors. Also, since the interconnection network is isolated from
the external network, the network load is determined only by the application being run on
the cluster. This eases the problems associated with unpredictable latency in NOWs. All the
nodes in the cluster are within the administrative jurisdiction of the cluster. For examples,
the interconnection network for the cluster is not visible from the outside world so the only
authentication needed between processors is for system integrity. On a NOW, one must be
concerned about network security. Finally, operating system parameters can be tuned to
improve performance. For example, a workstation should be tuned to provide the best inter-
active feel (instantaneous responses, short buffers, etc), but in cluster the nodes can be tuned
to provide better throughput for coarser-grain jobs because they are not interacting directly
with users.

8.2 Software for parallel computing

In this section we give a concise description of software which can be used to implement
parallel algorithms. We start with a description of software used on message passing machines
(MPI, PVM). Thereafter a simpler message passing model is considered: BSP. Finally a short
description of High Performance Fortran is given.

8.2.1 Message Passing Interface (MPI)

MPI3 is an emerging and widely accepted standard for developing parallel programs with
messages [40]. It can be used on distributed memory computers and networks of workstations.
It can also be used on shared memory machines. MPI can be used in C and Fortran programs.
Since MPI is a standard source code is portable. MPI contains a rich set of routines, yet most
programs can run using a handful of the routines. Primarily routines are used to:

- start processes

- send messages

- receive messages

- synchronize

For communication the user inserts communication (MPI) calls into the program explicitly.
Point-to-point (processor to processor) or global (one to all, all to one) communication is
possible. MPI uses the SPMD (single program, multiple data) programming model. That
implies that there is only one program, which runs on all processors. However it is possible
that different processors execute different parts of the program. MPI consist of public do-
main software and is available on most MPP machines. It can also be used on a cluster of
workstations. So spare time on workstations can be used to run a process in parallel without
extra costs. Furthermore, one can get easily acquainted with parallel computing.

Another (older) package with approximately the same functionality is PVM (Parallel Virtual
Machine).

3http://www.mcs.anl.gov/mpi/index.html
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8.2.2 OpenMP

What is OpenMP4? OpenMP is a set of compiler directives and callable runtime library rou-
tines that extend Fortran (and separately, C and C++) to express shared memory parallelism
[16]. The base language is left unspecified and vendors may implement OpenMP in any For-
tran compiler. Naturally, Fortan 90 and Fortran 95 require the OpenMP implementation to
include additional semantics over Fortran 77 in order to support pointers and allocatables.

The language extensions fall into one of three categories: control structures, data environment,
and synchronization. The standard also includes a callable runtime library with accompany-
ing environment variables.

A Simple Example
Below a simple code example is given for computing π using OpenMP. This example is meant
only to illustrate how a simple loop may be parallelized in a shared memory programming
model.

program compute_pi

integer n, i

double precision w, r, sum, pi, f, a

c function to integrate

f(a) = 4d0 / (1d0 + a*a)

c number of integration intervals

n = 100

c calculate the interval size

w = 1d0/n

sum = 0d0

!$OPM PARALLEL DO PRIVATE(x), SHARED(w)

!$OPM& REDUCTION(+: sum)

do i = 1, n

x = w * (i - 0.5d0)

sum = sum + f(x)

enddo

pi = w * sum

end

Program execution begins as a single process. This initial process executes serially and we can
set up our problem in a standard sequential manner, reading and writing stdout as necessary.
When we first encounter a PARALLEL construct, in this case a PARALLEL DO, a team of
one or more processes is formed, and the data environment for each team member is created.
The data environment here consists of one PRIVATE variable, x, one REDUCTION variable,
sum, and one SHARED variable, w. All references to x and sum inside the parallel region
address are private, non-shared, copies. The REDUCTION attribute takes an operator, such
that at the end of the parallel region the private copies are reduced to the master copy using
the specified operator. All references to w in the parallel region address the single master
copy. The loop index variable, i, is PRIVATE by default. The compiler takes care of assigning
the appropriate iterations to the individual team members, so in parallelizing this loop you

4http://www.openmp.org/
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don’t even need to know how many processors you will run it on.

Within the parallel region there may be additional control and synchronization constructs,
but there are none in this simple example. The parallel region here terminates with the END
DO which has an implied barrier. On exit of the parallel region, the initial process resumes
execution using its updated data environment. In this case the only change to the master’s
data environment is in the reduced value of sum.

