
DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology and Systems

 Matlab Manual

 September 2002

It is forbidden to copy or abuse software and documentation supplied by the faculty of
Information Technology and Systems.

 2

 3

Contents

1 Matlab session ... 4

1.1 Getting started with Matlab.. 4

1.2 Matlab and matrices, a general remark ... 5

2 Lay-out... 6

3 Common Commands .. 7

4 Numbers and strings .. 8

5 Variables.. 9

6 Complex variables .. 10

7 Matrices and Vectors.. 11

8 Elementary mathematical functions and constants... 15

9 Conditional statements... 16

10 Loop Statements.. 18

11 Output.. 19

12 Input... 20

13 Graphical Output ... 21

14 Script files, function files.. 23

15 Solving a system of equations .. 25

16 Tracking down errors .. 26

17 Example program, time integration.. 27

18 Example program, filling a penta-diagonal matrix ... 29

19 Reference and index ... 30

 4

1 Matlab session

The way to start Matlab differs from computer to computer. You may type the command ‘matlab’
when you are working under DOS or UNIX. Often, though, you will have to click on a specific
icon in order to run the program.

1.1 Getting started with Matlab
Once you have started Matlab a command window will appear, showing the command prompt:

o % The Matlab command prompt.

The line after the prompt is called the command line. On this line you can give Matlab
commands. After you have pressed <return>, Matlab will execute the command.

 o pause(5) % Wait 5 seconds before showing the plot.

o plot (x,y) % Plot vector y versus vector x.

Besides the command window Matlab has graphical windows. Output of plot commands is
directed to this type of windows.

The quit command enables you to leave Matlab. To terminate a running Matlab command you
may use [Ctrl]+[c] (Press both the Ctrl button and the c button simultaneously).

By using the ! symbol you can use the original operating system

o ! printer command % Execute the printer command belonging to the
 % original operating system.

Only for short computations it is useful to execute Matlab straightaway from the command line.
In general the next procedure is much more practical:

1. Make a script file (see chapter 14) by means of the available text editor. A script file consists

of a sequence of Matlab commands. In general script files will contain the main program and
subprograms.

2. If necessary make the additional function files, using the same editor. Through these files we
are able to define the functions which play a role in script files.

3. Matlab executes the commands in the script file after you have typed the name of the script
file on the command line.

From the command line background information can be obtained using

1. help

 o help plot % gives information on the Matlab command plot.
2. demo

 o demo % presents multiple examples of the usage of Matlab.

 5

1.2 Matlab and matrices, a general remark
Suppose that we define vectors x, y and a matrix z by

 x(i) = i , i = 1, …, 10,
 y(i) = i2 , i = 1, …, 10,
 z(i, j) = sin(x(i) + y(j)) , i, j = 1, …, 10.

In most programming languages a computer implementation will be done using nested loops:

 o for i = 1:10
 x(i) = i; y(i) = i^2;
 end
 for i = 1:10
 for j = 1:10
 z(i, j) = sin (x(i) + y(j));
 end
 end

In Matlab this can be done quite differently, because matrices are basic objects:

 o x = 1:10; y = 1:10; y = y.^2;
 o z = sin(x+ y);

Both programming styles are possible in Matlab. In this manual we prefer the latter and all
examples will be given in this style.

 6

2 Lay-out

When you use Matlab’s default configuration, the program distinguishes upper case and lower
case characters.

If the default configuration is used, Matlab will also print the result after every command. Typing
; after the command will suppress this.

o x = 2 % Matlab prints the result

x =
 2

o x = 2; % Matlab does not print the result

The symbol % is used to give comments.

o x = 2 % gives the value 2 to x and prints the result
% printing the result can be suppressed with ;

The symbol … denotes that the command continues on the next line

o x = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 . . .
 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20;

% this command does not fit on one line

 7

3 Common Commands

 quit : leave Matlab

 help command name : gives information about a command

 89898989 : retrieves preceding and following commands

 pause : pauses execution, Matlab will proceed after <return>

 whos : gives a list of Matlab variables stored in the memory

 clear : clears the memory

 clc : clears the command window

 clf : clears the graphical window

 shg : brings the graphical window to the foreground

 cputime : determines the elapsed cpu time

 demo : activates Matlab demonstrations

 8

4 Numbers and strings

Numbers can be entered in Matlab in the usual way.

o (52/4 -0 .01) * 1 e - 3

ans =
 1.2990 e - 02

Matlab automatically assigns a type for every number you enter. Depending on the type, Matlab
chooses an internal representation for these numbers and the corresponding computations. The
external representation of a number (e.g. on the screen) can be altered with the format command.

 format long e : 16 digits, (exponential) floating point
 3.141592653589793e-02

format short e : 5 digits, (exponential) floating point 3.1416e-02
format short : 5 digits, fixed point 0.0314
format long : 15 digits, fixed point 0.03141592653590
format : returns to the default configuration

The default configuration is ‘format short’. It might be possible that the local system manager has
changed this into short e.