This model of execution is referred to as the fork/join model. Throughout the course of a
program, the initial process may fork and join a number of times. The fork/join execution
model makes it easy to get loop level parallelism out of a sequential program. Unlike in
message passing, where the program must be completely decomposed for parallel execution, in
a shared memory model it is possible to parallelize just at the loop level without decomposing
the data structures. Given a working sequential program, it becomes fairly straightforward
to parallelize individual loops in an incremental fashion and thereby immediately realize the
performance advantages of a multiprocessor system.

8.2.3 The Bulk Synchronous Parallel (BSP) model

The essence of the BSP5 approach to parallel programming is the notion of the superstep,
in which communication and synchronization are completely decoupled. A BSP program is
simply one which proceeds in phases, with the necessary global communications taking place
between the phases. This approach to parallel programming is applicable to all kinds of
parallel architecture: distributed memory architectures, shared memory multiprocessors, and
networks of workstations. It provides a consistent, and very general, framework within which
to develop portable software for scalable computing.

A step is defined as a basic operation on locally held data values. A BSP computation consists
of a sequence of parallel supersteps, where each superstep is a sequence of steps carried out on
local data, followed by a barrier synchronization at which point any non-local data accesses
take effect. Requests for non-local data, or to update non-local data locations, can be made
during a superstep but are not guaranteed to have completed until the synchronization at
superstep end. Such requests are non-blocking; they do not hold up computation.

BSP Programming
The programmer’s view of the computer is that it has a large, globally accessible, memory.
The division between data held locally and data held on remote processors is consistent with
modern non-uniform memory architecture (NUMA) systems which often exhibit a two level
memory access time characteristic. This includes virtual shared memory machines with all
types of coherent or non-coherent cache structures. This type of architecture is expected to
dominate because it is perceived to be simpler to program.

To achieve scalability it will be necessary to organize the calculation in such a way as to
obviate the bad effects of large latencies in the communications network. In some cases it will
be necessary to select different algorithms for different communications networks.

By separating the computation on local data from the business of transferring shared data,

5http://www.bsp-worldwide.org
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which will be handled by lower level software, we can ensure that the same computational
code will be able to run on different hardware architectures from networked workstations to
genuinely shared memory systems.

The superstep structure of BSP programs lends itself to optimization of the data trans-
fers. All transfers in a superstep between a given pair of processors can be consolidated to
form larger messages that can be sent with lower (latency) overheads and so as to avoid
network contention. The lower level communications software should also exploit the most
efficient communication mechanisms available on the actual hardware. Since this software is
application-independent, the cost of achieving the efficiency can be spread over many appli-
cations and is an acceptable one.

Cost Modeling the calculation
Another advantage of the simple structure of BSP programs is that the modeling of their
performance is much easier than for message passing systems, for example. In place of the
random pair-wise synchronization that characterizes message passing, the superstep struc-
ture in BSP programs makes it relatively easy to derive cost models (i.e. formulae that give
estimates for the total number of steps needed to carry out a parallel calculation, including
allowance for the communications involved).

Availability
BSP is available on a number of MPP’s. The use of shmemm routines on the Cray T3E
machine can be seen as a special version of the BSP model.

8.2.4 High Performance Fortran (HPF)

High Performance Fortran (HPF6) is the result of efforts towards the standardization of a
Fortran language suitable for the latest generation of high performance machines. It is a
set of constructs and extensions to Fortran90 and allows the user to express parallelism in a
relatively simple manner. The main aims of such a standard are to promote the wider use of
parallelism by hiding the details of the underlying architecture from the programmer and to
provide a code which is easily portable and non-machine specific.

Data Parallel Programming
The idea behind the data parallel programming paradigm is the support of whole array op-
erations executed in parallel. Typically a single program controls the distribution of, and
operations on the data on all processors. The languages used to program this vary from
standard Fortran or C, with language extensions to deal with the parallelism, to specialized
data parallel languages based on one machine. In most cases the actual distribution of data
and communication between processors is done by the compiler, with guidance from the pro-
grammer.