Remark: The format command influences only the external representation of real
numbers. This command has no influence on the internal representation
used by Matlab to process the program and its computations.

Remark: The format command is not able to alter the external representation of

integer numbers.This can result for example in jumps in tables.

To manipulate text, Matlab uses strings.

o disp (’give the spring constant a’)
give the spring constant a

 9

5 Variables

A variable’s name has to start with a letter, but may not contain more than 31 letters, digits, or
underscores. Matlab automatically reserves space in the computer’s memory to store the variable.
Variables do not need to be declared before use; Matlab derives the type of the variables by
looking at the stored data. So it is possible that the type of a variable changes while a session is in
progress.

The basic element of Matlab is the matrix. Depending on the size of the matrix we distinguish
scalars (1 x 1 - matrix), vectors (1 x m -, or m x 1 – matrix), etc. Depending on the context Matlab
also assigns the type of the variables in the matrix, e.g. real or complex.

The operators +, -, *, /,^ can be used for all Matlab variables (x ^ y = x to the power of y). In the
scalar case these operations will reduce to the usual computations. At every operation step Matlab
checks if the dimensions of the matrices involved are correct.

o a = 1; c = 1 + i; v(1) = 1; v(2) = 2; word =’text’;

The command whos (see section 3) gives:

Name Size Class
 a 1 x 1 double array
 c 1 x 1 double array (complex)
 v 1 x 2 double array
word 1 x 4 char array

Multiplying a vector v with itself is not possible. If we try this anyhow we get:

o w = v * v;

??? Error using 6 *
Inner matrix dimensions must agree.

 10

6 Complex variables

A complex number can be defined using the imaginary number i.

o c = 1 + i

 c =
 1.0000 + 1.0000 i

The operators +, -, *, /, ^ also work for complex numbers. With the symbol ’ we conjugate a
complex variable:

o cgec = c’

 cgec =
 1.0000 - 1.0000 i

The (square of the) modulus of c can be computed in the following way:

o modc2 = c’ * c

 modc2 =

 2.0000

An alternative way is:

o modc2 = abs(c) ^2

 modc2 =

 2.0000

Imaginary and real parts of a variable can be obtained with the functions real and imag:

o a = real (c)

a =
 1.0000
o b = imag (c)

b =
 1.0000

 11

7 Matrices and Vectors

Matlab stores its variables in matrices of size n x m. If m = 1, we are dealing with a column
vector, and if n = 1, with a row vector. When n = m = 1 the matrix represents a scalar. The size of
a matrix does not have to be given; Matlab determines the size from the data given by the user.
Matlab does not recognize a more general array structure, for example v (-10:100); the lower
bound in Matlab is always equal to 1.

We can define matrices in different ways, e.g. by giving values to every element separately. We
separate row entries with a space or comma and columns with a semicolon.

o A = [1 2 3;4,5,6;7 8 9] % generating matrix A

 A =
 1 2 3
 4 5 6
 7 8 9

o A = [1 2 . . .
 3 4;
 5 6 7 8] % generating matrix A; . . . means continuation

 A =
 1 2 3 4
 5 6 7 8

Vectors can also be made using the colon symbol : . Here the first value stands for the initial
value, the second for the step size and the third for the final value in the vector.

o x = 0 : 0.2 : 1 % generating row vector x

x =
 0 0.2000 0.4000 0.6000 0.8000 1.0000

Sometimes it is good to use one of the following Matlab functions:

zeros(n,m) : gives an n x m matrix with zeros
ones(n,m) : gives an n x m matrix with ones
eye(n) : gives the n x n identity matrix

o A = ones(3,3) + 2*eye(3) % generating matrix A

 A =
 3 1 1
 1 3 1
 1 1 3

 12

Matrices can also be built from variables

o v = ones(3,1); A = [-v 2*v -v] % generating matrix A

 A =
 -1 2 -1
 -1 2 -1
 -1 2 -1

Matrices can also be constructed from smaller matrices

 o E = eye(3); C = zeros(3,2); D = [E C]

D =
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0

Large diagonal band matrices can be made by using the function

 diag(v,k) : returns a square matrix with on the k-th upper diagonal the entries
of the vector v.

o v = 1 : 2 : 9 % generating vector v

v =
 1 3 5 7 9

o A = diag(v,-1) + eye(6) + 2*diag(v,1)

A =
 1 2 0 0 0 0

 1 1 6 0 0 0
 0 3 1 10 0 0
 0 0 5 1 14 0

 0 0 0 7 1 18
 0 0 0 0 9 1

Matrix elements can be used separately or in groups:

A(i , j) = Aij
A(: , j) = jth column of A
A(i , :) = ith row of A
A(i , j1:j2) = vector existing of the entries, from column j1 to j2, of row i

 A(i1:i2 , j1:j2) = matrix existing of the entries, from column j1 to j2, of the
rows i1 to i2.

o plot (x(75 : 125) , y(325 : 375));

 13

In case one of the dimensions equals one we are dealing with a vector. We can refer to this vector
with just one index. This index is either a row index or a column index, depending on the type of
the vector.