Data Parallel Building Blocks
We describe the data parallel paradigm via the use of High Performance Fortran. Data par-
allel programming is concerned with defining collective operations on arrays or sets of array
elements, with these arrays distributed over a number of processors. If an algorithm can be

6most of this section is copied from the Edinburgh Parallel Computing Centre (EPCC) HPF course:
http://www.epcc.ed.ac.uk/computing/training/
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expressed in terms of such operations then it is likely that a data parallel implementation will
be efficient. Grid based algorithms are one good example. It is helpful to categorise the set
of operations that form the basis for the implementation of data parallel algorithms. These
are: control over data layout, whole array operations, array sections, conditional operations,
reduction operations, shift operations, scan operations, and generalized communications. We
will now consider each of these in more detail.

Controlling Data Layout
In many cases it is crucial that the user has control over the placement of data on the pro-
cessors. The goals are to minimize communication between processors, keep all processors
busy and to carry out operations in parallel to obtain highest performance. Data layout is
normally controlled by language constructs or directives. Figure 23 shows two possible data
layouts for a two dimensional array. The shaded portion indicates array elements and how
the data could be distributed across processors P1, P2, P3, P4.

P1

P4

P2

P3 P4

P1 P2 P3

Figure 23: Possible data layouts on 4 processors

Whole Array Operations
Whole array operations would take as arguments whole arrays and apply the operation to
every individual element of that array. The operation, such as sum, multiply and divide, is
applied to each element of the array, possibly in parallel. Figure 24 shows the multiplication
of two arrays. All the elements can be multiplied in parallel given a sufficient number of pro-
cessors. An implementation should support array expressions and also extend the standard
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Figure 24: Whole array operation: multiplication of two arrays

mathematical functions (sin, cos etc.) to operate on array-valued arguments, applying the
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operation to every array element and returning an array of results. The intent of supplying
such whole array operations is to enable the production of clearer code and to reduce the
likelihood of mistakes.

Array Sections
There should be a method to access sections of an array. This would allow the programmer
to specify regular sections of array on which to act. Figure 25 shows selection of a column
of an array and selection of the interior elements of an array. This would be useful for, say

Figure 25: Array sections

multiplying matrices where whole rows and columns are multiplied, or the update of some
grid based problem, where only the central array elements are of interest as opposed to the
”halo” around the edge.

Conditional Operations
Operations can be made to act on a subset of array elements, chosen subject to some con-
ditional based (logical) mask or expression. This would allow the programmer to specify
irregular sections of the array on which to act. For example, Figure 26 shows the selection
of elements of a 7x7 element array, a shaded square indicating that the mask is set in this
position. This could be used to adapt the grid problem and perform the update on the even

Figure 26: Conditional operations on arrays

and odd sites separately, or to apply an operation only to array elements which satisfy some
condition, such as being not equal to zero.

Reduction Operations on Arrays
A reduction operation produces one result from the combination of many elements of an array.
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Examples of possible reduction operations are:

- sum of elements in array,

- minimum or maximum values in the array,

- logical AND, OR, EOR,

- a count of the number of true elements in a logical array.

These operations are useful in control constructs where the logical flow of the program depends
on some global property of an array. An example would be a converging iterative procedure
applied to all elements of an array or array section. The iteration process could stop when all
processors had achieved some tolerance, in other words when all values in some logical mask
expression were true.

8.3 Iterative methods and parallel computers

In this section a number of parallel iterative methods are considered. We start with a coarse
grain parallel method: domain decomposition with accurate solution of the subdomain prob-
lems. Thereafter some remarks are given on inaccurate solution of the subdomain problems
(medium grain parallel). The section is concluded by a description of a number of fine grain
parallel methods. For further reading we refer to [74], [49], [21], [20] and [8]; Section 4.4.

8.3.1 Domain decomposition (accurate subdomain solution)

In this subsection a domain decomposition algorithm is used to solve a system of equations
in parallel. For more details we refer to [11].

The method
Consider the linear system

Ax = b. (78)

We decompose A into blocks such that each block corresponds to all unknowns in a single
subdomain. For two subdomains one obtains

A =

(

A11 A12

A21 A22

)

, (79)

where A11 and A22 represent the subdomain discretization matrices and A12 and A21 repre-
sent the coupling between subdomains. A domain decomposition iteration for (78) has the
following form:

xi+1 = (I −M−1A)xi + M−1b, (80)

where M denotes a block Gauss-Seidel, or a block Gauss-Jacobi matrix:

M =

(

A11 0
A21 A22

)

(Gauss-Seidel),M =

(

A11 0
0 A22

)

(Gauss-Jacobi).

Block Gauss-Seidel and block Gauss-Jacobi iterations are algebraic generalizations of the
Schwarz domain decomposition algorithm. Similar to Schwarz domain decomposition, in
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each iteration, subdomains are solved using values from the neighboring block. For instance
formula (80) for domain 1 becomes

xi+1
1 = xi

1 + A−1
11 (b1 −A11x

i
1 −A12x

i
2),

where xi
2 are the values from the neighboring block. The iterate update δxi+1

1 = xi+1
1 − xi

1 is
computed from

A11δx
i+1
1 = b1 −A11x

i
1 −A12x

i
2

by a direct method or an iterative solution method where the method is stopped after an
accurate solution has been obtained.

When the subdomain problems are solved accurately the system

M−1Ax = M−1b (81)

can be reduced to a system only involving unknowns near the interfaces. Suppose that the
unknowns in the vicinity of the interfaces are denoted by xr and the remaining ones by xnr.

When the components are ordered as x =

(

xnr

xr

)

, system (81) has the form

M−1Ax =

(

I R
0 D

)(

xnr

xr

)

=

(

gnr

gr

)

,

which can be reduced to Dxr = gr and xnr = gnr − Rxr. System Dxr = gr is much smaller
than (81) and is known as the interface equations. The interface equations are solved by a
Krylov subspace method (for instance GMRES). This implies that matrix vector products
yr = Dxr have to be calculated. To obtain this product a solution of the subdomain problems
is needed (see [11], Section 3).

Parallel implementation
We consider a parallel implementation of the GMRES accelerated domain decomposition
method. This means that the block Jacobi (additive Schwarz) algorithm is used. The parallel
implementation is based on message passing using MPI or PVM. In the parallel computer (or
cluster of workstations) each node is assigned certain subdomains to solve. The host program
controls the acceleration of the domain decomposition algorithm using GMRES. Because of
the reduction of (81) to a system concerning only the interface unknowns it is not necessary
to parallelize GMRES. So the GMRES acceleration procedure is only executed on the host.
Computation of the matrix vector product is performed in parallel.

Each node receives initial interface data (parts of the vector xi
r), solves the assigned subdo-

main problems and sends the results (parts of the vector xi+1
r ) back to the host. Note that

this programming model is not completely SPMD, because the host program has additional
functions like acceleration and writing output.

The amount of computation to solve a subdomain problem accurately is much larger than
the amount of communication. Therefore this is a coarse grain parallel method. For results
on a cluster of workstations we refer to [11].
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8.3.2 Domain decomposition (inaccurate subdomain solution)

In the previous subsection the subdomain problems are solved accurately. Since these prob-
lems have a similar nonzero structure as the original matrix, and since they may still be quite
large, it reasonable to solve them using a second Krylov subspace iteration. A question which
arises naturally, addresses the tolerance to which these inner iterations should converge. It
seems senseless, for example, to solve the subdomain problems with a much smaller tolerance
than is desired for the global solution. The influence of the accuracy of the subdomain so-
lution on the convergence has been investigated in [12]. A large gain in CPU time has been
observed on a sequential computer, when the subdomain accuracy is relatively low.

Note that if the subdomains are solved using a Krylov subspace method such as GMRES,
then the approximate solution is a function of the right-hand side, which is the residual of
the outer iteration. Furthermore, if the subdomain problems are solved to a tolerance, the
number of inner iterations may vary from one subdomain to another, and in each outer iter-
ation. The effective preconditioner is therefore a nonlinear operator and varies in each outer
iteration. A variable preconditioner presents a problem for the GMRES method: namely the
recurrence relation no longer holds. To allow the use of a variable preconditioner the GCR
method is used as acceleration method.

Note that the GCR method is applied to the global matrix. So the GCR method should also
be parallelized. For the details of this we refer to the following subsection. Depending on the
required accuracy the method can be seen as a coarse grain (high accuracy), medium grain
(medium accuracy) or fine grain (low accuracy) parallel method.