The operators +, -, *, /, ^ can also be used for matrices. For every operation Matlab checks if the
dimensions of the matrices involved are correct.

o v(1) = 1; v(2) = 2; v(3) = 3; A = eye(3);
o w = A * v;

??? Error using 6 *
Inner matrix dimensions must agree.

Matlab assumes that the index of every new vector is a column index, i.e. unless explicitly
specified otherwise (see example below), the new vector is a row vector. Hence in the example
above v is a row vector, which results in an error message.

o v = zeros(3,1); % v is now a column vector
o v(1) = 1; v(2) = 2; v(3) = 3; A = eye (3);
o w = A * v;

If we use . (dot) as a prefix, we can do some of the operations element by element.

o v = v1.*v2; % multiply v1 and v2 element by element.
% v(1) = v1(1) * v2(1), . . . , v(n) = v1(n) * v2(n).

Furthermore the next functions and operations are often quite useful

’ : returns the transpose of a matrix
size(A) : returns the size of the matrix A.
length(v) : returns the size of the vector v.
norm(v) : returns the Euclidian norm of the vector v,
 i.e. norm(v) = sqrt(sum(v.^2)).
norm(v,inf) : returns the infinity norm of the vector v,
 i.e. norm(v, inf) = max(abs(v)).

o B = A’; % transpose A
o v(1) = 1; v(2) = 2; v(3) = 3; A = eye(3);
o v = v’; % change v into a column vector
o w = A * v;
o inprod = v’ * v % inner product if v is a column vector.

 inprod =
 14

 o normv2 = norm(v)

 14

 normv2 =
 3.7417

 o normvinf = norm(v, inf)

 normvinf =
 3

 15

8 Elementary mathematical functions and constants

Some of the predefined constants in Matlab are:

pi : the constant pi
i : the imaginary unit

The following mathematical functions operate on each element of the variable separately:

abs : absolute value
sqrt : square root
exp : exponential function
log : natural logarithm
log10 : logarithm with base 10

sin : sine
cos : cosine
tan : tangent
atan : arctangent

round : round off to the nearest integer
rem : remainder after division

For vectors are available:

max : maximal element
min : minimal element
sum : sum of the elements
norm : the norm 2 v 2

o max(abs(v)) % computing the largest element of v, irrespective of its sign

For matrices we mention

eig : determines the eigenvalues of a matrix
 lu : determines the LU-factorization of a matrix (using permutations if

necessary).
chol : determines the Cholesky factorization of a symmetric matrix

 16

9 Conditional statements

In Matlab six relational operators can be used to compare variables or evaluate expressions

< : smaller than
<= : smaller than, or equal to
> : greater than
>= : greater than, or equal to
== : equal to
~= : not equal to

Furthermore there are three logical operators:

& : and
**** : or
~ : not

An example of a logical expression is

x > 1 & (y <= 5 * z = 1)

Conditional statements are, for example:

Syntax conditional statement:
 if condition
 commands
 end

Syntax single conditional statement:
 if condition
 commands [1]
 else
 commands [2]
 end

Syntax multiple conditional statement:
 if condition
 commands [1]
 elseif condition
 commands [2]
 else
 commands [3]
 end

The condition has to be a logical expression.

 17

An example:

o if (x >= 1 & y >= 1)
 a = 1;
 elseif ~(x >= 1) & ~(y >= 1)
 a = -1;
 else
 a = 0;
 end

 18

10 Loop Statements

FOR - loop

Syntax:
 for variable = start value : increment : end value
 commands
 end

The increment can be positive as well as negative. If not defined, Matlab will use increment 1 as a
default.

o for j = 0 : 10
 v(j + 1) = j * .1; % the row vector v needs to start at index one!
 end

WHILE - loop

Syntax:
 while condition
 commands
 end

The condition needs to be a logical expression.

o x = 0;
o while (x <= 1)
 x = x + .1;
 end

Note that this is not a proper method when we want to execute the loop statement exactly ten
times. In Matlab 10 times 0.1 is just a bit less then 1, because Matlab makes round-off errors. This
means that the loop will be executed 11 times in stead of 10 times, and therefore the final value of
x will be too big:

o x

x =
 1.1000

 19

11 Output

Output can be directed to the screen with the command disp.

disp (x) : print the value of the variable x
disp (’text’) : print the string ‘text’
disp (A(:,5)) : print the 5-th column of matrix A

With the command format we can define how a number is displayed (see section 4).