8.3.3 Parallel iterative methods

Many iterative methods (basic iterative methods, or preconditioned Krylov subspace meth-
ods) consist of 4 building blocks: vector updates, inner products, matrix vector products,
and the solution of lower or upper triangular systems. First we give a description of the data
distribution for our model problem. Thereafter the parallel implementation of the building
blocks for the preconditioned GMRES method is considered. Parallel implementations of
Krylov subspace methods are given in [68] and [49]. The large number of inner products used
in the GMRES method can be a drawback on distributed memory computers, because an
inner product needs global communication. In general the preconditioner is the most difficult
part to parallelize.

Data distribution
On distributed memory machines it is important to keep information in local storage as much
as possible. For this reason we assign storage space and update tasks as follows. The domain
is subdivided into a regular grid of rectangular blocks. Each processor is responsible for all
updates of variables associated with its block. An extra row of auxiliary points is added to the
boundaries of a block to provide storage space for variables used in matrix-vector products
and preconditioner construction.

Vector update
The vector update (y = y + αx) is easy to parallelize. Suppose the vectors x and y are
distributed. Once α is send to all processors, each processor can update its own segment
independently.
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Inner product
The work to compute an inner product is distributed as follows. First the inner product of
the vector elements that reside on a processor is calculated for each processor. Thereafter
these partial inner products are summed to form the full inner product. To obtain the full
inner product global communication is required.

Communication time is the sum of start-up time (latency) and send time. On many parallel
computers the send time is an order of magnitude less than the latency. For this reason it is
attractive to combine communications as much as possible. Using the Classical Gram-Schmidt
(CGS) method in the GMRES algorithm all inner products can be computed independently.
So the communication steps can be clustered, which saves much start-up time. A drawback
of CGS is that the resulting vectors may be not orthogonal due to rounding errors. There-
fore, the Modified Gram-Schmidt (MGS) method is preferred, which is stable with respect
to rounding errors. However, the inner products are calculated sequentially when MGS is
used in the original GMRES method. So clustering of the inner product communications
is impossible. Since for the Cray T3D, the latency is relatively small, we use in our T3D
specific code [83] the Modified Gram-Schmidt method for stability reasons. On a computer
with a relative large latency, it is better to use an adapted GMRES method ([19], [6]) where
a parallel (clustered) variant of the MGS method can be used.

Table 1 contains the Megaflop rates for the inner product on the Cray T3D. In theory the
maximum Megaflop rate of 1 processor is 150 Mflop/s. The observed flop rates are much
lower: 33.5 for the inner product (Table 1). It appears that memory access is the most time
consuming part. Note that on 1 processor the Megaflop rate increases for an increasing vector
length (pipelining). For the inner product this leads to an expected rate of 4288 Mflop/s on

measured
p 1 16 128

#elem per proc

32 10 34 194
1024 28 331 2346
8192 33 496 3875
65536 33 529 4212

Table 1: Inner product performance in Megaflops per second on the Cray T3D

128 processors. For long vectors the observed rate (see Table 1) is very close to this value.

Matrix vector product
To calculate a matrix vector product we divide the matrix in blocks. As an example we
consider the matrix given in Figure 27.
The parts A11, A12 are on processor 1, A21, A22, A23 on processor 2 etc. For the vector x
which is divided on the processors we need the following communication: x1 to processor
2, x2 to processor 1 and 3 etc, note that a 1D torus is well suited for this approach. Then
y1 = A11x1 +A12x2 is calculated on processor 1 and y2 = A21x1 +A22x2 +A23x3 is calculated
on processor 2 etc. Other schemes are possible but this illustrates the ideas to parallelize a
matrix vector product.
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Figure 27: The calculation of A ∗ x

Preconditioning
We restrict ourselves to a ILU preconditioning. This is in general the most difficult part to
parallelize. Again lower and upper triangular systems have to be solved. A lower triangular
system is sketched in Figure 28. Again recurrences prohibit parallelization of the computa-

3

11L

22L

33L

L 21

32L 

43 44LL

x 1 1

2x 2b

x 4

x 3

b 4

b

b

Figure 28: The calculating of L−1b

tion of L−1b. One can only start the computation of x2 if x1 is known. In many references
a slightly adapted ILU decomposition is considered, which has better parallel properties. To
parallelize the ILU preconditioner the couplings between the blocks are deleted. For most of
these preconditioners the rate of convergence deteriorates when the number of blocks (pro-
cessors) increases. When overlapping blocks are used the convergence behavior depends only
slightly on the number of blocks. However, overlapping costs extra work. Another possibility
for structured grid is to use the original ILU preconditioner and try to parallelize this. Both
approaches are considered in more detail.

Parallel adapted ILU
In order to delete the couplings between the blocks one takes L21 = 0, L32 = 0 and L43 = 0
(looks like block Jacobi) [68]. This leads to very good parallel code. However, the number
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of iterations may increase because the parallel preconditioner is worse than the original pre-
conditioner. In order to reduce this effect, it is suggested in [62] to construct incomplete
decompositions on slightly overlapping domains. This requires communication similar to that
of matrix vector products. In [62] good speedup is observed for this idea.

Parallel original ILU
Parallelization of the construction of L, U , and the solution of the triangular systems is com-
parable. So we only consider the parallel implementation of the solution of Lx = b. The
algorithm is explained for a matrix originating from a 5-point stencil. This approach is de-
noted as staircase parallelization of the ILU preconditioner [83]. A related approach is to
calculate the unknowns on a diagonal of the grid, which is used for vectorization.

A rectangular computational domain is first decomposed into p strips parallel to the x2-axis.
We assume that the number of strips is equal to the number of processors. The number of
grid points in xd-direction is denoted by nd. For ease of notation we assume that n1 can
be divided by p and set nx = n1/p and ny = n2. The index i refers to the index in x1-
direction and j to the index in x2-direction. The kth strip is described by the following set
Sk = {(i, j)|i ∈ [(k − 1) · nx + 1, k · nx], j ∈ [1, ny ]}.

The vector of unknowns is denoted by x(i, j). For a 5-point stencil it appears that in the
solution of Lx = b, unknown x(i, j) only depends on x(i− 1, j) and x(i, j − 1). The parallel
algorithm now runs as follows: first all elements x(i, 1) for (i, 1) ∈ S1 are calculated on pro-
cessor 1. Thereafter communication takes place between processor 1 and 2. Now x(i, 2) for
(i, 2) ∈ S1 and x(i, 1) for (i, 1) ∈ S2 can be calculated in parallel etc. After some start-up
time all processors are busy (Figure 29).

active idle idle

CPU 1 CPU 2 CPU 3

active active idle

CPU 1 CPU 2 CPU 3

active active active

CPU 1 CPU 2 CPU 3

Figure 29: The first stages of the staircase parallel solution of the lower triangular system
Lx = b. The symbols denote the following: ∗ nodes to be calculated, o nodes being calculated,
and + nodes that have been calculated.

Table 2 is copied from [83]. Note that when the grid size is large enough the total time
per unknown is independent of the number of processors, which means that the method is
scalable. In figures 30 and 31 we present the percentage of the total time for the various parts
of GMRES. Figure 30 contains the results for p = 8 and an increasing grid size. It appears
that the preconditioner vector product is the most time consuming part, it takes 65 % of the
time for a small grid size and 45 % for a large grid size. In Figure 31 the results are shown for
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p 1 2 4 8 16 32 64 128 256

32×8 259 645 1204 2510
64×16 185 402 597 965 1969
128×32 179 340 395 518 830 1694
256×64 163 319 331 380 487 833 1521
512×128 306 311 338 373 478 740 1443
1024×256 317 335 375 469 731 1444
2048×512 354 374 492 722

Table 2: Measured total time per unknown in µ seconds for the solution of a Poisson equation
on the Cray T3D (p = number of processors)

the Gustafsson model, the grid size increases linearly with the number of processors. There
is only a small increase in the percentage used for the preconditioner vector product. This
model suggests, as expected, that the preconditioner can be a bottle-neck especially if the
number of grid cells in x1-direction per processor is small.
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Figure 30: The percentage of time used by
the various parts (8 processors)
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8.3.4 The block Jacobi preconditioner

We consider an elliptic partial differential equation discretized using a cell-centered finite
difference method on a computational domain Ω. Let the domain be the union of M nonover-
lapping subdomains Ωm, m = 1, . . . ,M . Discretization results in a sparse linear system
Ax = b, with x, b ∈ RN . When the unknowns in a subdomain are grouped together one gets
the block system:







A11 . . . A1M
...