Remark: Advanced control mechanisms for printing are available with the
command fprintf. (see the example program or use help fprintf)

We can write data to a file.

 save data varlist : the variables in varlist are written to the file
data.mat in binary format. This file can be used in a
subsequent session.

 save output varlist - ascii : the variables in varlist are written legible (8 digits,
floating point) to the file output. If necessary this
file can be printed.

 diary output : makes a diary of everything which happens during
the session and writes this to the file output. If
necessary this file can be printed.

diary off : stops monitoring the session.

o diary output % open the file output as output file
o disp (’x y’) % display the header of the table
o for j = 1 : 10
 disp ([x(j) , y(j)]) % display the values
 end
o diary off

Remark: The diary command easily gives an unnecessarily amount of output.

Therefore: Use the diary command in a selective way and only at places
where output is needed.

Remark: Files can be printed using the printer command of the original operating

system, see section 1.

Remark: Depending on the operating system other printer commands might be

available. Be careful in using these commands, because they can cause an
unnecessarily long waiting time for other people who want to use the
printer. Using the printer command under MS-windows (in the file menu)
you can print the whole Matlab session.

 20

12 Input

Variables can be entered in Matlab in different ways. The first method is using the command line.
We already explained how to do this. Another way to enter it is:

o x = input (’x-coordinate =’);

This command writes the text from the string to the screen, waits for input (until a <return> is
given) and assigns the value given by the user to the variable x. The following command:

o load data

fetches the binary file data.mat. The file data.mat needs to be produced beforehand in Matlab and
besides a list of variables it also contains the values of these variables.

The command

o load data.txt

fetches an ASCII file with the name data.txt. The content is stored in a double precision array
with the name data. The file data.txt is only allowed to contain numbers, separated by blanks.
Each line of the file corresponds with a row in the array data. Each number on a line corresponds
with a column in the array data. The number of columns must be equal on each line.

 21

13 Graphical Output

General commands in favour of the graphical screen are:

clf : clear graphical window
 shg : show graphical screen (bring graphical screen to the

foreground)
 hold on : keep the contents of the graphical screen during new plot
 commands

 hold off : erase the contents of the graphical screen before executing
new plot commands

print : direct the graph to the printer
print filename : store the graph in the file ‘filename’

Commands in favour of the layout of the graph are:

axis ([xmin xmax ymin ymax]) : sets the axes according to the given values
grid : adds a grid to the graph
title(’text ’) : writes text above the plot
xlabel(’text ’) : writes text underneath de x-axis
ylabel(’text ’) : writes text next to the y-axis
text(x, y, ’text ’) : writes text at the point (x,y) of the graphical

 screen
 t = num2str(var) : makes text of the value of var, which can

for example be written to the screen with
text(x,y,t).

The most important plot command in favour of data representation is plot:

plot (y) : plots the vector y versus the indices 1, ..., n.
 plot (x,y) : plots the vector y versus the vector x; x and

y must be of the same length.
 plot (x,y, ’symbol’) : plots the vector y versus the vector x by

using a symbol or color, e.g. ’:’ (dotted), ’--’
(dashed), ’o’ (circles), ’x ’ (crosses), ’y ’
(yellow line), ’r’ (red line), ’g’ (green line)

 plot ([xbegin xend],[ybegin yend]) : draws a line from (xbegin, ybegin) to (xend,
yend).

 zoom : makes it possible to zoom in at a specific
point in the graph by clicking at that point.

 ginput(n) : gets the coordinates of n points in the graph,
which are located by positioning the cursor
and thereupon clicking the mouse.

Remark: help plot shows all the possible arguments with plot.

 22

 o x = [0:20]/10; y = sin (pi * x);
 o plot (x,y); % plot sin πx on [0,2], plot
 % automatically assigns the right
 % dimensions to the graphical screen.
 o axis ([0 2 -1 1]); % adjust the x-axis and the y-axis; it is

% preferable to call axes after plot
o xlabel (’x’); ylabel (’sin x’);
o print % send the graph to the printer.

o clf
o hold on
o type = [’- ’ ; ’: ’ ; ’- @’ ; ’- -’] % spaces to equalize the length of the
 % character strings
o xgraph = [0:100]/100;
o for j = 1 : 4
 omega = j * pi ;

 ygraph = sin (omega * xgraph); % plot sin(ωx) on [0,1] for ω = π, 2π,
 plot (xgraph,ygraph,type(j,:)); % 3π, 4π distinguish the curves visually
 end
o print figure % store the graph in a file; use

 % help print to see a list of available
 % formats.

The commands in favour of 3 dimensional graphs are:

 plot3(x,y,z) : plots a line through the coordinates of vectors x, y, z.

 surf(x,y,Z) : plots the matrix Z versus the vectors y and x, creating a
surface.

 surfc(x,y,Z) : same as surf, but adds a contour plot beneath the surface.
 mesh(x,y,Z) : plots the matrix Z versus the vectors y and x, creating a mesh.
 rotate3d : enables the user to rotate the plot by mouse.

 o t = [0:500] * pi / 50;
 o x = sin(t); y = cos(t);
 o plot3(x,y,t) % plots a spiral on the cylinder
 % x2 + y2 = 1.
 o x = [0:10] / 10;
 o y = [0:20] / 10;
 o for j = 1:21 % z = sin (x + y), note that
 z(j, :) = sin(x + y(j)); % x runs over columns and
 end % y over rows.
 o mesh(x,y,z); % plot sin(x+y) for x = 0 : 0.1 : 1
 % and y = 0 : 0.1 : 2

 23

14 Script files, function files

A script file is a file that consists of a sequence of Matlab commands: a Matlab program. We
make such a file with the help of the Editor. The standard extension for these files is .m, e.g.
program.m. Every Matlab command is closed off with <return>. This also holds for the last line
of the sript file. The commands in the script file are executed after the filename is typed on the
command line (without extension .m, i.e. in the example above you need to type ‘program’). It is
also possible to run a script file from Matlab programs (see chapter 17).

By means of function files we can add new functions to Matlab. A function file contains a
sequence of commands, like a script file, but by means of input and ouput variables it is possible
to communicate with other files. The filename of a function file, consisting of at the most 8 digits
with standard extension .m, is used to execute the function.

Globally a function file has the following form:

 function output_variable = function_name(input_variable)
 commands

The word function in the first line indicates it is not a script file.

Remark: At function_name you need to fill in the file name without the extension .m .

Both the input variable as well as the output variable may be vectors.

 function y = average(v);
 % This function computes the average of the elements of vector v.

 n = length(v);

 y = sum(v)/n;

For the use of function files we refer to the example program (see section 17).

Variables used in a function file are local (i.e. only accessible inside the function), and therefore
they are not stored in the Matlab memory.

function y = comp(x);
 y = a * x; % the variable a is defined locally and does not

 % have a value

function y = comp(x);
 a = 2; % the variable a has the value 2, but only within this

% function
 y = a * x;

Often it is neccessary to use a variable in a function that gets its value outside the function. You
can show Matlab you want to use such a variable by adding it to the list of parameters of that

 24

function. In the following example we add the variable a to the list of parameters of the function
comp:

function y = comp(x,a);
 y = a * x; % the variable a gets its value outside the function and is

 % given to the function

This is not always possible. It may sometimes be necessary to define a variable globally, by using
global. If you do so the variable is defined in all program parts that use the same declaration.

function y = comp (x);
 global a;
 y = a * x; % the variable a is also defined globally at another
 % location where a gets its value

Remark: The declaration with global should only be used when there is no other

possibility. If you use it, it is wise to add some comments.

An example of a situation in which the occurrence of global is unavoidable is the usage of a
library routine with a predefined function, where it is needed to supply the function with an
additional parameter for a specific application.

quad(f,0,1); % library routine to compute the integral of the function
 % f on [0,1]; the argument f refers to a user-supplied
 % function file

 function y = f (x);
 global m;
 y = x ^ m;

 25

15 Solving a system of equations

To solve systems of equations Ax = b we can use several methods:

i) If a small system with a full matrix needs to be solved only once without the need to go into

details, we may use the black box option:

 o x = A\b;

Often it is necessary to go into more details to obtain an efficient program. As an example we
mention:

ii) If more than one system needs to be solved, and A is the same but the right-hand side is

always different:

o [L,U] = lu(A); % Make an LU-decomposition of A
o y = L\b; % Solve lower triangular system
o x = U\y; % Solve upper triangular system
o y2 = L\b2; x2 = U\y2; % Solution for other right-hand side

iii) If the matrix is symmetric and positive definite, we may use the Cholesky decomposition:

o R = chol(A); % Make a Cholesky decomposition of A: R’ R = A
o y = R’\b; % Solve lower triangular system
o x = R\y; % Solve upper triangular system

In all cases the command A = sparse(A) can save a lot of runtime and memory space when A is a
band matrix. As an example we give the number of floating-point operations for the case where
A is a symmetric tridiagonal matrix of size 100 x 100.

 without sparse(A) with sparse(A)
method i
method ii
method iii

378350
 35250
358750

2149
1889
1393

 26

16 Tracking down errors

Matlab does not give specific directions for debugging programs. In any way it is useful to
generate (intermediate) output, and if necessary to re-calculate it manually. Some useful
commands are:

echo on : gives an echo-print of all Matlab commands that are
executed. With this it is possible to locate the exact moment
on which the program fails.

whos : gives a table of the variables that are stored in memory. With

this command you can check the size.

 size(A) : gives the size of a matrix A.

 disp(’labelj’) : directs the labeled text to the screen; can be used to find out
at which line the program does not work properly.

 disp(var) : prints the actual value of the variable var on the screen. Can

be used to check values of intermediate results.