. . .
...

AM1 . . . AMM













x1
...

xM






=







b1
...

bM






. (82)

In this system, the diagonal blocks Amm express coupling among the unknowns defined on Ωm,
whereas the off-diagonal blocks Amn, m 6= n represent coupling across subdomain boundaries.
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The only nonzero off-diagonal blocks are those corresponding to neighboring subdomains.

In order to solve system (82) with a Krylov subspace method we use the block Jacobi pre-
conditioner:

K =







A11

. . .

AMM






.

When this preconditioner is used, systems of the form Kv = r have to be solved. Since there
is no overlap the diagonal blocks Ammvm = rm, m = 1, . . . ,M can be solved in parallel. In
our method a blockwise application of the RILU preconditioner is used.

The convergence behavior of the block preconditioned GCR method

As a test example, we consider a Poisson problem, discretized with the finite volume method
on a square domain. We do not exploit the symmetry of the Poisson matrix in these experi-
ments. The domain is composed of a

√
p×√p array of subdomains, each with an n×n grid.

With h = ∆x = ∆y = 1.0/(n
√

p) the discretization is

4ui,j − ui+1,j − ui−1,j − ui,j−1 − ui,j+1 = h2fi,j.

The right hand side function is fi,j = f(ih, jh), where f(x, y) = −32(x(1 − x) + y(1 − y)).
Homogeneous Dirichlet boundary conditions u = 0 are defined on ∂Ω, implemented by adding
a row of ghost cells around the domain, and enforcing the condition, for example, u0,j = −u1,j

on boundaries. This ghost cell scheme allows natural implementation of the block precondi-
tioner as well.

For the tests of this section, GCR is restarted after 30 iterations, and modified Gram-Schmidt
was used as the orthogonalization method for all computations. The solution was computed
to a fixed tolerance of 10−6. We compare results for a fixed problem size on the 300 × 300
grid using 4, 9, 16 and 25 blocks. In Table 3 the iteration counts are given. Note that the
number of iterations increases when the number of blocks grows. This implies that the par-
allel efficiency decreases when one uses more processors. In the next sections we present two

p = 4 p = 9 p = 16 p = 25

RILU 341 291 439 437

Table 3: Number of iterations for various number of blocks

different approaches to diminish this drawback.

Overlapping of the subdomains

It is well known that the convergence of an overlapping block preconditioner is nearly inde-
pendent of the subdomain grid size when the physical overlap region is constant. To describe
the overlapping block preconditioner we define the subdomains Ω∗

m ⊂ Ω. The domain Ω∗
m

consists of Ωm and nover neighboring grid points (see Figure 32). The matrix corresponding
to this subdomain is denoted by A∗

mm. Application of the preconditioner goes as follows:
given r compute v using the steps
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Figure 32: The shaded region is subdomain Ω∗
1 for nover = 2

1. r∗m is the restriction of r to Ω∗
m,

2. solve A∗
mmv∗m = r∗m in parallel,

3. form vm, which is the restriction of v∗
m to Ωm.

A related method is presented by Cai, Farhat and Sarkis [14]. A drawback of overlapping
subdomains is that the amount of work increases proportional to nover. Furthermore, it is
not so easy to implement this approach on top of an existing software package.

Deflation

We present the Deflation acceleration only for the symmetric case. In our implementation
we use the Deflated iccg method as defined in [82]. To define the Deflated iccg method we
need a set of projection vectors v1, ..., vM that form an independent set. The projection on
the space A-perpendicular to span{v1, ..., vM} is defined as

P = I −AV E−1V T with E = (AV )T V and V = [v1...vM ] .

The solution vector x can be split into two parts x = (I − P T )x + P T x . The first part
can be calculated as follows (I − P T )x = V E−1V T Ax = V E−1V T b . For the second part
we project the solution xj obtained from diccg to P T xj . diccg consists of applying cg to
L−T L−1PAx = L−T L−1Pb.