 27

17 Example program, time integration

% This program computes the numerical solution of dy/dt=f(t,y) with Heun’s method.

% Filename : exprog.m
% Function-file : exf.m
% Script-files : exheun.m, extabel.m ex stands for example

% Screen management:
 clear; % Clear work memory
 clc; % Clear text window
 clf; % Clear graphical screen

y0=[1; 0]; % Initial condition
t0=0; % Start time
tend=5; % End time
nrsteps=input('Give the number of steps:');
h=(tend-t0)/nrsteps; % Time step

exheun % Call for the script file containing Heun’s method
extabel % Call for the script file designed to print the results
 % The commands from a script file are substituted directly into this program.

pause(5); % The program pauses for a while before it shows the graph
hold on;
plot(tgraph,ygraph(1,:),'-',tgraph,ygraph(2,:),'--'); % components of y are distinguished by
 % plotting the 2nd component with a broken line
axis([t0 tend -5 5]); % it is preferable to call axis after plot
title('Initial value problem: Name compulsory!');
xlabel(['Solution with Heun with h=' num2str(h)]);
hold off;

% Heun’s method. Script file with filename exheun.m.

% Assuming (t0, y0) "nrsteps" steps are being executed
% The derivative of the diff. eq. is given in the function file exf.m.
% The results are put in tgraph and ygraph

tgraph=[t0];
ygraph=[y0]; % start saving results

y=y0; t=t0;
for j=1:nrsteps

 k1=h*exf(t,y);
 k2=h*exf(t+h,y+k1);
 ynew =y+(k1+k2)/2;
 tnew =t+h;

 tgraph=[tgraph tnew]; % Paste the new results
 ygraph=[ygraph ynew]; % after the old results

 t=tnew;
 y=ynew;

end;

 28

% Print result. Script file with file name extabel.m.

% The results which are stored in tgraph and ygraph are
% printed in an 8-digit floating-point format in a table.

% In order to make a hardcopy of the tables you need to remove
% the first and the last two comment symbols (%).

% fprintf is actually a C-command
% In the format string of fprintf (the part between quotation marks),
% text which needs to be printed is given, and for every number
% which has to be printed the format is given.

% %5.1f means: fixed-point format with 1 decimal and 5 positions.
% %15.7e means: exponential format and floating-point with 7 decimals and 15 positions.
% \n means: continue printing on the next line

% After the format string the variables which (possibly) need to be printed follow.

% the actual file starts now:
% diary output

fprintf('Heun’s method, h=%5.3f \n',h);
fprintf('step t y(1) y(2)\n');
for k=0 : nrsteps/10 : nrsteps % print every 10th result
 fprintf(' %4.0f %5.1f %15.7e %15.7e\n',k,tgraph(k+1),ygraph(1:2,k+1)); % note that nrsteps needs to a
end; % multiple of 10.

% diary off
% !lpr output % Make a hard copy of the file output

% Vectorfunction f. Function file with filename exf.m

function yacc = exf(t,y);

 yacc = [-2*y(1)- y(2)+t;
 -y(1)-2*y(2)-t];

% Results of the example program

Heun’s method, h=0.100
step t y(1) y(2)
 0 0.0 1.0000000e+00 0.0000000e+00
 5 0.5 5.2536330e-01 -2.9586400e-01
 10 1.0 5.7914644e-01 -5.2647651e-01
 15 1.5 8.4164231e-01 -8.2955459e-01
 20 2.0 1.2051207e+00 -1.2023466e+00
 25 2.5 1.6240001e+00 -1.6233635e+00
 30 3.0 2.0751573e+00 -2.0750112e+00
 35 3.5 2.5455986e+00 -2.5455650e+00
 40 4.0 3.0276755e+00 -3.0276678e+00
 45 4.5 3.5167996e+00 -3.5167979e+00
 50 5.0 4.0101983e+00 -4.0101979e+00

 29

18 Example program, filling a penta-diagonal matrix

% We will give two methods in this example in order to construct the N x N dimensional pentadiagonal matrix A:
%
% [5 -4-b 1 0 0 0]
% [-4+b 6 -4-b 1 0 0]
% [1 -4+b 6 -4-b 1 0]
% [0 1 -4+b 6 -4-b 1]
% [. ]
% A = c [. ] ,
% [0 1 -4+b 6 -4-b 1 0]
% [0 0 1 -4+b 6 -4-b 1]
% [0 0 0 1 -4+b 6 -4+b]
% [0 0 0 0 1 -4+b 5]
%
% where c and b are given constants. Note that the matrix A is symmetric for b = 0.