The Deflated iccg algorithm reads (see Reference [82]):

DICCG
j = 0, r̂0 = Pr0, p1 = z1 = L−T L−1r̂0;
while ‖r̂j‖2 > accuracy do

j = j + 1; αj =
(r̂j−1,zj−1)
(pj ,PApj)

;
xj = xj−1 + αjpj ;
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r̂j = r̂j−1 − αjP
T Apj ;

zj = L−T L−1r̂j ; βj =
(r̂j ,zj)

(r̂j−1 ,zj−1)
;

pj+1 = zj + βjpj;
end while

For the coarse grid projection vectors we choose the vectors vm as follows:

vm(i) = 1, i ∈ Ωm, and vm(i) = 0, i /∈ Ωm. (83)

We are able to give a sharp upperbound for the effective condition number of the deflated
matrix, used with and without classical preconditioning [30]. This bound provides direction
in choosing a proper decomposition into subdomains and a proper choice of classical precon-
ditioner. If grid refinement is done keeping the subdomain resolutions fixed, the condition
number can be shown to be independent of the number of subdomains.

In parallel, we first compute and store ((AV )T V )−1 in factored form on each processor.
Then to compute PAp we first perform the matrix-vector multiplication w = Ap, requir-
ing nearest neighbor communications. Then we compute the local contribution to the re-
striction w̃ = V T w and distribute this to all processors. With this done, we can solve
ẽ = ((AV )T V )−1w̃ and compute (AV )T ẽ locally. The total communications involved in the
matrix-vector multiplication and deflation are a nearest neighbor communication of the length
of the interface and a global gather-broadcast of dimension M .

Block preconditioner and overlap

We consider a Poisson problem on a square domain with Dirichlet boundary conditions and
a constant right-hand-side function. The problem is discretized by cell-centered finite differ-
ences. We consider overlap of 0, 1 and 2 grid points and use A−1

mm in the block preconditioner.
Table 4 gives the number of iterations necessary to reduce the initial residual by a factor 106

using a decomposition into 3×3 blocks with subgrid dimensions given in the table. Note that
the number of iterations is constant along the diagonals. This agrees with domain decompo-
sition theory that the number of iterations is independent of the subdomain grid size when

overlap

grid size 0 1 2

5× 5 10 8 7
10× 10 14 9 8
20× 20 19 13 10
40× 40 26 18 14

Table 4: Iterations for various grid sizes

the physical overlap remains the same.

In the second experiment we take a 5×5 grid per subdomain. The results for various number
of blocks are given in Table 5. Note that without overlap the number of iterations increases
considerably, whereas the increase is much smaller when 2 grid points are overlapped. The
large overlap (2 grid points on a 5× 5 grid) that has been used in this test, is not affordable
for real problems.
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Deflation

overlap overlap+deflation

decomposition 0 1 2 0 1 2

2× 2 6 5 4 6 4 4
3× 3 10 8 7 11 6 6
4× 4 15 9 7 14 9 6
5× 5 18 12 9 16 10 8
6× 6 23 13 10 17 11 9
7× 7 25 16 12 17 12 10
8× 8 29 17 12 18 13 10
9× 9 33 19 14 18 14 11

Table 5: Iterations for various block decompositions with and without Deflation (subdomain
grid size 5× 5)

We do the same experiments using the Deflation (see Table 5). Initially we see some increase
of the number of iterations, however, for more than 16 blocks the increase levels off. This
phenomenon is independent of the amount of overlap. The same conclusion holds when block
RILU is used instead of fully solving the subdomain problems.

Timing results of Deflation

Finally we present some timing results on the Cray T3E for a problem on a 480 × 480 grid.
The results are given in Table 6. In this experiment we use GCR with the block RILU
preconditioner combined with Deflation. Note that the number of iterations decreases when
the number of blocks increases. This leads to an efficiency larger than 1. The decrease in
iterations is partly due to the improved approximation of the RILU preconditioner for smaller
subdomains. On the other hand when the number of blocks increases, more small eigenvalues
are projected to zero which also accelerates the convergence (see [30]). We expect that there
is some optimal value for the number of subdomains, because at the extreme limit there is
only one point per subdomain and the coarse grid problem is identical to the original problem
so there is no speedup at all.

p iterations time speedup efficiency

1 485 710 - -
4 322 120 5 1.2
9 352 59 12 1.3
16 379 36 20 1.2
25 317 20 36 1.4
36 410 18 39 1.1
64 318 8 89 1.4

Table 6: Speedup of the iterative method using a 480 × 480 grid
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