% Method 1: Construction using a loop.
% In order to make the commands in the loop also valid for the first and the last column we first add some extra columns.

 B=zeros(N,N+4); % Creates a N x (N+4) matrix, consisting of zeros

 for j=1:N
 B(j,j:j+4)=c*[1 -4+b 6 -4-b 1];
 end; % Assigns values to the coefficients B(j,j), B(j,j+1), B(j,j+2), B(j,j+3) and B(j,j+4)

 A=B(:,3:N+2); % Copies B, without the first two and last two columns
 clear B; % Removes temporary matrix B

 A(1,1)=5*c;
 A(N,N)=5*c; % Changes the upper-left and the lower-right coefficient of A

 A=sparse(A); % Only the non-zero elements of A are stored into the memory.
 % When N is large it is better to use the non-zero elements of A only.
 % For an LU-decomposition this saves computing time as well as memory
 % space.

% Method 2: Construction on the basis of the diagonals of A
% Firstly we make 5 vectors, all containing the elements of a diagonal.

 vm2 = c * ones(N-2,1); % This diagonal contains (N-2) elements, all equal to c
 vp2 = c * ones(N-2,1);
 vm1 = c*(b-4)*ones(N-1,1);
 vp1 = c*(-b-4)*ones(N-1,1);

 v =c*[5; 6*ones(N-2,1); 5]; % The first and last element of the main diagonal have different values.
 % We construct a column vector consisting of sixes, by 6 * ones(N-2,1),
 % and add the fives at the beginning and the end. Note that we use
 % the semicolons because we are making a column vector.

 A=diag(vm2,-2)+diag(vm1,-1)+diag(v,0)+diag(vp1,1)+diag(vp2,2);
 clear vm2 vm1 v vp1 vp2

 A=sparse(A); % See above

 30

19 Reference and index

In this section the following notation holds:

 n,m - scalar
 A - matrix
 v,w,b - vector
 x,y - arbitrary
 f - user supplied function file

Comand Explanation Page

[] are used for creating matrices and vectors
() are used to :

- indicate the order of operations
- embrace arguments of functions
- embrace indices of matrices and vectors

… Three or more dots at the end of a line indicate that the line continues
on the next line

6

, symbol that separates between row elements in a matrix. 4
; symbol that separates between distinct rows in a matrix. We can also

use the semicolon to suppress the display of computations on the
screen and to separate different commands on one line

6

% All text on a line after the symbol % will be regarded as comment 4
! used to insert operating system commands 4
: used for the generation of variables in for-loops and used to select

matrix elements: A(:,n) is the nth column of A, A(m,:) the mth row

’ transposes matrices and vectors 13
.* v .* w : multiplication of two vectors by multiplying element by

element

\ A\b gives the solution of Ax = b
^ x ^ y = x to the power y
& logical and 16
| logical or 16
~ logical not 16
abs abs(x) is the absolute value of (the elements of) x 10,15
atan atan(x) is the arctangent of (the elements of) x 15
axis axis(v), with v = [xmin xmax ymin ymax] replaces the automatical

scaling of a graph’s axes by the configuration given by the vector v.
axis ('square') switches over from a rectangular graphical screen to a
square-shaped graphical screen, axis ('normal') switches back to the
rectangular screen.

21

chol chol(A) yields the Cholesky decomposition of the matrix A. 15
clc clc clears the command window and moves the cursor to the upper left

corner
7

 31

clear clear clears the variables from the Matlab memory. clear x {y}
removes the variable x {and y}

7

clf clf clears the graphical window 7,21
cos cos(x) is the cosine of (the elements of) x 15
cputime cputime determines the cpu time 7
demo demo starts a demonstration 4,7
diag diag (v,k) returns a square matrix with the elements of the vector v on

the kth upper diagonal
12

diary diary filename puts all following commands and results in a file with
the name filename. This stops after diary off is entered

19

disp disp('text') writes text on the screen. disp(x) displays the value of the
variable x, without variable name

8,19,
26

echo echo on lets Matlab display every executed command when a script
file runs. echo off switches it off

26

eig eig(A) computes the eigenvalues of A and returns a vector containing
these eigenvalues

15

else, elseif see if
end end is the command that closes off loop statements and conditional

statements

exp exp(x) is the exponent of (the elements of) x with base e 15
eye eye(n) is the nxn identity matrix. eye(m,n) is an mxn matrix with ones

on the diagonal and zeros elsewhere
11

for loop statement:
 for variable = start value : increment : end value,
 commands
 end

5,18

format formats the output:
 format short - 5 digits, fixed point
 format short e - 5 digits, floating point
 format long - 15 digits, fixed point
 format long e - 15 digits, floating point
standard configuration is short.
 format compact suppresses extra empty lines in the output
 format loose adds empty lines

8

fprintf C-command for advanced formatting of output 19
function user defined function:

 function outputvar = functionname (inputvars)
 commands
 end
Function files have to have the name functionname.m. The name
functionname may contain up to 8 letters.

23

ginput(n) gets the coordinates of n points in the graph, which are located by
positioning the cursor and thereupon clicking the mouse

21

global global x changes x into a global variable 24
grid adds a grid (a lattice of horizontal and vertical lines) to a graph 21

 32

help help shows the functions you can get information about.
Help functionname shows this information on the screen. Helpwin
generates an extra window with helptopics

4,7

hold hold on keeps the last plot in the graphical screen. Therefore a graph
will be plotted on top of the existing one. Hold off restores the default
settings. In this case, when a plot command has been given, the
graphical screen will be cleared before the new graph will be plotted

21

i the imaginairy unit 15
if conditional statement:

 if statement if statement
 commands commands
 else elseif statement
 commands commands
 end else
 commands
 end

16

imag imag(c) returns the imaginary part of the complex number c 10
input input('text') displays text on the screen and waits for input by the user.

Can be assigned to a variable
20

length length(v) returns the number of elements of the vector v 13
load load filename loads the variables of the file filename into the memory.

The file is of type .mat or of type .txt.
20

log log(x) is the natural logarithm of (the elements of) x 15
log10 log10(x) is the logarithm with base 10 of (the elements of) x 15
lu lu(A) computes the lu decomposition of the matrix A 15
max max(v) returns the largest element of the vector v 13,15
mesh mesh(x,y,Z) plots the matrix Z versus the vectors y and x, creating a

mesh
22

min min(v) returns the smallest element of the vector v 15
norm norm(v) computes the Euclidian norm of v and norm(v, inf) computes

the infinity norm
13

num2str num2str(var) converts the number var to a text string 21
ones ones(n) is an nxn matrix filled with ones, ones(m,n) is an mxn matrix 11
pause pause pauses the running programme and waits until the user presses

any key. Pause(n) pauses during n seconds
4,7

pi pi is the machine’s representation of π 15
plot Drawing a graph:

 plot(v) - plot the vector v versus its indices
 plot(v,w) - plot the vector w versus the vector v
 plot(m,n,'symbol') - put a symbol at position (m,n) in the

 graph. The following symbols can be
 used: +, *, o and x

4,12,
21

plot3 plot3(x,y,z) plots a line through the coordinates of vectors x, y, z 22
print direct the graph to the printer. Print filename stores the graph in the

file filename
21

 33

quad library routine: quad(f,0,1) computes the integral of the function f on
[0,1].

24

quit logout from Matlab 7
real real (c) returns the real part of the complex vector c 10
rem rem(m,n) returns the remainder after division of m by n 15
rotate3d enables the user to rotate the plot by mouse 22
round round(x) rounds the elements of x to the nearest integer 15
save save filename x {y} saves the variable x {and y} into the file

filename.mat
19

script file a script file is a file consisting of a sequence of Matlab commands.
After you have typed the file name at the command prompt these
commands will be executed.

23f

shg shg shows the most recent graphical screen 7,21
sin sin(x) is the sine of (the elements of) x 5,15
size [m,n] = size(A) returns the size of the matrix A 13,26
sparse sparse(A) saves computations as well as memory space. It can be used

when A is a band matrix, and the computations only involve non-zero
elements (see section 15).

25

sqrt sqrt(x) is the square root of (the elements of) x 13,15
sum sum(v) is the sum of the elements of the vector of v 15
surf surf(x,y,Z) plots the matrix Z versus the vectors y and x, creating a

surface
22

surfc same as surf, but adds a contour plot beneath the surface 22
tan tan(x) is the tangent of (the elements of) x 15
text text(m,n,'text') writes text at position (m,n) of the graphical screen 21
title title('text') writes text as a title above the graph in the graphical screen 21
while conditional loop statement:

 while statement
 commands
 end

18

whos whos shows the name, size and type of the variables in the Matlab
memory

7,9,
26

xlabel xlabel('text') places text underneath the x-axis of the graphical screen 21
ylabel ylabel('text') places text next to the y-axis of the graphical screen 21
zeros zeros(n) returns an nxn matrix with zeros; zeros(m,n) returns an mxn

matrix
11

zoom zoom makes it possible to zoom in at a specific point in the graph by
clicking the mouse at that point

21

